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Abstract. In this paper we investigate the stability of the null solution of a system of ODEs

describing the motion of two coupled damped nonlinear oscillators. We also show that for any solution
(x, y) of the system we have limt→+∞ x (t) = limt→+∞ ẋ (t) = limt→+∞ y (t) = limt→+∞ ẏ (t) = 0,

for small initial data in the case when the uniqueness of solutions is not guaranteed. Our proofs
are mainly based on a generalized form of Schauder-Tychonoff fixed point theorem. The theoretical

results are illustrated with numerical simulations.
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1. Introduction

Consider a mechanical system consisting of 2 blocks having the same mass, m, as
shown in Figure 1. We suppose that the stiffnesses of the springs are represented
by the functions ki : R+ → R+, i ∈ 1, 2 (where R+ := [0,+∞)) and the functions

f̂i : R+ → R+, i ∈ 1, 2 denote the friction coefficients of the horizontal surface. We
assume that, when the two blocks are in their equilibrium positions, the springs are
also in their equilibrium positions.

Let the displacements of the blocks from their equilibrium positions be x, y. We
suppose that the system moves under the action of some external forces ĝi : R+×R×
R→ R, i ∈ 1, 2, depending on the time and the displacements.
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Figure 1. Two 1-D coupled damped nonlinear oscillators

Therefore we can associate with the above physical application the following system
of ODEs describing the motion of the oscillators (see, e.g., [16]){

ẍ+ 2f1 (t) ẋ+ β (t)x− γ (t) y + g1 (t, x, y) = 0,
ÿ + 2f2 (t) ẏ + δ (t) y − γ (t)x+ g2 (t, x, y) = 0,

(1.1)

where

β (t) :=
1

m
(k1 (t) + k2 (t)) , δ (t) :=

1

m
k2 (t) ,

f1 (t) :=
1

m
f̂1 (t) , f2 (t) :=

1

m
f̂2 (t) , γ (t) :=

1

m
k2 (t) ,

g1 (t, x, y) := − 1

m
ĝ1 (t, x, y) , g2 (t, x, y) := − 1

m
ĝ2 (t, x, y) .

In [15], [16] we provided stability results for different systems of nonlinear coupled
oscillators. Our approaches were based on elementary differential inequalities and on
the classical Lyapunov’s method. For other results regarding the asymptotic stability
of the equilibria of coupled damped nonlinear oscillators, we refer the reader to [10],
[17]-[20], and the references therein. For fundamental concepts and results in stability
theory we refer the reader to [2], [6], [7].

The general case of a single damped nonlinear oscillator is described by the follow-
ing equation which is well-known in the literature

ẍ+ 2f∗ (t) ẋ+ β∗ (t)x+ g∗ (t, x) = 0, t ∈ R+. (1.2)

T.A. Burton and T. Furumochi [4] introduced a new method, based on the Schauder
fixed point theorem (see, e.g., [21, p. 218], [25, Theorem 2.A, Corollary 2.13]), to
study the stability of the null solution of Eq. (1.2) in the case β∗ (t) = 1. In [1], [13]
we reported new stability results for the same equation using some Bernoulli type
differential inequalities, and in [14], [24] we considered Eq. (1.2) under more general
assumptions, which required more sophisticated arguments. For other investigations
regarding the asymptotic stability of the equilibrium of a single damped nonlinear
oscillator, we refer the reader to [8]-[9], [12]-[11], [22], and the references therein.

A powerful tool to deduce the existence of solutions to initial value problems is
Schauder-Tychonoff fixed point theorem (see, e.g., [21, p. 218], [25, Corollary 9.6]),
which is an extension to locally convex spaces of the Schauder fixed point theorem.

In the present paper we will present some results on the stability of the equilib-
rium of system (1.1) by using a generalized form of Schauder-Tychonoff theorem (see
Theorem 3.1 below), on the metrizable locally convex space of the continuous func-
tions defined on a half-line [t0,+∞), endowed with a countable family of seminorms
as chosen as to determine the uniform convergence on the compact subsets of this
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interval (see Theorem 2.1 below). We also prove that for any solution (x, y) to system
(1.1) we have limt→+∞ x (t) = limt→+∞ ẋ (t) = limt→+∞ y (t) = limt→+∞ ẏ (t) = 0,
for small initial data, in the case when the nonlinearities are not necessarily locally
Lipschitz functions (hence uniqueness is not guaranteed).

2. General framework and main result

The following hypotheses will be admitted:
(H1) f1, f2 ∈ C1 (R+) , f1 (t) ≥ 0, f2 (t) ≥ 0, ∀t ∈ R+;
(H2) there exist three constants h, K1, K2 ≥ 0 such that∣∣∣ḟi (t) + f2

i (t)
∣∣∣ ≤ Kif̃ (t) , ∀t ≥ h, ∀i ∈ {1, 2} , (2.3)

where f̃ (t) := min {f1 (t) , f2 (t)} , ∀t ∈ R+;

(H3)
∫ +∞

0
f̃ (t) dt = +∞;

(H4) γ ∈ C (R+), γ (t) ≥ 0, ∀t ∈ R+, and
∫ +∞

0
γ (t) dt < +∞;

(H5) β, δ ∈ C1 (R+), β, δ are decreasing, and

β0 := lim
t→+∞

β (t) > 0, δ0 := lim
t→+∞

δ (t) > 0

are such that
K1√
β0

+
K2√
δ0
< 1; (2.4)

(H6) gi ∈ C (R+ × R× R) , i ∈ {1, 2} and fulfill the relations

|g1 (t, x, y)| ≤ r1 (t) o (|x|) , ∀t ∈ R+, ∀y ∈ R, (2.5)

|g2 (t, x, y)| ≤ r2 (t) o (|y|) , ∀t ∈ R+, ∀x ∈ R, (2.6)

where ri ∈ C (R) , ri (t) ≥ 0, ∀t ∈ R+,
∫ +∞

0
ri (t) dt < +∞, i ∈ {1, 2} , and “o (|x|)”

denotes the usual Landau symbol for x→ 0, i.e., limx→0
o(|x|)
|x| = 0 (the same definition

for “o (|y|)” ).
(H7) gi, i ∈ {1, 2} are locally Lipschitzian with respect to x, y.

Remark 2.1. If (H1) and (H2) hold, then fi, ḟi are bounded, i ∈ {1, 2} . Indeed, by
(H2) we see that

(t ≥ h, fi (t) > Ki) =⇒ ḟi (t) < 0,

which, combined with (H1), implies fi (t) ≤ Mi := max {fi (h) ,Ki} , ∀t ≥ h. So,

using again (H2), we obtain
∣∣∣ḟi (t)

∣∣∣ ≤ 2M2
i , ∀t ≥ h. This concludes the proof, since,

by (H1), fi, ḟi ∈ C [0, h] , i ∈ {1, 2} .
Our main result is the following.

Theorem 2.1. i) Suppose that hypotheses (H1)-(H6) are fulfilled. Then for every
solution (x, y) to system (1.1) , we have

lim
t→+∞

x (t) = lim
t→+∞

ẋ (t) = lim
t→+∞

y (t) = lim
t→+∞

ẏ (t) = 0,

for small initial data.
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ii) If hypotheses (H1)-(H7) are fulfilled, then the null solution of (1.1) is asymp-
totically stable.

iii) If hypotheses (H1)-(H2), (H4)-(H7) are fulfilled, then the null solution of (1.1)
is uniformly stable.

Remark 2.2. Let us note that in order to prove the first assertion of Theorem 2.1
the hypothesis (H7), which ensures the uniqueness of the solution of any initial value
problem associated to system (1.1), is not needed. So while ii) and iii) are comparable
to the stability results reported in [16], the statement i) is new and is obtained by
using a generalized form of Schauder-Tychonoff theorem (see Section 3 below). This
shows that the fixed point method is efficient in studying the behavior at infinity of
the solutions of system (1.1) .

3. Proof of Theorem 2.1

By using the transformation (similar to that introduced by T.A. Burton and T.
Furumochi in [4])

ẋ = u− f1 (t)x

u̇ =
[
ḟ1 (t) + f2

1 (t)− β (t)
]
x− f1 (t)u+ γ (t) y − g1 (t, x, y)

ẏ = v − f2 (t) y

v̇ = γ (t)x+
[
ḟ2 (t) + f2

2 (t)− δ (t)
]
y − f2 (t) v − g2 (t, x, y)

(3.7)

system (1.1) becomes

ż = A (t) z +B (t) z + F (t, z) , (3.8)

where

z =


x
u
y
v

 , A (t) =


−f1 (t) 1 0 0
−β (t) −f1 (t) γ (t) 0

0 0 −f2 (t) 1
γ (t) 0 −δ (t) −f2 (t)

 ,

B (t) =


0 0 0 0

ḟ1 (t) + f2
1 (t) 0 0 0

0 0 0 0

0 0 ḟ2 (t) + f2
2 (t) 0

 , F (t, z) =


0

−g1 (t, x, y)
0

−g2 (t, x, y)

 ,

and our large time behavior question reduces to the large time behavior of the solutions
to system (3.8).

Let t0 ≥ 0 be arbitrarily fixed and let

Z (t, t0) =


a1 (t, t0) b1 (t, t0) c1 (t, t0) d1 (t, t0)
a2 (t, t0) b2 (t, t0) c2 (t, t0) d2 (t, t0)
a3 (t, t0) b3 (t, t0) c3 (t, t0) d3 (t, t0)
a4 (t, t0) b4 (t, t0) c4 (t, t0) d4 (t, t0)

 , t ≥ t0,

be the fundamental matrix to the linear system

ż = A (t) z, (3.9)
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which equals the identity matrix for t = t0.
As in [16], we deduce

β (t) a2
11 (t, t0) + a2

21 (t, t0) + δ (t) a2
31 (t, t0) + a2

41 (t, t0) ≤ β (t0) eI(t,t0), (3.10)

β (t) a2
12 (t, t0) + a2

22 (t, t0) + δ (t) a2
32 (t, t0) + a2

42 (t, t0) ≤ eI(t,t0), (3.11)

β (t) a2
13 (t, t0) + a2

23 (t, t0) + δ (t) a2
33 (t, t0) + a2

43 (t, t0) ≤ δ (t0) eI(t,t0), (3.12)

β (t) a2
14 (t, t0) + a2

24 (t, t0) + δ (t) a2
34 (t, t0) + a2

44 (t, t0) ≤ eI(t,t0), (3.13)

for all t ≥ t0, where

I (t, t0) :=

∫ t

t0

[
−2f̃ (u) +

γ (u)√
ζ (u)

]
du, ∀t ≥ t0

and

ζ (t) := min {β (t) , δ (t)} , ∀t ∈ R+.

Let ‖·‖0 be the norm in R4 defined by

‖z‖0 =
(
β0x

2 + u2 + δ0y
2 + v2

)1/2
, for z = (x, u, y, v)

>
, (3.14)

which is equivalent to the Euclidean norm.
For z0 ∈ R4, from (3.10)− (3.13) and (H4), we deduce for all t ≥ t0

‖Z (t, t0) z0‖0 ≤ λ ‖z0‖0
√
β (t0) + δ (t0) + 2 exp

(∫ t

t0

[
−f̃ (u) +

γ (u)

2
√
ζ (u)

]
du

)
,

(3.15)
where λ := max{1, 1/

√
β0, 1/

√
δ0},∥∥∥Z (t, t0)Z (s, t0)

−1
e2

∥∥∥
0
≤ exp

(∫ t
s

[
−f̃ (u) + γ(u)

2
√
ζ(u)

]
du

)
,∥∥∥Z (t, t0)Z (s, t0)

−1
e4

∥∥∥
0
≤ exp

(∫ t
s

[
−f̃ (u) + γ(u)

2
√
ζ(u)

]
du

)
,

(3.16)

for all t ≥ s ≥ t0 ≥ 0, where e2 = (0, 1, 0, 0)
>
, e4 = (0, 0, 0, 1)

>
,∥∥∥Z (t, t0)Z (s, t0)

−1
z0

∥∥∥
0
≤ Λ ‖z0‖0 exp

(∫ t

s

[
−f̃ (u) +

γ (u)

2
√
ζ (u)

]
du

)
, (3.17)

for all t ≥ s ≥ t0 ≥ 0, where Λ := max

{√
β(0)
β0
,
√

δ(0)
δ0

}
.

For t0 ≥ 0 we consider the functional space

Cc (t0) :=
{
z : [t0,+∞)→ R4, z continuous

}
,

which becomes a metrizable locally convex space with respect to the countable family
of seminorms

‖z‖n := sup
t∈[t0,n]

{‖z (t)‖0} , n ∈ N, n > t0.
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The metric is given by

d (z1, z2) :=
∑
n∈N
n>t0

1

2n
‖z1 − z2‖n

1 + ‖z1 − z2‖n
, ∀z1, z2 ∈ Cc (t0)

and since it is complete, the space Cc (t0) is actually a Fréchet space.
Notice that the topology defined by this family of seminorms is the topology of the

uniform convergence on compact subsets of [t0,+∞); in addition, a familyA ⊂ Cc (t0)
is relatively compact if and only if it is equicontinuous and uniformly bounded on the
compacts subsets of [t0,+∞) (Arzelà-Ascoli Theorem).

Let t0 ≥ 0 and z0 ∈ R4. We define on Cc (t0) the operator

(Hw) (t) := Z (t, t0) z0 +

∫ t

t0

Z (t, t0)Z−1 (s, t0) [B (s)w (s) + F (s, w (s))] ds, (3.18)

for all w ∈ Cc (t0) and for all t ≥ t0.
If is obvious that the set of solutions to system (3.8) fulfilling the initial condition

z (t0) = z0 is equal to the set of the fixed points of H.
From (2.5) , (2.6) we infer that there exist li > 0, i ∈ {1, 2} , such that

|g1 (t, x, y)| ≤ r1 (t) |x| , if |x| < l1,
|g2 (t, x, y)| ≤ r2 (t) |y| , if |y| < l2.

(3.19)

Let q (t) be the unique solution to the initial value problem

q̇ (t) =

−f̃ (t) +

∣∣∣ḟ1 (t) + f2
1 (t)

∣∣∣
√
β0

+

∣∣∣ḟ2 (t) + f2
2 (t)

∣∣∣
√
δ0

(3.20)

+
r1 (t)√
β0

+
r2 (t)√
δ0

+
γ (t)

2
√
ζ (t)

]
q (t) , t ≥ t0,

q (t0) = λ ‖z0‖0
√
β (t0) + δ (t0) + 2

and let us consider the set

B (t0, ρ) := {w ∈ Cc (t0) | ‖w (t)‖0 ≤ ρ and ‖w (t)‖0 ≤ q (t) , ∀t ≥ t0} ,

for t0 ≥ 0 and ρ > 0. Since w (t) := mint≥t0 {ρ, q (t)} (0, 1, 0, 0)
>

is contained
in B (t0, ρ) , it follows that the set B (t0, ρ) is nonempty. Obviously B (t0, ρ) is a
nonempty closed convex subset of Cc (t0), ∀t0 ≥ 0, ∀ρ > 0.

Lemma 3.1. There exists l > 0, such that for all t0 ≥ 0 and for all ρ ∈ (0, l), there
exists a > 0, such that for all z0 with ‖z0‖0 ∈ (0, a) the operator H maps B (t0, ρ) into
B (t0, ρ) .

Proof. Let l := min
{√

β0l1,
√
δ0l2

}
, ρ ∈ (0, l), t0 ≥ 0, and z0 ∈ R4\ {0} with ‖z0‖0

small enough. Consider an arbitrary w ∈ B (t0, ρ) with

w (t) := (x (t) , u (t) , y (t) , v (t))
>
, ∀t ≥ t0.
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From relations (3.16) and hypothesis (H2) we get for all t ≥ t0∥∥∥∥∫ t

t0

Z (t, t0)Z−1 (s, t0)B (s)w (s) ds

∥∥∥∥
0

≤
∫ t

t0

exp

(∫ t

s

[
−f̃ (u) +

γ (u)

2
√
ζ (u)

]
du

)
×
[∣∣∣ḟ1 (s) + f2

1 (s)
∣∣∣ |x (s)|

+
∣∣∣ḟ2 (s) + f2

2 (s)
∣∣∣ |y (s)|

]
ds

≤
∫ t

t0

exp

(∫ t

s

[
−f̃ (u) +

γ (u)

2
√
ζ (u)

]
du

)

×


∣∣∣ḟ1 (s) + f2

1 (s)
∣∣∣

√
β0

+

∣∣∣ḟ2 (s) + f2
2 (s)

∣∣∣
√
δ0


× ‖w (s)‖0 ds, (3.21)

∥∥∥∥∫ t

t0

Z (t, t0)Z−1 (s, t0)F (s, w (s)) ds

∥∥∥∥
0

≤
∫ t

t0

exp

(∫ t

s

[
−f̃ (u) +

γ (u)

2
√
ζ (u)

]
du

)
× [|g1 (s, x (s) , y (s))|
+ |g2 (s, x (s) , y (s))|] ds (3.22)

Since ‖w (s)‖0 ≤ ρ, ∀s ≥ t0, from (3.22) and (3.19) it follows that∥∥∥∥∫ t

t0

Z (t, t0)Z−1 (s, t0)F (s, w (s)) ds

∥∥∥∥
0

≤
∫ t

t0

exp

(∫ t

s

[
−f̃ (u) +

γ (u)

2
√
ζ (u)

]
du

)

×
[
r1 (s)√
β0

+
r2 (s)√
δ0

]
‖w (s)‖0 ds (3.23)

for all t ≥ t0.
From (3.18) , (3.15) , (3.21) and (3.23) we deduce

‖(Hw) (t)‖0 ≤ λ ‖z0‖0
√
β (t0) + δ (t0) + 2 exp

(∫ t

t0

[
−f̃ (u) +

γ (u)

2
√
ζ (u)

]
du

)

+

∫ t

t0

exp

(∫ t

s

[
−f̃ (u) +

γ (u)

2
√
ζ (u)

]
du

)
∣∣∣ḟ1 (s) + f2

1 (s)
∣∣∣

√
β0

+

∣∣∣ḟ2 (s) + f2
2 (s)

∣∣∣
√
δ0

+
r1 (s)√
β0

+
r2 (s)√
δ0

 ‖w (s)‖0 ds, (3.24)

for all t ≥ t0.
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Since ‖w (s)‖0 ≤ q (s) , ∀s ≥ t0, we obtain

‖(Hw) (t)‖0 ≤ λ ‖z0‖0
√
β (t0) + δ (t0) + 2 exp

(∫ t

t0

[
−f̃ (u) +

γ (u)

2
√
ζ (u)

]
du

)

+

∫ t

t0

exp

(∫ t

s

[
−f̃ (u) +

γ (u)

2
√
ζ (u)

]
du

)
∣∣∣ḟ1 (s) + f2

1 (s)
∣∣∣

√
β0

+

∣∣∣ḟ2 (s) + f2
2 (s)

∣∣∣
√
δ0

+
r1 (s)√
β0

+
r2 (s)√
δ0

 q (s) ds =: σ (t) , ∀t ≥ t0.

But from (3.20) we have
∣∣∣ḟ1 (t) + f2

1 (t)
∣∣∣

√
β0

+

∣∣∣ḟ2 (t) + f2
2 (t)

∣∣∣
√
β0

+
r1 (t)√
β0

+
r2 (t)√
δ0

 q (t) = q (t)

[
f̃ (t)− γ (t)

2
√
ζ (t)

]
+q̇ (t) ,

for all t ≥ t0. Hence,

σ (t) = λ ‖z0‖0
√
β (t0) + δ (t0) + 2 exp

(∫ t

t0

[
−f̃ (u) +

γ (u)

2
√
ζ (u)

]
du

)

+

∫ t

t0

exp

(∫ t

s

[
−f̃ (u) +

γ (u)

2
√
ζ (u)

]
du

)
q̇ (s) ds

+

∫ t

t0

exp

(∫ t

s

[
−f̃ (u) +

γ (u)

2
√
ζ (u)

]
du

)
q (s)

[
f̃ (s)− γ (s)

2
√
ζ (s)

]
ds,

for all t ≥ t0. Integrating by parts
∫ t
t0

exp

(∫ t
s

[
−f̃ (u) + γ(u)

2
√
ζ(u)

]
du

)
q̇ (s) ds, we

easily infer that σ (t) = q (t) , ∀t ≥ t0 and hence ‖(Hw) (t)‖0 ≤ q (t) , ∀t ≥ t0.

Therefore

‖(Hw) (t)‖0 ≤ λ ‖z0‖0
√
β (t0) + δ (t0) + 2 exp

(
−
∫ t

t0

f̃ (s) ds

)
× exp

(
1√
β0

∫ t

t0

∣∣∣ḟ1 (s) + f2
1 (s)

∣∣∣ds)
× exp

(
1√
δ0

∫ t

t0

∣∣∣ḟ2 (s) + f2
2 (s)

∣∣∣ ds)
× exp

(
1√
β0

∫ t

t0

r1 (s) ds

)
exp

(
1√
δ0

∫ t

t0

r2 (s) ds

)
× exp

(∫ t

t0

γ (s)

2
√
ζ (s)

ds

)
, ∀t ≥ t0. (3.25)
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Corresponding to the position of t0 with respect to h from hypothesis (H2), we
distinguish two cases.

Case 1: t0 ∈ [0, h). Since fi ∈ C1 [0, h] and ri, β, δ, γ ∈ C [0, h] , ∀i ∈ {1, 2}, from
(3.25) we deduce that there exists a constant D > 0, such that

‖(Hw) (t)‖0 ≤ λ ‖z0‖0
√
β (t0) + δ (t0) + 2 exp (Dh) , ∀t ∈ [t0, h] .

By (3.25) and hypothesis (H2) we derive

‖(Hw) (t)‖0 ≤ λ ‖z0‖0
√
β (t0) + δ (t0) + 2exp (Dh)

× exp

((
K1√
β0

+
K2√
δ0
− 1

)∫ t

h

f̃ (s) ds

)
× exp

(
1√
β0

∫ t

h

r1 (s) ds+
1√
δ0

∫ t

h

r2 (s) ds

)
× exp

(∫ t

h

γ (s)

2
√
ζ (s)

ds

)
, ∀t ≥ h.

Let

a := ρ exp (−Dh) exp

(
− 1√

β0

∫ +∞

h

r1 (s) ds− 1√
δ0

∫ +∞

h

r2 (s) ds

)
× exp

(
−
∫ +∞

h

γ (s)

2
√
ζ (s)

ds

)
/
(
λ
√
β (t0) + δ (t0) + 2

)
.

From (2.4) we deduce that if ‖z0‖0 < a, then ‖(Hw) (t)‖0 < ρ, ∀t ≥ t0.
Case 2: t0 ≥ h. We obtain similarly

‖(Hw) (t)‖0 ≤ λ ‖z0‖0
√
β (t0) + δ (t0) + 2 exp

((
K1√
β0

+
K2√
δ0
− 1

)∫ t

t0

f̃ (s) ds

)
× exp

(
1√
β0

∫ t

t0

r1 (s) ds+
1√
δ0

∫ t

t0

r2 (s) ds

)
× exp

(∫ t

t0

γ (s)

2
√
ζ (s)

ds

)
, ∀t ≥ t0

and with the same a as in Case 1, ‖z0‖0 < a implies ‖(Hw) (t)‖0 < ρ, ∀t ≥ t0.
Therefore the operator H maps B (t0, ρ) into B (t0, ρ) . �

Taking into account Lemma 3.1, in order to prove the part i) of Theorem 2.1, it
suffices to prove that system (3.8) admits solutions defined on R+ for initial data
small enough. To this aim, we will apply the following generalized form of Schauder-
Tychonoff fixed point theorem, which can be found, e.g., in [3, Appendix, Singbal
Theorem], [5, Theorem 2.1 (b)].

Theorem 3.1. Let E be a Hausdorff locally convex topological vector space. Let S be
a nonempty closed convex set in E and let H be a continuous mapping of S into S,
such that HS is contained in a compact set. Then H has a fixed point in S.
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Let t0 ≥ 0 and ρ ∈ (0, l), where l is given by Lemma 3.1. Setting E = Cc (t0), H
given by (3.18) , and S = B (t0, ρ), we are going to prove the continuity of H and the
relative compactness of HB (t0, ρ) .

Consider n ∈ N, n > t0 fixed.
Let (wm)m∈N ⊂ B (t0, ρ) be a sequence such that wm → w in Cc (t0), as m →∞;

that is, ∀n ∈ N, n > t0, ∀ε > 0, ∃m0, ∀m > m0, ∀t ∈ [t0, n] , ‖wm (t)− w (t)‖0 < ε.
From (3.16)− (3.18) , we deduce

‖(Hwm) (t)− (Hw) (t)‖0 ≤
∫ t

t0

∥∥Z (t, t0)Z−1 (s, t0)B (s) [wm (s)− w (s)]
∥∥

0
ds

+

∫ t

t0

∥∥Z (t, t0)Z−1 (s, t0) [F (s, wm (s))

−F (s, w (s))]‖0 ds

≤
(
K1√
β0

+
K2√
δ0

)∫ t

t0

exp

(∫ t

s

[
−f̃ (u) +

γ (u)

2
√
ζ (u)

]
du

)
×f̃ (s) ‖wm (s)− w (s)‖0 ds

+Λ

∫ t

t0

exp

(∫ t

s

[
−f̃ (u) +

γ (u)

2
√
ζ (u)

]
du

)
×‖F (s, wm (s))− F (s, w (s))‖0 ds,

for all t ∈ [t0, n] . Hence there are some positive constants αn and βn, such that

‖(Hwm) (t)− (Hw) (t)‖0 ≤ αn

∫ n

t0

‖wm (s)− w (s)‖0 ds

+βn

∫ n

t0

‖F (s, wm (s))− F (s, w (s))‖0 ds.

Since F (t, z) is uniformly continuous for t ∈ [t0, n] and ‖z‖0 ≤ ρ, it follows that
the sequence F (t, wm (t)) converges uniformly on [t0, n] to F (t, w (t)) , which finally
proves the continuity of H.

It remains to prove that HB (t0, ρ) is relatively compact. To this aim, we need
to prove that for each n ∈ N, the set

{
(Hw) (t) |t∈[t0,n], w ∈ B (t0, ρ)

}
is uniformly

bounded and equicontinuous.
Let n ∈ N, n > t0 be fixed.
Let w ∈ B (t0, ρ) be arbitrary; since Hw ∈ B (t0, ρ) , it follows that ‖(Hw) (t)‖0 ≤

ρ, ∀t ∈ [t0, n] . Therefore, the set HB (t0, ρ) is uniformly bounded in Cc (t0).
Let w ∈ B (t0, ρ) be arbitrary and z = Hw ∈ B (t0, ρ). By differentiating (3.18)

with respect to t ∈ [t0, n] , we obtain

ż (t) = A (t) z (t) +B (t)w (t) + F (t, w (t)) , ∀t ∈ [t0, n] . (3.26)

Since the functions fi, β, δ, γ,
∣∣∣ḟi + f2

i

∣∣∣ , i ∈ {1, 2} are bounded on [t0, n] and F (t, w)

is bounded for t ∈ [t0, n] , ‖w‖0 ≤ ρ, it follows that there are some positive constants
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ϕn, ψn, such that

‖ż (t)‖ ≤ ϕnρ+ ψn, ∀t ∈ [t0, n] .

Therefore the family of the derivatives of the functions from HB (t0, ρ) is uniformly
bounded and we deduce that HB (t0, ρ) is equicontinuous on the compact subsets of
R+.

By applying Theorem 3.1, it follows that H admits fixed points in B (t0, ρ) . Thus
a solution z (t) with initial data small enough exists on the whole R+. Since for all
t ≥ t0

q (t) = λ ‖z0‖0
√
β (t0) + δ (t0) + 2 exp

((
K1√
β0

+
K2√
δ0
− 1

)∫ t

t0

f̃ (s) ds

)
× exp

(
1√
β0

∫ t

t0

r1 (s) ds+
1√
δ0

∫ t

t0

r2 (s) ds+

∫ t

t0

γ (s)

2
√
ζ (s)

ds

)
,

from hypotheses (H3)-(H5) and Lemma 3.1, it follows that limt→+∞ ‖z (t)‖0 = 0 and
so limt→+∞ x (t) = limt→+∞ ẋ (t) = limt→+∞ y (t) = limt→+∞ ẏ (t) = 0.

ii) If g1, g2 are locally Lipschitzian with respect to x, y, then the solution exists
on the whole R+ for small initial data and is unique. So we can proceed with the
stability question for the null solution to system (1.1) , which, due to the boundedness

of the functions fi, β, δ, γ,
∣∣∣ḟi + f2

i

∣∣∣ , gi, i ∈ {1, 2} , reduces to the stability of the null

solution z (t) = 0 to system (3.8) .

By virtue of i), to prove the asymptotic stability, we should prove that the null
solution to system (3.8) is stable.

Let ε > 0 and ρ ∈ (0, l) be fixed. Consider t0 ≥ 0 and z0 ∈ R4\ {0} , with ‖z0‖0 < a,
where l and a are given by Lemma 3.1. If z (t, t0, z0) is the solution of (3.8) which
equals z0 for t = t0, then we have for all t ≥ t0

z (t, t0, z0) = Z (t, t0) z0+

∫ t

t0

Z (t, t0)Z−1 (s, t0) [B (s) z (s, t0, z0) + F (s, z (s, t0.z0))] ds

and we already know from i) that ‖z (t, t0, z0)‖0 ≤ ρ, ∀t ≥ t0.
We distinguish again two cases.

Case 1: t0 ∈ [0, h). We deduce, as in the proof of Lemma 3.1,

‖z (t, t0, z0)‖0 ≤ λ ‖z0‖0
√
β (t0) + δ (t0) + 2 exp (Dh) , ∀t ∈ [t0, h]

and for all t ≥ h

‖z (t, t0, z0)‖0 ≤ λ ‖z0‖0
√
β (t0) + δ (t0) + 2 exp (Dh)

× exp

((
K1√
β0

+
K2√
δ0
− 1

)∫ t

h

f̃ (s) ds

)
× exp

(∫ t

h

r1 (s)√
β0

ds+

∫ t

h

r2 (s)√
δ0

ds

)
exp

(∫ t

h

γ (s)

2
√
ζ (s)

ds

)
.
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Let

η = η (t0, ε) := ε exp (−Dh) exp

(
− 1√

β0

∫ +∞

t0

r1 (s) ds− 1√
δ0

∫ +∞

t0

r2 (s) ds

)
× exp

(
−
∫ +∞

t0

γ (s)

2
√
ζ (s)

ds

)
/
(
λ
√
β (t0) + δ (t0) + 2

)
.

Then we can derive that if ‖z0‖0 < min {η, a}, then ‖z (t, t0, z0)‖0 < ε, ∀t ≥ t0.

Since the boundedness of the functions fi, β, δ, γ,
∣∣∣ḟi + f2

i

∣∣∣ , gi, i ∈ {1, 2} we get that

‖ż (t, t0, z0)‖0 is also small.

Case 2: t0 ≥ h. We have for all t ≥ t0

‖z (t, t0, z0)‖0 ≤ λ ‖z0‖0
√
β (t0) + δ (t0) + 2 exp

((
K1√
β0

+
K2√
δ0
− 1

)∫ t

t0

f̃ (s) ds

)
× exp

(∫ t

t0

r1 (s)√
β0

ds+

∫ t

t0

r2 (s)√
δ0

ds

)
exp

(∫ t

t0

γ (s)

2
√
ζ (s)

ds

)
.

Hence, with the same η as before, ‖z0‖0 < min {η, a} implies ‖z (t, t0, z0)‖0 <
ε, ∀t ≥ t0. Since ‖ż (t, t0, z0)‖0 is also small, it follows that the null solution of
(3.8) is stable.

iii) Let us note that the uniform stability of the null solution to system (3.8) can
be deduced in the same manner as for the stability, if we consider

a := ρ exp (−Dh) exp

(
− 1√

β0

∫ +∞

h

r1 (s) ds− 1√
δ0

∫ +∞

h

r2 (s) ds

)
× exp

(
−
∫ +∞

h

γ (s)

2
√
ζ (s)

ds

)
/
(
λ
√
β (0) + δ (0) + 2

)
,

η1 = η1 (ε) := ε exp (−Dh) exp

(
− 1√

β0

∫ +∞

0

r1 (s) ds− 1√
δ0

∫ +∞

0

r2 (s) ds

)
× exp

(
−
∫ +∞

0

γ (s)

2
√
ζ (s)

ds

)
/
(
λ
√
β (0) + δ (0) + 2

)
.

The proof of Theorem 2.1 is now complete. �

Remark 3.1. Let us note that we can also deduce the part i) of Theorem 2.1 by
using [23, Lemma 1], where Theorem 3.1 is stated specifically for spaces of continuous
functions of type Cc (t0) .

Example 3.1. An example of functions f1, f2, β, δ, γ, g1, g2 is:

f1(t) =
1

2 (t− 1)
, ∀t ≥ 2, f2(t) =

1

t− 2
, ∀t ≥ 3,

β(t) = 1 + e−t, δ(t) = 2 + e−t, γ (t) = e−t, ∀t ≥ 0,
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g1(t, x, y) =
x2

(t+ 2)
2 , g2 (t, x, y) =

2y2

(t+ 1)
2 , ∀t ≥ 0, ∀x, y ∈ R,

where f1, f2 are extended to smooth nonnegative functions defined on R+, e.g.,

f1 (t) = −3t2

8
+ t, ∀t ∈ [0, 2), f2 (t) = −4t2

9
+

5t

3
, ∀t ∈ [0, 3).

It is easily seen that these functions satisfy the assumptions (H1)-(H7), with

K1 = K2 = 1/2, h = 3, β0 = 1, δ0 = 2, r1 (t) =
1

(t+ 2)
2 , r2 (t) =

2

(t+ 1)
2 .

For small initial data, the solution to system (1.1) and its derivative are plotted, using
Matlab, in Figure 2 on some time intervals.
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Figure 2. The solution to system (1.1), with the initial data z0 =
[0.01, 0.01, 0.01, 0.01].

If one changes only the functions fi, i ∈ {1, 2}, with

f1(t) =

{
1

(t−2)2
, t ≥ 3,

− 7t2

9 + 8t
3 , t ∈ [0, 3),

f2(t) =

{
2
t2 , ∀t ≥ 1,
−6t2 + 8t, t ∈ [0, 1),
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then hypotheses (H1)-(H2), (H4)-(H7) are satisfied with K1 = 2/5, K2 = 1/4, h = 7,
and the same β0, δ0, r1 (t) , r2 (t) as before. For small initial data, the solution to
system (1.1) and its derivative are plotted, using Matlab, in Figure 3 on the same
time intervals. In this case, hypothesis (H3) is not fulfilled, the null solution to (1.1)
is uniformly stable and it is not asymptotically stable, as can be easily observed on
the plottings.
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Figure 3. The solution to system (1.1), with the initial data z0 =
[0.001, 0.001, 0.001, 0.001].
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