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1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖. Let
C be a nonempty closed convex subset of H and let PC be the metric projection of H
onto C. Let S : C → H be a nonlinear mapping on C. We denote by Fix(S) the set
of fixed points of S. Let A : H → H be a mapping. Consider the classical variational
inequality problem (VIP) of finding x∗ ∈ C such that 〈Ax∗, x−x∗〉 ≥ 0, ∀x ∈ C. The
solution set of the VIP is denoted by VI(C,A). Recently, much attention has been
focused on solution methods for the VIP; see, e.g., [24, 17, 18, 8, 6, 23, 5, 1, 7, 3, 2]
and references therein. One of effective methods to solve the VIP is the extragradient
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method, which was introduced by Korpelevich [13] in 1976. It generates a sequence
{xn} in the following manner: x0 ∈ C,{

yn = PC(xn − τAxn),
xn+1 = PC(xn − τAyn) ∀n ≥ 0,

(1.1)

where A is a L-Lipschitz continuous monotone mapping and τ ∈ (0, 1
L ).

It deserves mentioning that there are two projections onto C for each iteration. In
most cases, metric projections are not easy to calculate. In 2011, Censor, Gibali and
Reich [4] first introduced the subgradient extragradient method, in which the second
projection onto C was replaced by a projection onto a half-space: yn = PC(xn − τAxn),

Cn = {w ∈ H : 〈xn − τAxn − yn, w − yn〉 ≤ 0},
xn+1 = PCn

(xn − τAyn) ∀n ≥ 0,
(1.2)

where A is a L-Lipschitz continuous monotone mapping and τ ∈ (0, 1
L ).

Combining the subgradient extragradient method and the Halpern’s iteration
method, Kraikaew and Saejung [14] proposed the Halpern subgradient extragradi-
ent method for solving the VIP in 2014. For any initial x0 ∈ H, their iterative
sequence {xn} was generated by

yn = PC(xn − τAxn),
Cn = {x ∈ H : 〈xn − τAxn − yn, x− yn〉 ≤ 0},
zn = PCn

(xn − τAyn),
xn+1 = αnx0 + (1− αn)zn ∀n ≥ 0,

(1.3)

where τ ∈ (0, 1
L ), {αn} ⊂ (0, 1), lim

n→∞
αn = 0 and

∑∞
n=1 αn = +∞. They proved the

strong convergence of {xn} to PVI(C,A)x0.
In 2018, Thong and Hieu [19] first proposed the following inertial subgradient

extragradient method. For any initial x0, x1 ∈ H, their iterative sequence {xn} was
generated by 

wn = xn + αn(xn − xn−1),
yn = PC(wn − τAwn),
Cn = {x ∈ H : 〈wn − τAwn − yn, x− yn〉 ≤ 0},
xn+1 = PCn

(wn − τAyn) ∀n ≥ 1,

(1.4)

with constant τ ∈ (0, 1
L ). Under suitable conditions, they proved the weak conver-

gence of {xn} to an element of VI(C,A).
Very recently, Thong et al. [20] introduced an inertial subgradient extragradient-

type method for solving the VIP with pseudomonotone and Lipschitz continuous
mapping in a real Hilbert space. Under appropriate conditions, they proved the
strong convergence of {xn} to an element of VI(C,A).

In this paper, we introduce a modified inertial subgradient extragradient method
for solving the VIP with a pseudomonotone and Lipschitz continuous mapping and
a common fixed point problem (CFFP) of nonexpansive mappings in a real Hilbert
space. Our proposed algorithm is based on the inertial subgradient extragradient
method, hybrid steepest-descent method, and viscosity approximation method. Under
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mild conditions, we prove strong convergence of the proposed algorithm to a common
solution of the VIP and CFPP. Our main result can also be applied to common
solution problems of a fractional programming and a fixed-point problem.

This paper is organized as follows: In Section 2, we recall some definitions and
preliminaries for the sequel use. Section 3 deals with the convergence analysis of the
proposed algorithm. Finally, in Section 4, our main result is applied to a common
solution problem of the fractional programming and the fixed-point problem.

2. Preliminaries

Let {xn} be a sequence in a Hilbert space H. We denote by xn → x (respectively,
xn ⇀ x) the strong (respectively, weak) convergence of {xn} to x.

A mapping T : C → H is said to be nonexpansive if ‖Tx−Ty‖ ≤ ‖x−y‖, ∀x, y ∈ C.
Recall that T : C → H is said to be

(i) L-Lipschitz continuous (or L-Lipschitzian) if ∃L > 0 such that

‖Tx− Ty‖ ≤ L‖x− y‖, ∀x, y ∈ C;

(ii) monotone if 〈Tx− Ty, x− y〉 ≥ 0, ∀x, y ∈ C;
(iii) pseudomonotone if 〈Tx, y − x〉 ≥ 0⇒ 〈Ty, y − x〉 ≥ 0, ∀x, y ∈ C;
(iv) α-strongly monotone if ∃α > 0 such that

〈Fx− Fy, x− y〉 ≥ α‖x− y‖2, ∀x, y ∈ C;

(v) sequentially weakly continuous if ∀{xn} ⊂ C, the relation holds:

xn ⇀ x⇒ Txn ⇀ Tx.

It is easy to see that every monotone operator is pseudomonotone but the converse
is not true. For each x ∈ H, we know that there exists a unique nearest point in
C, denoted by PCx, such that ‖x − PCx‖ ≤ ‖x − y‖, ∀y ∈ C. PC is called a metric
projection of H onto C.

Lemma 2.1. The following conclusions hold in a Hilbert space H:
(i) 〈x− PCx, y − PCx〉 ≤ 0 ∀x ∈ H, y ∈ C;
(ii) ‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2 ∀x ∈ H, y ∈ C;
(iii) ‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉 ∀x, y ∈ H;
(iv) ‖λx + µy‖2 = λ‖x‖2 + µ‖y‖2 − λµ‖x − y‖2 ∀x, y ∈ H, ∀λ, µ ∈ [0, 1] with

λ+ µ = 1.

Lemma 2.2. [9] For all x ∈ H and α ≥ β > 0 the inequalities hold:

‖x− PC(x− αAx)‖
α

≤ ‖x− PC(x− βAx)‖
β

and

‖x− PC(x− βAx)‖ ≤ ‖x− PC(x− αAx)‖.
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Lemma 2.3. [4] Let A : C → H be pseudomonotone and continuous. Then x∗ ∈ C
is a solution to the VIP 〈Ax∗, x− x∗〉 ≥ 0 ∀x ∈ C, if and only if

〈Ax, x− x∗〉 ≥ 0 ∀x ∈ C.

Lemma 2.4. [21] Let {an} be a sequence of nonnegative numbers satisfying the
conditions: an+1 ≤ (1−λn)an +λnγn ∀n ≥ 1, where {λn} and {γn} are sequences of
real numbers such that

(i) {λn} ⊂ [0, 1] and

∞∑
n=1

λn =∞, and

(ii) lim sup
n→∞

γn ≤ 0 or

∞∑
n=1

|λnγn| <∞.

Then lim
n→∞

an = 0.

Lemma 2.5. [10] Let T : C → C be a nonexpansive mapping with Fix(T ) 6= ∅. Then
I − T is demiclosed at zero, that is, if {xn} is a sequence in C such that xn ⇀ x ∈ C
and (I − T )xn → 0, then (I − T )x = 0, where I is the identity mapping of H.

Lemma 2.6. [22] Let λ ∈ (0, 1], T : C → H be a nonexpansive mapping, and
the mapping Tλ : C → H be defined by Tλx := Tx − λµF (Tx) ∀x ∈ C, where
F : H → H is κ-Lipschitzian and η-strongly monotone. Then Tλ is a contraction
provided 0 < µ < 2η

κ2 , i.e.,

‖Tλx− Tλy‖ ≤ (1− λτ)‖x− y‖, ∀x, y ∈ C,

where τ = 1−
√

1− µ(2η − µκ2) ∈ (0, 1].

3. Convergence theorems

In this section, let the feasible set C be a nonempty closed convex subset of a real
Hilbert space H, and always assume that the following hold:
Ti : H → H is nonexpansive for i = 1, ..., N ;
A : H → H is L-Lipschitz continuous, pseudomonotone monotone on H, and

sequentially weakly continuous on C, such that Ω =

N⋂
i=1

Fix(Ti) ∩VI(C,A) 6= ∅;

f : H → H is a contraction with constant δ ∈ [0, 1), and F : H → H is η-strongly
monotone and κ-Lipschitzian such that

δ < τ := 1−
√

1− ρ(2η − ρκ2) for ρ ∈
(

0,
2η

κ2

)
;

{βn}, {γn}, {τn} are positive sequences such that βn + γn < 1,

∞∑
n=1

βn =∞, lim
n→∞

βn = 0, 0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn < 1

and τn = o(βn).
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In addition, we write Tn := TnmodN for integer n ≥ 1 with the mod function
taking values in the set {1, 2, ..., N}, that is, if n = jN + q for some integers j ≥ 0
and 0 ≤ q < N , then Tn = TN if q = 0 and Tn = Tq if 0 < q < N .

Algorithm 3.1. Initialization. Let λ1 > 0, α > 0, µ ∈ (0, 1) and x0, x1 ∈ H be
arbitrary.
Iterative Steps. Calculate xn+1 as follows:
Step 1. Given the iterates xn−1 and xn (n ≥ 1), choose αn such that 0 ≤ αn ≤ αn,
where

αn =

{
min{α, τn

‖xn−xn−1‖} if xn 6= xn−1,

α otherwise.
(3.1)

Step 2. Compute wn = Tnxn + αn(Tnxn − Tnxn−1) and yn = PC(wn − λnAwn).
Step 3. Construct the half-space Cn := {z ∈ H : 〈wn − λnAwn − yn, z − yn〉 ≤ 0},
and compute zn = PCn(wn − λnAyn).
Step 4. Calculate xn+1 = βnf(xn) + γnxn + ((1− γn)I − βnρF )zn, and update

λn+1 =

{
min{µ‖wn−yn‖2+‖zn−yn‖2

2〈Awn−Ayn,zn−yn〉 , λn} if 〈Awn −Ayn, zn − yn〉 > 0,

λn otherwise.
(3.2)

Let n := n+ 1 and return to Step 1.

Remark 3.1. From (3.1), we get lim
n→∞

αn

βn
‖xn − xn−1‖ = 0. Indeed, we have

αn‖xn − xn−1‖ ≤ τn ∀n ≥ 1,

which together with lim
n→∞

τn
βn

= 0 implies that

αn
βn
‖xn − xn−1‖ ≤

τn
βn
→ 0 as n→∞.

Lemma 3.1. Let {λn} be generated by (3.2). Then {λn} is a nonincreasing sequence
with λn ≥ λ := min{λ1,

µ
L} ∀n ≥ 1, and lim

n→∞
λn ≥ λ := min{λ1,

µ
L}.

Proof. First, from (3.2) it is clear that λn ≥ λn+1 ∀n ≥ 1. Also, observe that

1
2 (‖wn − yn‖2 + ‖zn − yn‖2) ≥ ‖wn − yn‖‖zn − yn‖
〈Awn −Ayn, zn − yn〉 ≤ L‖wn − yn‖‖zn − yn‖

}
⇒ λn+1 ≥ min

{
λn,

µ

L

}
.

Remark 3.2. In terms of Lemmas 2.2 and 3.1, we claim that if wn = yn or Ayn = 0,
then yn is an element of VI(C,A). Indeed, if wn = yn or Ayn = 0, then

0 = ‖yn − PC(yn − λnAyn)‖ ≥ ‖yn − PC(yn − λAyn)‖.

Thus, the assertion is valid.

The following lemmas are quite helpful for the convergence analysis of our algorithm.



98 L.C. CENG, A. PETRUŞEL, X. QIN AND J.C. YAO

Lemma 3.2. Let {wn}, {yn}, {zn} be the sequences generated by Algorithm 3.1. Then

‖zn − p‖2 ≤ ‖wn − p‖2 −
(

1− µ λn
λn+1

)
‖wn − yn‖2

−
(

1− µ λn
λn+1

)
‖zn − yn‖2, ∀p ∈ Ω . (3.3)

Proof. By the definition of {λn}, we claim that

2〈Awn −Ayn, zn − yn〉 ≤
µ

λn+1
‖wn − yn‖2 +

µ

λn+1
‖zn − yn‖2 ∀n ≥ 1. (3.4)

Indeed, if 〈Awn − Ayn, zn − yn〉 ≤ 0, then inequality (3.4) holds. From (3.2), we get
(3.4). Observe that, for each p ∈ Ω ⊂ C ⊂ Cn,

‖zn − p‖2 = ‖PCn(wn − λnAyn)− PCnp‖2 ≤ 〈zn − p, wn − λnAyn − p〉

=
1

2
‖zn − p‖2 +

1

2
‖wn − p‖2 −

1

2
‖zn − wn‖2 − 〈zn − p, λnAyn〉,

which hence yields

‖zn − p‖2 ≤ ‖wn − p‖2 − ‖zn − wn‖2 − 2〈zn − p, λnAyn〉. (3.5)

From p ∈ VI(C,A), we get 〈Ap, x− p〉 ≥ 0 ∀x ∈ C. By the pseudomonotonicity of A
on C we have 〈Ax, x− p〉 ≥ 0 ∀x ∈ C. Putting x := yn ∈ C we get 〈Ayn, p− yn〉 ≤ 0.
Thus,

〈Ayn, p− zn〉 = 〈Ayn, p− yn〉+ 〈Ayn, yn − zn〉 ≤ 〈Ayn, yn − zn〉. (3.6)

Substituting (3.6) for (3.5), we obtain

‖zn−p‖2 ≤ ‖wn−p‖2−‖zn−yn‖2−‖yn−wn‖2 +2〈wn−λnAyn−yn, zn−yn〉. (3.7)

Since yn = PCn(wn − λnAwn) and zn ∈ Cn, we have

2〈wn − λnAyn − yn, zn − yn〉 ≤ 2λn〈Awn −Ayn, zn − yn〉,

which together with (3.4), implies that

2〈wn − λnAyn − yn, zn − yn〉 ≤ µ
λn
λn+1

‖wn − yn‖2 + µ
λn
λn+1

‖zn − yn‖2. (3.8)

Therefore, substituting (3.8) for (3.7), we infer that inequality (3.3) holds.

Lemma 3.3. Let {wn}, {xn}, {yn} be the sequences generated by Algorithm 3.1. If
xn − xn+1 → 0, wn − xn → 0 and wn − yn → 0 and ∃{wnk

} ⊂ {wn} such that
wnk

⇀ z ∈ H, then z ∈ Ω.

Proof. From Algorithm 3.1, we get wn−xn = Tnxn−xn+αn(Tnxn−Tnxn−1) ∀n ≥ 1.
Hence

‖Tnxn − xn‖ ≤ ‖wn − xn‖+ βn ·
αn
βn
‖xn − xn−1‖.

Utilizing Remark 3.1 and the assumption wn − xn → 0, we have

lim
n→∞

‖xn − Tnxn‖ = 0. (3.9)
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Also, from yn = PC(wn − λnAwn), we have

〈wn − λnAwn − yn, x− yn〉 ≤ 0 ∀x ∈ C.
Hence

1

λn
〈wn − yn, x− yn〉+ 〈Awn, yn − wn〉 ≤ 〈Awn, x− wn〉 ∀x ∈ C. (3.10)

Note that {wnk
} is bounded. According to the Lipschitz continuity of A, {Awnk

} is
bounded. Note that λn ≥ min{λ1,

µ
L}. So, from (3.10) we get

lim inf
k→∞

〈Awnk
, x− wnk

〉 ≥ 0, ∀x ∈ C.

Meantime, observe that

〈Ayn, x− yn〉 = 〈Ayn −Awn, x− wn〉+ 〈Awn, x− wn〉+ 〈Ayn, wn − yn〉.
Since wn− yn → 0, we obtain from L-Lipschitz continuity of A that Awn−Ayn → 0,
which together with (3.10) yields

lim inf
k→∞

〈Aynk
, x− ynk

〉 ≥ 0 ∀x ∈ C.

Next we show that lim
n→∞

‖xn − Tlxn‖ = 0 for l = 1, ..., N . Indeed, for i = 1, ..., N ,

‖xn − Tn+ixn‖ ≤ 2‖xn − xn+i‖+ ‖xn+i − Tn+ixn+i‖.
Hence from (3.9) and the assumption xn − xn+1 → 0, we get

lim
n→∞

‖xn − Tn+ixn‖ = 0

for i = 1, ..., N . This immediately implies that

lim
n→∞

‖xn − Tlxn‖ = 0 for l = 1, ..., N. (3.11)

We now take a sequence {εk} ⊂ (0, 1) satisfying εk ↓ 0 as k → ∞. For all k ≥ 1, we
denote by mk the smallest positive integer such that

〈Aynj
, x− ynj

〉+ εk ≥ 0 ∀j ≥ mk. (3.12)

Since {εk} is decreasing, it is clear that {mk} is increasing. Noticing that {ymk
} ⊂ C

guarantees Aymk
6= 0 ∀k ≥ 1, we set

umk
=

Aymk

‖Aymk
‖2

and get 〈Aymk
, umk

〉 = 1 ∀k ≥ 1. So, from (3.12), we get

〈Aymk
, x+ εkumk

− ymk
〉 ≥ 0 ∀k ≥ 1.

Again from the pseudomonotonicity of A, we have

〈A(x+ εkumk
), x+ εkumk

− ymk
〉 ≥ 0 ∀k ≥ 1.

This immediately leads to

〈Ax, x−ymk
〉 ≥ 〈Ax−A(x+εkumk

), x+εkumk
−ymk

〉−εk〈Ax, umk
〉 ∀k ≥ 1. (3.13)

We claim that
lim
k→∞

εkumk
= 0.
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Indeed, from wnk
⇀ z and wn − yn → 0, we obtain ynk

⇀ z. So, {yn} ⊂ C
guarantees z ∈ C. Again from the sequentially weak continuity of A, we know that
Aynk

⇀ Az. Thus, we have Az 6= 0 (otherwise, z is a solution). Taking into account
the sequentially weak lower semicontinuity of the norm ‖ · ‖, we get

0 < ‖Az‖ ≤ lim inf
k→∞

‖Aynk
‖.

Note that {ymk
} ⊂ {ynk

} and εk ↓ 0 as k →∞. So it follows that

0 ≤ lim sup
k→∞

‖εkumk
‖ = lim sup

k→∞

εk
‖Aymk

‖
≤

lim sup
k→∞

εk

lim inf
k→∞

‖Aynk
‖

= 0.

Hence we get εkumk
→ 0.

Next we show that z ∈ Ω . Indeed, from wn − xn → 0 and wnk
⇀ z, we get xnk

⇀ z.
From (3.11) we have xnk

−Tlxnk
→ 0 for l = 1, ..., N . Note that Lemma 2.5 guarantees

the demiclosedness of I − Tl at zero for l = 1, ..., N . Thus z ∈ Fix(Tl). Since l is an

arbitrary element in the finite set {1, ..., N}, we get z ∈
N⋂
i=1

Fix(Ti).

On the other hand, letting k →∞, we deduce that the right hand side of (3.13) tends
to zero by the uniform continuity of A, the boundedness of {wmk

}, {umk
} and the

limit lim
k→∞

εkumk
= 0. Thus, we get

〈Ax, x− z〉 = lim inf
k→∞

〈Ax, x− ymk
〉 ≥ 0 ∀x ∈ C.

By Lemma 2.3, we have z ∈ VI(C,A). Therefore,

z ∈
N⋂
i=1

Fix(Ti) ∩VI(C,A) = Ω .

This completes the proof.

Theorem 3.1. Let {xn} be the sequence generated by Algorithm 3.1.
Then xn → x∗ ∈ Ω ⇔ xn − xn+1 → 0, where x∗ ∈ Ω is a unique solution to the
VIP:

〈(ρF − f)x∗, p− x∗〉 ≥ 0 ∀p ∈ Ω .

Proof. We show that PΩ (f + I − ρF ) is a contraction. Indeed, for any x, y ∈ H, by
Lemma 2.6, we have

‖PΩ (f + I − ρF )x− PΩ (f + I − ρF )y‖ ≤ [1− (τ − δ)]‖x− y‖,

which implies that PΩ (f + I − ρF ) is a contraction. Banach’s Contraction Mapping
Principle guarantees that PΩ (f + I − ρF ) has a unique fixed point. Say x∗ ∈ H, that
is, x∗ = PΩ (f + I − ρF )x∗. Thus, there exists a unique solution

x∗ ∈ Ω =

N⋂
i=0

Fix(Ti) ∩VI(C,A)
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to the VIP

〈(ρF − f)x∗, p− x∗〉 ≥ 0 ∀p ∈ Ω . (3.14)

It is clear that the necessity of the theorem is valid. Next we show the sufficiency
of the theorem. To the aim, we assume xn − xn+1 → 0 and divide the proof of the
sufficiency into several steps.

Step 1. We show that {xn} is bounded. Indeed, since

0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn < 1,

we may assume, without loss of generality, that {γn} ⊂ [a, b] ⊂ (0, 1). Take an
arbitrary

p ∈ Ω =

N⋂
i=1

Fix(Ti) ∩VI(C,A).

Then Tnp = p ∀n ≥ 1, and inequality (3.3) holds, i.e.,

‖zn − p‖2 ≤ ‖wn − p‖2 −
(

1− µ λn
λn+1

)
‖wn − yn‖2

−
(

1− µ λn
λn+1

)
‖zn − yn‖2 ∀p ∈ Ω . (3.15)

Since

lim
n→∞

(
1− µ λn

λn+1

)
= 1− µ > 0,

we may assume, without loss of generality, that

1− µ λn
λn+1

> 0 ∀n ≥ 1.

Therefore, we have

‖zn − p‖ ≤ ‖wn − p‖ ∀n ≥ 1. (3.16)

It follows that

‖wn − p‖ ≤ ‖Tnxn − p‖+ αn‖Tnxn − Tnxn−1‖

≤ ‖xn − p‖+ βn ·
αn
βn
‖xn − xn−1‖. (3.17)

According to Remark 3.1, we have

αn
βn
‖xn − xn−1‖ → 0

as n→∞, it follows that there exists a constant M1 > 0 such that

αn
βn
‖xn − xn−1‖ ≤M1 ∀n ≥ 1. (3.18)

Combining (3.16), (3.17) and (3.18), we obtain

‖zn − p‖ ≤ ‖wn − p‖ ≤ ‖xn − p‖+ βnM1 ∀n ≥ 1. (3.19)
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Since βn + γn < 1 ∀n ≥ 1, we get

βn
1− γn

< 1 ∀n ≥ 1.

So, from Lemma 2.6 and (3.19) it follows that

‖xn+1 − p‖ ≤ βn‖f(xn)− p‖+ γn‖xn − p‖

+ (1− βn − γn)

∥∥∥∥( 1− γn
1− βn − γn

I − βn
1− βn − γn

ρF

)
zn − p

∥∥∥∥
≤ βn(‖f(xn)− f(p)‖+ ‖f(p)− p‖) + γn‖xn − p‖

+ (1− βn − γn)

∥∥∥∥( 1− γn
1− βn − γn

I − βn
1− βn − γn

ρF

)
zn − p

∥∥∥∥
≤ βn(δ‖xn − p‖+ ‖f(p)− p‖) + γn‖xn − p‖

+ (1−γn)

∥∥∥∥(I− βn
1− γn

ρF

)
zn −

(
I − βn

1− γn
ρF

)
p+

βn
1− γn

(I − ρF )p

∥∥∥∥
≤ βn(δ‖xn − p‖+ ‖f(p)− p‖) + γn‖xn − p‖
+ (1− γn − βnτ)‖zn − p‖+ βn‖(I − ρF )p‖

≤ [1− βn(τ − δ)]‖xn − p‖+ βn(τ − δ) · M1 + ‖f(p)− p‖+ ‖(I − ρF )p‖
τ − δ

≤ max

{
‖xn − p‖,

M1 + ‖f(p)− p‖+ ‖(I − ρF )p‖
τ − δ

}
.

By induction, we obtain

‖xn − p‖ ≤ max{‖x1 − p‖,
M1 + ‖f(p)− p‖+ ‖(I − ρF )p‖

τ − δ
} ∀n ≥ 1.

Thus, {xn} is bounded, and so are the sequences {wn}, {yn}, {zn}, {f(xn)}, {Fzn},
{Tnxn}.

Step 2. We show that

(1−βnτ−γn)

(
1− µ λn

λn+1

)
[‖wn−yn‖2+‖zn−yn‖2] ≤ ‖xn−p‖2−‖xn+1−p‖2+βnM4,

for some M4 > 0. Indeed, observe that

xn+1 − p = βn(f(xn)− p) + γn(xn − p) + (1− βn − γn)

×
{

1− γn
1− βn − γn

[(
I − βn

1− γn
ρF

)
zn −

(
I − βn

1− γn
ρF

)
p

]
+

βn
1− βn − γn

(I − ρF )p

}
= βn(f(xn)− f(p)) + γn(xn − p) + (1− γn)

×
[(
I − βn

1− γn
ρF

)
zn −

(
I − βn

1− γn
ρF

)
p

]
+ βn(f − ρF )p.
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Then by Lemma 2.6 and the convexity of the function h(t) = t2 ∀t ∈ R, we get

‖xn+1 − p‖2 ≤ βnδ‖xn − p‖2 + γn‖xn − p‖2 + (1− βnτ − γn)‖zn − p‖2

+ 2βn〈(f − ρF )p, xn+1 − p〉
≤ βnδ‖xn − p‖2 + γn‖xn − p‖2

+ (1− βnτ − γn)‖zn − p‖2 + βnM2, (3.20)

where sup
n≥1

2‖(f − ρF )p‖‖xn − p‖ ≤ M2 for some M2 > 0. Substituting (3.15) for

(3.20), we get

‖xn+1 − p‖2 ≤ βnδ‖xn − p‖2 + γn‖xn − p‖2 + (1− βnτ − γn)[‖wn − p‖2

−
(

1− µ λn
λn+1

)
‖wn − yn‖2

−
(

1− µ λn
λn+1

)
‖zn − yn‖2] + βnM2. (3.21)

Also, from (3.19) we have

‖wn − p‖2 ≤ ‖xn − p‖2 + βnM3, (3.22)

where sup
n≥1

(2M1‖xn − p‖ + βnM
2
1 ) ≤ M3 for some M3 > 0. Combining (3.21) and

(3.22), we obtain

‖xn+1 − p‖2 ≤ βnδ‖xn − p‖2 + γn‖xn − p‖2 + (1− βnτ − γn)[‖xn − p‖2 + βnM3]

− (1− βnτ − γn)

[(
1− µ λn

λn+1

)
‖wn − yn‖2

+

(
1− µ λn

λn+1

)
‖zn − yn‖2

]
+ βnM2

≤ ‖xn − p‖2 − (1− βnτ − γn)

(
1− µ λn

λn+1

)
[‖wn − yn‖2

+ ‖zn − yn‖2] + βnM4,

where M4 := M2 +M3. This immediately implies that

(1−βnτ−γn)

(
1− µ λn

λn+1

)
[‖wn−yn‖2+‖zn−yn‖2] ≤ ‖xn−p‖2−‖xn+1−p‖2+βnM4.

(3.23)
Step 3. We show that

‖xn+1 − p‖2 ≤ [1− βn(τ − δ)]‖xn − p‖2

+ βn(τ − δ)
[

2

τ − δ
〈(f − ρF )p, xn+1 − p〉+

3M

τ − δ
· αn
βn
· ‖xn − xn−1‖

]
for some M > 0. Indeed, we have

‖wn − p‖2 ≤ ‖xn − p‖2 + αn‖xn − xn−1‖[2‖xn − p‖+ αn‖xn − xn−1‖]. (3.24)
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Combining (3.19), (3.20) and (3.24), we have

‖xn+1 − p‖2 ≤ βnδ‖xn − p‖2 + γn‖xn − p‖2 + (1− βnτ − γn){‖xn − p‖2

+ αn‖xn − xn−1‖[2‖xn − p‖+ αn‖xn − xn−1‖]}
+ 2βn〈(f − ρF )p, xn+1 − p〉
≤ [1− βn(τ − δ)]‖xn − p‖2

+ αn‖xn − xn−1‖[2‖xn − p‖+ αn‖xn − xn−1‖]
+ 2βn〈(f − ρF )p, xn+1 − p〉
≤ [1− βn(τ − δ)]‖xn − p‖2

+ βn(τ − δ)
[

2〈(f − ρF )p, xn+1 − p〉
τ − δ

+
3M

τ − δ
· αn
βn
· ‖xn − xn−1‖

]
,

(3.25)

where sup
n≥1
{‖xn − p‖, αn‖xn − xn−1‖} ≤M for some M > 0.

Step 4. We show that {xn} converges strongly to a unique solution x∗ ∈ Ω to the
VIP (3.14). Indeed, putting p = x∗, we deduce from (3.25) that

‖xn+1 − x∗‖2 ≤ [1− βn(τ − δ)]‖xn − x∗‖2

+ βn(τ − δ)
[

2〈(f − ρF )x∗, xn+1 − x∗〉
τ − δ

+
3M

τ − δ
· αn
βn
· ‖xn − xn−1‖

]
.

(3.26)

By Lemma 2.4, it suffices to show that

lim sup
n→∞

〈(f − ρF )x∗, xn+1 − x∗〉 ≤ 0.

From (3.23), xn − xn+1 → 0, βn → 0 and {γn} ⊂ [a, b] ⊂ (0, 1), we obtain

lim sup
n→∞

(1− βnτ − b)(1− µ
λn
λn+1

)[‖wn − yn‖2 + ‖zn − yn‖2]

≤ lim sup
n→∞

[‖xn − p‖2 − ‖xn+1 − p‖2 + βnM4]

≤ lim sup
n→∞

(‖xn − p‖+ ‖xn+1 − p‖)‖xn − xn+1‖ = 0.

This immediately implies that

lim
n→∞

‖wn − yn‖ = 0 and lim
n→∞

‖zn − yn‖ = 0. (3.27)

Thus, we get
lim
n→∞

‖zn − wn‖ = 0. (3.28)

Also, from Algorithm 3.1 we get

xn+1 − xn = βn(f(xn)− ρFzn) + (1− γn)(zn − xn),

which hence implies that

‖zn − xn‖ ≤
1

1− b
[‖xn+1 − xn‖+ βn‖f(xn)− ρFzn‖].
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From xn−xn+1 → 0, βn → 0 and the boundedness of {f(xn)} and {Fzn} we conclude
that

lim
n→∞

‖zn − xn‖ = 0. (3.29)

From the boundedness of {xn}, it follows that there exists a subsequence {xnk
} of

{xn} such that

lim sup
n→∞

〈(f − ρF )x∗, xn − x∗〉 = lim
k→∞

〈(f − ρF )x∗, xnk
− x∗〉. (3.30)

Since H is reflexive and {xn} is bounded, we may assume, without loss of generality,
that xnk

⇀ x̃. Hence from (3.30) we get

lim sup
n→∞

〈(f − ρF )x∗, xn − x∗〉 = lim
k→∞

〈(f − ρF )x∗, xnk
− x∗〉

= 〈(f − ρF )x∗, x̃− x∗〉. (3.31)

Also, from (3.28) and (3.29) we have

‖wn − xn‖ ≤ ‖wn − zn‖+ ‖zn − xn‖ → 0 (n→∞),

which together with xnk
⇀ x̃, implies that wnk

⇀ x̃.
Since xn − xn+1 → 0, wn − xn → 0, wn − yn → 0 and wnk

⇀ x̃, by Lemma 3.3 we
infer that x̃ ∈ Ω . Hence from (3.14) and (3.31) we get

lim sup
n→∞

〈(f − ρF )x∗, xn − x∗〉 = 〈(f − ρF )x∗, x̃− x∗〉 ≤ 0, (3.32)

which immediately leads to

lim sup
n→∞

〈(f − ρF )x∗, xn+1 − x∗〉

≤ lim sup
n→∞

[‖(f − ρF )x∗‖‖xn+1 − xn‖+ 〈(f − ρF )x∗, xn − x∗〉] ≤ 0.
(3.33)

Note that {βn(τ − δ)} ⊂ [0, 1],

∞∑
n=1

βn(τ − δ) =∞, and

lim sup
n→∞

[
2〈(f − ρF )x∗, xn+1 − x∗〉

τ − δ
+

3M

τ − δ
· αn
βn
· ‖xn − xn−1‖

]
≤ 0.

Consequently, applying Lemma 2.4 to (3.26), we have lim
n→0
‖xn − x∗‖ = 0.

This completes the proof.

4. An application

In this section, our main result is applied to find a common solution of the fractional
programming and fixed-point problems. Since the exact solution of the problem is not
known, we make use of ‖xn+1− xn‖ to measure the error of the n-th iteration, which
also serves as the role of checking whether or not the proposed algorithm converges
to the solution.

The initial point x0 is randomly chosen in Rm. Take

f(x) = F (x) =
1

2
x, µ = 0.3, βn =

1

n+ 1
, α = 0.1, γn =

1

3
, ρ = 2,



106 L.C. CENG, A. PETRUŞEL, X. QIN AND J.C. YAO

and

αn =

{
min

{
β2
n

‖xn−xn−1‖ , α
}

if xn 6= xn−1,

α otherwise.

Then we know that κ = η = 1
2 , and

τ = 1−
√

1− ρ(2η − ρκ2) = 1−

√√√√1− 2

(
2 · 1

2
− 2

(
1

2

)2
)

= 1 ∈ (0, 1].

First, we set the operator Γ (x) := Mx + q, which comes from [11] and has been
considered by many authors for applicable examples (see, for example [16]), where
M = BBT + D + G, and B is an m × m matrix, D is an m × m skew-symmetric
matrix, G is an m×m diagonal matrix, whose diagonal entries are nonnegative (so M
is positive semidefinite), q is a vector in Rm. The feasible set C ⊂ Rm is a closed and
convex subset defined by C := {x ∈ Rm : Hx ≤ d}, where H is an l×m matrix and d
is a nonnegative vector. It is clear that Γ is β-monotone and L-Lipschitz-continuous
with β = min{eig(Γ )} and L = max{eig(Γ )}. Next we give the operator A.
Consider the following fractional programming problem:

min g(x) =
xTQx+ aTx+ a0

bTx+ b0
,

subject to x ∈ X := {x ∈ R4 : bTx+ b0 > 0},

where

Q =


5 −1 2 0
−1 5 −1 3
2 −1 3 0
0 3 0 5

 , a =


1
−2
−2
1

 , b =


2
1
1
0

 , a0 = −2, b0 = 4.

It is easy to verify that Q is symmetric and positive definite in R4 and consequently
g is pseudoconvex on X = {x ∈ R4 : bTx+ b0 > 0}. Then

Ax := ∇g(x) =
(bTx+ b0)(2Qx+ a)− b(xTQx+ aTx+ a0)

(bTx+ b0)2
.

It is known that A is pseudomonotone (see, e.g., [12, 15] for more details). Now, we
give a nonexpansive mapping T1 : H → C defined by T1x = PCx ∀x ∈ H. Thus,
Algorithm 3.1 can be rewritten as follows:

wn = T1xn + αn(T1xn − T1xn−1),
yn = PC(wn − λnAwn),
zn = PCn

(wn − λnAyn),
xn+1 = 1

n+1 ·
1
2xn + 1

3xn + ( n
n+1I −

1
3I)zn ∀n ≥ 1,

where for each n ≥ 1, Cn and λn are chosen as in Algorithm 3.1. Therefore, utilizing
Theorem 3.1, we know that {xn} converges to a common solution of the fractional
programming problem and the fixed-point problem of T1 provided ‖xn − xn+1‖ → 0.
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