
Fixed Point Theory, 23(2022), No. 2, 533-556

DOI: 10.24193/fpt-ro.2022.2.08

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.html

AN INERTIAL SUBGRADIENT-EXTRAGRADIENT

ALGORITHM FOR SOLVING PSEUDOMONOTONE

VARIATIONAL INEQUALITIES
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Abstract. In this paper, we introduce an iteration method for solving pseudomonotone variational
inequalities and related pseudoconvex optimization problems in Hilbert spaces. The iterative scheme

is based on inertial ideas and subgradient-extragradient ideas. A main feature of the method is that

it formally requires only one projection step onto the feasible set. We prove a weak convergence of
sequences generated by our method. In the end, some numerical examples are provided to illustrate

the effectiveness and performance of the proposed algorithm. Meanwhile, we make some detailed

comparisons with the known related schemes.
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1. Introduction

Throughout this paper, we assume that Ω is a nonempty closed convex subset of a
real Hilbert space H. Its scalar product is denoted by 〈·, ·〉 and the associated norm is
denoted by ‖ · ‖. The variational inequality problem is formulated as finding a vector
z ∈ Ω such that

〈Fz, q − z〉 ≥ 0, ∀ q ∈ Ω, (1.1)

where F : H → H is some given operator. The solution set of variational inequality
problem (1.1) is denote by V I(Ω, F ). Variational inequalities can be viewed as a nat-
ural framework for unifying the treatment of equilibrium problems, and hence (1.1)
has many applications in the analysis of bimatrix equilibrium points, piece-wise-linear
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resistive circuits, economic equilibrium modeling, traffic network equilibrium model-
ing, manufacturing system design, signal and image processing, pattern recognition
and automatic control. We refer the reader to [1, 2, 3, 4, 5, 6] for recent results on
the variational inequality problem and its applications.

The metric projection is the operator defined for all z ∈ Ω, there exists a unique
nearest point in Ω, denoted by PΩ : H → Ω, such that PΩz := arg minq∈Ω ‖q − z‖.
Let us recall some properties of the metric projection, characterized by

(i) ‖q − PΩz‖2 + ‖z − PΩz‖2 ≤ ‖q − z‖2;
(ii) 〈PΩz − z, q − PΩz〉 ≥ 0, ∀q ∈ Ω.

In the context of variational inequality problems, the use of such techniques was
suggested by the following equivalent knowledge of the fixed point formulation, see
[7] for the details,

z = PΩ(z − αFz), α > 0. (1.2)

Keep in mind that the well-known Brouwer’s fixed point theorem guarantees that
problem (1.2) has a solution if Ω is a bounded set. When Ω is unbounded, some
sufficient conditions for the existence of the solution of (1.2) can be found in [1].

One often considers variational inequalities with F as possessing some additional
properties such as the Lipschitz continuity and some certain monotonicity property.
Now let us recall some related definitions and properties concerning the operator F ,
see [1, 8] and the references therein.

Definition 1.1. The operator F : Ω→ H is said to be

(i) weakly continuous on Ω if F is continuous on the intersection of Ω and the norm
topology of H;

(ii) L-Lipschitz continuous if there exists a positive constant L > 0 such that

‖Fp− Fq‖ ≤ L‖p− q‖, ∀p, q ∈ Ω;

(iii) monotone if 〈p− q, Fp− Fq〉 ≥ 0, ∀p, q ∈ Ω;
(iv) pseudo-monotone if 〈Fp, q − p〉 ≥ 0⇒ 〈Fq, q − p〉 ≥ 0, ∀p, q ∈ Ω.

Generally, we say the variational inequality is a monotone variational inequality, if
the underlying operator F is monotone. Similarly, the variational inequality is said to
be a pseudo-monotone variational inequality, if the operator F is pseudo-monotone.
In addition, it is shown in [9] that a continuous operator F is convex (pseudoconvex)
if and only if its generalized gradient ∇F is a monotone (pseudomonotone) operator.

2. Relation to the previous work

In recent years, the variational inequality problem has been extensively studied
in both theory and practice. Much attention has been given to develop influential
and efficient approaches for solving variational inequalities. Among them, the most
well-known numerical solution method is the projection-type method. Due to its
simplicity of implementation, this method is suitable to solve some problems arising
from engineering applications such as signal processing, chain system, optimal control,
multirobot systems and robot motion control. Many algorithms for solving variational
inequalities are projection algorithms that employ projections onto the feasible set
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Ω, in order to iteratively reach a solution. In particular, Korpelevich proposed the
extragradient method for solving the monotone variational inequality problem in an
Euclidean space, which generates a sequence approaching the solution by carrying out
two projections per iteration. Given the current iterate pk, calculate the next iterate
pk+1 via {

qk = PΩ(pk − αF (pk)),
pk+1 = PΩ(pk − αF (qk)).

The extragradient method has received a great deal of attention by many authors. In
particular, when the potential operator F is pseudomonotone, a weaker condition than
the monotonicity, it has been shown in [10] that the extragradient method for solving
pseudomonotone variational inequalities is also available. However, in this way, in
order to get the next iterate pk+1 per iteration, there is still the need to calculate
two orthogonal projections onto the feasibility set Ω. This might seriously affect the
efficiency of the method, if the set Ω is a general closed and convex set. Regarding
the orthogonal projection, the extragradient method has been extended and improved
in various ways; see [11, 12, 13, 14] and references therein. By replacing the second
projection onto Ω with a projection onto a specific constructible half-space, Censor,
Gibali and Reich proposed the subgradient-extragradient method in [15]. Given the
current iterate pk, calculate the next iterate pk+1 via uk := PΩ(qk − γkFqk),

pk+1 := PSk(qk − γkFuk), where
Sk := {p ∈ H|〈qk − γkFqk − uk, p− uk〉 ≤ 0}.

Based on it, we will prove that the subgradient-extragradient method converges also
when it is applied to the solving of variational inequalities governed by pseudo-
monotone operators, which is one of our highlights of this paper.

On the other hand, the inertial extrapolation, which was first proposed by Polyak
[16] as an acceleration process, has been employed to solve various convex minimiza-
tion problems recently. It is based on the heavy ball method of the two-order time
dynamical system. Inertial type methods involve two iterative steps and the second
iterative step is obtained with the aid of previous two iterates. They can be viewed
as an efficient technique to deal with various iterative algorithms, in particular, the
projection-based algorithms; see [17, 18, 19, 20].

In this paper, inspired and motivated by the mentioned works in literature and the
ongoing research in these directions, we propose a subgradient-extragradient scheme
combining with the inertia term for solving pseudomonotone variational inequalities,
under suitable assumptions. It only needs one orthogonal projection onto the feasible
set Ω at each iteration. Weak convergence theorems are established in the framework
of real Hilbert spaces. Based on the methods and techniques discussed in this paper,
many convex optimization problems could be extended to pseudo-convex optimization
problems. Finally, we perform several numerical experiments to support the conver-
gence of the algorithm presented in this paper. We also illustrate the computational
performance of our proposed algorithm over some previously known algorithms in
[10, 11, 12, 13, 14, 15, 21, 22].
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3. Algorithm and convergence

Throughout this section, we make the following standing assumptions:

• The feasible set Ω is a nonempty, closed, convex subset of a real Hilbert space
H;
• The operator F : H → H is pseudo-monotone, L-Lipschitz and sequentially

weakly continuous with the solution set V I(Ω, F ) 6= ∅.
Our algorithm is formally designed as follows.

Algorithm 3.1 (Algorithm for variational inequality problem)

Input: Input the algorithm parameters (φi)i∈N and (γi)i∈N.
Output: Output p

1: Set k ← 1.
2: Initialize the data p0, p1 ∈ H.
3: while not converged do
4: Update qk := pk + φk(pk − pk−1).
5: Update uk := PΩ(Id− γkF )qk.
6: Update pk+1 := PSk(qk − γkFuk), where
7: Sk := {p ∈ H|〈qk − γkFqk − uk, p− uk〉 ≤ 0}.
8: Set k ← k + 1.
9: end while

10: return p = pk

Figure 1. Iterative steps of Algorithm 3.1. The number of the pro-
jection onto the feasible set Ω is 1 per iteration.

Figure 1 illustrates iterative steps of Algorithm 3.1. The following theorem estab-
lishes the weak convergence property of sequences generated by Algorithm 3.1, under
suitable assumptions.
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Theorem 3.1. Let Ω be a nonempty, closed and convex subset of a real Hilbert space
H. Assume that the extrapolation factor (φk)k∈N ∈ [0, φ] is nondecreasing and the
relaxation parameters (γk)k∈N ∈

(
0, 1−2a

L

]
, where a ∈

(
0, 1

2

)
.

Let λ = φ2 + (1 + 2a)φ− a < 0. Then, for each initial data p0, p1 in H, sequences
(pk)n∈N, (qk)n∈N and (uk)n∈N generated by Algorithm 3.1 converge weakly toward the
unique element of V I(Ω, F ).

Before proceeding with the proof of Theorem 3.1, we establish two technical lemmas.

Lemma 3.1. [23] Let (αk)k∈N, (βk)k∈N and (γk)k∈N be sequences in [0,+∞) such
that

αk+1 ≤ αk + βk(αk − αk−1) + γk, ∀k ≥ 1,

+∞∑
k=1

γk < +∞.

and there exists a real constant β such that βk ∈ [0, β] ⊆ [0, 1], ∀k ∈ N. Then the
following holds

(i)
∑∞
k=1[αk+1 − αk]+ < +∞, where [s]+ := max{0, s};

(ii) there exists α ∈ [0,+∞) such that limk→+∞ αk = α.

Lemma 3.2. (Minty Lemma) [24] Consider the variational inequality problem with
the operator F : Ω → H pseudo-monotone and continuous. Thus, µ is a solution of
V I(Ω, F ) if and only if 〈F (ν), ν − µ〉 ≥ 0, ∀ν ∈ Ω.

Now we are in a position to state and prove the main result of this section.

Proof. Let z ∈ V I(Ω, F ) be arbitrarily chosen. Therefore, we find that 〈Fz, p−z〉 ≥ 0
for all p ∈ Ω, together with the pseudomonotonicity of F , we infer that 〈Fp, p−z〉 ≥ 0
for all p ∈ Ω. By the definition of uk, we immediately obtain that z ∈ Sk and uk ∈ Ω.
Recalling that and setting p := uk, we observe that

〈Fuk, z − uk〉 ≤ 0. (3.1)

Invoking z ∈ Sk, then the definition of pk+1 entails that

〈pk+1 − (qk − γkFuk), pk+1 − z〉 ≤ 0. (3.2)

Setting briefly wk = qk−γkFuk and collecting the above results (3.1), (3.2), it asserts
that

‖pk+1−z‖2 =‖pk+1 − wk‖2 + ‖wk − z‖2 + 2〈pk+1 − wk, wk − z〉
=2‖pk+1 − wk‖2 + ‖wk − z‖2 + 2〈pk+1 − wk, wk − z〉 − ‖pk+1 − wk‖2

=‖wk − z‖2 + 2〈pk+1 − wk, pk+1 − z〉 − ‖pk+1 − wk‖2

≤‖(qk − γkFuk)− z‖2 − ‖pk+1 − ((qk − γkFuk))‖2

=‖qk − z‖2 − ‖pk+1 − qk‖2 + 2γk〈Fuk, z − pk+1〉
=‖qk − z‖2 − ‖pk+1 − qk‖2 + 2γk(〈Fuk, z − uk〉+ 〈Fuk, uk − pk+1〉)
≤‖qk − z‖2 − ‖pk+1 − qk‖2 + 2γk〈Fuk, uk − pk+1〉
=‖qk − z‖2 − ‖pk+1 − uk‖2 − ‖uk − qk‖2 + 2〈qk−uk−γkFuk, pk+1−uk〉.

(3.3)
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Keeping in mind that pk+1 ∈ Sk, we find that

2〈qk − uk − γkFuk, pk+1 − uk〉 ≤2〈qk − γkFqk − uk, pk+1 − uk〉
+2γk〈Fqk − Fuk, pk+1 − uk〉
≤2γk〈Fqk − Fuk, pk+1 − uk〉.

(3.4)

The condition (γk)k∈N ∈
(
0, 1−2a

L

]
asserts that 1−γkL

2 ≥ a. According to the Lipschitz
continuity of F , it follows from (3.3) and (3.4) that

‖pk+1 − z‖2 ≤‖qk − z‖2 − ‖pk+1 − uk‖2 − ‖uk − qk‖2 + 2γk〈Fqk − Fuk, pk+1 − uk〉
≤‖qk − z‖2 − ‖pk+1 − uk‖2 − ‖uk − qk‖2 + 2γkL‖qk − uk‖‖pk+1 − uk‖
≤‖qk − z‖2 − (1− γkL)‖pk+1 − uk‖2 − (1− γkL)‖uk − qk‖2

≤‖qk − z‖2 −
1− γkL

2
‖pk+1 − qk‖2

≤‖qk − z‖2 − a‖pk+1 − qk‖2.
(3.5)

By the definition of qk, we immediately obtain that

‖qk − z‖2 ≤‖(pk + φk(pk − pk−1))− z‖2

≤(1 + φk)‖pk − z‖2 − φk‖pk−1 − z‖2 + (1 + φk)φk‖pk − pk−1‖2,
(3.6)

and

‖pk+1 − qk‖2 =‖pk+1 − (pk + φk(pk − pk−1))‖2

≥‖pk+1 − pk‖2 − 2φk‖pk+1 − pk‖‖pk − pk−1‖+ φ2
k‖pk − pk−1‖2

≥(1− φk)‖pk+1 − pk‖2 + (φ2
k − φk)‖pk − pk−1‖2.

(3.7)

Plugging (3.6), (3.7) into (3.5) and rearranging the terms, we infer that

‖pk+1 − z‖2 ≤‖qk − z‖2 −
1− γkL

2
‖pk+1 − qk‖2

≤(1 + φk)‖pk − z‖2 − φk‖pk−1 − z‖2 − a(1− φk)‖pk+1 − pk‖2

+
(
(1 + φk)φk − a(φ2

k − φk)
)
‖pk − pk−1‖2

=(1+φk)‖pk−z‖2 − φk‖pk−1 − z‖2− αk‖pk+1− pk‖2 + βk‖pk − pk−1‖2,
(3.8)

where αk = a(1− φk) and βk = (1 + φk)φk − a(φ2
k − φk). Let

Γk := ‖pk − z‖2 − φk‖pk−1 − z‖2 + βk‖pk − pk−1‖2. (3.9)
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Combining (3.8) with (3.9), keeping in mind that (φk)k∈N is nondecreasing, together
with the condition λ = φ2 + (1 + 2a)φ− a < 0, we successively find that

Γk+1 − Γk

≤‖pn+1 − z‖2 − (1 + φk)‖pn − z‖2 + φk‖pn−1 − z‖2

+βk+1‖pk+1 − pk‖2 − βk‖pk − pk−1‖2

≤− αk‖pk+1 − pk‖2 + βk+1‖pk+1 − pk‖2

≤− (αk − βk+1)‖pk+1 − pk‖2

≤− (a(1− φk+1)− (1 + φk+1)φk+1 + a(φ2
k+1 − φk+1))‖pk+1 − pk‖2

≤− (a(1− φ)− (1 + φ)φ− aφ)‖pk+1 − pk‖2

=λ‖pk+1 − pk‖2.

(3.10)

It obviously asserts that Γk+1 − Γk ≤ 0, which further implies that the sequence
(Γk)k∈N is non-increasing. On the other hand, the condition (φk)k∈N ∈ [0, φ] asserts
that

‖pk − z‖2 ≤ φk‖pk−1 − z‖2 + Γk

≤ φ‖pk−1 − z‖2 + Γ0

≤ · · · ≤ φk‖p0 − z‖2 + Γ0(1 + · · ·+ φk−1)

≤ φk‖p0 − z‖2 +
Γ0

1− φ
.

(3.11)

Taking account of (3.9) and (3.11), we deduce that

−Γk+1 ≤ φk+1‖pk − z‖2 ≤ φ
(
φk‖p0 − z‖2 +

Γ0

1− φ

)
≤ φk+1‖p0 − z‖2 +

Γ0φ

1− φ
.

(3.12)
Recalling from (3.10) and (3.12), we additionally obtain that

λ

k∑
i=0

‖pi+1 − pi‖2 ≤ Γ0 − Γk+1 ≤ Γ0 + φk+1‖p0 − z‖2 +
Γ0φ

1− φ
≤ ‖p0 − z‖2 +

Γ0

1− φ
.

(3.13)
Owning to (3.8) and (3.13), together with Lemma 3.1, we check that

lim
k→∞

‖pk − z‖ = a. (3.14)

Letting k tend to +∞ in (3.8), we infer that

‖pk+1 − pk‖ → 0. (3.15)

By the definition of qk, together with (3.15), it ensures that

‖pk+1 − qk‖ = ‖pk+1 − pk‖+ φ2
k‖pk − pk−1‖2 − 2φk〈pk+1 − pk, pk − pk−1〉,

which by (3.15) amounts to

lim
k→∞

‖pk+1 − qk‖ = 0. (3.16)
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Thanks to (3.15) and (3.16), we find that

lim
k→∞

‖pk − qk‖ ≤ lim
k→∞

‖pk − pk+1‖+ lim
k→∞

‖pk+1 − qk‖ = 0. (3.17)

By applying (3.14) and (3.17), we obtain that

lim
k→∞

‖qk − z‖ = a. (3.18)

Coming back to (3.5), it entails that

(1− γkL)‖uk − qk‖ ≤ ‖qk − z‖2 − ‖pk+1 − z‖2. (3.19)

Based on (3.10), (3.14) and (3.18), from the fact that (γk)k∈N ∈
(
0, 1−2a

L

]
, it obviously

asserts that
lim
k→∞

‖uk − qk‖ = 0. (3.20)

In view of (3.13) and (3.16), we obtain that

lim
k→∞

‖uk − pk‖ ≤ lim
k→∞

‖uk − qk‖+ lim
k→∞

‖qk − pk‖ = 0. (3.21)

Returning to (3.14), it obviously asserts that (pk)k∈N is bounded. Without loss of
generality, there exists a subsequence (pki)i∈N converges weakly to p∗. Indeed, by
using successively (3.17), (3.20), we conclude that (qki)i∈N and (uki)i∈N converge
weakly toward p∗ as well. Now we are in a position to prove that p∗ ∈ V I(Ω, F ). Let
z ∈ Ω be fixed. Recalling that z ∈ Sk, ∀k ≥ 1, we additionally obtain that

〈qki − γkiFqki − uki , z − uki〉 ≤ 0,

which immediately leads to

〈Fqki , z − qki〉 ≥
1

γki
〈qki − uki , z − uki〉+ 〈Fqki , uki − qki〉. (3.22)

By combining (3.20) and (3.22), we find that

lim inf
i→∞

〈Fqki , z − qki〉 ≥ 0, ∀z ∈ Ω.

We choose a sequence (ζi)i∈N of positive numbers decreasing and tending to 0. For
each ζi, we denote by kji the smallest positive integer such that

〈Fqkji , z − qkji 〉+ ζi ≥ 0, ∀i ≥ 0. (3.23)

From the fact that (ζi)i∈N is decreasing, we easily check that the sequence (kji)i∈N is
increasing. The rest of the proof will be divided into two cases.
Case 1. Suppose that there exists a subsequence of positive integers (ψ(i))i∈N such
that ψ(i) = min{l ∈ N |Fqkjl 6= 0, l ≥ i }. In this situation, since (kji)i∈N is in-

creasing, together with the definition of (ψ(i))i∈N, we also have that (kjψ(i)
)i∈N is

increasing. Let

τkjψ(i)
=

F (qkjψ(i)
)

‖F (qkjψ(i)
)‖2

. (3.24)

And hence, we observe that 〈F (qkjφ(i) ), qkjψ(i)
〉 = 1, for each i. By putting together

(3.23) and (3.24), we immediately obtain that, for each i

〈Fqkjψ(i)
, z + ζiτkjψ(i)

− qkjψ(i)
〉 ≥ 0. (3.25)
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Coming back to (3.25), the pseudomonotonicity of F asserts that

〈F (z + ζiτkjψ(i)
), z + ζiτkjψ(i)

− qkjψ(i)
〉 ≥ 0. (3.26)

On the other hand, recalling that (qkj )j∈N converges weakly toward p∗ when j →∞, it
yields that the convergence (qkjψ(i)

)i∈N weakly to p∗ as i→∞. Since F is sequentially

weakly continuous on Ω, (Fqkjψ(i)
)i∈N converges weakly to F (p∗), as i→∞. Without

loss of generatlity, we suppose that F (p∗) 6= 0 (otherwise, p∗ is a solution). Since the
norm mapping is sequentially weakly lower semicontinuous, we have

‖Fp∗‖ ≤ lim inf
i→∞

‖F (qkjψ(i)
)‖. (3.27)

In view of ζi → 0 as i→∞, together with (3.27), we obtain

0 ≤ lim
i→∞

‖ζiτkjψ(i)
‖ = lim inf

i→∞

ζi
‖Fqkjψ(i)

‖
≤ 0

‖Fp∗‖
= 0. (3.28)

Hence taking the limit as i→∞ in (3.26), invoking the fact that (qkj )j∈N converges
weakly to p∗ when j →∞, together with (3.28), we find

〈F (z), z − p∗〉 ≥ 0.

Applying Lemma 3.2 to this situation, we find that p∗ ∈ V I(Ω, F ).
Case 2. Otherwise, we have limi→∞ Fpki = 0. Owning to pki ⇀ p∗, the sequentially
weakly continuity of F ensures that limi→∞ Fpki = Fp∗.
And hence clearly, p∗ ∈ F−1(0). This classically expresses that p∗ ∈ V I(Ω, F ).
Finally, we prove that the sequence (pk)k∈N uniquely converges weakly to p∗. To do
this, it is sufficient to show that (pk)k∈N cannot have two distinct weak sequential
cluster points in V I(Ω, F ). Without loss of generality, we assume that (pki)i∈N is
another subsequence of (pk)k∈N converging weakly to x̂. We have to prove that
x∗ = x̂. With a similar way as above, x̂ ∈ V I(Ω, F ). Indeed, for all k ∈ N,

2〈pk, p̂− p∗〉 = ‖pk − p∗‖2 − ‖pk − p̂‖2 + ‖p̂‖2 − ‖p∗‖2.
With the help of (3.14), we deduce that the sequence (〈pk, p̂−p∗〉)k∈N also converges.
Let limk→∞〈pk, p̂ − p∗〉 = σ. Passing to the limit along (pki)i∈N and (pkj )j∈N, we

deduce that 〈p∗, p̂−p∗〉 = 〈p̂, p̂−p∗〉 = σ, which boils down to ‖p̂−p∗‖2 = 0, in other
words, p̂ = p∗. This completes the proof. �

Let us now state an extension of Theorem 3.1 as an immediate consequence of the
monotonicity of F .

Remark 3.1. When working with a general monotone operator F , it is not necessary
to impose the sequential weak continuity on F . Regarding this case, since F is
monotone, which by (3.2) leads to

〈F (z), z − qki〉 ≥ 〈F (qki), z − qki〉 ≥
1

γki
〈qki − uki , z − uki〉+ 〈F (qki), uki − qki〉.

(3.29)
Letting i tend to +∞ in (3.29), thanks to limk→∞ ‖uk − qk‖ = 0 and limk→∞γk > 0,
we have

〈F (z), z − p∗〉 ≥ 0, ∀z ∈ Ω.
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This leads to the desired conclusion.

The shortcoming of Algorithm 3.1 is a requirement to estimate the Lipschitz con-
stant more or less precisely. While the estimation is often quite conservative, of course,
this is not practical in most cases of interest. For this reason, we give some prediction
of a stepsize with its further correction along a feasible direction. Now let us state
the result below.

Theorem 3.2. Suppose that (an upper bound of) the Lipschitz constant of F is
unknown. We deal with the relaxation parameters (γk)k∈N in Algorithm 3.1 by using
the following adaptive stepsize strategy. For any k ≥ 0, the relaxation parameters

(γk)k∈N ∈
(

0, 1−2τ
η

]
and

γk+1 =

{
γk, if F (uk)− F (qk) = 0;

min
{

η‖uk−qk‖
‖F (uk)−F (qk)‖ , γk

}
, otherwise,

(3.30)

where τ ∈
(
0, 1

2

)
, γ0 > 0. Let χ = φ2 + (1 + 2τ)φ − τ < 0. Then the conclusion of

Theorem 3.1 still remains valid by using adaptive stepsize (3.30).

Proof. To avoid repetition, we restrict our attention to the place where arguments
differ. In the upcoming statement, the assumption of the relaxation parameters in
Theorem 3.1 will be removed and replaced with adaptive stepsize (3.30). By as-
sumption, we infer that sequence (γk)k∈N is nonincreasing and 0 < ηγk < 1,∀k ∈ N.
Moreover, as F (pk)− F (qk) 6= 0, k ≥ 0, the following holds true

η‖uk − qk‖
‖F (uk)− F (qk)‖

≥ η‖uk − qk‖
L‖uk − qk‖

=
η

L
,

which ensures that (γk)k∈N is bounded from below by min{γ0,
η
L} > 0. It yields that

(γk)k∈N ∈
(

0,min
{
γ0,

η

L

})
.

Remembering that, when γ0 ≤ η
L , we have that (γk)k∈N is a constant sequence,

which leads to a fixed stepsize strategy. As a straightforward consequence, the limit
limk→∞ γk exists and it is a positive real number. Setting ξk = γk

γk+1
, this entails that

the limit limk→∞ ξk = 1. The condition (γk)k∈N ∈
(

0, 1−2τ
η

]
boils down to 1−ηγk

2 ≥ τ .

Based on (3.6) and (3.7), we rewrite inequalities (3.5) and (3.8) as

‖pk+1 − z‖2 ≤‖qk − z‖2 − ‖pk+1 − uk‖2 − ‖uk − qk‖2 + 2γk〈Fqk − Fuk, pk+1 − uk〉
≤‖qk − z‖2 − ‖pk+1 − uk‖2 − ‖uk − qk‖2 + 2ηγk‖qk − uk‖‖pk+1 − uk‖
≤‖qk − z‖2 − (1− ηγk)‖pk+1 − uk‖2 − (1− ηγk)‖uk − qk‖2

≤‖qk − z‖2 − τ‖pk+1 − qk‖2

≤(1 + φk)‖pk − z‖2 − φk‖pk−1 − z‖2 − τ(1− φk)‖pk+1 − pk‖2

+
(
(1 + φk)φk − τ(φ2

k − φk)
)
‖pk − pk−1‖2

=(1 + φk)‖pk−z‖2 − φk‖pk−1−z‖2 − %k‖pk+1−pk‖2 + σk‖pk−pk−1‖2,
(3.31)
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where %k = τ(1− φk) and σk = (1 + φk)φk − τ(φ2
k − φk). Put

Λk := ‖pk − z‖2 − φk‖pk−1 − z‖2 + σk‖pk − pk−1‖2. (3.32)

According to (3.31), (3.32), the condition χ = φ2 + (1 + 2τ)φ− τ < 0, together with
the nonincreasing property of the sequence (γk)k∈N, it entails that

Λk+1 − Λk

≤‖pn+1 − z‖2 − (1 + φk)‖pn − z‖2 + φk‖pn−1 − z‖2

+σk+1‖pk+1 − pk‖2 − σk‖pk − pk−1‖2

≤− %k‖pk+1 − pk‖2 + σk+1‖pk+1 − pk‖2

≤− (τ(1− φk+1)− (1 + φk+1)φk+1 + τ(φ2
k+1 − φk+1))‖pk+1 − pk‖2

≤− (τ(1− φ)− (1 + φ)φ− τφ)‖pk+1 − pk‖2

=χ‖pk+1 − pk‖2.

It obviously asserts that Λk+1 − Λk ≤ 0, which further implies that the sequence
(Λk)k∈N is non-increasing. In such a case, it suffices to proceed in much the same way
as in Theorem 3.1. And hence, the last proof of the weak convergence of the sequence
(pk)k∈N follows immediately from the corresponding lines of Theorem 3.1. Hence we
obtain the desired result. �

4. Applications

In this section, we present several illustrative numerical examples in order to
demonstrate the performance, efficiency and applicability of the proposed algorithm.
Note that all examples are considered in finite dimensional spaces, thus there is non
sense to use any of strong algorithms to obtain the solution of variational inequal-
ities. In all tests, we use our proposed algorithm to solve this problem by letting
the extrapolation factors θk = 0.099 and the relaxation parameters γk = 0.02. All
the experiments are performed on a PC with Intel (R) Core (TM) i5-8250U CPU
@1.60GHz, under the Matlab computing environment.

Example 4.1. [25] First, we consider the variational inequality via the following
property

Ψ(p) = (ϕ1(p), ϕ2(p), · · · , ϕm(p))T ,

where p = (p1, p2, · · · , pm)T and ϕi(p) = epi − 1, i = 1, 2, · · · ,m. Note that Ψ(·) is a
pseudomonotone and Lipschitz continuous operator on the feasible set

Ω = {p ∈ Rm| − 1 ≤ p1, p2, · · · , pm ≤ 4}.

Our problem here is to find a point p∗ ∈ Ω such that 〈Ψ(p∗), p − p∗〉 ≥ 0,∀p ∈ Ω.
Let us take m = 240 as a special case and denote p = (p1, p2, · · · , p240)T . In this
experiment, we choose the initial data generated from the uniform distribution over
(0, 1)240 and we take the number of iterations k = 1000 as the stopping criterion.
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Figure 2. Behaviors of p1, p2, · · · , p240 with the number of iterations
k = 1000. Numerical results for Algorithm 3.1.

From the results reported in Figure 2, one has shown that the values of p1 − p240

(y-axis) with the number of iterations k = 1000 (x-axis). Obviously, this problem has
a unique solution p∗ = (0, 0, · · · , 0)T .

Note that the constrained optimization arises in a broad variety of engineering
and scientific applications. And hence, we consider the following general nonsmooth
optimization problem expressed as follows

minimize Υ(p)

subject to Θp = b,

p ∈ Ω,

(4.1)

where Υ : Rn → R is an objective function,

p = (p1, p2, · · · , pn)T ∈ Rn, b = (b1, b2, · · · , bm)T ∈ Rm,

Θ ∈ Rm×n is a full row-rank matrix (i.e., rank(Θ) = m ≤ n) and Ω is a nonempty,
closed and convex set in Rn. In our experiments, the objective function of problem
(4.1) is not necessarily convex everywhere, and only needs to be pseudoconvex on a set
defined by the constraints. Moreover, problem (4.1) has two special cases described
as follows{

minimize Υ(p)
subject to p ∈ Ω;

{
minimize Υ(p)
subject to Θp = b.

(4.2)

The left one is with only bound constraints, the right one is with only equality con-
straints. As for problem (4.2), we study Examples 4.2-4.6 where our proposed algo-
rithm is effective.



AN INERTIAL SUBGRADIENT-EXTRAGRADIENT ALGORITHM 545

Example 4.2. [26] Consider the following convex optimization problem with a fea-
sible set

minimize Υ(p) = 1 + p2
1 − e−p

2
2

subject to p ∈ Ω,
(4.3)

where

p = (p1, p2)T and Ω = {p ∈ R2| − 2 ≤ p1, p2 ≤ 2}.

It is easy to check that the objective function Υ(p) is convex in the nonempty, closed
and convex set Ω. And hence, the generalized gradient

F = ∇Υ(p) = (2p1, 2p2e
−p22)T , ∀p = (p1, p2)T

is pseudomonotone in Ω. In the following experiment, we randomly choose the start-
ing data in the range of (0, 1)2 and we take the iteration number k = 400 as the
termination criterion.
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Figure 3. The isometric view of the objective function of Υ(p) in
Example 4.2.

Figure 4. Behaviors of (p1, p2,Υ(p))T with 20 initial points for k =
400. Numerical results for Algorithm 3.1.

Figure 3 depicts the isometric view of Υ(p) in 3-D space. To illustrate the compu-
tational performance, Figure 4 displays the changing processes of (p1, p2,Υ(p))T with
the number of iterations that are convergent to the exact solution (0, 0, 0)T , which
also is the global minimum solution of the objective function in the whole space.
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Figure 5. Behaviors of (p1, p2,Υ(p))T in terms of many initial
points, and require k = 400 iterations in Example 4.2.

Figure 6. Behaviors of p1, p2 with the execution time. Numerical
results for Algorithm 3.1.
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In the second experiment, we randomly choose many starting points in the range
of (0, 1)2 and we take the iteration number k = 350 as the stopping criterion. The nu-
merical result is shown in two different versions. Figure 5 plots the changing processes
of (p1, p2,Υ(p))T with many initial points at star symbol and the unique convergent
point at dot symbol. Meanwhile, as depicted in Figure 6, it is obvious that the con-
vergence of the value (p1, p2)T to (0, 0)T , which is the optimal solution of problem
(4.3) when Υ(p) = 0.

Example 4.3. Consider the following nonlinear optimization problem via

minimize Υ(p) = exp(p1 + 3p2 − 0.1) + exp(p1 − 3p2 − 0.1) + exp(−p1 − 0.1)

subject to − 3 ≤ p1, p2 ≤ 3,

(4.4)
where p = (p1, p2)T ∈ R2. One sees that the objective function is convex on Ω with
its generalized gradient

∇Υ(p) =

(
exp(p1 + 3p2 − 0.1) + exp(p1 − 3p2 − 0.1)− exp(−p1 − 0.1)

3exp(p1 + 3p2 − 0.1)− 3exp(p1 − 3p2 − 0.1)

)
∀p = (p1, p2)T ,

pseudomonotone on Ω. In addition, ∇Υ(p) is also Lipschitz continuous with respect
to p ∈ Ω. In this experiment, the starting points are generated from the uniform
distribution over (0, 1)2. And we take the iteration number k = 700 as the stopping
criterion.

Figure 7. The isometric view of the objective function of Υ(p) in
Example 4.3.

Figure 8. Behaviors of (p1, p2,Υ(p))T with 35 initial points for k =
700. Numerical results for Algorithm 3.1.
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Figure 7 plots the isometric view of Υ(p) in a 3-D space. Figure 8 depicts the
changing processes of (p1, p2, φ(p))T with 35 random initial data at star symbol and
the unique convergent point at dot symbol. The behaviors of (p1, p2) ∈ R2 that are
convergent to the exact solution

p∗ = (−0.3466, 0)T ,

which is also the optimal solution of the convex optimization problem (4.4) when

φ(p) = −6.7590exp(−5).

Example 4.4. Consider a quadratic optimization program as follows

minimize Υ(p) =
1

2
pTΘp+ βT p

subject to p ∈ Ω,
(4.5)

via the following properties

Θ =

 10 −18 2
−18 40 −1

2 −1 3

 ,

β =

 12
−47
−8

 ,

where

p = (p1, p2, p3)T ,

Θ is a 3× 3 positive semidefinite matrix, β is a 3-vector and Ω is a nonempty closed
convex subset of R3 defined by

Ω := {p ∈ R3| − 5 ≤ p1, p2, p3 ≤ 5}.

It is known that the objective function Υ(p) is pseudoconvex with the gradient

F := ∇Υ = Θp+ β

Lipschitz continuous on the feasible region Ω. We study this problem for many dif-
ferent choices of starting points generated from the uniform distribution over (0, 1)3.
Meanwhile, we take the iteration number k = 400 as the stopping criterion.
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Figure 9. Behaviors of three elements of p in terms of many random
initial points, and require k = 400 iterations in Example 4.3.

Figure 10. Behaviors of (p1, p2, p3)T with 50 random initial points
in 3-D space. Numerical results for Algorithm 3.1.

From the results reported in Figure 9 and Figure 10, one has shown that the
changing processes of(p1, p2, p3)T ∈ R3 in two different versions with the number of
iterations. Obviously, the convergence of the value (p1, p2, p3) ∈ R3 to the exact point
(4, 3, 1)T , which is the optimal solution of problem (4.5) with Υ(p) = −50.5.
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Let us recall some previously known algorithms firstly. The extragradient method
(EGM) was proposed by Korpelevich [10]. The subgradient-extragradient method
(PSEM) was proposed by Censor, Gibali, Reich in [15], as one extension of the ex-
tragradient method. An alternative to the extragradient method or its modifica-
tion (TSENG) was proposed by Tseng in [11] and was extended in [12]. The al-
gorithms (Y-EAPM,L-EAPM) based on the extragradient method, combining with
the approximate method were proposed in [13, 14]. The algorithm (SEGM) based
on the Popov extragradient method, by means of the subgradient-extragradient
method was presented by Malitsky and Semenov in [21]. A modification of the
subgradient-extragradient method, combining with positive features of the Halpern
method (HSEM) was proposed in [22]. Next, we will present the numerical results
to illustrate the practicability and the competitive performance of our proposed algo-
rithm, in comparison with algorithms mentioned above.

Example 4.5. [27] Consider the following problem governed by the Gaussian function
with linear equality constraint

minimize Υ(p) = −exp

(
−

2∑
i=1

p2
i

τ2
i

)
subject to Ψp = β,

(4.6)

where

p = (p1, p2)T ∈ R2, τ = (1, 1)T ,

Ψ = (1, 2) and β = 1.2.

One sees that the objective function is locally Lipschitz continuous and strictly pseu-
doconvex on R2. Thus its gradient

F = ∇Υ(p) =

(
2p1

τ2
1

exp

(
−

2∑
i=1

p2
i

τ2
i

)
,

2p2

τ2
2

exp

(
−

2∑
i=1

p2
i

τ2
i

))T
, ∀p = (p1, p2)T

is Lipschitz and pseudomonotone on the equality constraint. We denote k by the
number of iterations. Since we do not know the exact solution of the problem, we use
sequence

Ek = ‖pk − PΩ(pk − γkFpk)‖, ∀k = 0, 1, 2, · · ·

to measure the error of the k-th iteration for Algorithms 3.1, EGM, TSENG, PSEM.
According to the nearest point (metric) projection, if the error distance Ek < ε, then
pk can be considered as a ε-solution of the problem, which also serves as the role
of checking whether or not the proposed algorithm converges to the solution. The
initial elements are generated from the uniform distribution over (0, 1)2. We takes
the iteration number k = 200 as the stopping criterion in the following experiment.
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Figure 11. The isometric view of inverted 2-D normalized Gaussian
function with τ = (1, 1)T .

Figure 12. Comparison of the convergence behaviors of the errors
(Ek)k∈N with the number of iterations (resp.) k = 200. Numerical
results for different algorithms.

Table 1. Comparison results between proposed Algorithm 3.1,
EGM, TSENG, PSEM.

Iter. Algorithm 3.1 EGM TSENG PSEM

50 4.9686e-04 0.0019 0.0019 0.0019
100 1.1359e-04 4.3313e-04 4.3313e-04 4.3313e-04
150 2.5957e-05 9.9007e-05 9.9008e-05 9.9007e-05
200 5.9317e-06 2.2626e-05 2.2626e-05 2.2626e-05
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Figure 11 shows the isometric view of Υ(p) in 3-D space. To illustrate the com-
putational performance, we make a comparison on the convergence speed between
those algorithms, with the same random initial condition and the same number of
iterations. We code the numerical results in Figure 12 and Table 1. One can check
that, our proposed algorithm is more efficient at each iteration, in contrast with that
of the extragradient method and modified extragradient methods (EGM, TSENG,
PSEM), with respect to the convergence behavior of the error Ek. That is, the four
numerical methods have less convergence speed than Algorithm 3.1, which can be
explained by the presence of the inertial extrapolation term at each iteration. Thus
the inertial step plays the key role in the acceleration process. Besides, the conver-
gence of (Ek)k∈N to 0 means that the iterative sequence converges to the solution of
the variational inequality problem. Further, the convergence of the value (p1, p2)T to
the exact solution (0.24, 0.48)T , which is the optimal solution of problem (4.6) when
Υ(p) = −0.7498.

Example 4.6. Consider the quadratic fractional programming problem via

min Υ(p) = pTΘp+βT p+β0

ωT p+ω0

s.t. Ψp = %,
(4.7)

where Θ is an m×m matrix, Ψ is a 2×m matrix, both β and ω are 2-vectors, % is a
2-vector and β0, ω0 ∈ R. When m = 4, we set ω0 = 2 and

Θ =


5 −1 2 0
−1 5 −1 3
2 −1 3 0
0 3 0 5

 ,

β =


1
−2
−2
1

 , ω =


2
1
−1
0

 ,

Ψ =

(
2 1 −1 0
1 0 2 −2

)
, % =

(
4
5

)
, β0 = −4.

One sees that the matrix Θ is symmetric positive definite, and hence the objective
function Υ(p) is pseudo-convex on Ω [28]. Let F be the gradient function of Υ which
can be written in the following explicit form

F := ∇Υ =
(ωT p+ ω0)(2Θp+ β)− ω(pTΘp+ βT p+ β0)

(ωT p+ ω0)2
.

It is known that Ω is a closed and convex subset of R4 and F is pseudomonotone on
Ω. In this test, one randomly chooses many initial elements in the range of (0, 1)m.
Further, we take the iteration number k = 40 as the termination criterion in the
following experiment.
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Figure 13. Comparison of the convergence behaviors of the errors
(Ek)k∈N with the number of iterations (resp.) k = 50. Numerical
results for Algorithm 3.1, HSEM, Y-EAPM, L-EAPM, SEGM and
PSEM.

Table 2. Comparison results between proposed Algorithm 3.1,
HSEM, Y-EAPM, L-EAPM, SEGM and PSEM.

Method Algorithm3.1 HSEM Y-EAPM L-EAPM SEGM PSEM

Iter. Time Ek Time Ek Time Ek Time Ek Time Ek Time Ek

10 8.1351e-04 0.0147 7.4467e-04 0.0480 8.0725e-04 0.2509 7.9303e-04 0.2506 7.2192e-04 0.0341 9.1932e-03 0.0227
20 1.5644e-03 0.0025 1.5354e-03 0.0425 1.6572e-03 0.1600 1.6412e-03 0.1594 1.5297e-03 0.0051 1.6686e-03 0.0048
30 2.3495e-03 0.0005 2.3444e-03 0.0419 2.5071e-03 0.1504 2.4889e-03 0.1501 2.3046e-03 0.0008 2.6146e-03 0.0010
40 3.0993e-03 0.0001 3.2603e-03 0.0418 3.3536e-03 0.1494 3.3365e-03 0.1491 3.0794e-03 0.0001 3.6056e-03 0.0002
50 3.8411e-03 0.0000 4.0459e-03 0.0418 4.1978e-03 0.1493 4.1842e-03 0.1490 3.8542e-03 0.0000 4.3486e-03 0.0000

As the same case of Example 4.5, we use the sequence

Ek = ‖pk − PΩ(pk − βkΦpk)‖, ∀k = 0, 1, 2, 3 · · ·

to measure the error of the k-th iteration of Algorithms 3.1, EGM, HSEM, MEGM,
Y-EAPM, L-EAPM and SEGM. To illustrate the convergence and computational
performance of all the algorithms, one has shown that the values (Ek)k∈N (y-axis)
with the number of iterations k = 50 (x-axis). For comparison on the convergence
speed between those algorithms, with the same random initial data and the same
number of iterations, we code the test results in Figure 13 and Table 2. One can
check that, our proposed algorithm is more efficient in CPU-Time, with respect to the
convergence behavior of the error Ek. That is, the mentioned iterative schemes have
less convergence speed than Algorithm 3.1, which can be explained by the presence
of the initial extrapolation term and the absence of one projection step of a point
onto the feasible set per iteration. Meanwhile, from the changing processes of the
values (Ek)k∈N, one finds that Algorithm 3.1 has a better behavior, in contrast to
that of other algorithms. It achieves a more stable and higher precision with the
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number of iterations. Besides, the convergence of the values (Ek)k∈N to 0 means
that the iterative sequence converges to the solution of the variational inequality
problem. Above all, Algorithm 3.1 has substantially a better performance, compared
with that of other algorithms. In addition, we have that the unique convergent point
p∗ = (1.1834, 1.8774, 0.2442,−1.6642)T is the optimal solution of problem (4.7).

We want to note that, in this experiment, since both the operator F and projections
are cheap, the running time is quite small, measured only with some error of order
10−3. For this reason, our results cannot achieve a drastic contrast of algorithms’
performance.
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