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1. Introduction

Throughout this paper, respectively, R, R+, N and N0 stand for the set of all real
numbers, the set of all positive real numbers, the set of all positive integers and the
set of whole numbers.

The Banach contraction principle was originated in the Ph.D. thesis of Banach
in 1920. This work was later published in the form of a research article [8] in 1922
which has already earned around 2000 Google citations. This work has been extended
and generalized in the different directions. Historically speaking, in 1986 the idea of
order-theoretic fixed points was initiated by Turinici [23]. In 2004, Ran and Reurings
[16] formulated a relatively more natural order-theoretic version of classical Banach
contraction principle. Recently, Samet and Turinici [20] established fixed point theo-
rem for nonlinear contraction under symmetric closure of an arbitrary relation. Most
recently, Alam and Imdad [6, 7] employed an amorphous relation to prove a relation-
theoretic analogue of Banach contraction principle which in turn unify a host of well
known relevant order-theoretic fixed point theorems. For the work of this kind one
can be referred [1, 2, 3, 4, 5, 6, 7, 12, 16, 17, 18, 19, 20, 21, 23] and references cited
therein.
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In 2009, Suzuki [22] defined yet another new contraction, often referred as Suzuki
contraction

(
a self-mapping f defined on a metric space (X, d) is said to be a Suzuki

contraction if ∀x, y ∈ X with x 6= y and 1
2d(x, fx) < d(x, y) =⇒ d(fx, fy) < d(x, y)

)
and utilize the same to prove fixed point result which is another noted generalization
of the Banach contraction principle. In 2012, Wardowski [24] generalized the Banach
contraction principle by introducing the concept of F -contraction:
Definition 1.1. [24] Let (X, d) be a metric space. A self-mapping f on X is called
an F -contraction if there exists τ ∈ R+ such that

∀x, y ∈ X with d(fx, fy) > 0 =⇒ τ + F (d(fx, fy)) ≤ F (d(x, y)),

where F : R+ → R is a mapping satisfying the following:

(F1) F is strictly increasing, i.e., for α, β ∈ R+ such that α < β =⇒ F (α) < F (β);
(F2) for each sequence {αn} of positive numbers,

lim
n→∞

αn = 0 if and only if lim
n→∞

F (αn) = −∞;

(F3) there exists r ∈ (0, 1) such that limα→0+ α
rF (α) = 0.

We denote by F , the family of all such mappings F : R+ → R. Some examples of
such mappings F ∈ F are

F (t) = ln t, F (t) = t+ ln t, F (t) = ln(t+ t2), F (t) = −1/
√
t.

Recently, Piri and Kumam [15] extended the results of Wardowski [24] by defining
F -Suzuki-contraction:
Definition 1.2. [15] Let (X, d) be a metric space. A self-mapping f on X is called
an F -Suzuki-contraction if there exists τ ∈ R+ such that

∀x, y ∈ X with fx 6= fy and
1

2
d(x, fx) < d(x, y) =⇒ τ+F (d(fx, fy)) ≤ F (d(x, y)),

where F : R+ → R is a mapping satisfying the conditions (F1), (F2) together with:

(F ′3) F is continuous.

We denote by F, the family of all mappings F : R+ → R that satisfy the conditions
(F1), (F2) and (F ′3). Examples of mappings F ∈ F are

F(t) = −1

t
, F(t) = ln(t+ t2), F(t) =

1

1− et
etc.

Notice that the family F and F are incomparable. For example F(t) = − 1
t is a

member of F but not a member of F as it does not satisfy the condition (F3). Also, for
s > 1, α ∈ (0, 1s ) F (t) = −1

(t+[t])α (where [t] stands for the integral part of t), satisfies

the condition (F3) for any k ∈ ( 1
s , 1) while it does not satisfy (F ′3).

We denote by F, the family of all mappings F : R+ → R that satisfy the conditions
(F1), (F2) and

(
(F3) or (F ′3)

)
. Here it can be pointed out that F ⊂ F and F ⊂ F.

Most recently, Sawangsup et al. [21] improved the notion of F -contraction (due to
Wardowski) by introducing the notion of FR-contraction.
Definition 1.3. [21] Let (X, d) be a metric space equipped with a binary relation
R. Then a mapping f : X → X is called an FR-contraction if there exist F ∈ F and
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τ ∈ R+ such that

∀x, y ∈ X with (x, y) ∈ R, d(fx, fy) > 0 =⇒ τ + F (d(fx, fy)) ≤ F (d(x, y)).

In [21], some fixed point results are also proved for FR-contraction. For further
details on F -contraction, one can consult [11, 15, 21, 22, 24, 25] and references cited
therein.

In this paper, firstly, we define the notion of FR-Suzuki-contraction where R is
an arbitrary binary relation (not necessarily partial order) and give some exam-
ples to demonstrate the genuineness of our newly introduced contraction over F -
contraction, FR-contraction, F -Suzuki-contraction. Secondly, we prove some exis-
tence and uniqueness fixed point results for FR-Suzuki-contraction on metric spaces
(not necessarily complete) employing an arbitrary binary relation which in turn unify
several well known results of the existing literature. We also give some examples
to demonstrate the generality of our main results. Finally, as an application of our
main results, the existence and uniqueness of solution of a family of nonlinear matrix
equations is discussed.

2. Preliminaries

Recall that a binary relation R on a non-empty set X is a subset of X ×X. We
say that “x relates to y under R” if and only if (x, y) ∈ R. In this presentation, we
always employ a non-empty binary relation (i.e.,R 6= ∅). A binary relation R is said
to be a transitive if for all x, y, z ∈ X, (x, y) ∈ R and (y, z) ∈ R =⇒ (x, z) ∈ R.
Here, we recall some basic definitions which are needed in the proofs of our results.
Definition 2.1. [5, 18] For a given self-mapping f : X → X, a binary relation R on
X is said to be f -transitive if for any x, y, z ∈ X,

(fx, fy) ∈ R, (fy, fz) ∈ R =⇒ (fx, fz) ∈ R.

Notice that, f -transitivity of R is equivalent to transitivity of R|fX .
Definition 2.2. [6] Let R be a binary relation defined on a non-empty set X. Then
a sequence {xn} ⊂ X is called R-preserving if (xn, xn+1) ∈ R ∀ n ∈ N0.
Definition 2.3. [6] Let f be a self-mapping defined on a non-empty set X. Then a
binary relation R on X is called f -closed if

for all x, y ∈ X, (x, y) ∈ R ⇒ (fx, fy) ∈ R.

Here it can be pointed out that this property is equivalent to say f is R-nondecreasing
(see [19]).
Definition 2.4. [19] A subset Y of a metric space (X, d) is called precomplete if
every Cauchy sequence {xn} ⊆ Y is convergent to a point of X.
Definition 2.5. [7] Let (X, d) be a metric space equipped with a binary relation R.
A subspace Y ⊆ X is called R-complete if every R-preserving Cauchy sequence in Y
converges to a point in Y .
Definition 2.6. Let (X, d) be a metric space equipped with a binary relation R. A
subspace Y ⊆ X is said to be R-precomplete if every R-preserving Cauchy sequence
in Y converges to a point in X.
Remark 2.7. • Every R-complete metric space is an R-precomplete
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• Every precomplete metric space is an R-precomplete. Particularly, under the uni-
versal relation the notion of R-precompleteness coincides with usual precompleteness.
Definition 2.8. [7] Let (X, d) be a metric space equipped with a binary relation
R. Then a mapping f : X → X is called R-continuous at x if for any R-preserving

sequence {xn} with xn
d−→ x, we have f(xn)

d−→ f(x). As usual, f is called R-
continuous if it is R-continuous at each point of X.
Remark 2.9. Every continuous mapping is an R-continuous. Particularly, under the
universal relation the notion of R-continuity coincides with usual continuity.
Definition 2.10. [20] Let (X, d) be a metric space equipped with a binary relationR.

Then (X, d,R) is called regular if for any R-preserving sequence {xn} with xn
d−→ x,

there is a subsequence {xnk} of {xn} such that (xnk , x) ∈ R, ∀k ∈ N.
Definition 2.11. Let (X, d) be a metric space equipped with a binary relation R.
Then (X, d,R) is said to be strong-regular if for any R-preserving sequence {xn} with

xn
d−→ x, we have (xn, x) ∈ R, ∀n ∈ N.

Here it can be pointed out that ‘R-nondecreasing-regularity of (X, d)’ (see [17]) is
equivalent to ‘strong-regularity of (X, d,R).’
Remark 2.12. Regularity of (X, d,R) is a weaker notion than strong-regularity of
(X, d,R). For the sake of convenience, let (X = [0, 3], d) be a usual metric space
equipped with a binary relation R = {(0, 1), (1, 2), (2, 2)}. Take any R-preserving
sequence {xn} in X. Then xn → 2 and for a subsequence xnk = 2,∀k ∈ N, we have
(xnk , 2) ∈ R while for an R-preserving sequence {xn} define as: x1 = 0, x2 = 1,
xi = 2, ∀i ≥ 3, we have xn → 2 and (xn, 2) /∈ R for n = 1.
Definition 2.13. [13] Let (X, d) be a metric space equipped with a binary relation
R. For a pair of points x, y in X, there is a finite sequence {z0, z1, z2, ..., zl} ⊂ X
such that z0 = x, zl = y and (zi, zi+1) ∈ R for each i ∈ {0, 1, 2, 3, · · · , l− 1}, then this
finite sequence is called a path of length l (where l ∈ N) from x to y in R.

Observe that, a path of length l involves (l + 1) elements of X and they need not
be distinct in general.

In the subsequent discussion, we denote

• Fix(f): as the collection of all fixed points of f ;
• X(f ;R): the set of all points in X such that (x, fx) ∈ R;
• Υ(x, y;R): the family of all paths from x to y in R.

For the sake of completeness, we state the following theorems:
Theorem 2.14. [21, Theorems 3.2 and 3.6] Let (X, d) be a metric space equipped with
a binary relation R and f a self-mapping on X. Assume that the following conditions
hold:

(i) X(f ;R) is non-empty,
(ii) R is f -closed,

(iii) X is complete,
(iv) either f is continuous or (X, d) is R-nondecreasing-regular

[
(X, d,R) is

strong-regular
]
,

(v) f is an FR-contraction (where F ∈ F).
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Then f has a fixed point. Moreover, for each x0 ∈ X(f ;R), the Picard sequence
{fn(x0)} converges to a fixed point of f.
Theorem 2.15. [15, Theorem 2.2] Let (X, d) be a complete metric space and f :
X → X an F -Suzuki-contraction (where F ∈ F). Then f has a unique fixed point.
Moreover, for every x0 ∈ X, the Picard sequence {fn(x0)} converges to the fixed point
of f.

The main results of this paper are based on the following motivations and obser-
vations:

• a relation-theoretic analogue of F -Suzuki-contraction, termed as FR-Suzuki-
contraction is introduced and some examples are given which demonstrate
the utility of FR-Suzuki-contraction over F -contraction, F -Suzuki-contraction
and FR-contraction;
• the R-precompleteness of fX is used which is relatively weaker than precom-

pleteness fX, completeness of X or fX, completeness of a subspace Y (with
fX ⊆ Y ⊆ X);
• Theorem 2.14 is improved by using the weaker notion R-continuity of f in-

stead of continuity;
• Theorems 2.14 and 2.15 are unified by employing relatively more general

contractivity condition besides unifying both the families F and F by taking
F;
• some examples are adopted to demonstrate the realized improvement in the

results of this paper;
• as an application of our main results, the existence and uniqueness of the

solution of a family of nonlinear matrix equations is established.

3. Main results

In this section, inspired by notion of F -Suzuki-contraction, we define relation-
theoretic version of F -Suzuki-contraction, so-called FR-Suzuki-contraction.
Definition 3.1. Let (X, d) be a metric space equipped with a binary relation R. For
a given self-mapping f on X, let

R∗ = {(x, y) ∈ R : fx 6= fy}.

Then the mapping f is called an FR-Suzuki-contraction if there exist F ∈ F and
τ ∈ R+ such that ∀x, y ∈ X with (x, y) ∈ R∗ and

1

2
d(x, fx) < d(x, y) =⇒ τ + F (d(fx, fy)) ≤ F (d(x, y)).

Remark 3.2. From Definitions 1.1, 1.2, 1.3 and 3.1, we have the following implica-
tions:

F -contraction =⇒ F -Suzuki-contraction
⇓ ⇓

FR-contraction =⇒ FR-Suzuki-contraction.

Converse implications not true in general, as the following examples show.
Example 3.3. Let (X = (−1, 5), d) be a usual metric space i.e., the metric d(x, y) =
|x − y| for all x, y ∈ X and a binary relation R = {(0, 1), (3, 2), (4, 4), (4, 1), (4, 2)}.
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Define a mapping f : X → X by

f(x) =


3, x = 0;

2, x = 1;

4, otherwise.

Take τ = 1
10 and F (t) = − 1√

t
,∀t ∈ R+. Then F ∈ F and R∗ = {(0, 1), (4, 1)}. Since

1
2d(x, fx) < d(x, y) only for (x, y) = (4, 1) in R∗ and

τ + F (d(f4, f1)) =
1

10
− 1√

2
< − 1√

3
= F (d(4, 1)).

This shows that f is an FR-Suzuki-contraction but not FR-contraction as

τ + F (d(f0, f1)) = τ + F (1) > F (1) = F (d(0, 1)), for any τ ∈ R+ and F ∈ F.
Now, as 1, 0 ∈ X with f1 = 2 6= 3 = f0 such that 1

2d(1, f1) < d(1, 0) but

τ + F (d(f1, f0)) = τ + F (1) > F (1) = F (d(1, 0)), for any τ ∈ R+ and F ∈ F.
Thus f is not F -Suzuki-contraction.
Example 3.4. Let (X = [0, 11], d) be a usual metric space equipped with a binary
relation R = {(1, 1), (1, 3), (3, 6)}. Define a mapping f : X → X by

f(x) =


x, x ∈ [0, 1];

1, x ∈ [1, 3];
2x−3

3 , x ∈ [3, 6];

3, x ∈ [6, 11].

Take τ = 1
10 and F (t) = − 1√

t
,∀t ∈ R+. Then F ∈ F and R∗ = {(3, 6)}. For x = 3

and y = 6, we have

τ + F (d(f3, f6)) =
1

10
− 1√

2
< − 1√

3
= F (d(3, 6)).

This shows that f is an FR-contraction but not F -contraction as

τ + F (d(f0, f
1

2
)) = τ + F (

1

2
) > F (

1

2
) = F (d(0,

1

2
)), for all τ ∈ R+ and F ∈ F.

Example 3.5. Let (X = (0, 1], d) be a usual metric space. Define a mapping f :
X → X by

f(x) =

{
1
2 , x ∈ [0, 1);
3
8 , x = 1,

and take F (t) = ln(t),∀t ∈ R+, so F ∈ F. Then f is an F -Suzuki-contraction (for
all 0 < τ < 4

3 ) but not F -contraction as for x = 9
10 and y = 1, one can not find any

τ > 0 such taht τ + F (d(fx, fy)) ≤ F (d(x, y)).

Now, we present our main result involving the family F .
Theorem 3.6. Let (X, d) be a metric space equipped with a binary relation R and f
a self-mapping on X. Assume that the following conditions hold:

(i) X(f ;R) is non-empty,
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(ii) R is f -closed,
(iii) fX is R-precomplete,
(iv) either f is R-continuous or (X, d,R) is regular,
(v) f is an FR-Suzuki-contraction (where F ∈ F).

Then f has a fixed point. Moreover, for each x0 ∈ X(f ;R), the Picard sequence
{fn(x0)} converges to a fixed point of f.
Proof. Since X(f ;R) 6= ∅, let x0 ∈ X(f ;R). Define a sequence {xn}, with the initial
point x0 by xn = fnx0 ∀n ∈ N0. Since (x0, fx0) ∈ R, using f -closedness property of
R, we have

(xn, fxn) ∈ R ∀n ∈ N0.

Now, we prove that {xn} is a Cauchy sequence. If d(xn0
, fxn0

) = 0 for some n0 ∈ N0,
then result follows immediately. Otherwise, for all n ∈ N0, d(xn, fxn) > 0 so that
fxn 6= fxn+1 and hence (xn, xn+1) ∈ R∗ and 1

2d(xn, fxn) < d(xn, fxn). Since f is
an FR-Suzuki-contraction, we have (for all n ∈ N, for some fixed F and τ)

F (d(xn, fxn)) = F (d(fxn−1, f
2xn−1)) ≤ F (d(xn−1, fxn−1))− τ. (3.1)

Repeating this process, we get

F (d(xn, fxn)) ≤ F (d(xn−1, fxn−1))− τ
≤ F (d(xn−2, fxn−2))− 2τ

≤ F (d(xn−3, fxn−3))− 3τ

...

≤ F (d(x0, fx0))− nτ. (3.2)

Hence lim
n→∞

F (d(xn, fxn)) = −∞, together with (F2), we have

lim
n→∞

d(xn, fxn) = 0. (3.3)

On using (F3), one can find some r ∈ (0, 1) such that

lim
n→∞

(d(xn, xn+1))rF (d(xn, xn+1)) = 0. (3.4)

In view of (3.2), we get

(d(xn, xn+1))rF (d(xn, fxn)) ≤ (d(xn, xn+1))rF (d(x0, fx0))− nτ(d(xn, xn+1))r.

Taking limit as n→∞ and using (3.3) and (3.4), we obtain

lim
n→∞

n(d(xn, xn+1))r = 0. (3.5)

Therefore there exists n0 ∈ N such that n(d(xn, xn+1))r ≤ 1 for all n ≥ n0 and hence

d(xn, xn+1) ≤ 1

n
1
r

for all n ≥ n0. (3.6)



26 MD AHMADULLAH AND MOHAMMAD IMDAD

Using this fact and triangular inequality (for all n,m ∈ N0 with m > n ≥ n0), we
have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

=

m−1∑
j=n

d(xj , xj+1)

≤
∑
j≥n

1

j
1
r

.

Since the series

∞∑
n=1

1

n
1
r

is convergent which amounts to saying that the sequence {xn}

is Cauchy in fX. Henceforth, {xn} is an R-preserving Cauchy sequence in fX. Since

fX is R-precomplete, there exists x∗ ∈ X such that xn
d−→ x∗.

Firstly, suppose f is R-continuous, then

x∗ = lim
n→∞

xn+1 = lim
n→∞

fxn = f lim
n→∞

xn = fx∗,

and hence x∗ is a fixed point of f .
Alternatively, assume that (X, d,R) is regular. Since {xn} is an R-preserving se-

quence and xn
d−→ x∗, there is a subsequence {xn(k)} of {xn} such that (xn(k), x

∗) ∈
R for all k ∈ N.

Now, we assert that (for all k ∈ N)

1

2
d(xn(k), fxn(k)) < d(xn(k), x

∗) or
1

2
d(fxn(k), f

2xn(k)) < d(fxn(k), x
∗). (3.7)

Assume that there exists l ∈ N such that

1

2
d(xn(l), fxn(l) ≥ d(xn(l), x

∗) and
1

2
d(fxn(l), f

2xn(l)) ≥ d(fxn(l), x
∗).

Therefore,

2d(xn(l), x
∗) ≤ d(xn(l), fxn(l)) ≤ d(xn(l), x

∗) + d(x∗, fxn(l)),

and hence

d(xn(l), x
∗) ≤ d(x∗, fxn(l)) ≤

1

2
d(fxn(l), f

2xn(l)).

Using (3.1) and (F1), we obtain

d(fxn(l), f
2xn(l)) < d(xn(l), fxn(l)).

Now, we have

d(fxn(l), f
2xn(l)) < d(xn(l), fxn(l)) ≤ d(xn(l), x

∗) + d(x∗, fxn(l))

≤ 1

2
d(fxn(l), f

2xn(l)) +
1

2
d(fxn(l), f

2xn(l))

= d(fxn(l), f
2xn(l))

which is a contradiction and hence (3.7) holds.
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Now, we distinguish two cases depending on K = {k ∈ N : fxn(k) = fx∗}. If K is
finite, then there exists k0 ∈ N such that fxn(k) 6= fx∗ for all k > k0. It follows from
(3.7), (for all k > k0 ) either

τ + F (d(fxn(k), fx
∗)) ≤ F (d(xn(k), x

∗))

or,
τ + F (d(f2xn(k), fx

∗)) ≤ F (d(fxn(k), x
∗)) = F (d(xn(k)+1, x

∗))

holds.
If the first inequality holds for infinite values of k ∈ N, then passing k →∞; using

lim
k→∞

d(xn(k), x
∗) = 0 and (F2), we get

lim
k→∞

F (d(fxn(k), fx
∗)) = −∞.

It follows from (F2) that lim
k→∞

d(fxn(k), fx
∗) = 0. Therefore

d(x∗, fx∗) = lim
k→∞

d(xn(k)+1, fx
∗) = lim

k→∞
d(fxn(k), fx

∗) = 0.

Hence x∗ is a fixed point of f .
If the second inequality holds for infinite values of k ∈ N, then passing k → ∞;

using lim
k→∞

d(xn(k), x
∗) = 0 and (F2), we get

lim
k→∞

F (d(f2xn(k), fx
∗)) = −∞.

It follows from (F2) that lim
k→∞

d(f2xn(k), fx
∗) = 0. Therefore

d(x∗, fx∗) = lim
k→∞

d(xn(k)+2, fx
∗) = lim

k→∞
d(f2xn(k), fx

∗) = 0.

Hence x∗ is a fixed point of f .
Otherwise, if K is not finite, then there is a subsequence {xn(k(l))} of {xn(k)} such

that
xn(k(l))+1 = fxn(k(l)) = fx∗ ∀l ∈ N.

As xn(k)
d−→ x∗, therefore fx∗ = x∗. This completes the proof. �

Theorem 3.7. In addition to the hypotheses of Theorem 3.6, suppose that R is an
f -transitive relation on X and Υ(x, y;R|fX) is non-empty for all x, y ∈ fX. Then f
has a unique fixed point.
Proof. In view of Theorem 3.6, Fix(f) is a non-empty. If Fix(f) is singleton, then
there is nothing to prove. Otherwise, let x∗ and y∗ be two distinct fixed points of
f . Then fx∗ = x∗ 6= y∗ = fy∗. Since Υ(x, y;R|fX) is non-empty for all x, y ∈ fX,
there exists a path {fz0, fz1, · · · , fzl, } of some length l in R|fX such that fz0 = x∗,
fzl = y∗ and (fzi, fzi+1) ∈ R|fX for each i = 0, 1, 2, · · · , l−1. Since R is f -transitive,
we have

(x∗, fz1) ∈ R, (fz1, fz2) ∈ R, · · · , (fzl−1, y∗) ∈ R =⇒ (x∗, y∗) ∈ R.
Also due to the fact 1

2d(x∗, fx∗) < d(x∗, y∗), we have

τ + F (d(x∗, y∗)) = τ + F (d(fx∗, fy∗)) ≤ F (d(x∗, y∗))

which is a contradiction because τ > 0. Thus f has a unique fixed point. �
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Next, we prove a result involving the family F.
Theorem 3.8. Let (X, d) be a metric space equipped with a binary relation R on X
and f a self-mapping on X. Assume that the following conditions hold:

(i) X(f ;R) is non-empty,
(ii) R is f -closed and f -transitive,

(iii) fX is R-precomplete,
(iv) either f is R-continuous or (X, d,R) is regular,
(v) f is an FR-Suzuki-contraction (where F ∈ F).

Then f has a fixed point. Moreover, for each x0 ∈ X(f ;R), the Picard sequence
{fn(x0)} converges to a fixed point of f. In addition, if Υ(x, y;R|fX) is non-empty
for all x, y ∈ fX. Then f has a unique fixed point.
Proof. Owing to Theorem 3.6, we construct an R-preserving sequence {xn} (where
xn+1 = fxn) such that lim

n→∞
d(xn, xn+1) = 0. Now, we wish to show that {xn} is a

Cauchy sequence. To accomplish this, let on contrary {xn} is not a Cauchy, then
there exist ε > 0 and k0 ∈ N with m(k) > n(k) > k ≥ k0 such that

d(xm(k), xn(k)) ≥ ε and d(xm(k)−1, xn(k)) < ε.

Now, we can have

ε ≤ d(xm(k), xn(k)) ≤ d(xm(k), xm(k)−1) + d(xm(k)−1, xn(k))

< d(xm(k), xm(k)−1) + ε.

Taking k →∞ and using the fact lim
n→∞

d(xn, xn+1) = 0, we obtain

lim
k→∞

d(xm(k), xn(k)) = ε, (3.8)

and hence

lim
k→∞

d(xm(k)+1, xn(k)+1) = ε, (3.9)

From (3.3) and (3.8), one can choose a positive integer N ∈ N such that

1

2
d(xm(k), fxm(k)) <

1

2
ε < d(xm(k), xn(k)), ∀k ≥ N

Since R is f -transitive and the sequence {xn} is R-preserving, so (xm(k), xn(k)) ∈ R
and we have

τ + F(d(xm(k)+1, xn(k)+1)) = τ + F(d(fxm(k), fxn(k))) ≤ F(d(xm(k), xn(k))), ∀k ≥ N.

Taking k →∞ and on using (3.8), (3.9) and (F ′3), we get

τ + F(ε) ≤ F(ε),

which is a contradiction. Hence {xn} is a Cauchy sequence in fX. Owing to (iii),
there is x∗ ∈ X such that xn → x∗. Finally, proceeding on the lines of the proof of
Theorems 3.6 and 3.7, one can complete the proof. �
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4. Consequences and examples

In this section, we derive several results in the existing literature as consequences
of our newly proved results presented in the earlier section.

If we consider R = {(x, y) ∈ X2 | x � y}, then Theorem 3.6 (or Theorem 3.8)
reduces to the following corollary which appears to be new in the literature:
Corollary 4.1. Let (X, d,�) be an ordered metric space and f a self-mapping on X.
Assume that the following conditions hold:

(i) there exists x0 ∈ X such that x0 � fx0,
(ii) f is increasing,

(iii) fX is �-precomplete,
(iv) either f is �-continuous or (X, d,�) is regular,
(v) f is an F�-Suzuki-contraction (where F ∈ F).

Then f has a fixed point. Moreover, for each x0 ∈ X such that x0 � fx0, the Picard
sequence {fn(x0)} converges to a fixed point of f.

On using Remark 3.2, we obtain the following result which remains an improved
version of Theorems 3.2 and 3.6 due to Sawangsup et al. [21] owing to the involved
relatively weaker notions in the considerations of completeness, regularity, continuity
and contractivity condition.
Corollary 4.2. Let (X, d) be a metric space equipped with a binary relation R on X
and f a self-mapping on X. Assume that the following conditions hold:

(i) X(f ;R) is non-empty,
(ii) R is f -closed,

(iii) fX is R-precomplete,
(iv) either f is R-continuous or (X, d,R) is regular,
(v) f is an FR-contraction (where F ∈ F ).

Then f has a fixed point. Moreover, for each x0 ∈ X(f ;R), the Picard sequence
{fn(x0)} converges to a fixed point of f.

On setting, R = X×X (i.e., universal relation), Theorems 3.7 and 3.8 reduce to the
following lone corollary which is sharpened version of Theorem 2.2 of Piri and Kumam
[15] due to the involvement of relatively weaker notions namely: precompleteness of
fX and newly introduced contractivity condition (where F ∈ F). Observe that
Example 3.5 justifies our claim.
Corollary 4.3. Let (X, d) be a metric space and f : X → X an F -Suzuki-contraction
(where F ∈ F) such that fX is precomplete. Then f has a unique fixed point. More-
over, for each x0 ∈ X, the Picard sequence {fn(x0)} converges to the fixed point of
f.

On combining Corollary 4.3 and Remark 3.2, we deduce the following corollary
which is also an improved version of Theorem 2.1 of Wardowski [24] due to the afore-
mentioned reason described in the context of Corollary 4.3 .
Corollary 4.4. Let (X, d) be a metric space and f : X → X an F -contraction (where
F ∈ F) such that fX is precomplete. Then f has a unique fixed point. Moreover, for
each x0 ∈ X, the Picard sequence {fn(x0)} converges to the fixed point of f.

Now, we furnish some examples to highlight the realized improvements accom-
plished via our newly proved results.
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Example 4.5. Let (X = [0, 6), d) be a usual metric space equipped with a binary
relation R = {(0, 1), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 1), (4, 2), (4, 3), (4, 4)}.
Define a mapping f : X → X by

f(x) =


3, 0 ≤ x < 1;

2, x = 1;

4, 1 < x < 6.

Then f is not continuous while it isR-continuous, R is f -closed, fX isR-precomplete,
R∗ = {(0, 1), (4, 1)} and X(f ;R) 6= ∅ as (4, f4) = (4, 4) ∈ R. Take τ = 1

10 and

F (t) = − 1√
t
,∀t ∈ R+, so then F ∈ F.

0 2 4 6

0

2

4

6

Fig. 1: Graph of y = f(x) (red) and y = x (blue) in Example 4.5.

Since 1
2d(x, fx) < d(x, y) only for (x, y) = (4, 1) in R∗ and

τ + F (d(f4, f1)) =
1

10
− 1√

2
< − 1√

3
= F (d(4, 1)).

This shows that f is an FR-Suzuki-contraction. Thus all the conditions of Theorem
3.6 are satisfied, hence it has a fixed point. Moreover, R|fX is transitive while R is
not and for all x, y ∈ fX, we have (x, y) ∈ R, so Υ(x, y;R|fX) is nonempty for all
x, y ∈ fX. Thus in view of Theorem 3.7, f has a unique fixed point. Observe that
x = 4 is the only fixed point of f . Since (0, 1) ∈ R and

τ + F (d(f0, f1)) > F (d(0, 1)), for all τ ∈ R+ and F ∈ F,

which shows that f is not FR-contraction for any F ∈ F. Also as 1, 0 ∈ X with
f1 = 2 6= 3 = f0 such that 1

2d(1, f1) < d(1, 0) but

τ + F (d(f1, f0)) > F (d(1, 0)), for all τ ∈ R+ and F ∈ F,
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which shows that f is not F -Suzuki-contraction for any F ∈ F. Hence Theorems
2.14 and 2.15 can not be applied to the present example, while our Theorems 3.6-
3.8 are applicable. This shows that our results are genuine improvements over the
corresponding results contained in Sawangsup et al. [21] and Piri and Kumam[15].
Example 4.6. Consider (X, d), f, F and τ as in Example 3.3. Define a binary relation
R = {(3, 2), (4, 4), (4, 1), (4, 2)}. Then f is an FR-contraction. It is easy to verify that
all requirements of Corollary 4.2 are fulfilled. Hence in view of Corollary 4.2, f has
a fixed point. Observe that x = 4 is a fixed point of f . But Theorem 2.14 can not
be applied to the present example (as (X, d) is not complete), which shows that even
our Corollary 4.2 is an improved version of Theorem 2.14.

5. Application to nonlinear matrix equations

As an application of our main results, we establish the existence and uniqueness
of the solution of the nonlinear matrix equation

X = P +

m∑
i=1

A∗iG(X)Ai, (5.1)

where P is a Hermitian positive definite matrix, A∗i stands conjugate transpose of
arbitrary n × n matrix Ai and G an order-preserving continuous mapping from the
set of all Hermitian matrices to the set of all positive definite matrices such that
G(0) = 0.

In this connection, we need to recall some basic notions as under:
We denote respectively, by M(n),H(n),P(n) and H+(n), the set of all n × n

complex matrices, the set of all Hermitian matrices in M(n), the set of all positive
definite matrices in M(n) and the set of all positive semidefinite matrices in M(n).
Also, we denote the element of P(n) as X � 0. If X � 0, then X ∈ H+(n).
Furthermore, X � Y (resp. X � Y ) is equivalent to saying X − Y � 0 (resp.
X − Y � 0). The symbol ‖.‖ stands for the spectral norm of a matrix A defined by

‖A‖ =
√
λ+(A∗A), where λ+(A∗A) is the largest eigenvalue of A∗A and A∗ is the

conjugate transpose of A. We use the metric d induced by the trace norm ‖ · ‖tr,
defined as

‖A‖tr =

n∑
j=1

sj(A),

where sj(A) (1 ≤ j ≤ n) are the singular values of A ∈ M(n). The induced metric
space (H(n), d) is complete (see [9, 10, 16] for more details).

The following lemmas are needed in the subsequent discussion.
Lemma 5.1. [16] If A � 0 and B � 0 are n× n matrices, then

0 ≤ tr(AB) ≤ ‖A‖tr(B).

Lemma 5.2. [14] If A ∈ H(n) such that A ≺ In, then ‖A‖ < 1.
Theorem 5.3. Consider the problem described by (5.1). Assume that there exist two
positive real numbers τ and η such that
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(H1) for every X,Y ∈ H(n) such that X � Y with

m∑
i=1

A∗iG(X)Ai 6=
m∑
i=1

A∗iG(Y )Ai,

and ∣∣∣∣∣tr
(
X − P −

m∑
i=1

A∗iG(X)Ai

)∣∣∣∣∣ < 2|tr(Y −X)|,

we have

tr
(
G(Y )−G(X)

)
≤ 1

η

(√
e−τ [tr(Y −X) + (tr(Y −X))2] + 1/4− 1

2

)
;

(H2) there exists P , such that

m∑
i=1

A∗iG(P )Ai � 0;

(H3)
m∑
i=1

AiA
∗
i ≺ ηIn.

Then the matrix equation (5.1) has a unique solution. Moreover, the iteration

Xn = P +

m∑
i=1

A∗iG(Xn−1)Ai

where X0 ∈ H(n) satisfies

X0 � P +

m∑
i=1

A∗iG(X0)Ai,

converges in the sense of trace norm ‖.‖tr to the solution of the matrix equation (5.1).

Proof. Define a mapping T : H(n)→ H(n) by

T (X) = P +

m∑
i=1

A∗iG(X)Ai, for all X ∈ H(n), (5.2)

and a binary relation

R = {(X,Y ) ∈ H(n)×H(n) : X � Y }.

Then fixed point of the mapping T is a solution of the matrix equation (5.1). Notice
that T is well defined, R-continuous and R is T -closed. Since

m∑
i=1

A∗iG(P )Ai � 0,

for some P ∈ H(n), we have
(
P, T (P )

)
∈ R and hence H(n)(T ;R) 6= ∅.

Now, let (X,Y ) ∈ R∗ = {(X,Y ) ∈ R : T (X) 6= T (Y )} such that

1

2
‖X − T (X)‖tr < ‖Y −X‖tr.
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Then

‖T (Y )− T (X)‖tr = tr
(
T (Y )− T (X)

)
= tr

( m∑
i=1

A∗i
(
G(Y )−G(X)

)
Ai

)
=

m∑
i=1

tr
(
A∗i
(
G(Y )−G(X)

)
Ai
)

=

m∑
i=1

tr
(
AiA

∗
i

(
G(Y )−G(X)

))
= tr

(( m∑
i=1

AiA
∗
i

)(
G(Y )−G(X)

))

≤
∥∥∥ m∑
i=1

AiA
∗
i

∥∥∥‖G(Y )−G(X)‖tr

≤
‖
∑m
i=1AiA

∗
i ‖

η

(√
e−τ

[
‖Y −X‖tr + (‖Y −X‖tr)2

]
+

1

4
− 1

2

)
(by using hypothesis (H1))

<

√
e−τ

[
‖Y −X‖tr + (‖Y −X‖tr)2

]
+

1

4
− 1

2
,

so that

‖T (Y )− T (X)‖tr + (‖T (Y )− T (X)‖tr)2 ≤ e−τ
[
‖Y −X‖tr + (‖Y −X‖tr)2

]
.

If we consider F (t) = ln(t+ t2), for all t ∈ R+ (so, F ∈ F), then

τ + F
(
‖T (Y )− T (X)‖tr

)
≤ F

(
‖Y −X‖tr

)
which shows that T is an FR-Suzuki-contraction. Thus all the hypotheses of Theorem

3.6 are satisfied, therefore on using Theorem 3.6, there exists X̂ ∈ H(n) such that

T (X̂) = X̂, and hence the matrix equation (5.1) has a solution in H(n). Furthermore,
due to existence of least upper bound and greatest lower bound for each X,Y ∈
T (H(n)), We have Υ(X,Y ;R|T (H(n))) 6= ∅ for each X,Y ∈ T (H(n)). Hence on using
Theorem 3.7 (or, Theorem 3.8), T has a unique fixed point, and hence we conclude
that the matrix equation (5.1) has a unique solution in H(n). �
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contractions with applications to solution of nonlinear matrix equations, J. Fixed Point Theory

Appl., 19(2017), 1711-1725.
[22] T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal., 71(2009),

5313-5317.

[23] M. Turinici, Fixed points for monotone iteratively local contractions, Demonstratio Math.
19(1986), no. 1, 171-180.

[24] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces,
Fixed Point Theory Appl., 2012(94)(2012).

[25] D. Wardowski, N. Van Dung, Fixed points of F-weak contractions on complete metric spaces,
Demonstratio Math., 1(2014), 146-155.

Received: October 9, 2017; Accepted: April 16, 2019.


