A MODIFIED INERTIAL SUBGRADIENT EXTRAGRADIENT METHOD FOR SOLVING PSEUDOMONOTONE VARIATIONAL INEQUALITIES AND COMMON FIXED POINT PROBLEMS

L.C. CENG*, A. PETRUŞEL**, X. QIN*** AND J.C. YAO****
*Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
E-mail: zenglc@hotmail.com
** Department of Mathematics, Babeş-Bolyai University, Cluj-Napoca, and
Academy of Romanian Scientists, Bucharest, Romania
E-mail: petrusel@math.ubbcluj.ro
*** General Education Center,
National Yunlin University of Science and Technology, Douliou 64002, Taiwan
E-mail: qinxl@yuntech.edu.tw
${ }^{* * * *}$ Research Center for Interneural Computing, China Medical University Hospital, Taichung 40447, Taiwan
E-mail: yaojc@mail.cmu.edu.tw
Corresponding author

Abstract

In this paper, we introduce a modified inertial subgradient extragradient method for solving a variational inequality problem with Lipschitz pseudomonotone mapping and a common fixed-point problem of a family of nonexpansive mappings. Under mild conditions, we obtain strong convergence theorems in a real Hilbert space. An application is also provided. Key Words and Phrases: Inertial subgradient extragradient method, variational inequality, pseudomonotone mapping, nonexpansive mapping, fixed point. 2010 Mathematics Subject Classification: $65 \mathrm{~K} 15,47 \mathrm{H} 05,47 \mathrm{H} 10$.

1. Introduction

Let H be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and induced norm $\|\cdot\|$. Let C be a nonempty closed convex subset of H and let P_{C} be the metric projection of H onto C. Let $S: C \rightarrow H$ be a nonlinear mapping on C. We denote by $\operatorname{Fix}(S)$ the set of fixed points of S. Let $A: H \rightarrow H$ be a mapping. Consider the classical variational inequality problem (VIP) of finding $x^{*} \in C$ such that $\left\langle A x^{*}, x-x^{*}\right\rangle \geq 0, \forall x \in C$. The solution set of the VIP is denoted by $\mathrm{VI}(C, A)$. Recently, much attention has been focused on solution methods for the VIP; see, e.g., $[24,17,18,8,6,23,5,1,7,3,2]$ and references therein. One of effective methods to solve the VIP is the extragradient
method, which was introduced by Korpelevich [13] in 1976. It generates a sequence $\left\{x_{n}\right\}$ in the following manner: $x_{0} \in C$,

$$
\left\{\begin{array}{l}
y_{n}=P_{C}\left(x_{n}-\tau A x_{n}\right) \tag{1.1}\\
x_{n+1}=P_{C}\left(x_{n}-\tau A y_{n}\right) \quad \forall n \geq 0
\end{array}\right.
$$

where A is a L-Lipschitz continuous monotone mapping and $\tau \in\left(0, \frac{1}{L}\right)$.
It deserves mentioning that there are two projections onto C for each iteration. In most cases, metric projections are not easy to calculate. In 2011, Censor, Gibali and Reich [4] first introduced the subgradient extragradient method, in which the second projection onto C was replaced by a projection onto a half-space:

$$
\left\{\begin{array}{l}
y_{n}=P_{C}\left(x_{n}-\tau A x_{n}\right) \tag{1.2}\\
C_{n}=\left\{w \in H:\left\langle x_{n}-\tau A x_{n}-y_{n}, w-y_{n}\right\rangle \leq 0\right\} \\
x_{n+1}=P_{C_{n}}\left(x_{n}-\tau A y_{n}\right) \quad \forall n \geq 0
\end{array}\right.
$$

where A is a L-Lipschitz continuous monotone mapping and $\tau \in\left(0, \frac{1}{L}\right)$.
Combining the subgradient extragradient method and the Halpern's iteration method, Kraikaew and Saejung [14] proposed the Halpern subgradient extragradient method for solving the VIP in 2014. For any initial $x_{0} \in H$, their iterative sequence $\left\{x_{n}\right\}$ was generated by

$$
\left\{\begin{array}{l}
y_{n}=P_{C}\left(x_{n}-\tau A x_{n}\right) \tag{1.3}\\
C_{n}=\left\{x \in H:\left\langle x_{n}-\tau A x_{n}-y_{n}, x-y_{n}\right\rangle \leq 0\right\} \\
z_{n}=P_{C_{n}}\left(x_{n}-\tau A y_{n}\right), \\
x_{n+1}=\alpha_{n} x_{0}+\left(1-\alpha_{n}\right) z_{n} \quad \forall n \geq 0
\end{array}\right.
$$

where $\tau \in\left(0, \frac{1}{L}\right),\left\{\alpha_{n}\right\} \subset(0,1), \lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=1}^{\infty} \alpha_{n}=+\infty$. They proved the strong convergence of $\left\{x_{n}\right\}$ to $P_{\mathrm{VI}(C, A)} x_{0}$.

In 2018, Thong and Hieu [19] first proposed the following inertial subgradient extragradient method. For any initial $x_{0}, x_{1} \in H$, their iterative sequence $\left\{x_{n}\right\}$ was generated by

$$
\left\{\begin{array}{l}
w_{n}=x_{n}+\alpha_{n}\left(x_{n}-x_{n-1}\right) \tag{1.4}\\
y_{n}=P_{C}\left(w_{n}-\tau A w_{n}\right) \\
C_{n}=\left\{x \in H:\left\langle w_{n}-\tau A w_{n}-y_{n}, x-y_{n}\right\rangle \leq 0\right\} \\
x_{n+1}=P_{C_{n}}\left(w_{n}-\tau A y_{n}\right) \quad \forall n \geq 1
\end{array}\right.
$$

with constant $\tau \in\left(0, \frac{1}{L}\right)$. Under suitable conditions, they proved the weak convergence of $\left\{x_{n}\right\}$ to an element of $\mathrm{VI}(C, A)$.

Very recently, Thong et al. [20] introduced an inertial subgradient extragradienttype method for solving the VIP with pseudomonotone and Lipschitz continuous mapping in a real Hilbert space. Under appropriate conditions, they proved the strong convergence of $\left\{x_{n}\right\}$ to an element of $\mathrm{VI}(C, A)$.

In this paper, we introduce a modified inertial subgradient extragradient method for solving the VIP with a pseudomonotone and Lipschitz continuous mapping and a common fixed point problem (CFFP) of nonexpansive mappings in a real Hilbert space. Our proposed algorithm is based on the inertial subgradient extragradient method, hybrid steepest-descent method, and viscosity approximation method. Under
mild conditions, we prove strong convergence of the proposed algorithm to a common solution of the VIP and CFPP. Our main result can also be applied to common solution problems of a fractional programming and a fixed-point problem.

This paper is organized as follows: In Section 2, we recall some definitions and preliminaries for the sequel use. Section 3 deals with the convergence analysis of the proposed algorithm. Finally, in Section 4, our main result is applied to a common solution problem of the fractional programming and the fixed-point problem.

2. Preliminaries

Let $\left\{x_{n}\right\}$ be a sequence in a Hilbert space H. We denote by $x_{n} \rightarrow x$ (respectively, $\left.x_{n} \rightharpoonup x\right)$ the strong (respectively, weak) convergence of $\left\{x_{n}\right\}$ to x.

A mapping $T: C \rightarrow H$ is said to be nonexpansive if $\|T x-T y\| \leq\|x-y\|, \forall x, y \in C$. Recall that $T: C \rightarrow H$ is said to be
(i) L-Lipschitz continuous (or L-Lipschitzian) if $\exists L>0$ such that

$$
\|T x-T y\| \leq L\|x-y\|, \forall x, y \in C
$$

(ii) monotone if $\langle T x-T y, x-y\rangle \geq 0, \forall x, y \in C$;
(iii) pseudomonotone if $\langle T x, y-x\rangle \geq 0 \Rightarrow\langle T y, y-x\rangle \geq 0, \forall x, y \in C$;
(iv) α-strongly monotone if $\exists \alpha>0$ such that

$$
\langle F x-F y, x-y\rangle \geq \alpha\|x-y\|^{2}, \forall x, y \in C ;
$$

(v) sequentially weakly continuous if $\forall\left\{x_{n}\right\} \subset C$, the relation holds:

$$
x_{n} \rightharpoonup x \Rightarrow T x_{n} \rightharpoonup T x
$$

It is easy to see that every monotone operator is pseudomonotone but the converse is not true. For each $x \in H$, we know that there exists a unique nearest point in C, denoted by $P_{C} x$, such that $\left\|x-P_{C} x\right\| \leq\|x-y\|, \forall y \in C . P_{C}$ is called a metric projection of H onto C.

Lemma 2.1. The following conclusions hold in a Hilbert space H :
(i) $\left\langle x-P_{C} x, y-P_{C} x\right\rangle \leq 0 \forall x \in H, y \in C$;
(ii) $\|x-y\|^{2} \geq\left\|x-P_{C} x\right\|^{2}+\left\|y-P_{C} x\right\|^{2} \forall x \in H, y \in C$;
(iii) $\|x-y\|^{2}=\|x\|^{2}-\|y\|^{2}-2\langle x-y, y\rangle \forall x, y \in H$;
(iv) $\|\lambda x+\mu y\|^{2}=\lambda\|x\|^{2}+\mu\|y\|^{2}-\lambda \mu\|x-y\|^{2} \forall x, y \in H, \forall \lambda, \mu \in[0,1]$ with $\lambda+\mu=1$.

Lemma 2.2. [9] For all $x \in H$ and $\alpha \geq \beta>0$ the inequalities hold:

$$
\frac{\left\|x-P_{C}(x-\alpha A x)\right\|}{\alpha} \leq \frac{\left\|x-P_{C}(x-\beta A x)\right\|}{\beta}
$$

and

$$
\left\|x-P_{C}(x-\beta A x)\right\| \leq\left\|x-P_{C}(x-\alpha A x)\right\|
$$

Lemma 2.3. [4] Let $A: C \rightarrow H$ be pseudomonotone and continuous. Then $x^{*} \in C$ is a solution to the $\operatorname{VIP}\left\langle A x^{*}, x-x^{*}\right\rangle \geq 0 \forall x \in C$, if and only if

$$
\left\langle A x, x-x^{*}\right\rangle \geq 0 \forall x \in C
$$

Lemma 2.4. [21] Let $\left\{a_{n}\right\}$ be a sequence of nonnegative numbers satisfying the conditions: $a_{n+1} \leq\left(1-\lambda_{n}\right) a_{n}+\lambda_{n} \gamma_{n} \forall n \geq 1$, where $\left\{\lambda_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ are sequences of real numbers such that
(i) $\left\{\lambda_{n}\right\} \subset[0,1]$ and $\sum_{n=1}^{\infty} \lambda_{n}=\infty$, and
(ii) $\limsup _{n \rightarrow \infty} \gamma_{n} \leq 0$ or $\sum_{n=1}^{\infty}\left|\lambda_{n} \gamma_{n}\right|<\infty$.

Then $\lim _{n \rightarrow \infty} a_{n}=0$.
Lemma 2.5. [10] Let $T: C \rightarrow C$ be a nonexpansive mapping with $\operatorname{Fix}(T) \neq \emptyset$. Then $I-T$ is demiclosed at zero, that is, if $\left\{x_{n}\right\}$ is a sequence in C such that $x_{n} \rightharpoonup x \in C$ and $(I-T) x_{n} \rightarrow 0$, then $(I-T) x=0$, where I is the identity mapping of H.

Lemma 2.6. [22] Let $\lambda \in(0,1], T: C \rightarrow H$ be a nonexpansive mapping, and the mapping $T^{\lambda}: C \rightarrow H$ be defined by $T^{\lambda} x:=T x-\lambda \mu F(T x) \forall x \in C$, where $F: H \rightarrow H$ is κ-Lipschitzian and η-strongly monotone. Then T^{λ} is a contraction provided $0<\mu<\frac{2 \eta}{\kappa^{2}}$, i.e.,

$$
\left\|T^{\lambda} x-T^{\lambda} y\right\| \leq(1-\lambda \tau)\|x-y\|, \forall x, y \in C
$$

where $\tau=1-\sqrt{1-\mu\left(2 \eta-\mu \kappa^{2}\right)} \in(0,1]$.

3. Convergence theorems

In this section, let the feasible set C be a nonempty closed convex subset of a real Hilbert space H, and always assume that the following hold:
$T_{i}: H \rightarrow H$ is nonexpansive for $i=1, \ldots, N$;
$A: H \rightarrow H$ is L-Lipschitz continuous, pseudomonotone monotone on H, and sequentially weakly continuous on C, such that $\Omega=\bigcap_{i=1}^{N} \operatorname{Fix}\left(T_{i}\right) \cap \mathrm{VI}(C, A) \neq \emptyset$;
$f: H \rightarrow H$ is a contraction with constant $\delta \in[0,1)$, and $F: H \rightarrow H$ is η-strongly monotone and κ-Lipschitzian such that

$$
\delta<\tau:=1-\sqrt{1-\rho\left(2 \eta-\rho \kappa^{2}\right)} \text { for } \rho \in\left(0, \frac{2 \eta}{\kappa^{2}}\right)
$$

$\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\},\left\{\tau_{n}\right\}$ are positive sequences such that $\beta_{n}+\gamma_{n}<1$,

$$
\sum_{n=1}^{\infty} \beta_{n}=\infty, \lim _{n \rightarrow \infty} \beta_{n}=0,0<\liminf _{n \rightarrow \infty} \gamma_{n} \leq \limsup _{n \rightarrow \infty} \gamma_{n}<1
$$

and $\tau_{n}=o\left(\beta_{n}\right)$.

In addition, we write $T_{n}:=T_{n \bmod N}$ for integer $n \geq 1$ with the \bmod function taking values in the set $\{1,2, \ldots, N\}$, that is, if $n=j N+q$ for some integers $j \geq 0$ and $0 \leq q<N$, then $T_{n}=T_{N}$ if $q=0$ and $T_{n}=T_{q}$ if $0<q<N$.

Algorithm 3.1. Initialization. Let $\lambda_{1}>0, \alpha>0, \mu \in(0,1)$ and $x_{0}, x_{1} \in H$ be arbitrary.
Iterative Steps. Calculate x_{n+1} as follows:
Step 1. Given the iterates x_{n-1} and $x_{n}(n \geq 1)$, choose α_{n} such that $0 \leq \alpha_{n} \leq \overline{\alpha_{n}}$, where

$$
\overline{\alpha_{n}}= \begin{cases}\min \left\{\alpha, \frac{\tau_{n}}{\left\|x_{n}-x_{n-1}\right\|}\right\} & \text { if } x_{n} \neq x_{n-1} \tag{3.1}\\ \alpha & \text { otherwise }\end{cases}
$$

Step 2. Compute $w_{n}=T_{n} x_{n}+\alpha_{n}\left(T_{n} x_{n}-T_{n} x_{n-1}\right)$ and $y_{n}=P_{C}\left(w_{n}-\lambda_{n} A w_{n}\right)$.
Step 3. Construct the half-space $C_{n}:=\left\{z \in H:\left\langle w_{n}-\lambda_{n} A w_{n}-y_{n}, z-y_{n}\right\rangle \leq 0\right\}$, and compute $z_{n}=P_{C_{n}}\left(w_{n}-\lambda_{n} A y_{n}\right)$.
Step 4. Calculate $x_{n+1}=\beta_{n} f\left(x_{n}\right)+\gamma_{n} x_{n}+\left(\left(1-\gamma_{n}\right) I-\beta_{n} \rho F\right) z_{n}$, and update

$$
\lambda_{n+1}= \begin{cases}\min \left\{\mu \frac{\left\|w_{n}-y_{n}\right\|^{2}+\left\|z_{n}-y_{n}\right\|^{2}}{2\left\langle A w_{n}-A y_{n}, z_{n}-y_{n}\right\rangle}, \lambda_{n}\right\} & \text { if }\left\langle A w_{n}-A y_{n}, z_{n}-y_{n}\right\rangle>0 \tag{3.2}\\ \lambda_{n} & \text { otherwise }\end{cases}
$$

Let $n:=n+1$ and return to Step 1.
Remark 3.1. From (3.1), we get $\lim _{n \rightarrow \infty} \frac{\alpha_{n}}{\beta_{n}}\left\|x_{n}-x_{n-1}\right\|=0$. Indeed, we have

$$
\alpha_{n}\left\|x_{n}-x_{n-1}\right\| \leq \tau_{n} \forall n \geq 1
$$

which together with $\lim _{n \rightarrow \infty} \frac{\tau_{n}}{\beta_{n}}=0$ implies that

$$
\frac{\alpha_{n}}{\beta_{n}}\left\|x_{n}-x_{n-1}\right\| \leq \frac{\tau_{n}}{\beta_{n}} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Lemma 3.1. Let $\left\{\lambda_{n}\right\}$ be generated by (3.2). Then $\left\{\lambda_{n}\right\}$ is a nonincreasing sequence with $\lambda_{n} \geq \lambda:=\min \left\{\lambda_{1}, \frac{\mu}{L}\right\} \forall n \geq 1$, and $\lim _{n \rightarrow \infty} \lambda_{n} \geq \lambda:=\min \left\{\lambda_{1}, \frac{\mu}{L}\right\}$.

Proof. First, from (3.2) it is clear that $\lambda_{n} \geq \lambda_{n+1} \forall n \geq 1$. Also, observe that

$$
\left.\begin{array}{l}
\frac{1}{2}\left(\left\|w_{n}-y_{n}\right\|^{2}+\left\|z_{n}-y_{n}\right\|^{2}\right) \geq\left\|w_{n}-y_{n}\right\|\left\|z_{n}-y_{n}\right\| \\
\left\langle A w_{n}-A y_{n}, z_{n}-y_{n}\right\rangle \leq L\left\|w_{n}-y_{n}\right\|\left\|z_{n}-y_{n}\right\|
\end{array}\right\} \Rightarrow \lambda_{n+1} \geq \min \left\{\lambda_{n}, \frac{\mu}{L}\right\}
$$

Remark 3.2. In terms of Lemmas 2.2 and 3.1, we claim that if $w_{n}=y_{n}$ or $A y_{n}=0$, then y_{n} is an element of $\operatorname{VI}(C, A)$. Indeed, if $w_{n}=y_{n}$ or $A y_{n}=0$, then

$$
0=\left\|y_{n}-P_{C}\left(y_{n}-\lambda_{n} A y_{n}\right)\right\| \geq\left\|y_{n}-P_{C}\left(y_{n}-\lambda A y_{n}\right)\right\|
$$

Thus, the assertion is valid.
The following lemmas are quite helpful for the convergence analysis of our algorithm.

Lemma 3.2. Let $\left\{w_{n}\right\},\left\{y_{n}\right\},\left\{z_{n}\right\}$ be the sequences generated by Algorithm 3.1. Then

$$
\begin{align*}
\left\|z_{n}-p\right\|^{2} \leq\left\|w_{n}-p\right\|^{2} & -\left(1-\mu \frac{\lambda_{n}}{\lambda_{n+1}}\right)\left\|w_{n}-y_{n}\right\|^{2} \\
& -\left(1-\mu \frac{\lambda_{n}}{\lambda_{n+1}}\right)\left\|z_{n}-y_{n}\right\|^{2}, \quad \forall p \in \Omega \tag{3.3}
\end{align*}
$$

Proof. By the definition of $\left\{\lambda_{n}\right\}$, we claim that

$$
\begin{equation*}
2\left\langle A w_{n}-A y_{n}, z_{n}-y_{n}\right\rangle \leq \frac{\mu}{\lambda_{n+1}}\left\|w_{n}-y_{n}\right\|^{2}+\frac{\mu}{\lambda_{n+1}}\left\|z_{n}-y_{n}\right\|^{2} \forall n \geq 1 \tag{3.4}
\end{equation*}
$$

Indeed, if $\left\langle A w_{n}-A y_{n}, z_{n}-y_{n}\right\rangle \leq 0$, then inequality (3.4) holds. From (3.2), we get (3.4). Observe that, for each $p \in \Omega \subset C \subset C_{n}$,

$$
\begin{aligned}
\left\|z_{n}-p\right\|^{2} & =\left\|P_{C_{n}}\left(w_{n}-\lambda_{n} A y_{n}\right)-P_{C_{n}} p\right\|^{2} \leq\left\langle z_{n}-p, w_{n}-\lambda_{n} A y_{n}-p\right\rangle \\
& =\frac{1}{2}\left\|z_{n}-p\right\|^{2}+\frac{1}{2}\left\|w_{n}-p\right\|^{2}-\frac{1}{2}\left\|z_{n}-w_{n}\right\|^{2}-\left\langle z_{n}-p, \lambda_{n} A y_{n}\right\rangle
\end{aligned}
$$

which hence yields

$$
\begin{equation*}
\left\|z_{n}-p\right\|^{2} \leq\left\|w_{n}-p\right\|^{2}-\left\|z_{n}-w_{n}\right\|^{2}-2\left\langle z_{n}-p, \lambda_{n} A y_{n}\right\rangle \tag{3.5}
\end{equation*}
$$

From $p \in \operatorname{VI}(C, A)$, we get $\langle A p, x-p\rangle \geq 0 \forall x \in C$. By the pseudomonotonicity of A on C we have $\langle A x, x-p\rangle \geq 0 \forall x \in C$. Putting $x:=y_{n} \in C$ we get $\left\langle A y_{n}, p-y_{n}\right\rangle \leq 0$. Thus,

$$
\begin{equation*}
\left\langle A y_{n}, p-z_{n}\right\rangle=\left\langle A y_{n}, p-y_{n}\right\rangle+\left\langle A y_{n}, y_{n}-z_{n}\right\rangle \leq\left\langle A y_{n}, y_{n}-z_{n}\right\rangle \tag{3.6}
\end{equation*}
$$

Substituting (3.6) for (3.5), we obtain

$$
\begin{equation*}
\left\|z_{n}-p\right\|^{2} \leq\left\|w_{n}-p\right\|^{2}-\left\|z_{n}-y_{n}\right\|^{2}-\left\|y_{n}-w_{n}\right\|^{2}+2\left\langle w_{n}-\lambda_{n} A y_{n}-y_{n}, z_{n}-y_{n}\right\rangle \tag{3.7}
\end{equation*}
$$

Since $y_{n}=P_{C_{n}}\left(w_{n}-\lambda_{n} A w_{n}\right)$ and $z_{n} \in C_{n}$, we have

$$
2\left\langle w_{n}-\lambda_{n} A y_{n}-y_{n}, z_{n}-y_{n}\right\rangle \leq 2 \lambda_{n}\left\langle A w_{n}-A y_{n}, z_{n}-y_{n}\right\rangle
$$

which together with (3.4), implies that

$$
\begin{equation*}
2\left\langle w_{n}-\lambda_{n} A y_{n}-y_{n}, z_{n}-y_{n}\right\rangle \leq \mu \frac{\lambda_{n}}{\lambda_{n+1}}\left\|w_{n}-y_{n}\right\|^{2}+\mu \frac{\lambda_{n}}{\lambda_{n+1}}\left\|z_{n}-y_{n}\right\|^{2} \tag{3.8}
\end{equation*}
$$

Therefore, substituting (3.8) for (3.7), we infer that inequality (3.3) holds.
Lemma 3.3. Let $\left\{w_{n}\right\},\left\{x_{n}\right\},\left\{y_{n}\right\}$ be the sequences generated by Algorithm 3.1. If $x_{n}-x_{n+1} \rightarrow 0, w_{n}-x_{n} \rightarrow 0$ and $w_{n}-y_{n} \rightarrow 0$ and $\exists\left\{w_{n_{k}}\right\} \subset\left\{w_{n}\right\}$ such that $w_{n_{k}} \rightharpoonup z \in H$, then $z \in \Omega$.

Proof. From Algorithm 3.1, we get $w_{n}-x_{n}=T_{n} x_{n}-x_{n}+\alpha_{n}\left(T_{n} x_{n}-T_{n} x_{n-1}\right) \forall n \geq 1$. Hence

$$
\left\|T_{n} x_{n}-x_{n}\right\| \leq\left\|w_{n}-x_{n}\right\|+\beta_{n} \cdot \frac{\alpha_{n}}{\beta_{n}}\left\|x_{n}-x_{n-1}\right\|
$$

Utilizing Remark 3.1 and the assumption $w_{n}-x_{n} \rightarrow 0$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{n} x_{n}\right\|=0 \tag{3.9}
\end{equation*}
$$

Also, from $y_{n}=P_{C}\left(w_{n}-\lambda_{n} A w_{n}\right)$, we have

$$
\left\langle w_{n}-\lambda_{n} A w_{n}-y_{n}, x-y_{n}\right\rangle \leq 0 \forall x \in C .
$$

Hence

$$
\begin{equation*}
\frac{1}{\lambda_{n}}\left\langle w_{n}-y_{n}, x-y_{n}\right\rangle+\left\langle A w_{n}, y_{n}-w_{n}\right\rangle \leq\left\langle A w_{n}, x-w_{n}\right\rangle \quad \forall x \in C \tag{3.10}
\end{equation*}
$$

Note that $\left\{w_{n_{k}}\right\}$ is bounded. According to the Lipschitz continuity of $A,\left\{A w_{n_{k}}\right\}$ is bounded. Note that $\lambda_{n} \geq \min \left\{\lambda_{1}, \frac{\mu}{L}\right\}$. So, from (3.10) we get

$$
\liminf _{k \rightarrow \infty}\left\langle A w_{n_{k}}, x-w_{n_{k}}\right\rangle \geq 0, \forall x \in C
$$

Meantime, observe that

$$
\left\langle A y_{n}, x-y_{n}\right\rangle=\left\langle A y_{n}-A w_{n}, x-w_{n}\right\rangle+\left\langle A w_{n}, x-w_{n}\right\rangle+\left\langle A y_{n}, w_{n}-y_{n}\right\rangle
$$

Since $w_{n}-y_{n} \rightarrow 0$, we obtain from L-Lipschitz continuity of A that $A w_{n}-A y_{n} \rightarrow 0$, which together with (3.10) yields

$$
\liminf _{k \rightarrow \infty}\left\langle A y_{n_{k}}, x-y_{n_{k}}\right\rangle \geq 0 \forall x \in C
$$

Next we show that $\lim _{n \rightarrow \infty}\left\|x_{n}-T_{l} x_{n}\right\|=0$ for $l=1, \ldots, N$. Indeed, for $i=1, \ldots, N$,

$$
\left\|x_{n}-T_{n+i} x_{n}\right\| \leq 2\left\|x_{n}-x_{n+i}\right\|+\left\|x_{n+i}-T_{n+i} x_{n+i}\right\|
$$

Hence from (3.9) and the assumption $x_{n}-x_{n+1} \rightarrow 0$, we get

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{n+i} x_{n}\right\|=0
$$

for $i=1, \ldots, N$. This immediately implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{l} x_{n}\right\|=0 \quad \text { for } l=1, \ldots, N \tag{3.11}
\end{equation*}
$$

We now take a sequence $\left\{\varepsilon_{k}\right\} \subset(0,1)$ satisfying $\varepsilon_{k} \downarrow 0$ as $k \rightarrow \infty$. For all $k \geq 1$, we denote by m_{k} the smallest positive integer such that

$$
\begin{equation*}
\left\langle A y_{n_{j}}, x-y_{n_{j}}\right\rangle+\varepsilon_{k} \geq 0 \quad \forall j \geq m_{k} . \tag{3.12}
\end{equation*}
$$

Since $\left\{\varepsilon_{k}\right\}$ is decreasing, it is clear that $\left\{m_{k}\right\}$ is increasing. Noticing that $\left\{y_{m_{k}}\right\} \subset C$ guarantees $A y_{m_{k}} \neq 0 \forall k \geq 1$, we set

$$
u_{m_{k}}=\frac{A y_{m_{k}}}{\left\|A y_{m_{k}}\right\|^{2}}
$$

and get $\left\langle A y_{m_{k}}, u_{m_{k}}\right\rangle=1 \forall k \geq 1$. So, from (3.12), we get

$$
\left\langle A y_{m_{k}}, x+\varepsilon_{k} u_{m_{k}}-y_{m_{k}}\right\rangle \geq 0 \forall k \geq 1
$$

Again from the pseudomonotonicity of A, we have

$$
\left\langle A\left(x+\varepsilon_{k} u_{m_{k}}\right), x+\varepsilon_{k} u_{m_{k}}-y_{m_{k}}\right\rangle \geq 0 \forall k \geq 1
$$

This immediately leads to

$$
\begin{equation*}
\left\langle A x, x-y_{m_{k}}\right\rangle \geq\left\langle A x-A\left(x+\varepsilon_{k} u_{m_{k}}\right), x+\varepsilon_{k} u_{m_{k}}-y_{m_{k}}\right\rangle-\varepsilon_{k}\left\langle A x, u_{m_{k}}\right\rangle \quad \forall k \geq 1 \tag{3.13}
\end{equation*}
$$

We claim that

$$
\lim _{k \rightarrow \infty} \varepsilon_{k} u_{m_{k}}=0
$$

Indeed, from $w_{n_{k}} \rightharpoonup z$ and $w_{n}-y_{n} \rightarrow 0$, we obtain $y_{n_{k}} \rightharpoonup z$. So, $\left\{y_{n}\right\} \subset C$ guarantees $z \in C$. Again from the sequentially weak continuity of A, we know that $A y_{n_{k}} \rightharpoonup A z$. Thus, we have $A z \neq 0$ (otherwise, z is a solution). Taking into account the sequentially weak lower semicontinuity of the norm $\|\cdot\|$, we get

$$
0<\|A z\| \leq \liminf _{k \rightarrow \infty}\left\|A y_{n_{k}}\right\|
$$

Note that $\left\{y_{m_{k}}\right\} \subset\left\{y_{n_{k}}\right\}$ and $\varepsilon_{k} \downarrow 0$ as $k \rightarrow \infty$. So it follows that

$$
0 \leq \limsup _{k \rightarrow \infty}\left\|\varepsilon_{k} u_{m_{k}}\right\|=\limsup _{k \rightarrow \infty} \frac{\varepsilon_{k}}{\left\|A y_{m_{k}}\right\|} \leq \frac{\limsup _{k \rightarrow \infty} \varepsilon_{k}}{\liminf _{k \rightarrow \infty}\left\|A y_{n_{k}}\right\|}=0
$$

Hence we get $\varepsilon_{k} u_{m_{k}} \rightarrow 0$.
Next we show that $z \in \Omega$. Indeed, from $w_{n}-x_{n} \rightarrow 0$ and $w_{n_{k}} \rightharpoonup z$, we get $x_{n_{k}} \rightharpoonup z$. From (3.11) we have $x_{n_{k}}-T_{l} x_{n_{k}} \rightarrow 0$ for $l=1, \ldots, N$. Note that Lemma 2.5 guarantees the demiclosedness of $I-T_{l}$ at zero for $l=1, \ldots, N$. Thus $z \in \operatorname{Fix}\left(T_{l}\right)$. Since l is an arbitrary element in the finite set $\{1, \ldots, N\}$, we get $z \in \bigcap_{i=1}^{N} \operatorname{Fix}\left(T_{i}\right)$.
On the other hand, letting $k \rightarrow \infty$, we deduce that the right hand side of (3.13) tends to zero by the uniform continuity of A, the boundedness of $\left\{w_{m_{k}}\right\},\left\{u_{m_{k}}\right\}$ and the limit $\lim _{k \rightarrow \infty} \varepsilon_{k} u_{m_{k}}=0$. Thus, we get

$$
\langle A x, x-z\rangle=\liminf _{k \rightarrow \infty}\left\langle A x, x-y_{m_{k}}\right\rangle \geq 0 \forall x \in C
$$

By Lemma 2.3, we have $z \in \operatorname{VI}(C, A)$. Therefore,

$$
z \in \bigcap_{i=1}^{N} \operatorname{Fix}\left(T_{i}\right) \cap \mathrm{VI}(C, A)=\Omega
$$

This completes the proof.
Theorem 3.1. Let $\left\{x_{n}\right\}$ be the sequence generated by Algorithm 3.1.
Then $x_{n} \rightarrow x^{*} \in \Omega \Leftrightarrow x_{n}-x_{n+1} \rightarrow 0$, where $x^{*} \in \Omega$ is a unique solution to the VIP:

$$
\left\langle(\rho F-f) x^{*}, p-x^{*}\right\rangle \geq 0 \forall p \in \Omega .
$$

Proof. We show that $P_{\Omega}(f+I-\rho F)$ is a contraction. Indeed, for any $x, y \in H$, by Lemma 2.6, we have

$$
\left\|P_{\Omega}(f+I-\rho F) x-P_{\Omega}(f+I-\rho F) y\right\| \leq[1-(\tau-\delta)]\|x-y\|
$$

which implies that $P_{\Omega}(f+I-\rho F)$ is a contraction. Banach's Contraction Mapping Principle guarantees that $P_{\Omega}(f+I-\rho F)$ has a unique fixed point. Say $x^{*} \in H$, that is, $x^{*}=P_{\Omega}(f+I-\rho F) x^{*}$. Thus, there exists a unique solution

$$
x^{*} \in \Omega=\bigcap_{i=0}^{N} \operatorname{Fix}\left(T_{i}\right) \cap \mathrm{VI}(C, A)
$$

to the VIP

$$
\begin{equation*}
\left\langle(\rho F-f) x^{*}, p-x^{*}\right\rangle \geq 0 \quad \forall p \in \Omega . \tag{3.14}
\end{equation*}
$$

It is clear that the necessity of the theorem is valid. Next we show the sufficiency of the theorem. To the aim, we assume $x_{n}-x_{n+1} \rightarrow 0$ and divide the proof of the sufficiency into several steps.

Step 1. We show that $\left\{x_{n}\right\}$ is bounded. Indeed, since

$$
0<\liminf _{n \rightarrow \infty} \gamma_{n} \leq \limsup _{n \rightarrow \infty} \gamma_{n}<1,
$$

we may assume, without loss of generality, that $\left\{\gamma_{n}\right\} \subset[a, b] \subset(0,1)$. Take an arbitrary

$$
p \in \Omega=\bigcap_{i=1}^{N} \operatorname{Fix}\left(T_{i}\right) \cap \mathrm{VI}(C, A) .
$$

Then $T_{n} p=p \forall n \geq 1$, and inequality (3.3) holds, i.e.,

$$
\begin{align*}
\left\|z_{n}-p\right\|^{2} \leq\left\|w_{n}-p\right\|^{2} & -\left(1-\mu \frac{\lambda_{n}}{\lambda_{n+1}}\right)\left\|w_{n}-y_{n}\right\|^{2} \\
& -\left(1-\mu \frac{\lambda_{n}}{\lambda_{n+1}}\right)\left\|z_{n}-y_{n}\right\|^{2} \forall p \in \Omega . \tag{3.15}
\end{align*}
$$

Since

$$
\lim _{n \rightarrow \infty}\left(1-\mu \frac{\lambda_{n}}{\lambda_{n+1}}\right)=1-\mu>0
$$

we may assume, without loss of generality, that

$$
1-\mu \frac{\lambda_{n}}{\lambda_{n+1}}>0 \forall n \geq 1 .
$$

Therefore, we have

$$
\begin{equation*}
\left\|z_{n}-p\right\| \leq\left\|w_{n}-p\right\| \quad \forall n \geq 1 \tag{3.16}
\end{equation*}
$$

It follows that

$$
\begin{align*}
\left\|w_{n}-p\right\| & \leq\left\|T_{n} x_{n}-p\right\|+\alpha_{n}\left\|T_{n} x_{n}-T_{n} x_{n-1}\right\| \\
& \leq\left\|x_{n}-p\right\|+\beta_{n} \cdot \frac{\alpha_{n}}{\beta_{n}}\left\|x_{n}-x_{n-1}\right\| . \tag{3.17}
\end{align*}
$$

According to Remark 3.1, we have

$$
\frac{\alpha_{n}}{\beta_{n}}\left\|x_{n}-x_{n-1}\right\| \rightarrow 0
$$

as $n \rightarrow \infty$, it follows that there exists a constant $M_{1}>0$ such that

$$
\begin{equation*}
\frac{\alpha_{n}}{\beta_{n}}\left\|x_{n}-x_{n-1}\right\| \leq M_{1} \quad \forall n \geq 1 \tag{3.18}
\end{equation*}
$$

Combining (3.16), (3.17) and (3.18), we obtain

$$
\begin{equation*}
\left\|z_{n}-p\right\| \leq\left\|w_{n}-p\right\| \leq\left\|x_{n}-p\right\|+\beta_{n} M_{1} \quad \forall n \geq 1 . \tag{3.19}
\end{equation*}
$$

Since $\beta_{n}+\gamma_{n}<1 \forall n \geq 1$, we get

$$
\frac{\beta_{n}}{1-\gamma_{n}}<1 \forall n \geq 1
$$

So, from Lemma 2.6 and (3.19) it follows that

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| & \leq \beta_{n}\left\|f\left(x_{n}\right)-p\right\|+\gamma_{n}\left\|x_{n}-p\right\| \\
& +\left(1-\beta_{n}-\gamma_{n}\right)\left\|\left(\frac{1-\gamma_{n}}{1-\beta_{n}-\gamma_{n}} I-\frac{\beta_{n}}{1-\beta_{n}-\gamma_{n}} \rho F\right) z_{n}-p\right\| \\
& \leq \beta_{n}\left(\left\|f\left(x_{n}\right)-f(p)\right\|+\|f(p)-p\|\right)+\gamma_{n}\left\|x_{n}-p\right\| \\
& +\left(1-\beta_{n}-\gamma_{n}\right)\left\|\left(\frac{1-\gamma_{n}}{1-\beta_{n}-\gamma_{n}} I-\frac{\beta_{n}}{1-\beta_{n}-\gamma_{n}} \rho F\right) z_{n}-p\right\| \\
& \leq \beta_{n}\left(\delta\left\|x_{n}-p\right\|+\|f(p)-p\|\right)+\gamma_{n}\left\|x_{n}-p\right\| \\
& +\left(1-\gamma_{n}\right)\left\|\left(I-\frac{\beta_{n}}{1-\gamma_{n}} \rho F\right) z_{n}-\left(I-\frac{\beta_{n}}{1-\gamma_{n}} \rho F\right) p+\frac{\beta_{n}}{1-\gamma_{n}}(I-\rho F) p\right\| \\
& \leq \beta_{n}\left(\delta\left\|x_{n}-p\right\|+\|f(p)-p\|\right)+\gamma_{n}\left\|x_{n}-p\right\| \\
& +\left(1-\gamma_{n}-\beta_{n} \tau\right)\left\|z_{n}-p\right\|+\beta_{n}\|(I-\rho F) p\| \\
& \leq\left[1-\beta_{n}(\tau-\delta)\right]\left\|x_{n}-p\right\|+\beta_{n}(\tau-\delta) \cdot \frac{M_{1}+\|f(p)-p\|+\|(I-\rho F) p\|}{\tau-\delta} \\
& \leq \max \left\{\left\|x_{n}-p\right\|, \frac{M_{1}+\|f(p)-p\|+\|(I-\rho F) p\|}{\tau-\delta}\right\} .
\end{aligned}
$$

By induction, we obtain

$$
\left\|x_{n}-p\right\| \leq \max \left\{\left\|x_{1}-p\right\|, \frac{M_{1}+\|f(p)-p\|+\|(I-\rho F) p\|}{\tau-\delta}\right\} \forall n \geq 1
$$

Thus, $\left\{x_{n}\right\}$ is bounded, and so are the sequences $\left\{w_{n}\right\},\left\{y_{n}\right\},\left\{z_{n}\right\},\left\{f\left(x_{n}\right)\right\},\left\{F z_{n}\right\}$, $\left\{T_{n} x_{n}\right\}$.

Step 2. We show that
$\left(1-\beta_{n} \tau-\gamma_{n}\right)\left(1-\mu \frac{\lambda_{n}}{\lambda_{n+1}}\right)\left[\left\|w_{n}-y_{n}\right\|^{2}+\left\|z_{n}-y_{n}\right\|^{2}\right] \leq\left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}+\beta_{n} M_{4}$, for some $M_{4}>0$. Indeed, observe that

$$
\begin{aligned}
x_{n+1}-p & =\beta_{n}\left(f\left(x_{n}\right)-p\right)+\gamma_{n}\left(x_{n}-p\right)+\left(1-\beta_{n}-\gamma_{n}\right) \\
& \times\left\{\frac{1-\gamma_{n}}{1-\beta_{n}-\gamma_{n}}\left[\left(I-\frac{\beta_{n}}{1-\gamma_{n}} \rho F\right) z_{n}-\left(I-\frac{\beta_{n}}{1-\gamma_{n}} \rho F\right) p\right]\right. \\
& \left.+\frac{\beta_{n}}{1-\beta_{n}-\gamma_{n}}(I-\rho F) p\right\} \\
& =\beta_{n}\left(f\left(x_{n}\right)-f(p)\right)+\gamma_{n}\left(x_{n}-p\right)+\left(1-\gamma_{n}\right) \\
& \times\left[\left(I-\frac{\beta_{n}}{1-\gamma_{n}} \rho F\right) z_{n}-\left(I-\frac{\beta_{n}}{1-\gamma_{n}} \rho F\right) p\right]+\beta_{n}(f-\rho F) p
\end{aligned}
$$

Then by Lemma 2.6 and the convexity of the function $h(t)=t^{2} \forall t \in \mathbf{R}$, we get

$$
\begin{align*}
\left\|x_{n+1}-p\right\|^{2} & \leq \beta_{n} \delta\left\|x_{n}-p\right\|^{2}+\gamma_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\beta_{n} \tau-\gamma_{n}\right)\left\|z_{n}-p\right\|^{2} \\
& +2 \beta_{n}\left\langle(f-\rho F) p, x_{n+1}-p\right\rangle \\
& \leq \beta_{n} \delta\left\|x_{n}-p\right\|^{2}+\gamma_{n}\left\|x_{n}-p\right\|^{2} \\
& +\left(1-\beta_{n} \tau-\gamma_{n}\right)\left\|z_{n}-p\right\|^{2}+\beta_{n} M_{2} \tag{3.20}
\end{align*}
$$

where $\sup _{n \geq 1} 2\|(f-\rho F) p\|\left\|x_{n}-p\right\| \leq M_{2}$ for some $M_{2}>0$. Substituting (3.15) for (3.20), we get

$$
\begin{align*}
\left\|x_{n+1}-p\right\|^{2} & \leq \beta_{n} \delta\left\|x_{n}-p\right\|^{2}+\gamma_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\beta_{n} \tau-\gamma_{n}\right)\left[\left\|w_{n}-p\right\|^{2}\right. \\
& -\left(1-\mu \frac{\lambda_{n}}{\lambda_{n+1}}\right)\left\|w_{n}-y_{n}\right\|^{2} \\
& \left.-\left(1-\mu \frac{\lambda_{n}}{\lambda_{n+1}}\right)\left\|z_{n}-y_{n}\right\|^{2}\right]+\beta_{n} M_{2} . \tag{3.21}
\end{align*}
$$

Also, from (3.19) we have

$$
\begin{equation*}
\left\|w_{n}-p\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}+\beta_{n} M_{3} \tag{3.22}
\end{equation*}
$$

where $\sup _{n>1}\left(2 M_{1}\left\|x_{n}-p\right\|+\beta_{n} M_{1}^{2}\right) \leq M_{3}$ for some $M_{3}>0$. Combining (3.21) and (3.22), we obtain

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2} & \leq \beta_{n} \delta\left\|x_{n}-p\right\|^{2}+\gamma_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\beta_{n} \tau-\gamma_{n}\right)\left[\left\|x_{n}-p\right\|^{2}+\beta_{n} M_{3}\right] \\
& -\left(1-\beta_{n} \tau-\gamma_{n}\right)\left[\left(1-\mu \frac{\lambda_{n}}{\lambda_{n+1}}\right)\left\|w_{n}-y_{n}\right\|^{2}\right. \\
& \left.+\left(1-\mu \frac{\lambda_{n}}{\lambda_{n+1}}\right)\left\|z_{n}-y_{n}\right\|^{2}\right]+\beta_{n} M_{2} \\
& \leq\left\|x_{n}-p\right\|^{2}-\left(1-\beta_{n} \tau-\gamma_{n}\right)\left(1-\mu \frac{\lambda_{n}}{\lambda_{n+1}}\right)\left[\left\|w_{n}-y_{n}\right\|^{2}\right. \\
& \left.+\left\|z_{n}-y_{n}\right\|^{2}\right]+\beta_{n} M_{4}
\end{aligned}
$$

where $M_{4}:=M_{2}+M_{3}$. This immediately implies that

$$
\begin{equation*}
\left(1-\beta_{n} \tau-\gamma_{n}\right)\left(1-\mu \frac{\lambda_{n}}{\lambda_{n+1}}\right)\left[\left\|w_{n}-y_{n}\right\|^{2}+\left\|z_{n}-y_{n}\right\|^{2}\right] \leq\left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}+\beta_{n} M_{4} \tag{3.23}
\end{equation*}
$$

Step 3. We show that

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2} & \leq\left[1-\beta_{n}(\tau-\delta)\right]\left\|x_{n}-p\right\|^{2} \\
& +\beta_{n}(\tau-\delta)\left[\frac{2}{\tau-\delta}\left\langle(f-\rho F) p, x_{n+1}-p\right\rangle+\frac{3 M}{\tau-\delta} \cdot \frac{\alpha_{n}}{\beta_{n}} \cdot\left\|x_{n}-x_{n-1}\right\|\right]
\end{aligned}
$$

for some $M>0$. Indeed, we have

$$
\begin{equation*}
\left\|w_{n}-p\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}+\alpha_{n}\left\|x_{n}-x_{n-1}\right\|\left[2\left\|x_{n}-p\right\|+\alpha_{n}\left\|x_{n}-x_{n-1}\right\|\right] . \tag{3.24}
\end{equation*}
$$

Combining (3.19), (3.20) and (3.24), we have

$$
\begin{align*}
\left\|x_{n+1}-p\right\|^{2} & \leq \beta_{n} \delta\left\|x_{n}-p\right\|^{2}+\gamma_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\beta_{n} \tau-\gamma_{n}\right)\left\{\left\|x_{n}-p\right\|^{2}\right. \\
& \left.+\alpha_{n}\left\|x_{n}-x_{n-1}\right\|\left[2\left\|x_{n}-p\right\|+\alpha_{n}\left\|x_{n}-x_{n-1}\right\|\right]\right\} \\
& +2 \beta_{n}\left\langle(f-\rho F) p, x_{n+1}-p\right\rangle \\
& \leq\left[1-\beta_{n}(\tau-\delta)\right]\left\|x_{n}-p\right\|^{2} \\
& +\alpha_{n}\left\|x_{n}-x_{n-1}\right\|\left[2\left\|x_{n}-p\right\|+\alpha_{n}\left\|x_{n}-x_{n-1}\right\|\right] \\
& +2 \beta_{n}\left\langle(f-\rho F) p, x_{n+1}-p\right\rangle \\
& \leq\left[1-\beta_{n}(\tau-\delta)\right]\left\|x_{n}-p\right\|^{2} \\
& +\beta_{n}(\tau-\delta)\left[\frac{2\left\langle(f-\rho F) p, x_{n+1}-p\right\rangle}{\tau-\delta}+\frac{3 M}{\tau-\delta} \cdot \frac{\alpha_{n}}{\beta_{n}} \cdot\left\|x_{n}-x_{n-1}\right\|\right] \tag{3.25}
\end{align*}
$$

where $\sup _{n \geq 1}\left\{\left\|x_{n}-p\right\|, \alpha_{n}\left\|x_{n}-x_{n-1}\right\|\right\} \leq M$ for some $M>0$.
Step 4. We show that $\left\{x_{n}\right\}$ converges strongly to a unique solution $x^{*} \in \Omega$ to the VIP (3.14). Indeed, putting $p=x^{*}$, we deduce from (3.25) that

$$
\begin{align*}
\left\|x_{n+1}-x^{*}\right\|^{2} & \leq\left[1-\beta_{n}(\tau-\delta)\right]\left\|x_{n}-x^{*}\right\|^{2} \\
& +\beta_{n}(\tau-\delta)\left[\frac{2\left\langle(f-\rho F) x^{*}, x_{n+1}-x^{*}\right\rangle}{\tau-\delta}+\frac{3 M}{\tau-\delta} \cdot \frac{\alpha_{n}}{\beta_{n}} \cdot\left\|x_{n}-x_{n-1}\right\|\right] \tag{3.26}
\end{align*}
$$

By Lemma 2.4, it suffices to show that

$$
\limsup _{n \rightarrow \infty}\left\langle(f-\rho F) x^{*}, x_{n+1}-x^{*}\right\rangle \leq 0
$$

From (3.23), $x_{n}-x_{n+1} \rightarrow 0, \beta_{n} \rightarrow 0$ and $\left\{\gamma_{n}\right\} \subset[a, b] \subset(0,1)$, we obtain

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty}\left(1-\beta_{n} \tau-b\right)\left(1-\mu \frac{\lambda_{n}}{\lambda_{n+1}}\right)\left[\left\|w_{n}-y_{n}\right\|^{2}+\left\|z_{n}-y_{n}\right\|^{2}\right] \\
\leq & \limsup _{n \rightarrow \infty}\left[\left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}+\beta_{n} M_{4}\right] \\
\leq & \limsup _{n \rightarrow \infty}\left(\left\|x_{n}-p\right\|+\left\|x_{n+1}-p\right\|\right)\left\|x_{n}-x_{n+1}\right\|=0
\end{aligned}
$$

This immediately implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|w_{n}-y_{n}\right\|=0 \quad \text { and } \quad \lim _{n \rightarrow \infty}\left\|z_{n}-y_{n}\right\|=0 \tag{3.27}
\end{equation*}
$$

Thus, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-w_{n}\right\|=0 \tag{3.28}
\end{equation*}
$$

Also, from Algorithm 3.1 we get

$$
x_{n+1}-x_{n}=\beta_{n}\left(f\left(x_{n}\right)-\rho F z_{n}\right)+\left(1-\gamma_{n}\right)\left(z_{n}-x_{n}\right)
$$

which hence implies that

$$
\left\|z_{n}-x_{n}\right\| \leq \frac{1}{1-b}\left[\left\|x_{n+1}-x_{n}\right\|+\beta_{n}\left\|f\left(x_{n}\right)-\rho F z_{n}\right\|\right]
$$

From $x_{n}-x_{n+1} \rightarrow 0, \beta_{n} \rightarrow 0$ and the boundedness of $\left\{f\left(x_{n}\right)\right\}$ and $\left\{F z_{n}\right\}$ we conclude that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-x_{n}\right\|=0 \tag{3.29}
\end{equation*}
$$

From the boundedness of $\left\{x_{n}\right\}$, it follows that there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle(f-\rho F) x^{*}, x_{n}-x^{*}\right\rangle=\lim _{k \rightarrow \infty}\left\langle(f-\rho F) x^{*}, x_{n_{k}}-x^{*}\right\rangle \tag{3.30}
\end{equation*}
$$

Since H is reflexive and $\left\{x_{n}\right\}$ is bounded, we may assume, without loss of generality, that $x_{n_{k}} \rightharpoonup \tilde{x}$. Hence from (3.30) we get

$$
\begin{align*}
\limsup _{n \rightarrow \infty}\left\langle(f-\rho F) x^{*}, x_{n}-x^{*}\right\rangle & =\lim _{k \rightarrow \infty}\left\langle(f-\rho F) x^{*}, x_{n_{k}}-x^{*}\right\rangle \\
& =\left\langle(f-\rho F) x^{*}, \tilde{x}-x^{*}\right\rangle \tag{3.31}
\end{align*}
$$

Also, from (3.28) and (3.29) we have

$$
\left\|w_{n}-x_{n}\right\| \leq\left\|w_{n}-z_{n}\right\|+\left\|z_{n}-x_{n}\right\| \rightarrow 0 \quad(n \rightarrow \infty)
$$

which together with $x_{n_{k}} \rightharpoonup \tilde{x}$, implies that $w_{n_{k}} \rightharpoonup \tilde{x}$.
Since $x_{n}-x_{n+1} \rightarrow 0, w_{n}-x_{n} \rightarrow 0, w_{n}-y_{n} \rightarrow 0$ and $w_{n_{k}} \rightharpoonup \tilde{x}$, by Lemma 3.3 we infer that $\tilde{x} \in \Omega$. Hence from (3.14) and (3.31) we get

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle(f-\rho F) x^{*}, x_{n}-x^{*}\right\rangle=\left\langle(f-\rho F) x^{*}, \tilde{x}-x^{*}\right\rangle \leq 0 \tag{3.32}
\end{equation*}
$$

which immediately leads to

$$
\begin{align*}
& \limsup _{n \rightarrow \infty}\left\langle(f-\rho F) x^{*}, x_{n+1}-x^{*}\right\rangle \tag{3.33}\\
\leq & \limsup _{n \rightarrow \infty}\left[\left\|(f-\rho F) x^{*}\right\|\left\|x_{n+1}-x_{n}\right\|+\left\langle(f-\rho F) x^{*}, x_{n}-x^{*}\right\rangle\right] \leq 0
\end{align*}
$$

Note that $\left\{\beta_{n}(\tau-\delta)\right\} \subset[0,1], \sum_{n=1}^{\infty} \beta_{n}(\tau-\delta)=\infty$, and

$$
\limsup _{n \rightarrow \infty}\left[\frac{2\left\langle(f-\rho F) x^{*}, x_{n+1}-x^{*}\right\rangle}{\tau-\delta}+\frac{3 M}{\tau-\delta} \cdot \frac{\alpha_{n}}{\beta_{n}} \cdot\left\|x_{n}-x_{n-1}\right\|\right] \leq 0
$$

Consequently, applying Lemma 2.4 to (3.26), we have $\lim _{n \rightarrow 0}\left\|x_{n}-x^{*}\right\|=0$. This completes the proof.

4. An application

In this section, our main result is applied to find a common solution of the fractional programming and fixed-point problems. Since the exact solution of the problem is not known, we make use of $\left\|x_{n+1}-x_{n}\right\|$ to measure the error of the n-th iteration, which also serves as the role of checking whether or not the proposed algorithm converges to the solution.

The initial point x_{0} is randomly chosen in \mathbf{R}^{m}. Take

$$
f(x)=F(x)=\frac{1}{2} x, \mu=0.3, \beta_{n}=\frac{1}{n+1}, \alpha=0.1, \gamma_{n}=\frac{1}{3}, \rho=2
$$

and

$$
\alpha_{n}= \begin{cases}\min \left\{\frac{\beta_{n}^{2}}{\left\|x_{n}-x_{n-1}\right\|}, \alpha\right\} & \text { if } x_{n} \neq x_{n-1} \\ \alpha & \text { otherwise }\end{cases}
$$

Then we know that $\kappa=\eta=\frac{1}{2}$, and

$$
\tau=1-\sqrt{1-\rho\left(2 \eta-\rho \kappa^{2}\right)}=1-\sqrt{1-2\left(2 \cdot \frac{1}{2}-2\left(\frac{1}{2}\right)^{2}\right)}=1 \in(0,1]
$$

First, we set the operator $\Gamma(x):=M x+q$, which comes from [11] and has been considered by many authors for applicable examples (see, for example [16]), where $M=B B^{T}+D+G$, and B is an $m \times m$ matrix, D is an $m \times m$ skew-symmetric matrix, G is an $m \times m$ diagonal matrix, whose diagonal entries are nonnegative (so M is positive semidefinite), q is a vector in \mathbf{R}^{m}. The feasible set $C \subset \mathbf{R}^{m}$ is a closed and convex subset defined by $C:=\left\{x \in \mathbf{R}^{m}: H x \leq d\right\}$, where H is an $l \times m$ matrix and d is a nonnegative vector. It is clear that Γ is β-monotone and L-Lipschitz-continuous with $\beta=\min \{\operatorname{eig}(\Gamma)\}$ and $L=\max \{\operatorname{eig}(\Gamma)\}$. Next we give the operator A. Consider the following fractional programming problem:

$$
\begin{aligned}
& \min g(x)=\frac{x^{T} Q x+a^{T} x+a_{0}}{b^{T} x+b_{0}} \\
& \text { subject to } x \in X:=\left\{x \in \mathbf{R}^{4}: b^{T} x+b_{0}>0\right\}
\end{aligned}
$$

where

$$
Q=\left(\begin{array}{cccc}
\begin{array}{c}
5
\end{array}-1 \begin{array}{ll}
2 & 0 \\
-1 & 5
\end{array}-13 \\
2 & -1 & 3 & 0 \\
0 & 3 & 0 & 5
\end{array}\right), a=\left(\begin{array}{l}
1 \\
-2 \\
-2 \\
1
\end{array}\right), b=\left(\begin{array}{l}
2 \\
1 \\
1 \\
0
\end{array}\right), a_{0}=-2, b_{0}=4
$$

It is easy to verify that Q is symmetric and positive definite in \mathbf{R}^{4} and consequently g is pseudoconvex on $X=\left\{x \in \mathbf{R}^{4}: b^{T} x+b_{0}>0\right\}$. Then

$$
A x:=\nabla g(x)=\frac{\left(b^{T} x+b_{0}\right)(2 Q x+a)-b\left(x^{T} Q x+a^{T} x+a_{0}\right)}{\left(b^{T} x+b_{0}\right)^{2}}
$$

It is known that A is pseudomonotone (see, e.g., [12, 15] for more details). Now, we give a nonexpansive mapping $T_{1}: H \rightarrow C$ defined by $T_{1} x=P_{C} x \forall x \in H$. Thus, Algorithm 3.1 can be rewritten as follows:

$$
\left\{\begin{array}{l}
w_{n}=T_{1} x_{n}+\alpha_{n}\left(T_{1} x_{n}-T_{1} x_{n-1}\right) \\
y_{n}=P_{C}\left(w_{n}-\lambda_{n} A w_{n}\right) \\
z_{n}=P_{C_{n}}\left(w_{n}-\lambda_{n} A y_{n}\right) \\
x_{n+1}=\frac{1}{n+1} \cdot \frac{1}{2} x_{n}+\frac{1}{3} x_{n}+\left(\frac{n}{n+1} I-\frac{1}{3} I\right) z_{n} \quad \forall n \geq 1
\end{array}\right.
$$

where for each $n \geq 1, C_{n}$ and λ_{n} are chosen as in Algorithm 3.1. Therefore, utilizing Theorem 3.1, we know that $\left\{x_{n}\right\}$ converges to a common solution of the fractional programming problem and the fixed-point problem of T_{1} provided $\left\|x_{n}-x_{n+1}\right\| \rightarrow 0$.

References

[1] Q.H. Ansari, A. Rehan, C.F. Wen, Split hier-archical variational inequality problems and fixed point problems for nonexpansive mappings, Fixed Point Theory Appl. 2015 (2015), Art. ID 274.
[2] L.C. Ceng, A. Petruşel, J.C. Yao, Y. Yao, Systems of variational inequalities with hierarchical variational inequality constraints for Lipschitzian pseudocontractions, Fixed Point Theory, 20(2019), 113-133.
[3] L.C. Ceng, C.F. Wen, Systems of variational inequalities with hierarchical variational inequality constraints for asymptotically nonexpansive and pseudocontractive mappings, Revista Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matem., 113(2019), 2431-2447.
[4] Y. Censor, A. Gibali, S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., 148(2011), 318-335.
[5] S.Y. Cho, S.M. Kang, Approximation of common solutions of variational inequalities via strict pseudo-contractions, Acta Math. Sci. 32 (2012), 1607-1618.
[6] S.Y. Cho, Generalized mixed equilibrium and fixed point problems in a Banach space, J. Nonlinear Sci. Appl., 9(2016), 1083-1092.
[7] S.Y. Cho, Strong convergence analysis of a hybrid algorithm for nonlinear operators in a Banach space, J. Appl. Anal. Comput., 8(2018), 19-31.
[8] S.Y. Cho, S.M. Kang, Approximation of fixed points of pseudo-contraction semigroups based on a viscosity iterative process, Appl. Math. Lett., 24(2011), 224-228.
[9] S.V. Denisov, V.V. Semenov, L.M. Chabak, Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators, Cybern. Syst. Anal., 51(2015), 757765.
[10] K. Goebel, S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York, 1984.
11] P.T. Harker, J.S. Pang, A damped-Newton method for the linear complementarity problem, Lect. Appl. Math., 26(1990), 265-284.
[12] S. Karamardian, S. Schaible, Seven kinds of monotone maps, J. Optim. Theory Appl., 66(1990), 37-46.
[13] G.M. Korpelevich, The extragradient method for finding saddle points and other problems, Ekonomikai Matematicheskie Metody, 12(1976), 747-756.
[14] R. Kraikaew, S. Saejung, Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces, J. Optim. Theory Appl., 163(2014), 399412.
[15] Y. Shehu, Q.L. Dong, D. Jiang, Single projection method for pseudo-monotone variational inequality in Hilbert spaces, Optimization, 68(2019), 385-409.
[16] M.V. Solodov, B.F. Svaiter, A new projection method for variational inequality problems, SIAM J. Control Optim., 37(1999), 765-776.
[17] W. Takahashi, C.F. Wen, J.C. Yao, The shrinking projection method for a finite family of demimetric mappings with variational inequality problems in a Hilbert space, Fixed Point Theory, 19(2018), 407-419.
[18] W. Takahshi, C.F. Wen, J.C. Yao, Iterative methods for the split common fixed point problem with families of demimetric mappings in Banach spaces, J. Nonlinear Convex Anal., 1(2018), 1-18.
[19] D.V. Thong, D.V. Hieu, Modified subgradient extragradient method for variational inequality problems, Numer. Algorithms, 79(2018), 597-610.
[20] D.V. Thong, N.A. Triet, X.H. Li, Q.L. Dong, An improved algorithm based on inertial subgradient extragradient method for solving pseudo-monotone variational inequalities, Optimization, to appear.
[21] Z. Xue, H. Zhou, Y.J. Cho, Iterative solutions of nonlinear equations for m-accretive operators in Banach spaces, J. Nonlinear Convex Anal., 1(2000), 313-320.
[22] Y. Yamada, The hybrid steepest-descent method for variational inequalities problems over the intersection of the fixed point sets of nonexpansive mappings, In: Butnariu, D., Censor, Y.,

Reich, S. (eds.) Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, North-Holland, Amsterdam, 2001, 473-504.
[23] L. Zhang, H. Zhao, Y. Lv, A modified inertial projection and contraction algorithms for quasivariational inequalities, Appl. Set-Valued Anal. Optim., 1(2019), 63-76.
[24] X. Zhao, K.F. Ng, C. Li, J.C. Yao, Linear regularity and linear convergence of projection-based methods for solving convex feasibility problems, Appl. Math. Optim., 78(2018), 613-641.

Received: November 15, 2018; Accepted: January 22, 2019.

