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Abstract. In their recent papers, A.V. Arutyunov and A.V. Greshnov introduced (q1, q2)-

quasimetric spaces and studied their properties: investigated covering mappings between (q1, q2)-

quasimetric spaces, established sufficient conditions for the existence of a coincidence point for
two mappings acting between (q1, q2)-quasimetric spaces such that one is a covering mapping and

the other is Lipschitz continuous, proved Banach’s fixed point theorem, obtained generalizations

for multivalued mappings. The class of (q1, q2)-quasimetric spaces is sufficiently wide; it includes
quasimetric spaces, b-metric spaces, Carnot-Carathéodory spaces with Box-quasimetics, Lp-spaces

with p ∈ (0, 1), etc. The development of the theory of coincidence points of mappings on (q1, q2)-

quasimetric spaces initiated interest in the study of more general f -quasimetric spaces and in gener-
alizing Banach’s fixed point theorem to such spaces. The present paper is a review of these results.
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1. Introduction

In the recent article [42], published in Fixed Point Theory, for so-called com-
plete b-metric spaces (X, ρ) (in the terminology of our article, these are symmetric
(q, q)-quasimetric spaces), a new proof was given of the fixed point theorem for con-
traction mappings earlier proved in the monograph [39, Chapter 12] by Kirk and
Shahzad. Czerwik was the first to generalise Banach’s fixed point theorem for b-
metric spaces [21] (see also the recent article [37] about the proof of Czerwik’s theorem
mentioned above).

However, these and some other similar results embed into the general theory
of (q1, q2)-quasimetric spaces, which were recently introduced and studied by Aru-
tyunov and Greshnov in [6]–[8]. In particular, b-metric spaces, introduced by Bakhtin
in 1989 (see [12]) are a particular case of (q1, q2)-quasimetric spaces. In addition,
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for q1 = q2, all known results for b-metric spaces follow from the theorems given below
for (q1, q2)-quasimetric spaces, which hold for (q1, q2)-metric spaces, where q1 6= q2.

A nontrivial example of a (q1, q2)-quasimetric space, where q1 6= q2, is given
by the spaces Lp(E), where E is a measurable bounded set in Rn, for 0 < p < 1.

These spaces are quasinormed since we have ‖f1 +f2‖p ≤ 2−1/p′(‖f1‖p+‖f2‖p) for all
f1, f2 ∈ Lp(E), where p′ < 0 is the number conjugate to p, i.e., 1

p + 1
p′ = 1. Moreover,

for every ε > 0, we have

‖f1 + f2‖p ≤ (1 + ε)‖f1‖p + C(ε, p)‖f2‖p ∀f1, f2 ∈ Lp(E),

where C(ε, p) = (1 − (1 + ε)p
′
)1/p′ . Thus, Lp(E) with 0 < p < 1 is a symmetric

(q1, q2)-quasimetric space whose quasimetric ρLp(E) is given by the formula

ρLp(E)(f1, f2) = ‖f1 − f2‖p, q1 = q2 = 2−1/p′ .

Moreover, for every ε > 0 the (q1, q2)-generalized triangle inequality holds in Lp(E)
provided that q1 = 1+ε, q2 = C(ε, p). Note that similar properties hold for the spaces
lp with 0 < p < 1, which are used in the penalty method for the approximate solution
of extremum problems with constraints [11].

Examples of (q1, q2)-quasimetric spaces for q1 6= q2 naturally arise in analysis and
geometry on Carnot–Carathéodory spaces and their generalizations (see, for exam-
ple, [13], [14], [33], [43], [53]), whose Box-quasimetrics, as it turned out, are (1, q2)-
quasimetrics (see, for example, [27]–[30]). This plays a crucial role in the proof of
an analog of Gromov’s local approximation theorem (see [31], [53]). To some ex-
tent, the example of Box-quasimetrics answers the question formulated in [39, Re-
mark 12.3].

We introduced (q1, q2)-quasimetric spaces and investigated their properties in [6]–
[8]. Also covering mappings between (q1, q2)–quasimetric spaces were investigated.
Sufficient conditions for the existence of a coincidence point of two mappings acting
between (q1, q2)-quasimetric spaces such that one is a covering mapping and the other
satisfies the Lipschitz condition were obtained. These results were extended to multi-
valued mappings. We proved that the coincidence points are stable under small
perturbations of the mappings.

Earlier in [5], the local theory of coincidence points for metric spaces was con-
structed. A generalization of this theory to (q1, q2)-quasimetric spaces seems to us
an interesting problem, useful in applications.

In this connection, we will briefly expose some results of [6]–[8], which are connected
with theorems on the existence of fixed points and coincidence points for two mappings
acting from one (q1, q2)-quasimetric space into another (q′1, q

′
2)-quasimetric space and

also establish the relationship with other results.

2. (q1, q2)-quasimetric spaces.
Covering mappings and coincidence points

As usual, a function ρX : X ×X → R+, where X is an arbitrary set and R+ is the
set of non-negative real numbers, is called a metric if the following properties hold:

ρX(x, y) = 0⇔ x = y (the identity axiom);
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ρX(x, y) = ρX(y, x) ∀x, y ∈ X (the symmetry axiom);

ρX(x, z) ≤ ρX(x, y) + ρX(y, z) ∀x, y, z ∈ X (the triangle axiom).

If we omit the symmetry axiom (preserving the identity axiom and triangle inequal-
ity), then ρX is called a quasimetric and the pair (X, ρx) is called a quasimetric
space [54].

Quasimetric spaces are studied extensively in topology, functional analysis and
metric analysis (see, for example, [23], [26], [38], [45], [54]). Quasimetric and non-
symmetric normed spaces were considered in [17], [35], [36], [46] (see the references
therein). They have numerous applications in optimization and approximation theory,
convex analysis and elsewhere.
Definition 2.1 Let q1, q2 be positive numbers and X any set consisting of at least
two points. A function ρX : X × X → R+ satisfying the identity axiom is called a
(q1, q2)-quasimetric if the following (q1, q2)-generalized triangle inequality holds:

ρX(x, y) ≤ q1ρX(x, z) + q2ρX(z, y) ∀x, y, z ∈ X.

(X, ρX) is called (q1, q2)-quasimetric space. If the (q1, q2)-quasimetric ρX satisfies the
additional condition

ρX(x, y) ≤ q0ρX(y, x) ∀x, y ∈ X (q0 − symmetry)

for some q0 > 0, then it is said to be q0-symmetric and the pair (X, ρX) is called
q0-symmetric (q1, q2)-quasimetric space.

When q0 = 1, the pair (X, ρX) is called a symmetric (q1, q2)-quasimetric space.
When q1 = q2 = 1, ρX is a quasimetric and (X, ρX) is a quasimetric space. But if
q0 = q1 = q2 = 1, then ρX is a metric and (X, ρX) is an ordinary metric space. The
(q2, q1)-quasimetric ρX(x, y) = ρX(y, x) is said to be conjugate to ρX(x, y) (compare
with [17]).
Definition 2.2 A (q1, q2)-quasimetric (and the corresponding space (X, ρX)) is said
to be weakly symmetric, if lim

i→∞
ρX(ξ, xi) = 0 implies that

lim
i→∞

ρX(ξ, xi) = 0.

In another terminology, the weak symmetry condition can be found in [44]. Note
that for q0-symmetric (q1, q2)-quasimetric spaces we have

lim
i→∞

ρX(x0, xi) = 0⇔ lim
i→∞

ρX(xi, x0) = 0,

so that every q0-symmetric space is weakly symmetric. But the converse fails (see [6,
Example 2.2]).

To introduce a topology on (q1, q2)-quasimetric spaces and for the further use we
define the sets

o

BX(x, r) = {y ∈ X | ρX(x, y) < r}, BX(x, r) = {y ∈ X | ρX(x, y) ≤ r},

which may naturally be referred to as balls centered at x of radius r. A set U ⊂ X
is said to be open if, for every point u ∈ U there is a number ru > 0 such that
o

BX(u, ru) ⊂ U . Clearly, the open sets defined in this way determine a topology on
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which will be denoted by τρX (open balls topology). As usual, a set is said to be closed
if its complement is open.

Consider a sequence of points {xi} ⊂ X. We say that {xi} converges to a point

x0 ∈ X and write xi → x0, if, for every ε > 0 ball
o

BX(x0, ε) contains all points xi,
starting with some of them. The point x0 is called the limit point or limit of the
sequence {xi}. Clearly, this definition may equivalently be restated in the following
form: a sequence {xi} converges to x0, if lim

i→∞
ρX(x0, xi) = 0.

We easily verify that every convergent sequence in a weakly symmetric (q1, q2)-
quasimetric space has a unique limit. However, generally speaking, this is not the
case when the space is not weakly symmetric [6], [9].
Definition 2.3 A sequence {xn} in a (q1, q2)-quasimetric space (X, ρX) is called a
fundamental sequence or a Cauchy sequence (left K-Cauchy [45]), if for every ε > 0
there is an N such that for all n > m > N we have ρX(xm, xn) < ε.

A (q1, q2)-quasimetric space (X, ρX) is said to be complete if each of its fundamental
sequences has a limit (possibly non-unique).
Definition 2.4 A function f : X → R is said to be upper (lower) semicontinuous at
a point x0 ∈ X, if for every ε > 0 there is an rε > 0 such that

f(x) < f(x0) + ε
(
f(x0) < f(x) + ε

)
∀x ∈

o

BX
(
x0, rε)⇔ ρX(x0, x) < rε.

If f is simultaneously upper and lower semicontinuous at x0, then f is continuous at
x0.

There are examples of quasimetrics and symmetric (q1, q2)-quasimetrics for which
semicontinuity is violated in both arguments. At the same time, the q0-symmetric
(1, q2)-quasimetric ρX(x, y) is continuous in the second argument, while the q0-
symmetric (q1, 1)-quasimetric ρX(x, y) is continuous in the first argument.

Mention the paper [49], where sufficient conditions were obtained for the exis-
tence of a minimum for lower semicontinuous functions defined on (q1, q2)-quasimetric
spaces, which strengthen the conditions of Caristi type.

In what follows, we consider a (q1, q2)-quasimetric space (X, ρX) and a (q′1, q
′
2)-

quasimetric space (Y, ρY ).
Definition 2.5 Suppose that α > 0. A mapping Ψ : X → Y is said to be α-covering,
if

BY (Ψ(x), αr) ⊆ Ψ(BX(x, r)) ∀r ≥ 0 ∀x ∈ X. (2.1)

It follows from Definition 2.5 that for any points x0 ∈ X, y1 ∈ Y one can find a

point x1 ∈ X such that y1 = Ψ(x1), ρX(x0, x1) ≤ ρY (Ψ(x0),y1)
α . Hence the mapping Ψ

is surjective.
Definition 2.6 A mapping Φ : X → Y is said to be β-Lipschitz if

ρY
(
Φ(x1),Φ(x2)

)
≤ βρX(x1, x2) ∀x1, x2 ∈ X.

Along with the (q′1, q
′
2)-quasimetric ρY , we can consider the quasimetric ρ̃Y = ρY

α .
It is easy to see that, with respect to ρ̃Y , every α-covering mapping becomes 1-covering
and every β-Lipschitz mapping becomes β

α -Lipschitz.
As usual,

gph (F ) = {(x, y) ∈ X × Y | y = F (x)}
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is the graph of a mapping F : (X, ρX)→ (Y, ρY ).
Definition 2.7 We say that a mapping F closed if, for all sequences {xi} ⊂ X

and {yi} ⊂ Y converging to x0 and y0 respectively and satisfying (xi, yi) ∈ gph(F )
for all i, we have (x0, y0) ∈ gph(F ).

Note that if the quasimetric space (X, ρX) contains a sequence with more than one
limit (see [6]), then even the identity mapping Id : (X, ρX) → (X, ρX) is non-closed
although it is obviously continuous and, moreover, satisfies the Lipschitz condition.

Given a function f : X ×X → R+ of two variables and a point (x1, x2) ∈ X ×X,
we write lim

η→x1

f(η, x2) for its lower limit in the first variable at the point (x1, x2). This

limit is defined as the infimum of the lower limits inf lim
i→∞

f(ηi, x2), where the infimum

is taken over all sequences {ηi} that converge to x1. The lower limit lim
η→x2

f(x1, η)

in the second variable is defined in a similar way. Clearly, if the function is lower
semicontinuous in some variable at the point under consideration, then its lower limit
in this variable is equal to the value of the function at that point.

Suppose that we are given mappings Φ,Ψ : X → Y and real numbers α > β ≥ 0.
Definition 2.8 A point x ∈ X is called a coincidence point of Ψ and Φ if Ψ(x) = Φ(x).

For all q0, q1, q2 ≥ 1 we put

m0 = min{j ∈ N | q2β
j < αj}, (2.2)

and under the assumption that q2
0β < α, we put

n0 = min{j ∈ N | q1(q2
0β)j < αj}. (2.3)

Note that the existence of m0 follows from the assumption β < α; S(a;n) = 1 + a+
...+ an−1.
Theorem 2.9 (see [6, Theorem 4.5], [7, Theorem 1]) Let (X, ρX) be a complete
(q1, q2)-quasimetric space, and Ψ an α-covering closed mapping, and Φ a β-Lipschitz
mapping. Fix an arbitrary point x0 ∈ X.

Then Ψ and Φ have a coincidence point ξ, such that the following bound holds:

lim
η→ξ

ρX(x0, η) ≤
q2
1α

m0−1S
(
q2
β
α ,m0 − 1

)
+ q1(q2β)m0−1

αm0 − q2βm0
ρY (Ψ(x0),Φ(x0)). (2.4)

If the space (X, ρX) is weakly symmetric, then ξ also satisfies the bound

ρX(x0, ξ) ≤ q1

q2
1α

m0−1S
(
q2
β
α ,m0 − 1

)
+ q1(q2β)m0−1

αm0 − q2βm0
ρY (Ψ(x0),Φ(x0)), (2.5)

and if this space is q0-symmetric with q2
0β < α, then we also have the following bounds

for ξ:

ρX(x0, ξ) ≤ q0q
2
2

q2α
n0−1S

(
q1q

2
0
β
α , n0 − 1) + (q1q

2
0β)n0−1

αn0 − q1(q2
0β)n0

ρY (Ψ(x0),Φ(x0)), (2.6)

lim
η→ξ

ρX(x0, η) ≤ q0q2

q2α
n0−1S

(
q1q

2
0
β
α , n0 − 1) + (q1q

2
0β)n0−1

αn0 − q1(q2
0β)n0

ρY (Ψ(x0),Φ(x0)).

(2.7)
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Theorem 2.9 (on the existence of coincidence points) generalizes the corresponding
result of [3].

When the function ρX is lower semicontinuous in the second argument at the point
ξ, the bound (2.4) is stronger than (2.5). When ρX is lower semicontinuous in the
first argument at ξ, the bound (2.7) is stronger than (2.6). This is not the case in
general (see [6, Remark 4.7]).
Corollary 2.10 (see [6, Corollary 4.9], [7, Corollary 2]) Suppose that the space (X, ρX)
is complete, the mapping Ψ is α-covering and closed and the mapping Φ is β-Lipschitz.
Fix an arbitrary point x0 ∈ X.

10 Suppose that q2β < α. Then Ψ and Φ have a coincidence point ξ such that

lim
η→ξ

ρX(x0, η) ≤ q1

α− q2β
ρY (Ψ(x0),Φ(x0)),

and if the space (X, ρX) is weakly symmetric, then this coincidence point ξ also sat-
isfies

ρX(x0, ξ) ≤
q2
1

α− q2β
ρY (Ψ(x0),Φ(x0)).

20 Suppose that (X, ρX) is q0-symmetric with q1q
2
0β < α. Then Ψ and Φ have a

coincidence point ξ such that

ρX(x0, ξ) ≤
q0q

2
2

α− q1q2
0β
ρY (Ψ(x0),Φ(x0)),

lim
η→ξ

ρX(x0, η) ≤ q0q2

α− q1q2
0β
ρY (Ψ(x0),Φ(x0)).

Suppose that X = Y and Ψ = Id is the identity map. Then α = 1, the condition
β < 1 means that Φ is a contraction mapping, and the coincidence point becomes
a fixed point. Our next assertion (the Theorem on the fixed points of a contraction
mapping) follows from the proof of Theorem 2.9.
Theorem 2.11 (see [6, Theorem 4.8], [7, Corollary 1]) Every closed contraction map-
ping from a complete (q1, q2)-quasimetric space to itself has a fixed point, and this
point is unique.

Observe that, in the fixed point theorem, the assumption of the closedness
of the contraction mapping is substantial; namely, in [47], an example was constructed
of a complete quasimetric space in which a contraction mapping has no fixed points;
this mapping is not closed.

In quasimetric spaces, the fixed point theorem for contraction mappings was con-
sidered by a number of authors (see, for example, [16]). For complete b-quasimetric
spaces (in our terminology, these are symmetric (q, q)-quasimetric spaces), the fixed
point theorem was proved in the monograph [39, Chapter 12] by Kirk and Shahzad;
another proof of this theorem of Kirk and Shahzad can be found in [42]. We also
mention the article [20], where, on b-metric spaces (in our terminology, these are
(q, q)-quasimetric spaces), fixed point theorems were proved for some analogs of con-
traction mappings. Note that, in [18], Cozbaş obtained a generalization of Kirk
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and Shahzad’s result for b-quasimetric spaces satisfying the s-relaxed triangle in-
equality ρ(x, y) ≤ s[ρ(x, z) + ρ(z, y)], for mappings f :

ρ(f(x), f(y)) ≤ ϕ(ρ(x, y)), (2.8)

where function ϕ : R+ → R+ is satisfying the conditions:
(a) ϕ is nondecreasing,
(b) lim

n→∞
ϕn(t) = 0,

(c) ϕ(t) < t
s for all t > 0,

(in this connection, see Theorem 3.9 below) and also for generalized b-quasimetric
spaces (ρ : X ×X → [0,∞]).

A separate series of results was obtained in [6, 7] for (1, q2)- and (q1, 1)-quasimetric
spaces. Note that [39] and also Cozbaş’s preprint [18] were concerned with (1, s)-
quasimetric spaces, which were called strong b-metric spaces or sb-metric spaces
therein.
Theorem 2.12 (see [6, Theorem 4.12], [7, Theorem 2]) Suppose that the space (X, ρX)
is complete, the mapping Ψ is α-covering and closed, and Φ is β-Lipschitz. Fix an
arbitrary point x0 ∈ X.

10 Suppose that q1 = 1. Then Ψ and Φ have a coincidence point ξ such that

lim
η→ξ

ρX(x0, η) ≤ α− β + q2β

α(α− β)
ρY (Ψ(x0),Φ(x0)). (2.9)

20 Suppose that the space (X, ρX) is q0-symmetric with q2
0β < α and q2 = 1. Then

there is a coincidence point ξ such that

ρX(x0, ξ) ≤ q0
q1q

2
0β + α− q2

0β

α(α− q2
0β)

ρY (Ψ(x0),Φ(x0)). (2.10)

Let us compare the results of Theorems 2.9 and 2.12. The restrictions on the values
of α, β, q1 and q2 in Theorem 2.9 are weaker than those in Theorem 2.12. At the
same time, the bound (2.9) obtained in part 1) of Theorem 2.12 under the additional
assumption q1 = 1 is better than the bound (2.4) in Theorem 2.9 provided that this
assumption holds (see details in [6]); we can similarly prove that the bound (2.10) in
part 2) of Theorem 2.12, which was proved under the additional assumption q2 = 1,
is better than the bound (2.6) in Theorem 2.9 (provided that this assumption holds).

In [6], we constructed Example 4.13, which shows that the bounds (2.6), (2.7) in
Theorem 2.9 and (2.10) in part 2) of Theorem 2.12 are unimprovable. In [6], we con-
structed Example 4.14, which shows that the bounds (2.9) in part 1) of Theorem 2.12
is also unimprovable.

3. Multivalued mappings of (q1, q2)-quasimetric spaces.
Coincidence points and stability

Suppose that we are given a(q1, q2)-quasimetric space (X, ρX) and (q′1, q
′
2)-

quasimetric space (Y, ρY ). As usual, the distance between two sets U, V ⊂ X is
defined by the formula

distX(U, V ) = inf{ρX(u, v) | u ∈ U, v ∈ V }.



480 A.V. ARUTYUNOV AND A.V. GRESHNOV

In (q1, q2)-quasimetric spaces as well as in metric spaces, the Hausdorff deviation
h+
X(U, V ) of a set U from a set V is defined by the formula

h+
X(U, V ) = inf{ε ≥ 0 | U ⊂ Nε(V )},

Nε(V ) =
⋃
v∈V
{x ∈ X | ρX(x, v) < ε}.

If U is unbounded, then h+
X(U, V ) can take the value +∞.

For arbitrary sets U, V ⊂ X we easily see that

h+
X(U, V ) ≥ distX(U, V ),

and h+
X(U, V ) = sup

u∈U
distX(u, V ). If the sets U, V ⊂ X are closed, then

h+
X(U, V ) = 0⇔ U ⊆ V.

The (q1, q2)-generalized triangle inequality need not hold for the distance distX
between sets. However, it always holds for the Hausdorff deviation h+

X :

h+
X(U,W ) ≤ q1h

+
X(U, V ) + q2h

+
X(V,W ), ∀U, V,W ⊂ X.

Property 3.1 ([6], [8, Property 5.1]) For arbitrary sets U, V,W ⊂ X we have

distX(U,W ) ≤ q1distX(U, V ) + q2h
+
X(V,W ). (3.1)

For metric spaces, (3.1) was proved in [2, §2.2].
For arbitrary closed sets U, V ⊂ X we put

hX(U, V ) = max
{
h+
X(U, V ), h+

X(V,U)
}
,

where hX(U, V ) = +∞, if at least one of the deviations h+
X(U, V ) or h+

X(V,U) is +∞.
Unlike the Hausdorff deviation h+

X , the function hX , being the symmetrization of

h+
X , is itself symmetric. Therefore hX is a symmetric (q̂1, q̂2)-quasimetric on the space

of all closed bounded subsets of the space (X, ρX), where the constants q̂1, q̂2, may,
generally speaking, be different from q1, q2, because of the “symmetrization effect”
([6, Example 3.3]). It is natural to call hX the Hausdorff (q̂1, q̂2)-quasimetric.

When speaking of a multi-valued mapping, we mean a mapping F : X ⇒ Y sending
each point x ∈ X to a non-empty closed subset F (x) ⊂ Y . Suppose that we are given
multi-valued mappings Ψ, Φ : X ⇒ Y and numbers α > β ≥ 0.
Definition 3.1 A point ξ is called a coincidence point of multi-valued mappings Φ,Ψ,
if Φ(ξ) ∩Ψ(ξ) 6= ∅.
Definition 3.2 Ψ is said to be α-covering if⋃

y∈Ψ(x)

BY (y, αr) ⊆ Ψ(BX(x, r)) ∀r ≥ 0 ∀x ∈ X. (3.2)

Definition 3.3 A multi-valued mapping Φ is said to be β-Lipschitz if

hY
(
Φ(x1),Φ(x2)

)
≤ βρX(x1, x2) ∀x1, x2 ∈ X.

Let F be a multi-valued mapping. As usual, its graph is

gph (F ) = {(x, y) ∈ X × Y | y ∈ F (x)}
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and then closedness of F is defined as in Definition 2.7.
In what follows we use the same quantities m0, n0 as in (2.2), (2.3).

Theorem 3.2 ([6, Theorem 5.7], [8, Theorem 1]) Let Ψ be an α-covering closed multi-
valued mapping and Φ a β-Lipschitz multi-valued mapping. Suppose also that at least
one of the graphs gph (Φ), gph (Ψ) is a complete space. Fix an arbitrary point x0 ∈ X
and a number ε > 0.

Then Ψ and Φ have a coincidence point ξ such that

lim
η→ξ

ρX(x0, η)

≤
q2
1α

m0−1S
(
q2
β
α ,m0 − 1

)
+ q1(q2β)m0−1

αm0 − q2βm0
distY (Ψ(x0),Φ(x0)) + ε. (3.3)

If the space (X, ρX) is weakly symmetric, then ξ also satisfies

ρX(x0, ξ) ≤ q1

q2
1α

m0−1S
(
q2
β
α ,m0 − 1

)
+ q1(q2β)m0−1

αm0 − q2βm0
distY (Ψ(x0),Φ(x0))+ε, (3.4)

and if this space is q0-symmetric with q2
0β < α, then ξ also satisfies

ρX(x0, ξ)

≤ q0q
2
2

q2α
n0−1S

(
q1q

2
0
β
α , n0 − 1) + (q1q

2
0β)n0−1

αn0 − q1(q2
0β)n0

distY (Ψ(x0),Φ(x0)) + ε, (3.5)

lim
η→ξ

ρX(x0, η)

≤ q0q2

q2α
n0−1S

(
q1q

2
0
β
α , n0 − 1

)
+ (q1q

2
0β)n0−1

αn0 − q1(q2
0β)n0

distY (Ψ(x0),Φ(x0)) + ε. (3.6)

In the case when X = Y is complete, Ψ(x) ≡ {x}, β < 1 and Φ is closed, Theo-
rem 3.2 is a fixed point theorem for multi-valued mappings. Theorem 3.2 is a multi-
valued analogue of Theorem 2.9. One can similarly obtain a multi-valued analogue of
Theorem 2.12.

We claim that under rather general conditions the coincidence points of two map-
pings are stable with respect to small (in the sense defined below) perturbations of
these mappings. The following assertion is informative for single-valued as well as
multi-valued mappings.
Theorem 3.3 ([6, Theorem 5.8], [8, Theorem 3]) Suppose that (Y, ρY ) is a q′0-
symmetric (q′1, q

′
2)-quasimetric space and x0 is a coincidence point of multi-valued

mappings Φ,Ψ : X ⇒ Y . Consider sequences {Ψi}, {Φi} of multi-valued mappings
satisfying the following conditions. For every i the mapping Ψi is α-covering and
closed, the mapping Φi is β-Lipschitz, and at least one of the graphs gph (Ψi), gph (Φi)
is a complete set. Suppose also that

h+
Y (Ψ(x0),Ψi(x0))→ 0, h+

Y (Φ(x0),Φi(x0))→ 0, (3.7)

and there is a sequence {εi} of positive numbers converging to zero. Put

hi(x0) = q′1q
′
2q
′
0h

+
Y

(
Ψ(x0),Ψi(x0)

)
+ q′2h

+
Y

(
Φ(x0),Φi(x0)

)
.
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Then, for every i the mappings Ψi and Φi have a coincidence point ξi such that

lim
η→ξi

ρX(x0, η) ≤
q2
1α

m0−1S
(
q2
β
α ,m0 − 1

)
+ q1q

m0−1
2 βm0−1

αm0 − q2βm0
hi(x0) + εi,

lim
i→∞

(
lim
η→ξi

ρX(x0, η)
)

= 0. (3.8)

If the space (X, ρX) is weakly symmetric, then we also have

ρX(x0, ξi) ≤ q1

q2
1α

m0−1S
(
q2
β
α ,m0 − 1

)
+ q1q

m0−1
2 βm0−1

αm0 − q2βm0
hi(x0) + εi,

lim
i→∞

ρX(x0, ξi) = 0, (3.9)

and if this space is q0-symmetric with q2
0β < α, then for every ξi we have

ρX(x0, ξi) ≤ q0q
2
2

q2α
n0−1S

(
q1q

2
0
β
α , n0 − 1) + qn0−1

1 (q2
0β)n0−1

αn0 − q1(q2
0β)n0

hi(x0) + εi,

lim
i→∞

ρX(x0, ξi) = 0, (3.10)

lim
η→ξi

ρX(x0, η) ≤ q0q2

q2α
n0−1S

(
q1q

2
0
β
α , n0 − 1

)
+ qn0−1

1 (q2
0β)n0−1

αn0 − q1(q2
0β)n0

hi(x0) + εi,

lim
i→∞

(
lim
η→ξi

ρX(x0, η)
)

= 0. (3.11)

For metric spaces, Theorem 3.3 was proved in [4]. Problems close to Theorem 3.3
were discussed in [10]; the article [48] generalized the results of [10] to the case
of (q1, q2)-quasimetric spaces.

4. f-quasimetric spaces

The following particular cases cases of (q1, q2)-quasimetric spaces are sufficiently
well studied:

(1) when the (q1, q2)-quasimetric is symmetric (or generalized symmetric) and
the (q1, q2)-triangle inequality coincides with the generalized triangle inequality
(q1 = q2);

(2) when the (q1, q2)-triangle inequality coincides with the usual triangle inequality.
In the first case, these spaces are actively studied in analysis and geometry (see,

for example, [1], [19], [34], [40], [41], [51], [52]); in some works connected with topology
and functional analysis, they are called b-spaces [21], [22], [39], [50]. In the second
case, we have quasimetric spaces (see, for example, [54]).

Note that (q1, q2)-metric spaces are an important particular case of so-called
f -quasimetric spaces, actively studied from the beginning of the 20th century
to the present time (see, for instance, [9], [15], [24], [25]).

We assume that M is an arbitrary set consisting of at least two points, and ρ :
M ×M → R+ ∪ 0 is a function satisfying the identity axiom:

ρ(x, y) = 0⇔ x = 0.
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We call ρ the distance from x to y.
Definition 4.1 A distance function ρ is called f -quasimetric if the following f -triangle
inequality holds

∃σ > 0 ∀x, y, z ∈ X : ρ(x, y) < σ, ρ(y, z) < σ ⇒ ρ(x, z) ≤ f(ρ(x, y), ρ(y, z))

for some non-negative function f defined on R+ ×R+ such that f(x, y)→x2+y2→0 0.
The pair (M,ρ) is called an f -quasimetric space.

Given x ∈M and r > 0, define the ball centered at x with radius r:

O(x, r) = {y ∈ X | ρ(x, y) < r}.
Define open sets in M as follows. A set A ⊂ M is open if for each x ∈ A there
exists r > 0 such that O(x, r) ⊂ A. Open sets define a topology τ . Topology τ is T1

because for arbitrary x ∈ M set M \ {x} is obviously open. Also the topology τ is
first-countable that all balls O(x, r) are not open

The existence of not open balls O(x, r) was mentioned in [34].
Example. (Proposed by S. Zhukovskiy, [9, Example 1.6]) Let M = R. Consider the
symmetric (2, 2)-quasimetric

ρ(a, b) =

{
|a− b|, (a− b) is rational,

2|a− b|, (a− b) is irrational.

One can check that every rational number x satisfying the inequality r/2 < |x| < r
belongs to the ball O(0, r), but x /∈ intO(0, r). So, O(0, r) is not open. Analogous
arguments are valid for the balls centered at every point x ∈ M . Note that the
topology τ in this example coincides with the standard topology of R.

Call f -quasimetrics ρ1, ρ2 defined on one set X bi-Lipschitz equivalent if there
exists L > 0 such that

ρ1(x, y)

L
≤ ρ2(x, y) ≤ Lρ1(x, y).

Property 4.2 ([32]) For every (q1, q2)-quasimetric space (X, ρX) there exists a
(q′1, q

′
2)-quasimetric ρ′X on X bi-Lipschitz equivalent to ρ such that any set

o

B′X(x, r) = {y ∈ X | ρ′X(x, y) < r}
is open in the topology τρ′ .
Definition 4.3 A distance function ρ is called weakly symmetric if

lim
n→∞

ρ(x0, xn) = 0⇒ lim
n→∞

ρ(xn, x0) = 0.

A space (X, ρ) is called quasimetrizable (metrizable) if its topology is generated
by a quasimetric (metric).
Theorem 4.4 ([9, Theorem 3.1]) If ρ is a f -quasimetric, then (M,ρ) is quasimetriz-
able. If ρ is a weakly symmetric f -quasimetric, then (M,ρ) is metrizable.
Property 4.5 ([29]) There exist symmetric (q1, q2)-quasimetric spaces (X, ρX) such
that X has no metrics bi-Lipschitz equivalent to ρX .

In the recent paper [55] by Zhukovskiy, Banach’s Contraction Mapping Theorem
was generalized to complete f -quasimetric spaces. Let us briefly discuss the results
of [55].
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Definition 4.6 Let (M,ρ) be an f -quasimetric space. Suppose that to any R ≥ r > 0
there is associated β(r,R) ∈ [0, 1). A mapping G : M → M is called a β-generalized
contraction if

∀R ≥ r > 0 ∀x, y ∈M r ≤ ρ(x, y) ≤ R⇒ ρ(G(x), G(y)) ≤ β(r,R)ρ(x, y).

We have the following
Theorem 4.7 ([55]) Suppose that an f -quasimetric space is complete. If a mapping
G : M →M is a β-generalized contraction ans satisfies the condition

∀x, y ∈M lim
i→∞

ρ(y,Gi(x)) = 0, G(x) 6= y ⇒ y 6= x (4.1)

then G has a unique fixed point x̃ ∈M and also

lim
i→∞

ρ(x̃, xi) = lim
i→∞

ρ(xi, x̃) = 0, xi = G(xi−1)

for any initial value x0 ∈M .
It is assumed in Theorem 4.7 that condition (4.1) is fulfilled; this condition is

not required in the familiar theorems about contraction mappings of metric spaces.
Note that the contraction mapping in a complete metric space having no fixed point
considered in [47] is not closed and does not satisfy condition (4.1). Of interest
are sufficient conditions under which a β-generalized contraction mapping satisfies
condition (4.1).
Property 4.8 ([55]) 10 If a β-generalized contraction operator G in an f -quasimetric
space (M,ρ) is closed then it satisfies condition (4.1).

20 Suppose that any Cauchy sequence in a complete f -quasimetric space has finitely
many limits. Then a β-generalized contraction operator G satisfies condition (4.1).
Theorem 4.9 ([55]) Suppose we are given an increasing right continuous function
ϕ : R+ → R+ such that ϕ(d) < d for all d > 0. If an f -quasimetric space (M,ρ) is
complete and for a mapping G : M →M satisfying condition (4.1) we have

∀x, y ∈M ρ(G(x), G(y)) ≤ ϕ(ρ(x, y))

then this mapping has a unique fixed point x̃ ∈M and

lim
i→∞

ρ(x̃, xi) = lim
i→∞

ρ(xi, x̃) = 0, xi = G(xi−1)

for any fixed value x0 ∈M .
Theorem 4.9 generalizes the results of [18, Theorem 3.2].

Acknowledgement. The results of the Theorems 2.9 – 2.11 are due to the first
author, who was supported by a grant from the Russian Science Foundation (project
no. 22-21-00863).
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