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1. INTRODUCTION

In the book [104] we have studied the following problem:

Let T be a fixed point theorem and f be a mapping which does not satisfy the
conditions of T'. In which conditions the mapping f has an invariant subset Y such
that the restriction of f to Y, f|y, satisfies the conditions of T'?

In order to formalize and study this problem, we introduced the notion fized point
structure on a set with structure.

The purpose of this paper is to study the following problem:

Let X be a set with structure and M (X, X) be a nonempty set of mappings from
X to X (morphisms or not). In which conditions for each f € M(X, X), the fixed
point set of f, Fy # (7

There are various concepts of mathematical structure on an abstract set (see [77]
(114, [2], [12], [18], [38], [22], [65], [75], [76], [s2], [92], [93], [104], [105], [115], [L18]
[133], [47]). In this paper we do not work with a such abstract notion. By U := a
class of sets with structure, we understand that U is a class of monoids, or U is a
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class of ordered sets, or U is a class of topological spaces, or U is a class of metric
spaces, ..., i.e., U is a class of sets with the same type of structure. If X is a set with
structure and Y C X, we consider Y endowed with the structure induced by that of
X. If X, Y € U, we denote by M(X,Y) the set of all mappings from the set X to the
set Y. We also denote by the same symbol the set and the set with structure (i.e.,
(X, <) by X, (X,d) by X, (X,7) by X,...).

Instead of “Preliminaries” we indicate some references, as follow:

e set with structure: N. Bourbaki [22], P.R. Halmos [58], S. Mac Lane [76], [77], J.
Dieudonné [40], [42], S. Vasilache [133];

e category theory and graph theory: S. Mac Lane [75], M. Barr and C. Wells [12],
B. Plotkin [93], A. Blass [18];

e fixed point, common fized point and coincidence point theory: A. Granas and J.
Dugundji [57], R.F. Brown, M. Furi, L. Gérniewicz and B. Jiang [27], A. Granas [56],
A. McLennan [82], I.A. Rus, A. Petrugel and G. Petrugel [110], A. Buica [29], M.A.
Serban [120], R.F. Brown [26], H. Amann [2], L. Gérniewicz [54], M. Florenzano [48],
R. Precup [94], L.A. Rus [109], V. Berinde [50];

e punctual problem in mathematics versus research program: J. Dieudonné [41],
Y.I. Manin [78], M. Atiyah [9], R. Thom [129].

Throughout this paper we follow the notations and terminology given in [104] and
[109].

The structure of the paper is the following:

1. Introduction
Set-mapping pairs
Fixed point structures on a set-mapping pair
Invariance of 8,4, by some constructions in (U, M)
Fixed point results in terms of a fixed point structure
Coincidence point property and fixed point property
Fixed point structures on a set-multivalued mapping pair

AN

2. SET-MAPPING PAIRS

Let U be a class of nonempty sets with structure. We suppose that for each ordered
pair (X,Y) with X,Y € U, a set of mappings from the set X to the set ¥ (morphisms
or not), M(X,Y) is given. We call the pair (U, M) a set-mapping pair. By f € M
we understand that there exist X,Y € U such that f € M(X,Y).

In the mathematical universe generated by the books which we refereed in Intro-
duction, the following definitions and the definitions given in section 3 appear in a
natural manner.

Definition 2.1. A pair (U, M) is with composition if f,g € M and f o g is defined,
then fog € M, ie., M is a partial semigroup, since the composition is associative.
Definition 2.2. A pair (U, M) is with identity if it is with composition and for each
XeU,1x e M(X,X), ie, M is a partial monoid.

Definition 2.3. A pair (U, M) is with restriction if U, X,Y € U, U C X and
f € M(X,Y) imply that flp € M(U,Y), where f|y is defined by fly(u) = f(u),
Vuel.
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Definition 2.4. A pair (U, M) is with contraction if U, V, XY e U, U C X,V C Y,
feM(X,Y) with f(U) CV imply that f|lyv € M(U,V), where f|yv is defined by
floy(u) = f(u),Vuel.
Definition 2.5. A bijective mapping f € M(X,Y) is a (U, M)-bijection if for h €
M(Y,Y) and g € M(X,X) we have that f~'oho f € M(X,X) and fogo f~! ¢
M(Y,Y).
Definition 2.6. Let (U, M) be a set-mapping pair. By definition, Y € U is a retract
of X € U if there exists two mappings, r € M(X,Y) and s € M(Y, X) such that:

(a) ros=1ly;

(b) for all h € M(Y,Y) and g € M (X, X) we have that sohor € M(X,X) and

rogose M(Y,Y).

We call r a retraction mapping and s a corectraction mapping, or, r is a retraction
with respect to s, or (r, s) is a retraction-coretraction pair.

If Y C X, then, in general, we take s the inclusion mapping.

For retraction theory in various structured sets see: [21], [63], [12], [25], [30], [32],
35], [52], [44], [56], [57], [66], [75], [82], [97], [104], [107], [108], [110], [117], [118],
[128], [102].

Example 2.1. U := the class of all nonempty metric spaces and for X,Y € U,

M(X,Y):={f: X — Y| f is a contraction}.

This pair is with composition and is not with identity. If cardX > 1, then 1x &
M (X, X). The pair (U, M) is with restriction and with contraction. If f € M(X,Y)
is an isometry, then f is a (U, M)-bijection and f & M(X,Y), in general.

Example 2.2. U := the class of all nonempty metric spaces and

M(X,Y):={f: X = Y| f is nonexpansive}.

This pair is with composition, 1x € M (X, X), V X € U, is with restriction and with
contraction. Moreover, (U, M) is a category. The morphisms, Hom = M and the
isomorphisms are (U, M)-bijections.

Example 2.3. U := the class of all ordered sets, (i.e., posets, see [88]) and

M(X,)Y):={f: X = Y| f is increasing}.

In this case, (U, M) is a category. The isomorphisms of this category are (U, M)-
bijections.
Example 2.4. U := the class of all normed spaces over K := RV C and

MX,)Y)={f:X->Y|feCX,Y) and f(X) is compact}.

This pair is with composition but not with identity. The isometries are (U, M)-
bijections and are not in M.
Example 2.5. Let X be a normed space,

U:= P e(X):={Y € P(X) | Y closed and convex}

and
M(Y,Z):={f:Y — Z| f is nonexpansive}.

This pair is with composition, with restriction and with contraction.
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Example 2.6. For (X, 1), a topological space, we take

U:=Pp(X) ={¥,17v) | Y € P(X), Y — compact}
and for Y, Z e U,

MY,Z)=C(Y,Z):={f:Y — Z| f is continuous}.

For other examples see section 3.

3. FIXED POINT STRUCTURES ON A SET-MAPPING PAIR

Let (4, M) be a set-mapping pair and S C U, S # 0.
Definition 3.1. The triple (U, S, M) is a fixed point structure (f.p.s.) on (U, M) if
for each X € S and f € M (X, X) we have that, Fy # (.
Definition 3.2. Let S;q. := the class of all X € U such that, f € M(X,X) =
Fy # 0. By definition, the triple (U, S;qaz, M) is the maximal f.p.s. on (U, M).
Example 3.1. Uf := the class off all ordered sets and

M(X,Y):={f: X =Y | fis increasing}.

If S := the class of all complete ordered sets, then the triple (U, S, M) is, by Tarski’s
fixed point theorem, a f.p.s. In this case, S # Spas (see [80], [81], [44]).

It is a problem to characterize the ordered set with fixed point property with
respect to increasing mappings (see [2], [16], [80], [81], [97], [98], [117], [44], [112]).
Example 3.2. U := the class of all lattice-like ordered sets,

M(X,Y):={f: X — Y| fis increasing}

and S := the class of all complete lattice-like ordered sets. By Tarski’s fixed point
theorem, (U,S, M) is a f.p.s. By Davis’ theorem, S = S,,144-

Remark 3.1. In the Mathematical Logic and in the Mathematical Informatic, some
objects are defined by “fixed point constructions” (see [12], [71], [74], [79], [80], [83],
[92], [93], [118], [132], [134], [44]). In order to have uniqueness results by these con-
structions, it has been introduced the least (i.e., minimum) fixed point property with
respect to increasing mappings. These studies open some new research directions in
the fixed point theory. For example, let X be a set with structure and P be a property
with respect to the elements of X. Let f: X — X be a mapping. The problem is to
find the conditions in which the mapping f has a unique fized point with property P.
Example 3.3. U := the class of all metric spaces,

M(X,)Y):={f: X =Y | fis a contraction}

and S := the class of all complete metric spaces. By contraction principle, (U, S, M)
is a f.p.s. In this case, S # Spaqs (see [104], [107], [126], [127]).

It stills an open problem to characterize the metric spaces with fized point property
with respect to contractions.
Example 3.4. If (X, <) is an ordered set, we denote by max X, the maximal element
set of X. Now, let (X, <) be an ordered set. If we take, U :={ (V,<) | Y € P(X) },
MY, Z) ={ f:Y — Z | fisprogressive, i.e., z < f(z), Vo € Y} and S :=
{Y |Y €U with maxY # (}. Then by a folklore remark, the triple (U4,S, M) is a
f.p.s. In this case, S = Simaz-
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Example 3.5. Let (X, d) be a complete metric space. We take
U:={(Y,dlyxy) Y € P(X)},

M(Y,Z):={f:Y — Z| f is a Caristi-Kirk mapping},
and
S=Py(X):={Y eP(X)|Y =Y}

By Caristi-Kirk fixed point theorem, (U,S, M) is a f.p.s. Moreover, S = S,qx (see
[104], [107], [28], [126], [127]).
Example 3.6. U := the class of all groups, M := Hom := the class of all group
morphisms. Then the triple (U,U, M) is a f.p.s. Each group has the fixed point
property with respect to the group morphisms. A group endomorphism which has
only the trivial fixed point is called fized point free endomorphism. The existence of
such endomorphism is one of the basic problems of the theory of finite groups (see
[53], [130], [99] and the references therein).
Example 3.7. U := the class of all topological spaces and M (X,Y) := C(X,Y).
A topological space X € S,qz of (U, M) is by definition a topological space with fixed
point property. In Topology, X € Sy is called fixed point space and f € C(X,Y),
a map.

Examples of fixed point spaces are given by fixed point theorems of: Brouwer,
Schauder, Tychonoff, Cauty, Lefschetz,...

It is a problem to characterize the fixed point spaces, i.e., the elements of Spmax
(see [21], [56], [57], [67], [84], [96], [85], [27], [26],...).

4. INVARIANCE OF S,,4; BY SOME CONSTRUCTIONS IN (U, M)

In what follows we propose to study the invariance of Sy,4z, in a (U, M) pair,
by (U, M)-bijections, retractions, cartesian product and exponential. Here are some
results.

Theorem 4.1. Let (U, M) be a set-mapping pair, X € Spmaz and Y € U. If there
exists a (U, M)-bijection f € M(X,X), then Y € Siax-

Proof. Let g € M(Y,Y). Then f~logo f € M(X,X). Since X € Syaz, there exists
x* € X such that, f~1 o go f(z*) = *. From this we have that, g(f(z*)) = f(x*),
ie, Fy#0. S0, Y € Spaa-

Theorem 4.2. Let (U, M) be a set-mapping pair. If Y € U is a retract of X € Spax,
then'Y € Spaz-

Proof. Let r € M(X,Y) and s € M(Y, X) such that, ros = 1y. Let f € M(Y,Y).
Then, so for € M(X,X). Since, X € Spaz, there exists * € X such that,
so for(x*) = z*. This implies that r o so f or(z*) = r(x*). Since the composition
is associative, it follows that f(r(z*)) = r(z*), i.e., Fy # 0. So, Y € Spaa-
Definition 4.1. A class U of sets with structure is with cartesian product if for
all X,Y € U, the cartesian product set, X X Y, endowed with the usual structure
(structures!) induced by those of X and Y, with respect to which, X xY e U. A
set-mapping pair, (U, M) is with cartesian product if it is with composition, with
restriction, U is with cartesian product and for each, f = (f1, f2) € M(X xY, X xY)
we have that:
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(1) fie M(X xY,X) and fo € M(X xY,Y);

(2) fi(h,y) e M(X,X) and fi(z,) e M(Y,X),Vze X,VyeY;

(3) folz,-) e M(Y,Y) and fo(,y) e M(X,Y), Ve e X,VyeY.
Remark 4.1. In l{ is with cartesian product and for px : X xY — X, (z,y) — « and
py : X XY =Y, (z,y) — y, we have that px € M(X xY,X) and py € M(X xY,Y),
then (U, M) is with cartesian product.
Example 4.1. U := the class of all metric spaces and

M(X,)Y):={f: X =Y | fis a contraction}.

If we take for (X,d) and (Y,p), on X x Y (by abuse of notations!) the metric,
max(d, p), or d+ p, or (d>+ p2)2, then (U, M) is with cartesian product. In this case,
px and py are not in M.
Example 4.2. U := the class of all ordered sets and

M(X,Y):={f: X =Y | fis increasing}.
In this case, px,py € M. So, (U, M) is with cartesian product.
Example 4.3. U := the class of all Hausdorff topological spaces and

M(X,Y):={f e C(X,Y) | f(X) € Pp(Y)}-

If we take on X x Y the usual topology, then (U, M) is with cartesian product and,
px and py are not in M, in general.

Problem 4.1. Let (U, M) be with cartesian product. If X|Y € 8,42, in which
conditions, X XY € S,,447

Remark 4.2. Let (4, M) be with cartesian product. We suppose that for X,Y € U,
z9 € X, yo € Y, the mapping px and py are in M and in addition, the mapping
sx : X 2 X XY,z (x,y) and sy : Y = X XY, y = (x9,y) are in M. If
X XY € S,14s, then X and Y are in S,,,4,. Indeed, we remark that X is a retract of
X xY by (px,sx) and Y is a retract of X x Y by (py, sy) retraction-coretraction
pair.

Remark 4.3. Let (U, M) be with cartesian product and (X,S, M) be a f.p.s. on
(U,M). For X, Y € S, f € M(XXY,XXY), f = (f1, f2), we consider the multivalued
mappings:

P:Y o X, y=Fpyand Q: X =Y, o0 Fr, ).

We suppose that a selection p of P and a selection g of @ exist such that, p and ¢
are in M. It is clear that:

filp(y),y) =ply), Vyey

f2($,q($)) = q(l‘), VrelX.

Since (U, M) is with composition, the mapping, gop € M(Y,Y). From Y € S,
there exists 7 € Y such that, q(p(7)) = . Let us denote, T := p(7). We remark that,
(Z,7) € Fy. So, X XY € Spaa-

From the above considerations it follows that the cartesian product problem is a

selection problem for multivalued mappings, i.e., a difficult one (see, [57], [20], [89],
[10], [90)).
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For the history of Problem 4.1. see I. Rival [97] and, D. Duffus and I. Rival [44] in
the case of ordered sets, R.F. Brown [24] in the case of topological spaces and M.A.
Serban [120] and [121] in the case of ordered sets and of metric spaces.

A general remark on Problem 4.1. is that we have more counterexamples than
results. These counterexamples give rise to:

Problem 4.2. Let (U,S, M) be a fixed point structure on (U, M). We suppose that
(U, M) is with cartesian product. In which conditions, we have that:

XYeS = XxYes§?
Example 4.4. Let U := the class of all ordered set,
M(X,Y):={f: X =Y | f is increasing}

and S := the class of all complete ordered set. In this case, X,Y € S imply that
X xY € S. Indeed, if X and Y are complete ordered sets, then X x Y is also a
complete ordered set.

Example 4.5. Let U := the class of all metric spaces,

M(X,Y):={f:X =Y | fis a contraction}

and § := the class of all complete metric spaces. Then if X and Y are in S, then
X xY € 8. Indeed, if X and Y are complete metric spaces, then X x Y is a complete
metric space with max-metric, for example (see Example 4.1.).
Problem 4.3. Let (U, M) and (U, M;) be two set-mapping pairs with My C M, i.e.,
XY el = M(X,)Y)C M(X,Y), for all XY € U. In which conditions we have
that:

XY EeESnha = X XY E€Sima?
Remark 4.4. In the notations in Remark 4.3 we have that: If f € M1(X xY, X xY)
implies that there exist p,q € M, then XY € S,,4, implies that X XY € S1naz-
Example 4.6. I/ := the class of all metric spaces,

M(X,Y):={f: X = Y| f is a contraction}
and
M (X)Y) := {f : X = Y| f is I-Lipschitz with [ < ;}
Then the pairs (U, M) and (U, M) are a solution of Problem 4.3. Indeed, let (X, d)
and (Y, p) in U. We take on X x Y a usual metric, for example,
(max(d, p)((z1,y1), (z2,y2)) := max(d(z1,z2), p(y1, y2))-

In this case, P = {p} and Q = {¢q}. Let f € M7(X xY,X xY). Then p and ¢ are
with Lipschitz constant 2I. So, p and ¢ are in M. The proof follows form Remark 4.4.
Example 4.7. Let (U, M) be with cartesian product and (U,S, M) be a f.p.s. on
(U,M). For X, Y €U, let

MY X xY,XxY):={fe M(X xY,X xY)| fis a triangular mapping, i.e.,

f(a,y) = (fi(@), fao(2,y), Ve e X, Vy eV}
If X,Y € S, then X xY has the fixed point property with respect to M*(X xY, X xY).
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Example 4.8. Let (U, M) be with cartesian product.

For X e Y and f € M (X x X, X), by definition, a pair (z,y) € X x X is called coupled
fixed points (intertwined fized points in H. Amann [2](1976)) for f if = f(x,y) and
y = f(y,z). Let us consider the mapping, Ty : X x X — X x X, defined by

Tf(xay) = (f(x’y)v f(y7x))

We observe that (z,y) are coupled fixed points for f if (x,y) is a fixed point of T7.
So, the coupled fixed points problem is a particular problem of a fixed point problem
of mappings on a cartesian product.

Definition 4.2. Let (U, M) be a set-mapping pair with cartesian product and
(U,S8,M) be a f.p.s. on (U,M). By definition, X € S is with fixed point selection
property with respect to Y € U, on the right, if for all f € M (X x Y, X) the mul-
tivalued mapping, P : Y — X defined by, y — F(. ) has a selection p € M(Y, X).
By definition, Y € S is with fixed point selection property with respect to X € U, on
the left, if for all f € M(X x Y,Y"), the multivalued operator @ : X — Y, defined by,
x —o Fy(, .y has a selection ¢ € M(X,Y).

Remark 4.5. For the notions in Definition 4.2., in the case of topological structure,
see [128].

Definition 4.3. Let (U, M) be with composition and with restriction. By definition,
(U, M) is with exponential if for all X,Y € U, Y* := M(X,Y), endowed with the
usual structure induced by those of X and Y, M(X,Y) e U.

The relevance of Definition 4.2 and 4.3 follow, for example, from the following results.
Theorem 4.3. Let (U, M) be with cartesian product and with exponential. If for
XY eU, MY, X) € Smaz, then X € Span and X has the fized point selection
property with respect to 'Y, to the right.

Proof. Let T € M(X x Y, X). This mapping induces the mapping, T : M (Y, X) —
M(Y, X), defined by, h — T'(h(:),-). Since (U, M) is with cartesian product, with
exponential and M(Y,X) € Spaz, hence there exists h* € M(Y,X) such that,
T(h*(y),y) = h*(y), Vy € Y, ie., X has the fixed point selection property with
respect to Y, to the right.

From this result and Remark 4.3 we have,

Theorem 4.4. Let (U, M) be with cartesian product and with exponential. If for XY
in U we have that, M(X,Y) € Spaa and M(Y, X) € Spaz, then X XY € Spax-
Remark 4.6. In X and Y are sets with structure, for the standard structure of
X x Y and YX induced by those of X and Y see [2], [12], [13], [22], [63], [65], [76],
[82], [118], [128], [44], [27], [130], [37], [125], [112].

For the fixed point theory on cartesian product see [120], [24], [51], [57], [70], [97],
(111, [128], [131], [44], [27], [45], [89], [90], [119], [113], [46], [125], [5], [121], [s4],
[100], [101].

The following Lawvere result has close connections with the above results (see [73],

[123], [17], [12]).
Lawvere’s Theorem. Let 4 be a category of sets with structure. We suppose that
% is with finite products and powers. Let X and Y be two objects of €. If there exists
a surjective morphism, f : X — Hom(X,Y), then Y has the fixed point property,
ie., h € Hom(Y,Y) = F, # 0.
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In what follows, we give a variant of Lawvere’s theorem in a (U, M) set-mapping
pair. To do this, we need some preliminaries.
If X is a nonempty set, we consider the diagonal mapping A : X — X x X,
x — (z,2). A mapping f € M(X,M(X,Y)) induces the mapping, f:XxX—>Y,
(@,y) = f(z)(y).
Theorem 4.5. Let (U, M) be with cartesian product and with exponential, and X,Y
inU. We suppose that there exists f € M(X, M(X,Y)) such that:
(1) f is surjective;
(2) foAe M(X,Y).
Then, Y € Spaz-
Proof. Let h € M(Y,Y). Then hofoA € M(X,Y). Since f is surjective, there exists
y € X such that, ho foA = f(y). This implies that, hofoA(:c) = fy)(z),VaeX,
ie, ho f(z)(z) = f(y)(x), Vo € X. For x =y, we have, h(f(y)(y)) = f(y)(y). So,
Fy, # 0.
From the above results the following problem appears.
Problem 4.4. In which set-mapping pairs, (U, M), there exists X € U for which
there exists a bijection, f € M (X, M (X, X))?
A solution X of this problem is by definition a reflexive set with structure. For
more considerations on this notion see [73], [12], [123], [17].

5. FIXED POINT RESULTS IN TERMS OF A F.P.S.

In section 4 we have considered some constructions in a set-mapping pair which
preserve fixed point in a set-mapping pair. In what follows we present the f.p.s. as a
frame-work that allows us to give a fixed point result from old one, i.e., to translate
results on a set with structure to another one.

Theorem 5.1. Let (U, M) be a set-mapping pair with composition, X € Syaz, Y €U
and f € M(Y,Y). If f factors through X, in (U, M), then, Fy # 0.

Proof. Since f factors through X, in (U, M), hence there exist g € M(Y,X) and
h € M(X,Y), such that, f = hog. Since (U, M) is with composition, goh € M (X, X).
Now, X € Syay implies that there exists * € X such that, g(h(z*)) = «*. This
implies that, h o g o h(z*) = h(z*), i.e., f(h(z*)) = h(z*). So, Fy # 0.

Remark 5.1. For Theorem 5.1 in the case of topological structure see, [56] and [57].
Theorem 5.2. Let (U, M) be a set-mapping pair, X, Y € U, X C Y and f €
M(X,Y). We suppose that:

(1) X € Smazs

(2) r:Y — X is a set retraction, i.e., r|x = 1x;

(3) rofeMX,X).
Then, or Fy #0, or r(f(X)\ X)N Fof # 0.
Proof. From (1) and (3), there exists z* € X such that, r(f(z*)) = a*. If f(z*) € X,
since r is a set retraction, f(z*) = «*. If f(z*) € Y \ X, then z* € r(f(X) \ X), i.e.,
r(f(X)\X) N Frop # 0.
Remark 5.2. For the impact of set retraction in the fixed point theory of nonself
mappings see [25], [108], [109]. Here are some examples.
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Example 5.1. Let H be a Hilbert space, U := P, (H),
M(X,Y):={f: X — Y| f is a contraction}.
Let X := B(O;R), Y := H, f : B(0; R) — H be a contraction. Since r is nonex-

pansive, r o f € M(B(0; R), B(0; R)). From Theorem 5.2, or Fy # (), or there exists
x* € OB(0; R) and X\ > 1 such that f(z*) = Az*. We remark that r ¢ M.
Example 5.2. Let B be a Banach space, U := Py ., (B),

M(X,Y):={f: X — Y| f is complete continuous}.

Let f € M(B(0; R),B). We remark that by second Schauder’s fixed point theorem,
B(0; R) € Spaz- Let 7 : B — B(0; R) be the radial retraction. Since r is continuous,
ro f € M(B(0;R), B(0; R)). From Theorem 5.2, or Fy # ) or there exists z* €
OB(0; R) and A > 1 such that, f(z*) = \z*.

Example 5.3. Let (X, <) be an ordered set,

U:={Y, <)Y € P(X)},

MY,Z):={f:Y — Z| f is increasing}

and S:={Y el | (Y,<) is a complete ordered set}. Let Y € S such that the least
element of X, L€ Y. Let f € M(Y,Z) and the retraction r € M(Z,Y), defined by,

r(z) = x, forx €Y,
") supy([L,z]NY), forze Z\Y.

From Theorem 5.2. we have that there exists * € Y such that if f(z*) € Y, then
f(z*) =2 and if f(2*) € Z\Y, then supy ([L, f(z*)]NY) = z*.

The following problems are a source for new results from old ones.
Problem 5.1. Let (U, M) be a set-mapping pair with composition and restriction,
and (U,S, M) be a f.p.s. on (U, M). In which conditions on f, the following impli-
cation holds:

YeS, Xel, YCX, fEMY,X), YCfY) = Fr#07?

The following problems are particular cases of Problem 5.1.
Problem 5.1,. (O.H. Hamilton [59]). Let Y C R? be a continuum which does not
separate R? and f : Y — R? be an interior (i.e., open) continuous function such that,
Y C f(Y). Does Fy # 0?7
Problem 5.1,. (S.B. Nadler [86]). Let B(0; R) be the Euclidean ball in R™, n > 1,
Let 0 < Ry < Re and f € C(B(0; R1), B(0, Rs)) a surjective function. Does Fy # ()?
Problem 5.1.. (T.L. Hicks - L.M. Saliga [60]). Let (X,d) be a complete metric
space, Y € Py(X) and f:Y — X be such that, Y C f(Y). In which conditions on
f, we have that, Fy # (7

A folklore result is the following;:

Let f: R — R be a continuous function. If there exists an interval [a,b] C R such
that, [a,b] C f([a,b]), then, Fy # 0.
For some results on the above problems see: [59], [4], [86], [60], [104], [107], [6], [36].
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Problem 5.2. Let (U, M) be a set-mapping pair with composition and with contrac-
tion, and (U,S, M) be a f.p.s. on (U, M). Let X € S and f,g € M(X, X) such that,
fog=go f. In which conditions we have that, Fy N F, # (7

Definition 5.1. Let (U,S, M) be as in Problem 5.2. An element X € § is with
common fixed point property if for all f,g € M (X, X) with, fog=gof, FfNE, #0,
i.e, X is a solution of Problem 5.2.

Remark 5.3. Let (U,S,M) be as in Problem 5.2, and X € §. If f € M(X,X)
implies that Fy endowed with the structure induced by that of X is in S, then X
is with common fixed point property. Indeed, since f og = g o f, we have that,
[(Fy) C Fy and g(Fy) C Fy.

Example 5.5. A fixed point structure (U, S, M) is with uniqueness if X € S and
f e M(X,X) implies that, cardFy = 1. It is clear that each fixed point structure with
uniqueness is with common fixed point property, i.e., each x € X is with common
fixed point property.

Example 5.6. U := the class of all lattice-like ordered sets,

M(X,Y):={f: X = Y| fis increasing}

and S := the class of all complete lattice-like ordered sets. Since for X € S and
f € M(X,X) we have that, Fy € S, hence all X € S is with common fixed point
property, i.e., (U,S, M) is with the common fixed point property.

For other examples and for counterexamples of sets with structure with fixed point
property which are with common fixed point property see [104], [107], [57], [110] and
the references therein.

6. COINCIDENCE POINT PROPERTY AND FIXED POINT PROPERTY

For X and Y two nonempty sets and f,g € M(X,Y) we denote by
C(f.9) ={r e X | f(z) = g(x)},

the coincidence point set of f and g.

Definition 6.1. Let (U, M) be a set-mapping pair and X,Y € Y. A mapping
p € M(X,Y) is a coincidence producing mapping on M (X,Y), if for all g € M(X,Y),
C(f.g9) #0.

Remark 6.1. In some particular structures this notion appears under various names.
For example:

(1) W. Holsztynski [61]. Let X and Y be topological spaces. A mapping f €
C(X,Y) is universal mapping on C(X,Y) if for all g € C(X,Y), C(f,g) # 0.
In [116] H. Schirmer uses the name, coincidence producing instead of univer-
sal.

(2) W.A. Kirk [69]. Let X and Y be two metric spaces. A nonexpansive map-
ping, f : X — Y, is universal nonexpansive mapping if for all nonexpansive
mapping, g : X =Y, C(f,g) # 0.

(3) M. Furi, M. Martelli and A. Vignoli [50]. Let X and Y be two Banach spaces.
A mapping f € C(X,Y) is a strong surjection if for all g € C(X,Y) with
9(X) € P (Y), C(f.9) # 0.
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For more considerations on this notion and some basic properties see A. Buica [29]
and the references therein. See also [106], [7], [8].
Remark 6.2. Let X, Y € Y. If all constant mappings from X to Y are in M (X,Y)
and p € M(X,Y) is a coincidence producing mapping on M (X,Y’), then p is surjective.
Remark 6.3. If p € M(X,Y) is a coincidence producing on M (X,Y) such that,
gop€e M(X,Y) forall g e M(X,Y), then Y € S,,,40 of (U, M).
Example 6.1. U := the class of all connected Hausdorff topological spaces and
M(X,Y):=C(X,Y) for all X,Y € U. In this case all surjective p € M(X,Y’), where
X elU,and Y € U is endowed with a total order, <, such that (Y, 1y, <) is an ordered
topological space, are coincidence producing mappings on M (X,Y"). For example we
can take, Y := [a,b] C R with the usual topology and usual order structure.

Indeed, let f € M(X,Y) and

A:={zeX|pl) < f(z)}
and
B:={xeX|p(x)> f(x)}

Since p and f are continuous, and p is surjective, A, B € P, (X). Since, < is a total
order we have that, X = AU B. Since X is connected, AN B # 0, i.e., C(p, f) # 0.
Example 6.2. Let (U, M) be a set-mapping pair, X € Spax of (U, M) and p €
M (X, X) be a bijective mapping such that, p~toh € M (X, X), for all h € M (X, X).
Then p is a coincidence producing mapping on M (X, X).

Definition 6.2. A fp.s., (U,S, M) is with coincidence point property if X € S,
frge M(X,X), fog=go f imply that, C(f,g) # 0.

Example 6.3. Each fp.s., (U,S, M) with common fixed point property is with
coincidence point property.

Example 6.4. U := P(R), M(X,Y) := C(X,Y) and S := P, v(R). The fixed
point structure, (U,S, M) is with coincidence point property. This follows from a
coincidence point theorem of Horn [62].

Problem 6.1. To give examples of fixed point structures with coincidence point
property.

This problem is a difficult one. A relevant example is the following conjecture:
Horn’s Conjecture. ([62], [122]). Let B be a Banach space, and X € P, ,(B). If
f,9€ C(X,X) and fog=go f, then, C(f,g) # 0.

The following conjecture is a particular case of Horn’s conjecture.
Schauder-Browder-Nussbaum conjecture. ([122], [107]). Let B be a Banach
space, Y € Py ¢ cv(B) and f: Y — Y be a mapping. We suppose that:

(1) feCY,Y);
(2) there exists n € N* such that, f*(Y) is compact.
Then, Fy # 0.

In general we have that:

Remark 6.5. Let (U,S, M) be a f.p.s. with the coincidence property. Let X € S

and f € M(X, X). If there exists k& € N* such that, f* and f**! are in M (X, X),
then Fy # 0.
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7. FIXED POINT STRUCTURE ON A SET-MULTIVALUED MAPPING PAIR

The problem is to give similar notions, problems and results in the case of multi-

valued mappings. For the fixed point structures for multivalued mappings on a set
with structure see [104] and [107] an dthe references therein.

As starting references look to: [57], [82], [12], [54], [48], [104], [107], [110], [90],

[112], [5], [46].
REFERENCES

[1] F. Alessi, P. Baldan, G. Belle, A fized-point theorem in a category of compact metric spaces,
Theor. Comput. Sci., 146(1995), no. 1-2, 311-320.

[2] H. Amann, Order structures and fized points, SAFA 2, Univ. of Calabria, 1977, 1-51.

[3] P. America, Solving reflexive domain equations in a category of complete metric spaces, J. of
Computer and System Sciences, 39(1989), 343-375.

[4] J. Andres, Some standard fized point theorems revisited, Atti. Sem. Mat. Fis. Univ. Modena,
49(2001), 455-471.

[5] J. Andres, J. Fiser, L. Gérniewicz, Fized points and sets of multivalued contractions: an ad-
vanced survey with some new results, Fixed Point Theory, 22(2021), no. 1, 15-30.

(6] J. Andres, K. Pastor, P. Snyrychové, Simple fized point theorems on linear continua, CUBO,

10(2008), no. 4, 27-43.

[7] A.V. Arutyunov, Covering mappings in metric spaces and fized points, Doklady Mathematics,

8

[9
[10
[11

[12
[13

[14

15
[16

76(2007), no. 2, 665-668.

] A. Arutyunov, E. Avakov, B. Ge'man, A. Dmitruk, V. Obukhovskii, Locally covering maps in
metric spaces and coincidence points, J. Fixed Point Theory Appl., Doi 10.1007/s11784-008-
0096-z, 2009.

| M. Atiyah, Mathematics in the 20th century, Bull. London Math. Soc., 25(2002), 1-15.

| J.P. Aubin, A. Cellina, Differential Inclusions, Springer, 1984.

| A. Baranga, The contraction principle as a particular case of Kleene’s fized point theorem,
Discrete Math., 98(1991), 75-79.

| M. Barr, C. Wells, Category Theory for Computing Science, Prentice Hall, New York, 1990.

| G. Beer, More on convergence of continuous functions and topological convergence of sets,
Canadian Math. Bull., 28(1985), 52-59.

| L.P. Belluce, W.A. Kirk, Nonezpansive mappings and fized points in Banach spaces, Illinois J.
Math., 2(1967), no. 3, 1967.

| V. Berinde, Iterative Approzimation of Fized Points, Springer, 2007.

| A. Bjorner, Combinatorics and topology, Notices Amer. Math. Soc., 32(1985), 339-345.

[17] A. Bjorner, Reflezive domains and fized points, Acta Appl. Math., 4(1985), 99-100.

(18

| A. Blass, The intersection between category theory and set theory, Contemporary Math.,
30(1984), 5-29.

[19] B. Bollobds, Graph Theory: An Introductory Course, Springer, 1979.
[20] K.C. Border, Fized Point Theorems with Applications to Economics and Game Theory, Cam-

[21
[22

bridge Univ. Press, Cambridge, 1985.
| K. Borsuk, Theory of Retracts, Polish Academy of Sciences, Warsaw, 1967.
] N. Bourbaki, Eléments de Mathématique (1954, 1961, 1975), Hermann, Paris.

[23] F.E. Browder, Fized point theorems on infinite dimensional manifold, Trans. Amer. Math. Soc.,

119(1965), no. 2, 179-194.

[24] R.F. Brown, The fized point property and Cartesian products, Amer. Math. Monthly, 89(1982),

25

654-678.
| R.F. Brown, Retraction mapping principle in Nielsen fized point theory, Pacific J. Math.,
115(1984), 277-297.

[26] R.F. Brown, Fized Point Theory, 271-299. In: I.M. James (ed.), History of Topology, Elsevier,

1999.



702

27]

(28]

29]
(30]
(31]
(32]
(33]

[34]
(35]

(36]
(37)
(38]
(39]
[40]

[41]
42]

(43]
(44]
[45]
[46]

[47]
(48]

[49]
[50]
[51]
[52]
[53]
[54]
[55]
[56]
[57]

(58]
[59]

IOAN A. RUS

R.F. Brown, M. Furi, L. Gérniewicz, B. Jiang (eds.), Handbook of Topological Fized Point
Theory, Springer, 2005.

T. Biiber, W.A. Kirk, Constructive aspects of fixed point theory for nonexpansive mappings,
2115-2125. In: V. Lakshmikanthan (ed.), World Congress of Nonlinear Analysts, Proceedings,
vol. 2, 1996.

A. Buica, Principii de coincidentd si aplicatii, Presa Univ. Clujeand, Cluj-Napoca, 2001 (in
Romanian).

C.E. Capel, W.L. Strother, A space of subsets having the fized point property, Proc. Amer.
Math. Soc., 7(1956), 707-708.

E. Casini, K. Goebel, Why and how much Brouwer’s fixed point theorem fails in noncompact
setting?, Milan J. Math., 78(2010), 371-394.

P. Chaoha, K. Goebel, I. Termwuttipong, Around Ulam’s question on retractions, Topological
Methods in Nonlinear Anal., 40(2012), 215-224.

L.-J. Chu, C.-Y. Lin, New versions on Nikaidd’s coincidence theorem, Discussiones Mathemat-
icae. Differential Inclusions, Control and Optimisation, 22(2002), 79-95.

E.H. Connell, Properties of fized point spaces, Proc. Amer. Math. Soc., 10(1959), 974-979.

H. Crapo, Ordered sets: retract and connections, J. of Pure and Applied Algebra, 23(1982),
13-28.

F.S. De Blasi, Semifized sets of maps in hyperspaces with applications to set differential equa-
tions, Set-Valued Analysis, 14(2006), 263-272.

K. Deimling, Nonlinear Functional Analysis, Springer, 1985.

K. Denecke, What is general algebra?, Notices from the ISMS, May 2007, 1-17.

R.L. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley, 1988.

J. Dieudonné, Introductory remarks on algebra, topology and analysis, Historia Mathematica,
2(1975), 537-548.

J. Dieudonné, Panorama des Mathématiques Pures, Bordas, Paris, 1977.

J. Dieudonné, The work of Bourbaki during the last thirty years, Notices of the Amer. Math.
Soc., 29(1982), no. 7, 618-623.

F.A. Domenach, Structures Latticielles, Correspondances de Galois, Contraintes et Classifica-
tion Symbolique, HAL, Université Panthéon-Sorbonne-Paris I, 2002.

D. Duffus, I. Rival, A Structure theory for ordered sets, Discrete Math., 35(1981), 53-118.

E. Dyer, A fized point theorem, Proc. Amer. Math. Soc., 7(1956), 662-672.

R. Espinola, G. Lépez, A. Petrusel, Crossed cartesian product of multivalued operators, Nonlin-
ear Funct. Anal. Appl., 12(2007), no. 4, 563-575.

A.-D. Filip, Fized Point Theory in Kasahara Spaces, Casa Cartii de Stiinta, Cluj-Napoca, 2015.
M. Florenzano, General Equilibrium Analysis: Existence and Optimality Properties of Equilib-
ria, Kluwer, 2003.

B. Fuchssteiner, Exposed fixed points in order structures, 359-376. In: J.A. Barroso (ed), Aspect
of Mathematics and its Applications, Elsevier, 1986.

M. Furi, M. Martelli, A. Vignoli, Contributions to the spectral theory for monlinear operators
in Banach spaces, Ann. Mat. Pura Appl., 118(1978), 229-294.

S. Ginsburg, Fized points of products and ordered sums of simply ordered sets, Proc. Amer.
Math. Soc., 5(1954), no. 4, 554-565.

K. Goebel, E. Sedlak, Nonexpansive retractions in Hilbert spaces, Ann. Univ. M. Curie-
Sklodowska Lublin, Sec. A, 63(2009), 83-90.

D. Gorenstein, Finite Groups, New York, 1968.

L. Gérniewicz, Topological Fized Point Theory of Multivalued mappings, Springer, 2006.

R.L. Graham, Rudiments of Ramsey Theory, Amer. Math. Soc., Providence, 1981.

A. Granas, Points Fizes pour les Applications Compactes: Espaces de Lefschetz et la Théorie
de ’Indice, SMS, Univ. de Montreal, 1980.

A. Granas, J. Dugundji, Fized Point Theory, Springer, 2003.

P.R. Halmos, Naive Set Theory, D. van Nostrand Company, Princeton, 1960.

O.H. Hamilton, Fized point theorems for interior transformations, Bull. Amer. Math. Soc.,
54(1948), 383-385.



[60]
[61]
[62]

[63]
[64]

[65]
[66]

[67)
(68]
[69]
[70]
[71]
[72]
[73]
[74]
[75]
[76]
[77)
(78]
[79]
(80]
(81]
(82]
(83]
(84]
(85]
(86]

(87)
(88]

(89]
[90]
[91]

[92]
(93]

SETS WITH STRUCTURE, MAPPINGS AND FIXED POINT PROPERTY 703

T.L. Hicks, L.M. Saliga, Fized point theorems for non-self maps (I), Internat. J. Math. Math.
Sci., 17(1994), no. 4, 713-716.

W. Holsztynski, Universal mappings and fized point theorems, Bull. Acad. Pol. Sc., 15(1967),
433-438.

W.A. Horn, Some fized point theorems for compact maps and flows in Banach spaces, Trans.
Amer. Math. Soc., 149(1970), 391-404.

S. Hu, Theory of Retracts, Wayne State Univ., 1965.

J. Jachymski, A discrete fized point theorem of Filenberg as a particular case of the contraction
principle, Fixed Point Theory Appl., 2004(2004), no. 1, 31-36.

G. Jameson, Ordered Linear Spaces, Springer, 1970.

E.M. Jawhari, D. Misane, M. Pouzet, Retract: Graphs and ordered sets from the metric point
of view, Contemporary Math., 57(1986), 175-226.

R. Jerrard, Classification of spaces by fized point properties, Indiana Univ. Math. J., 31(1982),
37-45.

M.A. Khamsi, D. Misane, S.A. Al-Mezel, On the completeness of ordered sets, Fixed Point
Theory, 14(2013), no. 2, 379-386.

W.A. Kirk, Universal nonezpansive maps, 95-101. In: Proc. 8" IC-FPTA (2007), Yokohama
Publ., 2008.

R.J. Knill, Cones, products and fized points, Fundamenta Math., 60(1967), 35-46.

S. Kreutzer, Pure and Applied Fized Point Logics, Dissertation Hochschule Aachen, 2002.

J. Lambek, A fizpoint theorem for complete categories, Math. Zeitschr., 103(1968), 151-161.
F.W. Lawvere, Diagonal arguments and cartesian cloud categories, Lecture Notes in Math.,
92(1969), 134-145.

G. Longo, Set-theoretical models of A-calculus: theories, expansions, isomorphisms, Ann. Pure
Appl. Logic, 24(1983), 153-188.

S. Mac Lane, Categories for the Working Mathematician, Springer, 1971.

S. Mac Lane, Mathematics: Form and Function, Springer, 1986.

S. Mac Lane, Structure in mathematics, Philosophia Mathematica, 4(1996), 174-183.

Y.I. Manin, Mathematics as Metaphor, Amer. Math. Soc., Providence, 2007.

Z. Manna, A. Shamir, The theoretical aspects of the optimal fized point, SIAM J. Comput.,
5(1976), no. 3, 414-426.

G. Markowsky, Chain-complete posets and directed sets with applications, Algebra Univ.,
6(1976), 53-68.

J.D. Mashburn, Three counterexamples concerning w-chain completeness and fixed point prop-
erties, Proc. Edinburgh Math. Soc., 24(1981), 141-146.

A. McLennan, Advanced Fized Point Theory for Economics, Springer, 2018.

S. Miklos, Fized point property for local expansions on graphs, Kobe J. Math., 1(1984), 103-114.
R. Morika, The topological fized point property — an elementary continuum-theoretic approach,
Banach Center Publications, 77(2007), 183-200.

T.B. Muenzenberger, R.E. Smithson, Fized point structure, Trans. Amer. Math. Soc.,
184(1973), 153-173.

S.B. Nadler, Ezamples of fixed point free maps from cells onto larger cells and spheres, Rocky
Mountain J. Math., 11(1981), no. 2, 319-325.

J. Nelson, A common fized point structure, Rocky Mountain J. Math., 8(1978), no. 4, 675-682.
M. Pacurar, I.A. Rus, Some remarks on the notations and terminology in the ordered set theory,
Creat. Math. Inform., 27(2018), no. 2, 191-195.

T. Parthasarathy, Selection theorems and their applications, Lect. Notes in Math., 263(1972),
Springer.

A. Petrusel, Operatorial Inclusions, House of the Book of Science, Cluj-Napoca, 2002.

A. Petrusel, I.A. Rus, The relevance of a metric condition on a pair of operators in common
fized point theory, 1-22. In: Y.J. Cho et al. (eds.), Advances in Metric Fixed Point Theory and
Applications, Springer, 2021.

G. Plotkin, Domains, Univ. Edinburgh, 1983.

B. Plotkin, Universal Algebra, Algebraic Logic, and Databases, Kluwer, 1994.



704 IOAN A. RUS

[94] R. Precup, Generalized topological transversality and existence theorems, Libertas Matematica,
21(1991), 65-79.

[95] R. Precup, I.A. Rus, Some fized point theorems in terms of two measures of noncompactness,
Mathematica, 56(2014), no. 2, 158-165.

[96] S. Reich, Y. Sternfeld, Some non-compact fized point spaces, Longhorn Notes, Univ. Texas,
1983, 151-159.

[97] 1. Rival, The problem of fized points in ordered sets, Ann. Discrete Math., 8(1980), 283-292.

[98] S. Rudeanu, Fiz points of lattice and Boolean transformation, An. Stiintifice Univ. “Al. I. Cuza”,
Tasi, s. I-a, 26(1980), 147-153.

[99] I.A. Rus, Teoria punctului fix ?n structuri algebrice, Babes-Bolyai Univ., 1971.

[100] I.A. Rus, Asupra punctelor fize ale aplicatislor definite pe un produs cartezian I: Structuri
algebrice, Studii gi Cercetari Mat. (Bucuresti), 24(1972), 891-896.

[101] L.A. Rus, Asupra punctelor fize ale aplicatiilor definite pe un produs cartezian II: Spatii me-
trice, Studii gi Cercetiri Mat. (Bucuresti), 24(1972), 897-904.

[102] I.A. Rus, Retraction method in the fized point theory in ordered structures, Seminar on Fixed
Point Theory, Babes-Bolyai Univ., (1988), 1-8.

[103] I.A. Rus, Generalized Contractions and Applications, Presa Univ. Clujeand, Cluj-Napoca,
2001.

[104] I.A. Rus, Fized Point Structures Theory, Cluj Univ. Press, Cluj-Napoca, 2006.

[105] I.A. Rus, Kasahara spaces, Sc. Math. Japonicae, 72(2010), no. 1, 101-110.

[106] I.A. Rus, Coincidence producing operators on a large fized point structure, Bull. Trans. Univ.
Brasov, Serie 111, 5(2012), 237-246.

[107] L.A. Rus, Five open problem in fized point theory in terms of fived point structures (I): Single
valued operators, Proc. 10t" IC-FPTA, 2012(2013), House of the Book of Science Cluj-Napoca,
39-60.

[108] I.A. Rus, The generalized retraction methods in fized point theory for nonself operators, Fixed
Point Theory, 15(2014), no. 2, 559-578.

[109] I.A. Rus, Set-theoretical aspects of the fized point theory: Some examples, Carpathian J. Math.,
37(2021), no. 2, 235-258.

[110] I.A. Rus, A. Petrusgel, G. Petrusel, Fized Point Theory, Cluj Univ. Press, Cluj-Napoca, 2008.

[111] L.A. Rus, M.-A. Serban, Some fized point theorems on cartesian product in terms of vectorial
measures of noncompactness, Stud. Univ. Babeg-Bolyai Math., 59(2014), no. 1, 103-111.

[112] A. Rutkowski, Multifunctions and the fized point property for products of ordered sets, Order,
2(1985), 61-67.

[113] A. Rutkowski, Cores, cutsets and fized point property, Order, 3(1986), 257-267.

[114] G. Sardanashvily, What is a mathematical structure?, Preprint MP-MSU/027/11/13, Moscow
State University.

[115] H.H. Schaefer, Banach Lattices and Positive operators, Springer, 1974.

[116] H. Schirmer, Coincidence producing maps onto trees, Canad. Math. Bull., 10(1967), 417-423.

[117] B. Schroder, On retractible sets and the fized point property, Algebra Universalis, 33(1995),
149-158.

[118] B. Schréder, Ordered Sets, An Introduction, Birkhauser, 2003.

[119] M.-A. Serban, Technique of fized point structure for the mappings on product spaces, Seminar
on Fixed Point Theory, Babes-Bolyai Univ., (1998), 1-18.

[120] M.-A. Serban, Teoria Punctului Fiz pentru Operatori Definiti pe Produs Cartezian, Presa
Univ. Clujeand, Cluj-Napoca, 2002.

[121] M.-A. Serban, Fized point theorems on cartesian product, Fixed Point Theory, 9(2008), no. 1,
331-350.

[122] R. Sine, Remarks on a paper of Horn, Contemporary Math., 72(1988), 247-252.

[123] J. Soto-Andrade, F.J. Varela, Self-reference and fized points: A discussion and an extension
of Lawvere’s theorem, Acta Appl. Math., 2(1984), 1-19.

[124] J.D. Stein, A systematic generalization procedure for fized point theorems, Rocky Mountain J.
Math., 30(2000), no. 2, 735-754.



SETS WITH STRUCTURE, MAPPINGS AND FIXED POINT PROPERTY 705

[125] W.L. Strother, On an open question concerning fized point, Proc. Amer. Math. Soc., 4(1953),
988-993.

[126] F. Sullivan, A characterization of complete metric spaces, Proc. Amer. Math. Soc., 85(1981),
345-346.

[127] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness,
Proc. Amer. Math. Soc., 136(2008), no. 5, 1861-1869.

[128] M. Szymik, Homotopies and the universal fized point property, arXiv:1210.6496v3 [math.GN],
29 Oct. 2013, 1-17.

[129] R. Thom, Mathématique et Théorisation Scientifiqgue, Sciencia (Milano), 27-42.

[130] J. Thompson, Finite groups with fized-point-free automorphisms of prime order, Proc. Nat.
Acad. Sc., 45(1959), 578-581.

[131] R.B. Thompson, A metatheorem for fized point theories, Comment. Math. Univ. Carolinae,
11(1970), no. 4, 813-815.

[132] J. Tiuryn, Unique fized points vs. least fized points, Theoretical Computer Science, 12(1980),
229-254.

[133] S. Vasilache, Elemente de teoria mulimilor si a structurilor algebrice, Editura Academiei,
Bucuresti, 1956 (in Romanian).

[134] M. Wand, Fized point constructions in order-enriched categories, Theor. Comput. Sci.,
8(1979), 13-30.

Recewved: June 10, 2021; Accepted: January 31, 2022.



706

IOAN A. RUS



