# APPLICATIONS OF FIBRE CONTRACTION PRINCIPLE TO SOME CLASSES OF FUNCTIONAL INTEGRAL EQUATIONS 

VERONICA ILEA*, DIANA OTROCOL**, IOAN A. RUS*** AND MARCEL-ADRIAN ŞERBAN****<br>*Babeş-Bolyai University, Faculty of Mathematics and Computer Science, M. Kogălniceanu St. 1, RO-400084 Cluj-Napoca, Romania<br>E-mail: vdarzu@math.ubbcluj.ro<br>**Technical University of Cluj-Napoca, Memorandumului St. 28, 400114, Cluj-Napoca, Romania, and<br>Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, P.O.Box. 68-1, 400110, Cluj-Napoca, Romania E-mail: dotrocol@ictp.acad.ro<br>*** Babeş-Bolyai University, Faculty of Mathematics and Computer Science, M. Kogălniceanu St. 1, RO-400084 Cluj-Napoca, Romania<br>E-mail: iarus@math.ubbcluj.ro<br>****Babeş-Bolyai University, Faculty of Mathematics and Computer Science, M. Kogălniceanu St. 1, RO-400084 Cluj-Napoca, Romania E-mail: mserban@math.ubbcluj.ro


#### Abstract

Let $a<c<b$ real numbers, $(\mathbb{B},|\cdot|)$ a (real or complex) Banach space, $H \in C([a, b] \times[a, c] \times$ $\mathbb{B}, \mathbb{B}), K \in C\left([a, b]^{2} \times \mathbb{B}, \mathbb{B}\right), g \in C([a, b], \mathbb{B}), A: C([a, c], \mathbb{B}) \rightarrow C([a, c], \mathbb{B})$ and $B: C([a, b], \mathbb{B}) \rightarrow$ $C([a, b], \mathbb{B})$. In this paper we study the following functional integral equation, $$
x(t)=\int_{a}^{c} H(t, s, A(x)(s)) d s+\int_{a}^{t} K(t, s, B(x)(s)) d s+g(t), t \in[a, b] .
$$

By a new variant of fibre contraction principle (A. Petruşel, I.A. Rus, M.A. Şerban, Some variants of fibre contraction principle and applications: from existence to the convergence of successive approximations, Fixed Point Theory, 22 (2021), no. 2, 795-808) we give existence, uniqueness and convergence of successive approximations results for this equation. In the case of ordered Banach space $\mathbb{B}$, Gronwall-type and comparison-type results are also given. Key Words and Phrases: Functional integral equation, Volterra operator, Picard operator, fibre contraction principle, Gronwall lemma, comparison lemma. 2020 Mathematics Subject Classification: $47 \mathrm{~N} 05,47 \mathrm{H} 10,45 \mathrm{D} 05,47 \mathrm{H} 09,54 \mathrm{H} 25$.


## 1. Introduction

In this paper we study the following functional integral equation,

$$
\begin{equation*}
x(t)=\int_{a}^{c} H(t, s, A(x)(s)) d s+\int_{a}^{t} K(t, s, B(x)(s)) d s+g(t), t \in[a, b] \tag{1.1}
\end{equation*}
$$

where $a<c<b$ are real numbers, $(\mathbb{B},|\cdot|)$ is a Banach space, $H \in C([a, b] \times[a, c] \times$ $\mathbb{B}, \mathbb{B}), K \in C\left([a, b]^{2} \times \mathbb{B}, \mathbb{B}\right), g \in C([a, b], \mathbb{B})$ and $A: C([a, c], \mathbb{B}) \rightarrow C([a, c], \mathbb{B})$ and $B: C([a, b], \mathbb{B}) \rightarrow C([a, b], \mathbb{B})$ are given operators.

For some examples of such integral equations see [5], [6], [16], [28], [2], [4], [7].
Let $V: C([a, b], \mathbb{B}) \rightarrow C([a, b], \mathbb{B})$ be defined by

$$
V(x)(t):=\int_{a}^{c} H(t, s, A(x)(s)) d s+\int_{a}^{t} K(t, s, B(x)(s)) d s+g(t), t \in[a, b]
$$

In this paper we consider on the spaces of continuous functions max-norms.
Let us suppose that
$\left(C_{1}\right) \exists L_{H}>0:\left|H\left(t, s, \eta_{1}\right)-H\left(t, s, \eta_{2}\right)\right| \leq L_{H}\left|\eta_{1}-\eta_{2}\right|$, for all $t \in[a, b], s \in[a, c]$, $\eta_{1}, \eta_{2} \in \mathbb{B} ;$
$\left(C_{2}\right) \exists L_{K}>0:\left|K\left(t, s, \eta_{1}\right)-K\left(t, s, \eta_{2}\right)\right| \leq L_{K}\left|\eta_{1}-\eta_{2}\right|$, for all $t, s \in[a, b], \eta_{1}, \eta_{2} \in$ $\mathbb{B}$;
$\left(C_{3}\right) \exists L_{A}>0: \max _{[a, c]}|A(y)(t)-A(z)(t)| \leq L_{A} \max _{[a, c]}|y(t)-z(t)|$, for all $y, z \in$ $C([a, c], \mathbb{B}) ;$
$\left(C_{4}\right) \exists L_{B}>0:|B(y)(t)-B(z)(t)| \leq L_{B} \max _{[a, t]}|y(s)-z(s)|$, for all $t \in[a, b]$.
If we apply the contraction principle, in a standard way, for equation (1.1), we have the following result:

Theorem 1.1. In addition to the above conditions we suppose that:
$\left(C_{5}^{\prime}\right) L_{H} L_{A}(c-a)+L_{K} L_{B}(b-a)<1$.
Then the equation (1.1) has in $C([a, b], \mathbb{B})$ a unique solutions, $x^{*}$ and $x^{*}=\lim _{n \rightarrow \infty} x_{n}$, where $x_{n}$ is defined by $x_{0} \in C([a, b], \mathbb{B}), x_{n+1}=V\left(x_{n}\right), n \in \mathbb{N}$, i.e., $V$ is a Picard operator.

The aim of this paper is to improve condition $\left(C_{5}^{\prime}\right)$, obtaining the same conclusions. In order to do this we shall apply instead of contraction principle, a new variant of fibre contraction principle, variant given in [13].

In a similar way we study the equation

$$
x(t)=\int_{b}^{c} H(t, s, A(x)(s)) d s+\int_{b}^{t} K(t, s, B(x)(s)) d s+g(t), t \in[a, b]
$$

with suitable conditions on $H, K, A$ and $B$.
Throughout this paper we shall use the notations from [28], [22] and [13].

## 2. Preliminaries

2.1. Weakly Picard operators. Let $(X, \rightarrow)$ be an $L$-space, where $X$ is a nonempty set and $\rightarrow$ is a convergence structure defined on $X$. If $T: X \rightarrow X$ is an operator, then we denote by $F_{T}:=\{x \in X: x=T(x)\}$ the fixed point set of $T$.

In the above context, $T: X \rightarrow X$ is called a weakly Picard operator (briefly $W P O)$ if, for each $x \in X$, the sequence of Picard iterations $\left(T^{n}(x)\right)_{n \in \mathbb{N}}$ converges with respect to $\rightarrow$ to a fixed point of $T$. In particular, if $F_{T}=\left\{x^{*}\right\}$, then $T$ is called a Picard operator (briefly PO).

If $T: X \rightarrow X$ is a $W P O$, then we define a set retraction $T^{\infty}: X \rightarrow F_{T}$ by the formula

$$
T^{\infty}(x):=\lim _{n \rightarrow \infty} T^{n}(x)
$$

If $T$ is $P O$ with its unique fixed point $x^{*}$, then $T^{\infty}(X)=\left\{x^{*}\right\}$.
For the weakly Picard operator theory see [21], [29], [25], [27], [30].
Theorem 2.1. (Abstract Gronwall lemma)([21], [29]) Let $(X, \rightarrow, \leq)$ be an ordered $L$-space and $T: X \rightarrow X$ be an operator. We suppose that:
(i) $T$ is a WPO;
(ii) $T$ is increasing.

Then:
(a) $x \leq T(x) \Longrightarrow x \leq T^{\infty}(x)$;
(b) $x \geq T(x) \Longrightarrow x \geq T^{\infty}(x)$.

Theorem 2.2. (Abstract Comparison lemma) ([21], [29]) Let $(X, \rightarrow, \leq)$ be an ordered $L$-space and $T, U, V: X \rightarrow X$ be three operators. We suppose that:
(i) $T \leq U \leq V$;
(ii) $T, U$ and $V$ are $W P O s$;
(iii) the operator $U$ is increasing.

## Then:

$$
x \leq y \leq z \Rightarrow T^{\infty}(x) \leq U^{\infty}(y) \leq V^{\infty}(z)
$$

2.2. Fibre contraction principle. The standard fibre contraction principle has the following statement:
Theorem 2.3. Let $\left(X_{0}, \rightarrow\right)$ be an L-space. For $m \in \mathbb{N}^{*}$, let $\left(X_{i}, d_{i}\right), i \in\{1, \ldots, m\}$ be complete metric spaces. Let $T_{0}: X_{0} \rightarrow X_{0}$ be an operator and, for $i \in\{1, \ldots, m\}$, let us consider $T_{i}: X_{0} \times X_{1} \times \cdots \times X_{i} \rightarrow X_{i}$. We suppose that:
(1) $T_{0}$ is a $W P O$;
(2) for each $i \in\{1,2, \ldots, m\}$, the operators $T_{i}\left(x_{0}, \ldots, x_{i-1}, \cdot\right): X_{i} \rightarrow X_{i}$ are $l_{i}$-contractions;
(3) for each $i \in\{1,2, \ldots, m\}$, the operators $T_{i}$ are continuous.

Then, the operator $T=\left(T_{0}, T_{1}, \ldots, T_{m}\right): \prod_{i=0}^{m} X_{i} \rightarrow \prod_{i=0}^{m} X_{i}$, defined by

$$
T\left(x_{0}, \ldots, x_{m}\right):=\left(T_{0}\left(x_{0}\right), T_{1}\left(x_{0}, x_{1}\right), \ldots, T_{m}\left(x_{0}, \ldots, x_{m}\right)\right)
$$

is a WPO. Moreover, when $T_{0}$ is a PO, then $T$ is a $P O$ too.
For other results regarding fibre contractions, see [11], [23], [30], [25], [34], [31], ..., fibre generalized contractions, see [20], [32], [33], [34], ..., fibre generalized contractions on generalized metric spaces, see [1], [3], [18], [24], [20], ... .

In [19] it is obtained a new type of fibre contraction principle in the following settings:

Let $\left(X_{i}, d_{i}\right)(i \in\{1, \ldots, m\}$ where $m \geq 2)$ be metric spaces and $U_{1} \subset X_{1} \times X_{2}$, $U_{2} \subset U_{1} \times X_{3}, \ldots, U_{m-1} \subset U_{m-2} \times X_{m}$, be nonempty subsets.

For $x \in X_{1}$, we define

$$
U_{1 x}:=\left\{x_{2} \in X_{2} \mid\left(x, x_{2}\right) \in U_{1}\right\}
$$

for $x \in U_{1}$, we define

$$
U_{2 x}:=\left\{x_{3} \in X_{3} \mid\left(x, x_{3}\right) \in U_{2}\right\}, \ldots
$$

and for $x \in U_{m-2}$, we define

$$
U_{m-1 x}:=\left\{x_{m} \in X_{m} \mid\left(x, x_{m}\right) \in U_{m-1}\right\} .
$$

We suppose that $U_{1 x}, U_{2 x}, \ldots, U_{m-1 x}$ are nonempty.
If $T_{1}: X_{1} \rightarrow X_{1}, T_{2}: U_{1} \rightarrow X_{2}, \ldots, T_{m}: U_{m-1} \rightarrow X_{m}$, then we consider the operator

$$
T: U_{m-1} \rightarrow X_{1} \times X_{2} \times \ldots \times X_{m}
$$

defined by

$$
T\left(x_{1}, \ldots, x_{m}\right):=\left(T_{1}\left(x_{1}\right), T_{2}\left(x_{1}, x_{2}\right), \ldots, T_{m}\left(x_{1}, x_{2}, \ldots, x_{m}\right)\right)
$$

The result is the following.
Theorem 2.4. ([19]) We suppose that:
(1) $\left(X_{i}, d_{i}\right), i \in\{2, \ldots, m\}$ are complete metric spaces and $U_{i}, i \in\{1, \ldots, m-1\}$ are closed subsets;
(2) $\left(T_{1}, T_{2}, \ldots, T_{i+1}\right)\left(U_{i}\right) \subset U_{i}, i \in\{1, \ldots, m-1\} ;$
(3) $T_{1}$ is a WPO;
(4) there exist $L_{i}>0$ and $0<l_{i}<1, i \in\{1, \ldots, m-1\}$ such that

$$
d_{i+1}\left(T_{i+1}(x, y,), T_{i+1}(\widetilde{x}, \widetilde{y})\right) \leq L_{i} \widetilde{d}_{i}(x, \widetilde{x})+l_{i} d_{i+1}(y, \widetilde{y})
$$

for all $(x, y),(\widetilde{x}, \widetilde{y}) \in U_{i}, i \in\{1, \ldots, m-1\}$, where $\widetilde{d}_{i}$ is a metric induced by $d_{1}, \ldots, d_{i}$ on $X_{1} \times \cdots \times X_{i}$, defined by $\tilde{d}_{i}:=\max \left\{d_{1}, \ldots, d_{i}\right\}$.

Then $T$ is $W P O$. If $T_{1}$ is $P O$, then $T$ is a PO too.

## 3. Abstract Volterra operators on spaces of continuous functions of one variable

By definition, an operator $V: C([a, b], \mathbb{B}) \rightarrow C([a, b], \mathbb{B})$ is forward Volterra operator if the following implication holds:

$$
x, y \in C([a, b], \mathbb{B}),\left.x\right|_{[a, t]}=\left.\left.y\right|_{[a, t]} \Rightarrow V(x)\right|_{[a, t]}=\left.V(y)\right|_{[a, t]},
$$

for all $t \in[a, b]$.
An operator $V: C([a, b], \mathbb{B}) \rightarrow C([a, b], \mathbb{B})$ is backward Volterra operator iff:

$$
x, y \in C([a, b], \mathbb{B}),\left.x\right|_{[t, b]}=\left.\left.y\right|_{[t, b]} \Rightarrow V(x)\right|_{[t, b]}=\left.V(y)\right|_{[t, b]}
$$

for all $t \in[a, b]$.
If $a<c<b$ then $V$ is forward Volterra operator w.r.t. the interval $[c, b]$ iff

$$
x, y \in C([a, b], \mathbb{B}),\left.x\right|_{[a, t]}=\left.\left.y\right|_{[a, t]} \Rightarrow V(x)\right|_{[a, t]}=\left.V(y)\right|_{[a, t]}, \text { for all } t \in[c, b]
$$

The operator $V$ is backward Volterra operator w.r.t. the interval $[a, c]$ iff:

$$
x, y \in C([a, b], \mathbb{B}),\left.x\right|_{[t, b]}=\left.\left.y\right|_{[t, b]} \Rightarrow V(x)\right|_{[t, b]}=\left.V(y)\right|_{[t, b]}, \text { for all } t \in[a, c] .
$$

Example 3.1. For $f \in C\left([a, b] \times \mathbb{R}^{p}, \mathbb{R}^{p}\right)$ let us consider the Cauchy problem

$$
\begin{aligned}
x^{\prime}(t) & =f(t, x(t)), t \in[a, b] \\
x(a) & =\alpha .
\end{aligned}
$$

This problem is equivalent with the following integral equation

$$
x(t)=\alpha+\int_{a}^{t} f(s, x(s)) d s, t \in[a, b]
$$

Let $V: C\left([a, b], \mathbb{R}^{p}\right) \rightarrow C\left([a, b], \mathbb{R}^{p}\right)$ be defined by

$$
V(x)(t):=\alpha+\int_{a}^{t} f(s, x(s)) d s, t \in[a, b]
$$

The operator $V$ is a forward Volterra operator.
If we consider the Cauchy problem

$$
\begin{aligned}
x^{\prime}(t) & =f(t, x(t)), t \in[a, b] \\
x(b) & =\beta
\end{aligned}
$$

then this problem is equivalent with the integral equation,

$$
x(t)=\beta+\int_{b}^{t} f(s, x(s)) d s, t \in[a, b] .
$$

In this case the corresponding operator, $V: C\left([a, b], \mathbb{R}^{p}\right) \rightarrow C\left([a, b], \mathbb{R}^{p}\right)$ defined by the second part of this integral equation is backward Volterra operator.

If for $\left.t_{0} \in\right] a, b[$, we consider the Cauchy problem

$$
\begin{aligned}
& x^{\prime}(t)=f(t, x(t)), t \in[a, b] \\
& x\left(t_{0}\right)=\gamma
\end{aligned}
$$

then this problem is equivalent with the integral equation

$$
x(t)=\gamma+\int_{t_{0}}^{t} f(s, x(s)) d s, t \in[a, b]
$$

and the corresponding operator $V$ is a forward Volterra operator with respect to $\left[t_{0}, b\right]$ and is backward Volterra operator w.r.t. the interval $\left[a, t_{0}\right]$.
Example 3.2. Let the operator $V: C[a, b] \rightarrow C[a, b]$ defined by $V(x)(t):=x(g(t))$, where $g \in C([a, b],[a, b])$. If $g(t) \leq t, \forall t \in[a, b]$, then $V$ is forward Volterra operator and if $g(t) \geq t, \forall t \in[a, b]$ then $V$ is a backward Volterra operator.

Example 3.3. $V: C[a, b] \rightarrow C[a, b], V(x)(t):=\max _{[a, t]} u(\tau), t \in[a, b]$ is a forward
Volterra operator.
Example 3.4. Let $A: C([a, b], \mathbb{B}) \rightarrow C([a, b], \mathbb{B})$ be a forward Volterra operator. Then the operator $V: C([a, b], \mathbb{B}) \rightarrow C([a, b], \mathbb{B})$ defined by

$$
V(x)(t):=\int_{a}^{t} A(u)(s) d s
$$

is a forward Volterra operator.
Example 3.5. ([2], [16]) Let $V: C([0, b], \mathbb{B}) \rightarrow C([0, b], \mathbb{B})$ be such that

$$
|V(x)(t)-V(y)(t)| \leq \alpha|x(t)-y(t)|+\frac{\gamma}{t^{\beta}} \int_{0}^{t}|x(s)-y(s)| d s
$$

$\forall x, y \in C([0, b], \mathbb{B}), \forall t \in[0, b]$, where $\alpha, \beta \in[0,1[$ and $\gamma>0$ are given real numbers.
The operator $V$ is a forward Volterra operator.
For more considerations on abstract Volterra operator, see [9], [36]. For other examples see [2], [4], [5], [6], [7], [12], [14], [16], [17], [22], [35], ...

## 4. Basic results

Let us consider the equation (1.1) in the conditions $\left(C_{1}\right)-\left(C_{4}\right)$. For $m \in \mathbb{N}, m \geq 2$ we shall use the following notations:

$$
\begin{gathered}
t_{0}:=c, t_{k}:=c+\frac{k(b-c)}{m}, k=\overline{1, m}, X_{0}=C([a, c], \mathbb{B}) \\
X_{i}=C\left(\left[t_{i-1}, t_{i}\right], \mathbb{B}\right), X=\prod_{i=0}^{m} X_{i}
\end{gathered}
$$

We consider the spaces of continuous functions with the max-norms. In order to use the variant of fibre contraction principle given by Theorem 2.4, we need the following subsets:

$$
U_{i}=\left\{\left(x_{0}, x_{1}, \ldots, x_{i}\right) \in \prod_{k=0}^{i} X_{k} \mid x_{k}\left(t_{k}\right)=x_{k+1}\left(t_{k}\right), k=\overline{1, m-1}\right\}, i=\overline{1, m}
$$

For $x \in X_{0}$,

$$
U_{1 x}:=\left\{x_{1} \in X_{1} \mid\left(x, x_{1}\right) \in U_{1}\right\}
$$

for $x \in X_{i-1}$,

$$
U_{i x}:=\left\{x_{i} \in X_{i} \mid\left(x, x_{i}\right) \in U_{i}\right\}, i=\overline{2, m} .
$$

We remark that, $U_{i}, U_{i x}, i=\overline{1, m}$ are nonempty closed subsets.
We also need the following operators:

$$
R_{i}: C\left(\left[a, t_{i}\right], \mathbb{B}\right) \rightarrow \prod_{k=0}^{i} X_{k}, R_{i}(x)=\left(\left.x\right|_{\left[a, t_{0}\right]},\left.x\right|_{\left[t_{0}, t_{1}\right]}, \ldots,\left.x\right|_{\left[t_{i-1}, t_{i}\right]}\right), i=\overline{1, m}
$$

It is clear that, $R_{i}\left(C\left(\left[a, t_{i}\right], \mathbb{B}\right)\right)=U_{i}$ and $R_{i}: C\left(\left[a, t_{i}\right], \mathbb{B}\right) \rightarrow U_{i}$ is an increasing homeomorphism.

Since the operator, $V: C([a, b], \mathbb{B}) \rightarrow C([a, b], \mathbb{B})$ defined by $V(x)(t):=$ second part of equation (1.1), is a forward Volterra operator on $[c, b]$, it induces the following operators:

$$
\begin{gathered}
T_{0} \quad: \quad X_{0} \rightarrow X_{0}, \\
T_{0}\left(x_{0}\right)(t) \quad=\quad V\left(x_{0}\right)(t), t \in[a, c], \\
T_{1}: U_{1} \rightarrow X_{1}, \\
T_{1}\left(x_{0}, x_{1}\right)(t):=\int_{a}^{c} H\left(t, s, A\left(x_{0}\right)(s)\right) d s+\int_{a}^{c} K\left(t, s, B\left(x_{0}\right)(s)\right) d s \\
+\int_{c}^{t} K\left(t, s, B\left(R_{1}^{-1}\left(x_{0}, x_{1}\right)(s)\right) d s+g(t), t \in\left[c, t_{1}\right],\right. \\
T_{1}\left(x_{0}, x_{1}, x_{2}\right)(t):=\int_{a}^{c} H\left(t, s, A\left(x_{0}\right)(s)\right) d s+\int_{a}^{c} K\left(t, s, B\left(x_{0}\right)(s)\right) d s \\
+\int_{c}^{t_{1}} K\left(t, s, B\left(R_{1}^{-1}\left(x_{0}, x_{1}\right)(s)\right) d s\right. \\
+\int_{t_{1}}^{t} K\left(t, s, B\left(R_{2}^{-1}\left(x_{0}, x_{1}, x_{2}\right)(s)\right) d s+g(t), t \in\left[t_{1}, t_{2}\right],\right. \\
\ldots \\
T_{m}\left(x_{0}, x_{1}, \ldots, x_{m}\right)(t):=\int_{a}^{c} H\left(t, s, A\left(x_{0}\right)(s)\right) d s+\int_{a}^{c} K\left(t, s, B\left(x_{0}\right)(s)\right) d s+\ldots \\
+\int_{t_{m-1}}^{t} K\left(t, s, B\left(R_{m}^{-1}\left(x_{0}, x_{1}, \ldots, x_{m}\right)(s)\right) d s+g(t), t \in\left[t_{m-1}, b\right] .\right.
\end{gathered}
$$

Let

$$
\begin{aligned}
T & :=\left(T_{0}, T_{1}, \ldots, T_{m}\right) \\
T\left(x_{0}, x_{1}, \ldots, x_{m}\right) & :=\left(T_{0}\left(x_{0}\right), T_{1}\left(x_{0}, x_{1}\right), \ldots, T_{m}\left(x_{0}, x_{1}, \ldots, x_{m}\right)\right)
\end{aligned}
$$

If on the cartesian product we consider max-norms, the operators $R_{i}, i=\overline{1, m}$ are isometries. From the above definitions, we remark that

$$
\left(T_{0}, T_{1}\right)\left(U_{1}\right) \subset U_{1},\left(T_{0}, T_{1}, \ldots, T_{m}\right)\left(U_{m}\right) \subset U_{m}
$$

In the conditions $\left(C_{1}\right)-\left(C_{4}\right)$ we have that: $T_{0}$ is $\left(L_{H} L_{A}+L_{K} L_{B}\right)(c-a)$-Lipschitz. If we suppose that
$\left(C_{5}\right)\left(L_{H} L_{A}+L_{K} L_{B}\right)(c-a)<1$
then we are in the conditions of Theorem 2.4 with

$$
L_{i}=\max \left\{\left(L_{H} L_{A}+L_{K} L_{B}\right)(c-a), \frac{L_{K} L_{B}(b-c)}{m}\right\}
$$

and $l_{i}=\frac{L_{K} L_{B}(b-c)}{m}$, with suitable $m \in \mathbb{N}$.
From this theorem we have that $T$ is PO.
Since $V=R_{m}^{-1} T R_{m}$ and $V^{n}=R_{m}^{-1} T^{n} R_{m}$, it follows that $V$ is PO.
So, we have:
Theorem 4.1. We consider the equation (1.1) in the condition $\left(C_{1}\right)-\left(C_{5}\right)$. Under these conditions we have that:
(i) The equation (1.1) has in $C([a, b], \mathbb{B})$ a unique solution, $x^{*}$.
(ii) The sequence, $\left(x_{n}\right)_{n \in \mathbb{N}}$, defined by $x^{0} \in C([a, b], \mathbb{B})$, $x^{n+1}(t)=\int_{a}^{c} H\left(t, s, A\left(x^{n}\right)(s)\right) d s+\int_{a}^{t} K\left(t, s, B\left(x^{n}\right)(s)\right) d s+g(t), t \in[a, b]$,
converges to $x^{*}$, i.e., the operator $V$ is $P O$.
Remark 4.2. If we take, $\mathbb{B}=\mathbb{R}^{p}$ or $\mathbb{C}^{p}$ or another finite dimensional Banach space, then Theorem 4.1 is a result for a system of functional integral equations.
Remark 4.3. If we take, $\mathbb{B}:=l^{p}(\mathbb{C})$ or $\mathbb{B}:=l^{p}(\mathbb{R}), 1 \leq p \leq \infty$, or another Banach space of sequences, Theorem 4.1 is a result for an infinite system of functional integral equations.
Remark 4.4. For some particular cases of $A$ and $B$ our result is in connection with some result given in [2], [4], [5], [6], [7], [10], [14], [26], [28], [35], [8], [12], [13], [15].

## 5. Equations with backward Volterra operators

In this section we consider the following integral equation

$$
\begin{equation*}
x(t)=\int_{b}^{c} H(t, s, A(x)(s)) d s+\int_{b}^{t} K(t, s, B(x)(s)) d s+g(t), t \in[a, b] \tag{5.1}
\end{equation*}
$$

where $a<c<b$ are real numbers, $(\mathbb{B},|\cdot|)$ is a Banach space, $H \in C([a, b] \times[c, b] \times$ $\mathbb{B}, \mathbb{B}), K \in C\left([a, b]^{2} \times \mathbb{B}, \mathbb{B}\right), g \in C([a, b], \mathbb{B})$ and $A: C([c, b], \mathbb{B}) \rightarrow C([c, b], \mathbb{B})$ and $B: C([a, b], \mathbb{B}) \rightarrow C([a, b], \mathbb{B})$ are operators. We suppose that:
$\left(\widetilde{C}_{1}\right) \exists L_{H}>0:\left|H\left(t, s, \eta_{1}\right)-H\left(t, s, \eta_{2}\right)\right| \leq L_{H}\left|\eta_{1}-\eta_{2}\right|$, for all $t \in[a, b], s \in$ $[c, b], \eta_{1}, \eta_{2} \in \mathbb{B} ;$
$\left(\widetilde{C}_{2}\right) \exists L_{K}>0:\left|K\left(t, s, \eta_{1}\right)-K\left(t, s, \eta_{2}\right)\right| \leq L_{K}\left|\eta_{1}-\eta_{2}\right|$, for all $t, s \in[a, b], \eta_{1}, \eta_{2} \in$ $\mathbb{B}$;
$\left(\widetilde{C}_{3}\right) \exists L_{A}>0: \max _{[c, b]}|A(y)(t)-A(z)(t)| \leq L_{A} \max _{[c, b]}|y(t)-z(t)|$, for all $y, z \in$ $C([c, b], \mathbb{B}) ;$
$\left(\widetilde{C}_{4}\right) \exists L_{B}>0:|B(y)(t)-B(z)(t)| \leq L_{B} \max _{[t, b]}|y(s)-z(s)|$, for all $t \in[a, b] ;$
$\left(\widetilde{C}_{5}\right)\left(L_{H} L_{A}+L_{K} L_{B}\right)(b-c)<1$.
For $m \in \mathbb{N}, m \geq 2$ we shall use the following notations:

$$
\begin{gathered}
t_{0}:=c, t_{k}:=c-\frac{k(c-a)}{m}, k=\overline{1, m}, X_{0}=C([c, b], \mathbb{B}) \\
X_{i}=C\left(\left[t_{i+1}, t_{i}\right], \mathbb{B}\right), X=\prod_{i=0}^{m} X_{i}
\end{gathered}
$$

We will apply again Theorem 2.4 in the following settings. The continuous functions spaces are endowed with the max-norms. We consider the following subsets:

$$
\begin{aligned}
U_{i} & =\left\{\left(x_{0}, x_{1}, \ldots, x_{i}\right) \in \prod_{k=0}^{i} X_{k} \mid x_{k}\left(t_{k}\right)=x_{k+1}\left(t_{k}\right), k=\overline{0, m-1}\right\}, i=\overline{1, m}, \\
U_{1 x} & :=\left\{x_{1} \in X_{1} \mid\left(x, x_{1}\right) \in U_{1}\right\}, \text { for } x \in X_{0}
\end{aligned}
$$

For $x \in X_{0}$, for $x \in X_{i-1}, U_{i x}:=\left\{x_{i} \in X_{i} \mid\left(x, x_{i}\right) \in U_{i}\right\}, i=\overline{2, m}$.
We remark that, $U_{i}, U_{i x}, i=\overline{1, m}$ are nonempty closed subsets.
We also need the following operators:

$$
R_{i}: C\left(\left[t_{i}, b\right], \mathbb{B}\right) \rightarrow \prod_{k=0}^{i} X_{k}, R_{i}(x)=\left(\left.x\right|_{\left[t_{0}, b\right]},\left.x\right|_{\left[t_{1}, t_{0}\right]}, \ldots,\left.x\right|_{\left[t_{i}, t_{i-1}\right]}\right), i=\overline{1, m}
$$

It is clear that, $R_{i}\left(C\left(\left[t_{i}, b\right], \mathbb{B}\right)\right)=U_{i}$ and $R_{i}: C\left(\left[t_{i}, b\right], \mathbb{B}\right) \rightarrow U_{i}$ is an increasing homeomorphism.

Since the operator, $V: C([a, b], \mathbb{B}) \rightarrow C([a, b], \mathbb{B})$ defined by $V(x)(t):=$ second part of equation (5.1), is a backward Volterra operator on $[a, c]$, it induces the following operators:

$$
\begin{gathered}
\begin{aligned}
& T_{0} \quad: \quad X_{0} \rightarrow X_{0}, \\
& T_{0}\left(x_{0}\right)(t): \quad=V\left(x_{0}\right)(t), t \in[c, b], \\
& T_{1}: U_{1} \rightarrow X_{1}, \\
& T_{1}\left(x_{0}, x_{1}\right)(t):=\int_{b}^{c} H\left(t, s, A\left(x_{0}\right)(s)\right) d s+\int_{b}^{c} K\left(t, s, B\left(x_{0}\right)(s)\right) d s \\
&+\int_{c}^{t} K\left(t, s, B\left(R_{1}^{-1}\left(x_{0}, x_{1}\right)(s)\right) d s+g(t), t \in\left[t_{1}, c\right],\right. \\
& T_{1}\left(x_{0}, x_{1}, x_{2}\right)(t):=\int_{b}^{c} H\left(t, s, A\left(x_{0}\right)(s)\right) d s+\int_{b}^{c} K\left(t, s, B\left(x_{0}\right)(s)\right) d s \\
&+\int_{c}^{t_{1}} K\left(t, s, B\left(R_{1}^{-1}\left(x_{0}, x_{1}\right)(s)\right) d s\right. \\
&+\int_{t_{1}}^{t} K\left(t, s, B\left(R_{2}^{-1}\left(x_{0}, x_{1}, x_{2}\right)(s)\right) d s+g(t), t \in\left[t_{2}, t_{1}\right],\right.
\end{aligned}
\end{gathered}
$$

$$
\begin{gathered}
T_{m}: U_{m} \rightarrow X_{m} \\
T_{m}\left(x_{0}, x_{1}, \ldots, x_{m}\right)(t):=\int_{b}^{c} H\left(t, s, A\left(x_{0}\right)(s)\right) d s+\int_{b}^{c} K\left(t, s, B\left(x_{0}\right)(s)\right) d s+\ldots \\
+\int_{t_{m-1}}^{t} K\left(t, s, B\left(R_{m}^{-1}\left(x_{0}, x_{1}, \ldots, x_{m}\right)(s)\right) d s+g(t), t \in\left[a, t_{m-1}\right] .\right.
\end{gathered}
$$

Let

$$
\begin{aligned}
T & :=\left(T_{0}, T_{1}, \ldots, T_{m}\right) \\
T\left(x_{0}, x_{1}, \ldots, x_{m}\right) & \left.:=\left(T_{0}\left(x_{0}\right), T_{1}\left(x_{0}, x_{1}\right), \ldots, T_{m}\left(x_{0}, x_{1}, \ldots, x_{m}\right)\right)\right)
\end{aligned}
$$

If on the cartesian product we consider max-norms, the operators $R_{i}, i=\overline{1, m}$ are isometries. From the above definitions, we remark that

$$
\left(T_{0}, T_{1}\right)\left(U_{1}\right) \subset U_{1},\left(T_{0}, T_{1}, \ldots, T_{m}\right)\left(U_{m}\right) \subset U_{m}
$$

In the conditions $\left(C_{1}\right)-\left(C_{4}\right)$ we have that: $T_{0}$ is $\left(L_{H} L_{A}+L_{K} L_{B}\right)(b-c)$ contraction and $T_{i}, i=1, \ldots, m$, satisfy the condition (5) from the Theorem 2.4 with $L_{i}=\max \left\{\left(L_{H} L_{A}+L_{K} L_{B}\right)(b-c), \frac{L_{K} L_{B}(c-a)}{m}\right\}$ and $l_{i}=\frac{L_{K} L_{B}(c-a)}{m}$, with suitable $m \in \mathbb{N}$.

From this theorem we have that $T$ is PO.
Since $V=R_{m}^{-1} T R_{m}$ and $V^{n}=R_{m}^{-1} T^{n} R_{m}$, it follows that $V$ is PO.
So, we have:
Theorem 5.1. We consider the equation (5.1) in the condition $\left(\widetilde{C}_{1}\right)-\left(\widetilde{C}_{5}\right)$. Under these conditions we have that:
(i) The equation (5.1) has in $C([a, b], \mathbb{B})$ a unique solution, $x^{*}$.
(ii) The sequence, $\left(x_{n}\right)_{n \in \mathbb{N}}$, defined by
$x^{0} \in C([a, b], \mathbb{B})$,

$$
x^{n+1}(t)=\int_{a}^{c} H\left(t, s, A\left(x^{n}\right)(s)\right) d s+\int_{a}^{t} K\left(t, s, B\left(x^{n}\right)(s)\right) d s+g(t), t \in[a, b],
$$

converges to $x^{*}$, i.e., the operator $V$ is $P O$.

## 6. Gronwall-Type results

In this section we consider $(\mathbb{B},|\cdot|, \leq)$ an ordered Banach space. Related to the equation (1.1)

$$
x(t)=\int_{a}^{c} H(t, s, A(x)(s)) d s+\int_{a}^{t} K(t, s, B(x)(s)) d s+g(t), t \in[a, b]
$$

we consider the inequalities:

$$
\begin{equation*}
x(t) \leq \int_{a}^{c} H(t, s, A(x)(s)) d s+\int_{a}^{t} K(t, s, B(x)(s)) d s+g(t), t \in[a, b] \tag{6.1}
\end{equation*}
$$

and

$$
\begin{equation*}
x(t) \geq \int_{a}^{c} H(t, s, A(x)(s)) d s+\int_{a}^{t} K(t, s, B(x)(s)) d s+g(t), t \in[a, b] \tag{6.2}
\end{equation*}
$$

As an application of the Theorem 2.1 we have
Theorem 6.1. We consider the equation (1.1) under the hypotheses $\left(C_{1}\right)-\left(C_{5}\right)$ of the Theorem 4.1. In addition, we suppose that
( $C_{6}$ ) $H(t, s, \cdot), K(t, s, \cdot), A$ and $B$ are increasing.
Then
(a) $x \leq x^{*}$ for any $x$ solution of (6.1);
(b) $x \geq x^{*}$ for any $x$ solution of (6.2);
where $x^{*}$ is the unique solution of (1.1).
Proof. It follows from Theorem 4.1 that the operator $V: C([a, b], \mathbb{B}) \rightarrow C([a, b], \mathbb{B})$ defined by $V(x)(t):=$ second part of equation (1.1) is a PO and from $\left(C_{6}\right)$ we have that $V$ is an increasing operator, so the conclusion is obtained from Theorem 2.1.

## 7. COMPARISON-TYPE RESULTS

We consider the functional integral equations:

$$
\begin{gathered}
x_{i}(t)=\int_{a}^{c} H_{i}(t, s, A(x)(s)) d s+\int_{a}^{t} K_{i}(t, s, B(x)(s)) d s+g_{i}(t) \\
t \in[a, b], \quad i=\overline{1,3}
\end{gathered}
$$

where $a<c<b$ are real numbers, $(\mathbb{B},|\cdot|, \leq)$ an ordered Banach space, $H_{i} \in C([a, b] \times$ $[a, c] \times \mathbb{B}, \mathbb{B}), K_{i} \in C\left([a, b]^{2} \times \mathbb{B}, \mathbb{B}\right), g_{i} \in C([a, b], \mathbb{B}), i=\overline{1,3}$, and $A: C([a, c], \mathbb{B}) \rightarrow$ $C([a, c], \mathbb{B})$ and $B: C([a, b], \mathbb{B}) \rightarrow C([a, b], \mathbb{B})$ are given operators. We have the following comparison result:

Theorem 7.1. We suppose that:
(i) $H_{i}, K_{i}, g_{i}, i=\overline{1,3}, A, B$ satisfy the conditions $\left(C_{1}\right)-\left(C_{5}\right)$;
(ii) $H_{1} \leq H_{2} \leq H_{3}$ and $K_{1} \leq K_{2} \leq K_{3}$;
(iii) $H_{2}(t, s, \cdot), K_{2}(t, s, \cdot), A$ and $B$ are increasing.

If $x_{1}(a) \leq x_{2}(a) \leq x_{3}(a)$ then $x_{1}^{*} \leq x_{2}^{*} \leq x_{3}^{*}$, where $x_{i}^{*}$ is the unique solution of (7.1), $i=\overline{1,3}$.

Proof. From Theorem 4.1 we have that operator $V_{i}: C([a, b], \mathbb{B}) \rightarrow C([a, b], \mathbb{B})$ defined by

$$
V_{i}(x)(t):=\int_{a}^{c} H_{i}(t, s, A(x)(s)) d s+\int_{a}^{t} K_{i}(t, s, B(x)(s)) d s+g_{i}(t), t \in[a, b]
$$

is $\mathrm{PO}, i=\overline{1,3}$. Let $F_{V_{i}}=\left\{x_{i}^{*}\right\}, i=\overline{1,3}$.
If $u \in \mathbb{B}$ then we denote by $\tilde{u}$ the constant function

$$
\tilde{u}:[a, b] \rightarrow \mathbb{B}, \tilde{u}(t)=u
$$

It is clear that

$$
V_{i}^{\infty}\left(\widetilde{\left(x_{i}(a)\right.}\right)=x_{i}^{*}, \quad i=\overline{1,3},
$$

and from (ii) we get that

$$
V_{1}(x) \leq V_{2}(x) \leq V_{3}(x), \forall x \in C([a, b], \mathbb{B})
$$

From condition (iii) we have that operator $V_{2}$ is an increasing operator, so, the conclusion is obtained from Theorem 2.2.

## References

[1] S. András, Fibre $\varphi$-contraction on generalized metric spaces and applications, Mathematica, 45(68)(2003), no. 1, 3-8.
[2] C. Avramescu, C. Vladimirescu, Fixed points for some non-obviously contractive operators defined in a space of continuous functions, Electronic J. Qualit. Th. Diff, Eq., 2004, no. 3, 1-7.
[3] C. Bacoţiu, Fibre Picard operators on generalized metric spaces, Sem. Fixed Point Theory Cluj-Napoca, $\mathbf{1}$ (2000), 5-8.
[4] D.D. Bainov, S. Hristova, Differential Equations with Maxima, Chapman \& Hall/CRC Pure and Applied Mathematics, 2011.
[5] O.-M. Bolojan, Fixed Point Methods for Nonlinear Differential Systems with Nonlocal Conditions, Casa Cărţii de Ştiinţă, Cluj-Napoca, 2013.
[6] A. Boucherif, R. Precup, On the nonlocal initial value problem for first order differential equations, Fixed Point Theory, 4(2003), 205-212.
[7] T.A. Burton, Stability by Fixed Point Theory for Functional Differential Equations, Dover Publ. New York, 2006.
[8] T.A. Burton, A note on existence and uniqueness for integral equations with sum of two operators: progressive contractions, Fixed Point Theory, 20(2019), no. 1, 107-112.
[9] C. Corduneanu, Abstract Volterra equations: a survey, Math. and Computer Model, 32(1113)(2000), 1503-1528.
[10] E. Egri, On First and Second Order Iterative Functional Differential Equations and Systems, Presa Univ. Clujeană, Cluj-Napoca, 2008.
[11] W.M. Hirsch, C.C. Pugh, Stable manifolds and hyperbolic sets, Proc. Symp. in Pure Math., 14(1970), 133-163.
[12] V. Ilea, D. Otrocol, On the Burton method of progressive contractions for Volterra integral equations, Fixed Point Theory, 21 (2020), no. 2, 585-594.
[13] V. Ilea, D. Otrocol, Functional differential equations with maxima, via step by step contraction principle, Carpathian J. Math., 37(2021), no. 2, 195-202.
[14] V. Mureşan, Functional Integral Equations, Mediamira, Cluj-Napoca, 2003.
[15] D. Otrocol, I.A. Rus, Functional-differential equations with maxima of mixed type argument, Fixed Point Theory, 9(2008), no. 1, 207-220.
[16] E. De Pascale, L. De Pascale, Fixed points for some norm-obviously contractive operators, Proc. Amer. Math. Soc., 130(2002), no. 11, 3249-3254.
[17] E. De Pascale, P.P. Zabreiko, Fixed point theorems for operators in spaces of continuous functions, Fixed Point Theory, 5(2004), no. 1, 117-129.
[18] A. Petruşel, I.A. Rus, M.A. Şerban, Fixed points for operators on generalized metric spaces, CUBO - A Mathematical Journal, 10(2008), no. 4, 45-66.
[19] A. Petruşel, I.A. Rus, M.A. Şerban, Some variants of fibre contraction principle and applications: from existence to the convergence of successive approximations, Fixed Point Theory, 22(2021), no. 2, 795-808.
[20] I.A. Rus, A fibre generalized contraction theorem and applications, Mathematica, 41(1999), no. 1, 85-90.
[21] I.A. Rus, Picard operators and applications, Scientiae Mathematicae Japon., 58(2003), no. 1, 191-219.
[22] I.A. Rus, Abstract models of step method which imply the convergence of successive approximations, Fixed Point Theory, 9(2008), no. 1, 293-307.
[23] I.A. Rus, Fibre Picard operators and applications, Stud. Univ. Babeş-Bolyai Math., 44(1999), 89-98.
[24] I.A. Rus, Fibre Picard operators on generalized metric spaces and applications, Scripta Sc. Math., 1(1999), 326-334.
[25] I.A. Rus, Generalized Contractions and Applications, Cluj University Press Cluj-Napoca, 2001.
[26] I.A. Rus, Some nonlinear functional differential and integral equations, via weakly Picard operator theory: a survey, Carpathian J. Math., 26(2010), no. 2, 230-258.
[27] I.A. Rus, Some variants of contraction principle, generalizations and applications, Stud. Univ. Babeş-Bolyai Math., 61(2016), no. 3, 343-358.
[28] I.A. Rus, Some variants of contraction principle in the case of operators with Volterra property: step by step contraction principle, Advances in the Theory of Nonlinear Analysis and its Applications, 3(2019) no. 3, 111-120.
[29] I.A. Rus, Weakly Picard operators and applications, Seminar on Fixed Point Theory, ClujNapoca, 2 (2001), 41-58.
[30] I.A. Rus, A. Petruşel, G. Petruşel, Fixed Point Theory, Cluj Univ. Press, Cluj-Napoca, 2008.
[31] I.A. Rus, M.A. Şerban, Operators on infinite dimensional Cartesian product, Analele Univ. Vest, Timişoara, Math.-Inf., 48(2010), 253-263.
[32] I.A. Rus, M.A. Şerban, Some generalizations of a Cauchy lemma and applications, Topics in Mathematics, Computer Science and Philosophy, Ed. Şt. Cobzaş, Cluj University Press, 2008, 173-181.
[33] M.A. Şerban, Fibre $\varphi$-contractions, Stud. Univ. Babeş-Bolyai, Math., 44(1999), no. 3, 99-108.
[34] M.A. Şerban, Fixed Point Theory for Operators on Cartesian Product, (in Romanian), Cluj University Press, Cluj-Napoca, 2002.
[35] M.A. Şerban, I.A. Rus, A, Petruşel, A class of abstract Volterra equations, via weakly Picard operators technique, Math. Ineq. Appl., 13(2010), no. 2, 255-269.
[36] E.S. Zhukovskii, M.J. Alves, Abstract Volterra operators, Russian Mathematics (Iz. VUZ), 52(2008), no. 3, 1-14.

Received: January 11, 2021; Accepted: March 4, 2021.

