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1. Introduction

We consider the following constrained convex programming problem with separate
structure:

min {θ1(x) + θ2(y) : Ax+By = b, x ∈ X , y ∈ Y} , (1.1)

where θ1 : Rn1 → R and θ2 : Rn2 → R are convex functions, A ∈ Rl×n1 and
B ∈ Rl×n2 are given matrices and b ∈ Rl is a given vector; X ⊂ Rn1 ,Y ⊂ Rn2 are
closed convex sets.

A large number of problems can be modeled as problem (1.1). In practice, these
classes of problems have very large size and due to their practical importance, they
have received a great deal of attention from many researchers. Various methods
have been suggested to find the solution of problem (1.1). A popular approach is
the alternating direction method (ADM) which was proposed by Gabay and Mercier
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[8, 9]. The ADM can reduce the scale of variational inequalities by decomposing the
original problem into a series of subproblems with a lower scale. To make the ADM
more efficient and practical, some strategies have been studied; For further details,
we refer [6, 7, 11, 13, 15, 16] and the references therein.

Let ∂(.) denote the subgradient operator of a convex function, and f(x) ∈ ∂θ1(x)
and g(y) ∈ ∂θ2(y) are the subgradient of θ1(x) and θ2(y), respectively. By attaching
a Lagrange multiplier vector λ ∈ Rl to the linear constraint Ax + By = b, problem
(1.1) can be written in terms of finding w ∈ W such that

(w′ − w)>Q(w) ≥ 0, ∀ w′ ∈ W, (1.2)

where

w =

 x
y
λ

 Q(w) =

 f(x)−A>λ
g(y)−B>λ
Ax+By − b

 , W = X × Y ×Rl. (1.3)

The problem (1.2)–(1.3) is referred as structured variational inequality problem (in
short, SVIP).

The alternating direction method (ADM) for solving the structured problem (1.2)–
(1.3) was proposed by Gabay and Mercier [8, 9]. They decomposed the original
problem into a series of subproblems with lower scale. This method appears to be
one of the most powerful methods. For ADM with logarithmic-quadratic proximal
regularization, see, [1, 2, 3, 4, 5, 14, 15, 17]. To make the ADM more efficient and
practical, some strategies have been studied, see, for example, [6, 7, 11, 12, 15, 16].

In [10] is proposed the following algorithm: For a given

wk = (xk, yk, λk) ∈ X × Y ×Rl,

the predictor (x̃k, ỹk, λ̃k) is obtained via solving the following variational inequalities:

(x′ − x)>(f(x)−A>[λk −H(Ax+Byk − b)]) ≥ 0, (1.4)

(y′ − y)>(g(y)−B>[λk −H(Axk +By − b)]) ≥ 0, (1.5)

λ̃k = λk −H(Ax̃k +Bỹk − b), (1.6)

where H ∈ Rl×l is symmetric positive definite and the new iterate

wk+1(αk) = (xk+1, yk+1, λk+1)

is given by:

wk+1(αk) = wk − αkG−1M(wk − w̃k),

where

G =

 A>HA 0 0
0 B>HB 0
0 0 H−1

 .

Jiang and Yuan [12] proposed a new parallel descent-like method for solving a class
of variational inequalities with separate structure by using the same predictor as in
[10] and the new iterate wk+1(αk) = (xk+1, yk+1, λk+1) is given by:

wk+1(αk) = PW [wk − αkG−1d(wk, w̃k)],
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where

d(wk, w̃k) =

 f(x̃k)−A>λ̃k +A>H(A(xk − x̃k) +B(yk − ỹk))

g(ỹk)−B>λ̃k +B>H(A(xk − x̃k) +B(yk − ỹk))
Ax̃k +Bỹk − b

 .

Very recently, Wang et al. [16] proposed a new parallel splitting descent method for
solving a class of variational inequalities with separable structure by combining the
descent directions used by He [10] and Jiang and Yuan [12].

Inspired by the above cited works and by the recent work going on in this direc-
tion, we propose a descent alternating direction method for SVIP. Each iteration of
the above method contains a prediction and a correction, the predictor is obtained
via solving two subvariational inequalities at each iteration and the new iteration
by searching the optimal step size along the integrated descent direction from two
descent directions. Global convergence of the proposed method is proved under cer-
tain assumptions. The proposed method is quite general and flexible and includes
several known alternating direction methods for solving variational inequalities with
separable structure.

2. Alternating direction method

The following lemma provides some basic properties of the projection.

Lemma 2.1. Let G be a symmetry positive definite matrix and Ω be a nonempty
closed convex subset of Rl, we denote by PΩ,G(.) the projection under the G-norm,
that is,

PΩ,G(v) = argmin{‖v − u‖G : u ∈ Ω}.
Then, we have the following inequalities.

(z − PΩ,G[z])>G(PΩ,G[z]− v) ≥ 0, ∀ z ∈ Rl, v ∈ Ω; (2.1)

‖PΩ,G[u]− PΩ,G[v]‖G ≤ ‖u− v‖G, ∀ u, v ∈ Rl; (2.2)

‖u− PΩ,G[z]‖2G ≤ ‖z − u‖2G − ‖z − PΩ,G[z]‖2G, ∀ z ∈ Rl, u ∈ Ω. (2.3)

We make the following standard assumptions.

Assumption A. f is monotone on X , that is, (f(x) − f(y))>(x − y) ≥ 0 for all
x, y ∈ X and g is monotone on Y.

Assumption B. The solution set of SVIP, denoted by W∗, is nonempty.

We propose the following alternating direction method for solving SVIP:

Algorithm 2.2.
Step 0. The initial step:

Given ε > 0, τ ∈
(√

2
2 , 1

)
, β1 ≥ 0, β2 ≥ 0 (β1 + β2 > 0) and

w0 = (x0, y0, λ0) ∈ X × Y ×Rl.

Set k = 0.
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Step 1. Prediction step:
Compute w̃k = (x̃k, ỹk, λ̃k) ∈ X ×Y×Rl by solving the following variational inequal-
ities:

(x′ − x)>(f(x)−A>[λk −H(Ax+Byk − b)] +R(x− xk)) ≥ 0, ∀x′ ∈ X , (2.4)

(y′ − y)>(g(y)−B>[λk −H(Axk +By − b)] + S(y − yk)) ≥ 0, ∀y′ ∈ Y, (2.5)

λ̃k = λk − τH(Ax̃k +Bỹk − b) (2.6)

where H ∈ Rm×m, R ∈ Rn1×n1 and S ∈ Rn2×n2 are symmetric positive definite
matrices.
Step 2. Convergence verification:
If max{‖xk − x̃k‖∞, ‖yk − ỹk‖∞, ‖λk − λ̃k‖∞} < ε, then stop.
Step 3. Correction step:
The new iterate wk+1(αk) = (xk+1, yk+1, λk+1) is given by:

wk+1(αk) = PW [wk − αkG−1d(wk, w̃k)], (2.7)

where

αk =
ϕk

(β1 + β2)‖wk − w̃k‖2G
, (2.8)

ϕk = ‖wk − w̃k‖2G +
1

τ
(λk − λ̃k)>

(
A(xk − x̃k) +B(yk − ỹk)

)
, (2.9)

d(wk, w̃k) = β1D(wk, w̃k) + β2G(wk − w̃k),

D(wk, w̃k) = f(x̃k)−A>λ̃k +A>H[A(xk − x̃k) +B(yk − ỹk) + 1−τ
τ H−1(λk − λ̃k)]

g(ỹk)−B>λ̃k +B>H[A(xk − x̃k) +B(yk − ỹk) + 1−τ
τ H−1(λk − λ̃k)]

Ax̃k +Bỹk − b

 (2.10)

and

G =

 R+A>HA 0 0
0 S +B>HB 0
0 0 1

τH
−1

 .

Set k := k + 1 and go to Step 1.

Remark 2.3. As special cases of our method, we can obtain some alternating direc-
tion methods.

• If τ = 1 and R = S = 0, we obtain the method proposed by Wang et al. [16].
• If τ = 1, β1 = 0, β2 = 1 and R = S = 0, we obtain the method proposed by

He [10].
• If τ = 1, β1 = 1, β2 = 0 and R = S = 0, we obtain the method proposed by

Jiang and yuan [12].
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Remark 2.4. It is easy to check that w̃k = (x̃k, ỹk, λ̃k) is solution of SVIP if and
only if 

xk − x̃k = 0,

yk − ỹk = 0,

λk − λ̃k = 0.

Thus, it is reasonable to take the magnitude

max{‖xk − x̃k‖∞, ‖yk − ỹk‖∞, ‖λk − λ̃k‖∞} < ε,

as the stopping criterion.

In the next theorem, we show that αk is lower bounded away from zero. It is useful
to study the convergence analysis of the proposed method.

Theorem 2.5. For given wk ∈ X ×Y×Rl, let w̃k be generated by (2.4)-(2.6). Then,

ϕk ≥
2τ −

√
2

2τ
‖wk − w̃k‖2G, (2.11)

and

αk ≥
2τ −

√
2

2τ
. (2.12)

Proof. It follows from (2.9) that

ϕk = ‖wk − w̃k‖2G +
1

τ
(λk − λ̃k)>(A(xk − x̃k) +B(yk − ỹk))

= ‖xk − x̃k‖2R + ‖Axk −Ax̃k‖2H + ‖yk − ỹk‖2S + ‖Byk −Bỹk‖2H

+
1

τ
‖λk − λ̃k‖2H−1 +

1

τ
(λk − λ̃k)>(A(xk − x̃k) +B(yk − ỹk)). (2.13)

By using the Cauchy-Schwarz inequality, we have

(λk − λ̃k)>(A(xk − x̃k)) ≥ −1

2

(√
2‖A(xk − x̃k)‖2H +

1√
2
‖λk − λ̃k‖2H−1

)
, (2.14)

and

(λk − λ̃k)>(B(yk − ỹk)) ≥ −1

2

(√
2‖B(yk − ỹk)‖2H +

1√
2
‖λk − λ̃k‖2H−1

)
(2.15)

Substituting (2.14) and (2.15) into (2.13), we get

ϕk ≥ 2τ −
√

2

2τ

(
‖Axk −Ax̃k‖2H + ‖Byk −Bỹk‖2H

)
+

2−
√

2

2τ
‖λk − λ̃k‖2H−1

+‖xk − x̃k‖2R + ‖yk − ỹk‖2S

≥ 2τ −
√

2

2τ

(
‖Axk −Ax̃k‖2H + ‖Byk −Bỹk‖2H +

1

τ
‖λk − λ̃k‖2H−1

)
+

2τ −
√

2

2τ

(
‖xk − x̃k‖2R + ‖yk − ỹk‖2S

)
≥ 2τ −

√
2

2τ
‖wk − w̃k‖2G.
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Therefore, it follows from (2.8) and (2.11) that

αk ≥
2τ −

√
2

2τ
, (2.16)

and this completes the proof. �

3. Basic results

We establish some basic properties, which will be used to prove the sufficient and
necessary conditions for the convergence of the proposed method.

Lemma 3.1. For given wk = (xk, yk, λk) ∈ X × Y × Rl, let w̃k be generated by
(2.4)–(2.6). Then for any w∗ = (x∗, y∗, λ∗) ∈ W∗, we have

(wk − w∗)>G(wk − w̃k)

≥ ‖wk − w̃k‖2G +
1

τ
(λk − λ̃k)>

(
A(xk − x̃k) +B(yk − ỹk)

)
(3.1)

and

(wk+1(αk)− w̃k)>D(wk, w̃k)

≥ (wk+1(αk)− wk)>G(wk − w̃k) + ‖wk − w̃k‖2G. (3.2)

Proof. By setting x′ = x∗ in (2.4), we get

(x∗ − x̃k)>
{
f(x̃k)−A>λ̃k −A>HA(xk − x̃k)

+A>H[A(xk − x̃k) +B(yk − ỹk) +
1− τ
τ

H−1(λk − λ̃k)]−R(xk − x̃k)
}
≥ 0. (3.3)

Substituting y′ = y∗ in (2.5), we obtain

(y∗ − ỹk)>
{
g(ỹk)−B>λ̃k −B>HB(yk − ỹk)

+B>H[A(xk − x̃k) +B(yk − ỹk) +
1− τ
τ

H−1(λk − λ̃k)]− S(yk − ỹk)
}
≥ 0. (3.4)

Since (x∗, y∗, λ∗) is a solution of SVIP, x̃k ∈ X and ỹk ∈ Y, we have

(x̃k − x∗)>(f(x∗)−A>λ∗) ≥ 0,

(ỹk − y∗)>(g(y∗)−B>λ∗) ≥ 0

and

Ax∗ +By∗ − b = 0.

Using the monotonicity of f and g, we obtain x̃k − x∗
ỹk − y∗
λ̃k − λ∗

> f(x̃k)−A>λ̃k
g(ỹk)−B>λ̃k
Ax̃k +Bỹk − b

 ≥
 x̃k − x∗

ỹk − y∗
λ̃k − λ∗

> f(x∗)−A>λ∗
g(y∗)−B>λ∗
Ax∗ +By∗ − b

 ≥ 0.

(3.5)
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Adding (3.3), (3.4) and (3.5), we get

(w∗ − w̃k)>G(wk − w̃k)
= (x∗ − x̃k)>(R(xk − x̃k) +A>HA(xk − x̃k)) + (y∗ − ỹk)>(S(yk − ỹk)

+B>HB(yk − ỹk)) + (λ∗ − λ̃k)>
(
Ax̃k +Bỹk − b

)
≤ (x∗ − x̃k)>A>H

(
A(xk − x̃k) +B(yk − ỹk) + 1−τ

τ H−1(λk − λ̃k)
)

+(y∗ − ỹk)>B>H
(
A(xk − x̃k) +B(yk − ỹk) + 1−τ

τ H−1(λk − λ̃k)
)

= −(Ax̃k +Bỹk − b)>H
(
A(xk − x̃k) +B(yk − ỹk)

)
− 1−τ

τ (Ax̃k +Bỹk − b)>(λk − λ̃k)

= − 1
τ (λk − λ̃k)>

(
A(xk − x̃k) +B(yk − ỹk)

)
− 1−τ

τ2 ‖λk − λ̃k‖2H−1

≤ − 1
τ (λk − λ̃k)>

(
A(xk − x̃k) +B(yk − ỹk)

)

(3.6)

where the last equality follows from (2.6). It follows from (3.6) that

(wk − w∗)>G(wk − w̃k) ≥ ‖wk − w̃k‖2G +
1

τ
(λk − λ̃k)>

(
A(xk − x̃k) +B(yk − ỹk)

)
,

and the first assertion of this lemma is proved.
As in (3.3) and (3.4), we have

(xk+1 − x̃k)>
{
R(xk − x̃k)− f(x̃k) +A>λ̃k +A>HA(xk − x̃k)

−A>H
(
A(xk − x̃k) +B(yk − ỹk) +

1− τ
τ

H−1(λk − λ̃k)

)}
≤ 0, (3.7)

and

(yk+1 − ỹk)>
{
S(yk − ỹk)− g(ỹk) +B>λ̃k +B>HB(yk − ỹk)

−B>H
(
A(xk − x̃k) +B(yk − ỹk)) +

1− τ
τ

H−1(λk − λ̃k)

)}
≤ 0 (3.8)

It follows from (3.7) and (3.8) that

(wk+1(αk)− w̃k)>(G(wk − w̃k)−D(wk, w̃k)) ≤ 0.

By simple manipulation, we obtain

(wk+1(αk)− w̃k)>D(wk, w̃k) ≥ (wk+1(αk)− w̃k)>G(wk − w̃k)

= (wk+1(αk)− wk)>G(wk − w̃k) + ‖wk − w̃k‖2G
and the second assertion of this lemma is proved. �

The following theorem provides a unified framework for proving the convergence
of the proposed algorithm.

Theorem 3.2. Let w∗ ∈ W∗, wk+1(αk) be defined by (2.7) and

Θ(αk) := ‖wk − w∗‖2G − ‖wk+1(αk)− w∗‖2G, (3.9)

then

Θ(αk) ≥ ‖wk − wk+1(αk)− αk(β1 + β2)(wk − w̃k)‖2G
+ 2αk(β1 + β2)ϕk − α2

k(β1 + β2)2‖wk − w̃k‖2G. (3.10)
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Proof. Since w∗ ∈ W∗ and wk+1(αk) = PW [wk − αkG−1d(wk, w̃k)], it follows from
(2.3) that

‖wk+1(αk)− w∗‖2G ≤ ‖wk − αkG−1d(wk, w̃k)− w∗‖2G
− ‖wk − αkG−1d(wk, w̃k)− wk+1(αk)‖2G. (3.11)

Using the definition of Θ(αk) and (3.11), we get

Θ(αk) ≥ ‖wk − wk+1(αk)‖2G + 2αk(wk+1(αk)− wk)>d(wk, w̃k)

+ 2αk(wk − w∗)>d(wk, w̃k). (3.12)

It follows from (3.5) that

(w̃k − w∗)>D(wk, w̃k)

≥ (w̃k − w∗)>


A>H

(
A(xk − x̃k) +B(yk − ỹk) + 1−τ

τ H−1(λk − λ̃k)
)

B>H
(
A(xk − x̃k) +B(yk − ỹk) + 1−τ

τ H−1(λk − λ̃k)
)

0


= (Ax̃k +Bỹk − b)>H

(
A(xk − x̃k) +B(yk − ỹk)

)
+

1− τ
τ2
‖λk − λ̃k‖2H−1

≥ 1

τ
(λk − λ̃k)>

(
A(xk − x̃k) +B(yk − ỹk)

)
.

Thus,

(wk − w∗)>D(wk, w̃k) ≥ (wk − w̃k)>D(wk, w̃k)

+
1

τ
(λk − λ̃k)>

(
A(xk − x̃k) +B(yk − ỹk)

)
. (3.13)

Applying (3.1) and (3.13) to the last term on the right side of (3.12), we obtain

Θ(αk) ≥ ‖wk − wk+1(αk)‖2G + 2αk(wk+1(αk)− wk)>d(wk, w̃k)
+2αk{β1(wk − w̃k)>D(wk, w̃k)

+ (β1+β2)
τ (λk − λ̃k)>

(
A(xk − x̃k) +B(yk − ỹk)

)
+β2‖wk − w̃k‖2G}

= ‖wk − wk+1(αk)‖2G + 2αkβ1(wk+1(αk)− w̃k)>D(wk, w̃k)
+2αkβ2(wk+1(αk)− wk)>G(wk − w̃k)

+ 2αk(β1+β2)
τ (λk − λ̃k)>

(
A(xk − x̃k) +B(yk − ỹk)

)
+2αkβ2‖wk − w̃k‖2G.

(3.14)

Applying (3.2) to the second term in the right side of (3.14) and using the notation
of ϕk in (2.9), we get

Θ(αk) ≥ ‖wk − wk+1(αk)‖2G + 2αk(β1 + β2)(wk+1(αk)− wk)>G(wk − w̃k)

+ 2αk(β1 + β2)
[
‖wk − w̃k‖2G + +

1

τ
(λk − λ̃k)>

(
A(xk − x̃k) +B(yk − ỹk)

) ]
= ‖wk − wk+1(αk)− αk(β1 + β2)(wk − w̃k)‖2G − α2

k(β1 + β2)2‖wk − w̃k‖2G
+ 2αk(β1 + β2)ϕk

and the theorem is proved. �
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From the computational point of view, a relaxation factor γ ∈ (0, 2) is preferable
in the correction. We are now in a position to prove the contractive property of the
iterative sequence.

Theorem 3.3. Let w∗ ∈ W∗ be a solution of SVIP and let wk+1(γαk) be generated
by (2.7). Then wk and w̃k are bounded, and

‖wk+1(γαk)− w∗‖2G ≤ ‖wk − w∗‖2G − c‖wk − w̃k‖2G, (3.15)

where

c :=
γ(2− γ)(2τ −

√
2)2

4τ2
> 0.

Proof. It follows from (3.10), (2.11) and (2.12) that

‖wk+1(γαk)− w∗‖2G
≤ ‖wk − w∗‖2G − 2γαk(β1 + β2)ϕk + γ2α2

k(β1 + β2)2‖wk − w̃k‖2G
= ‖wk − w∗‖2G − γ(2− γ)(β1 + β2)αkϕk

≤ ‖wk − w∗‖2G −
γ(2−γ)(2τ−

√
2)2

4τ2 ‖wk − w̃k‖2G.
Since γ ∈ (0, 2), we have

‖wk+1(αk)− w∗‖G ≤ ‖wk − w∗‖G ≤ · · · ≤ ‖w0 − w∗‖G,
and thus, {wk} is a bounded sequence.

It follows from (3.15) that
∞∑
k=0

c‖wk − w̃k‖2G < +∞,

which implies that
lim
k→∞

‖wk − w̃k‖G = 0. (3.16)

Since {wk} is a bounded sequence, we conclude that {w̃k} is also bounded. �

Now, we are ready to prove the convergence of the proposed method.

Theorem 3.4. The sequence {wk} generated by the proposed method converges to
some w∞ which is a solution of SVIP.

Proof. It follows from (3.16) that

lim
k→∞

‖xk − x̃k‖R = 0, lim
k→∞

‖yk − ỹk‖S = 0 (3.17)

and

lim
k→∞

‖λk − λ̃k‖H−1 = lim
k→∞

‖Ax̃k +Bỹk − b‖H = 0. (3.18)

Moreover, (2.4) and (2.5) imply that

(x− x̃k)>(f(x̃k)−A>λ̃k) ≥ (xk − x̃k)>R(x− x̃k) + (x− x̃k)>A>HA(xk − x̃k)

− (x− x̃k)>A>H

(
A(xk − x̃k) +B(yk − ỹk) +

1− τ
τ

H−1(λk − λ̃k)

)
, (3.19)
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and

(y − ỹk)>(g(ỹk)−B>λ̃k) ≥ (yk − ỹk)>S(y − ỹk) + (y − ỹk)>B>HB(yk − ỹk)

− (y − ỹk)>B>H

(
A(xk − x̃k) +B(yk − ỹk) +

1− τ
τ

H−1(λk − λ̃k)

)
. (3.20)

We deduce from (3.17) and (3.18) that lim
k→∞

(x− x̃k)>{f(x̃k)−A>λ̃k} ≥ 0, ∀x ∈ X ,

lim
k→∞

(y − ỹk)>{g(ỹk)−B>λ̃k} ≥ 0, ∀y ∈ Y.
(3.21)

Since {wk} is bounded, it has at least one cluster point. Let w∞ be a cluster point of
{wk} and the subsequence {wkj} converges to w∞. Since W is a closed set, we have
w∞ ∈ W. It follows from (3.18) and (3.21) that

lim
j→∞

(x− xkj )>{f(xkj )−A>λkj} ≥ 0, ∀x ∈ X ,

lim
j→∞

(y − ykj )>{g(ykj )−B>λkj} ≥ 0, ∀y ∈ Y,

lim
j→∞

(Axkj +Bykj − b) = 0,

and consequently,
(x− x∞)>{f(x∞)−A>λ∞} ≥ 0, ∀x ∈ X ,

(y − y∞)>{g(y∞)−B>λ∞} ≥ 0, ∀y ∈ Y,

Ax∞ +By∞ − b = 0,

which means that w∞ is a solution of SVIP.
Now we prove that the sequence {wk} converges to w∞. Since

lim
k→∞

‖wk − w̃k‖G = 0, and {w̃kj} → w∞,

for any ε > 0, there exists l > 0 such that

‖w̃kl − w∞‖G <
ε

2
and ‖wkl − w̃kl‖G <

ε

2
.

Therefore, for any k ≥ kl, it follows from (3.15) and (3) that

‖wk − w∞‖G ≤ ‖wkl − w∞‖G ≤ ‖wkl − w̃kl‖G + ‖w̃kl − w∞‖G < ε.

This implies that the sequence {wk} converges to w∞ which is a solution of SVIP. �

4. Computational results

Let HL, HU and C be given n × n symmetric matrices. In order to verify the
theoretical assertions, we consider the following optimization problem with matrix
variables:

min

{
1

2
‖X − C‖2F : X ∈ Sn+ ∩ B

}
, (4.1)

where

Sn+ =
{
H ∈ Rn×n : H> = H, H � 0

}
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and

B =
{
H ∈ Rn×n : H> = H, HL ≤ H ≤ HU

}
.

The matrices HL and HU are given by:

(HU )jj = (HL)jj = 1, and (HU )ij = −(HL)ij = 0.1, ∀i 6= j, i, j = 1, 2, . . . , n.

Note that the problem (4.1) is equivalent to the following minimization problem:

min
{

1
2‖X − C‖

2 + 1
2‖Y − C‖

2
}

such that X − Y = 0,

X ∈ Sn+, Y ∈ B.

(4.2)

By attaching a Lagrange multiplier Z ∈ Rn×n to the linear constraint X − Y = 0,
then the Lagrange function of (4.2) is

L(X,Y, Z) =
1

2
‖X − C‖2 +

1

2
‖Y − C‖2 − 〈Z,X − Y 〉,

which is defined on Sn+×B×Rn×n. If (X∗, Y ∗, Z∗) ∈ Sn+×B×Rn×n is a KKT point
of (4.2), then (4.2) can be converted to the following variational inequality problem:
Find u∗ = (X∗, Y ∗, Z∗) ∈ W = Sn+ × B ×Rn×n such that 〈X −X

∗, (X∗ − C)− Z∗〉 ≥ 0,
〈Y − Y ∗, (Y ∗ − C) + Z∗〉 ≥ 0, ∀ u = (X,Y, Z) ∈ W,
X∗ − Y ∗ = 0.

(4.3)

Problem (4.3) is a special case of (1.2)–(1.3) with matrix variables, where A = In×n,
B = −In×n, b = 0, f(X) = X − C, g(Y ) = Y − C and W = Sn+ × B ×Rn×n.

For simplification, we take R = rIn×n, S = sIn×n and H = In×n, where r > 0 and
s > 0 are scalars. In all the tests, we take γ = 1.8, τ = 0.87, β1 = 0.01, β2 = 0.01,
C = rand(n) and (X0, Y 0, Z0) = (In×n, In×n, 0n×n) as the initial point, and r = 0.5,
s = 5. The iteration is stopped as soon as

max
{
‖Xk − X̃k‖, ‖Y k − Ỹ k‖, ‖Zk − Z̃k‖

}
≤ 10−6.

All codes were written in Matlab. We compare the proposed method with those in
[16], [10] and [12]. The numerical results for problem (4.1) with different dimensions
are given in Table 1, which demonstrates that the proposed algorithm is effective and
reliable in practice.

Table 1. Numerical results for the problem (4.1)

Dimension of The proposed method The method in [16] The method in [12] The method in [10]
the problem k CPU(Sec.) k CPU(Sec.) k CPU(Sec.) k CPU(Sec.)

100 34 0.0.42 80 0.74 80 0.95 83 0.81
200 64 3.43 105 5.29 117 6.24 128 6.04
300 96 16.67 172 25.66 178 37.26 183 19.29
400 132 43.19 238 73.96 244 84.21 246 51.71
500 176 104.59 307 183.51 309 188.21 313 159.26
600 220 216.66 371 334.12 384 507.21 397 366.45
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