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Abstract. Let a < ¢ < breal numbers, (B, |-|) a (real or complex) Banach space, H € C([a, b] X [a, c] x
B,B), K € C([a,b)> x B,B), g € C([a,0],B), A : C([a,c],B) — C([a,c],B) and B : C([a,b],B) —
C([a,b],B). In this paper we study the following functional integral equation,

c t
z(t):/ H(t,s,A(m)(s))der/ K(t, s, B(x)(s))ds + g(t), ¢ € [a,b].

By a new variant of fibre contraction principle (A. Petrusel, I.A. Rus, M.A. Serban, Some variants
of fibre contraction principle and applications: from existence to the convergence of successive ap-
proximations, Fixed Point Theory, 22 (2021), no. 2, 795-808) we give existence, uniqueness and
convergence of successive approximations results for this equation. In the case of ordered Banach
space B, Gronwall-type and comparison-type results are also given.
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1. INTRODUCTION

In this paper we study the following functional integral equation,
c t
x(t) z/ H(t,s,A(x)(s))ds—!—/ K(t,s,B(x)(s))ds + g(t), t € [a, ], (1.1)

where a < ¢ < b are real numbers, (B, |-|) is a Banach space, H € C([a,b] X [a, c] x
B,B), K € C([a,b)> x B,B), g € C([a,b],B) and A : C([a,c],B) — C([a,c],B) and
B : C([a,b],B) — C([a,b],B) are given operators.
For some examples of such integral equations see [5], [6], [16], [28], [2], [4], [7].
Let V : C([a,b],B) = C([a,b], B) be defined by

V(z)(t) := /C H(t,s, A(z)(s))ds +/ K(t,s,B(z)(s))ds + g(t), t € [a,b].

In this paper we consider on the spaces of continuous functions max-norms.
Let us suppose that

(C1) ALy > 0: |H(t,s,m) — H(t,8,m2)| < Ly |m — o, for all t € [a,b], s € [a, ],

m,ne € B;

(Cy) ALk > 0: |K(t,s,m) — K(t,8,m2)| < Lg |m —n2|, for allt, s € [a,b], n1,m2 €
B;

(C3) dLa > 0 : I[na>]<|A(y)(t) —Az)(®)| < LAr[na)](|y(t) —2(t)], for all y,z €
c(la,d,B); ’

(Cy) 3L >0: |B(y)(t) — B(2)(t)| < LBr[riaﬁ{|y(s) — z(s)|, for all t € [a, b)].

If we apply the contraction principle, in a standard way, for equation (1.1), we
have the following result:

Theorem 1.1. In addition to the above conditions we suppose that:
(Cé) LHLA(C — a) + LKLB(b - CL) <1

Then the equation (1.1) has in C([a,b],B) a unique solutions, x* and z* = lim x,,
n—0o0

where x,, is defined by o € C([a,b],B), zpr1 = V(x,), n € N, i.e., V is a Picard
operator.

The aim of this paper is to improve condition (C%), obtaining the same conclusions.
In order to do this we shall apply instead of contraction principle, a new variant of
fibre contraction principle, variant given in [13].

In a similar way we study the equation

z(t) = /bcH(t,s,A(z)(s))ds +/b K(t,s,B(x)(s))ds + g(t), t € [a,b],

with suitable conditions on H, K, A and B.
Throughout this paper we shall use the notations from [28], [22] and [13].
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2. PRELIMINARIES

2.1. Weakly Picard operators. Let (X, —) be an L-space, where X is a nonempty
set and — is a convergence structure defined on X. If T': X — X is an operator,
then we denote by Fr := {z € X : x = T(z)} the fixed point set of T'.

In the above context, T : X — X is called a weakly Picard operator (briefly
WPO) if, for each z € X, the sequence of Picard iterations (7™ (z))nen converges
with respect to — to a fixed point of T. In particular, if Fr = {z*}, then T is called
a Picard operator (briefly PO).

IfT: X — X isa WPO, then we define a set retraction T°° : X — Fp by the
formula

T°(x) := nhﬁn;Q T"(x).
If T is PO with its unique fixed point z*, then T°°(X) = {z*}.
For the weakly Picard operator theory see [21], [29], [25], [27], [30].

Theorem 2.1. (Abstract Gronwall lemma)([21], [29]) Let (X, —,<) be an ordered
L-space and T : X — X be an operator. We suppose that:

(i) T is a WPO;

(ii) T is increasing.
Then:

(a) 2 <T(r) =z <T>(x);

(b) 2>T (x) =z >T>*(x).

Theorem 2.2. (Abstract Comparison lemma)([21], [29]) Let (X, —, <) be an ordered
L-space and T,U,V : X — X be three operators. We suppose that:
i) T<ULV;
(ii) T, U and V are WPOs;
(iii) the operator U is increasing.
Then:
p<y<z = T=(@) SUS(y) < V().

2.2. Fibre contraction principle. The standard fibre contraction principle has the
following statement:

Theorem 2.3. Let (Xo,—) be an L-space. For m € N*, let (X;,d;), i € {1,...,m}
be complete metric spaces. Let Ty : Xg — Xo be an operator and, for i € {1,...,m},
let us consider T; : Xo X X1 X --- x X; — X;. We suppose that:
(1) Ty is a WPO;
(2) for each i € {1,2,...,m}, the operators T;(xo,...,z;i—1,") : X; — X; are
l;-contractions;
(3) for each i € {1,2,...,m}, the operators T; are continuous.

Then, the operator T = (To,T1, ..., Tm) : HXi — HX“ defined by
i=0 i=0
T(.Z'07 . ,,CCm) = (T0($0),T1($07$1)7 . ,Tm(m(), e ,.Tm))
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is a WPO. Moreover, when Ty is a PO, then T is a PO too.

For other results regarding fibre contractions, see [11], [23], [30], [25], [34], [31], ...,
fibre generalized contractions, see [20], [32], [33], [34], ..., fibre generalized contractions
on generalized metric spaces, see [1], [3], [18], [24], [20], ... .

In [19] it is obtained a new type of fibre contraction principle in the following
settings:

Let (X;,d;) (i € {1,...,m} where m > 2) be metric spaces and U; C X; X Xa,
U, CU X X3,..., Up_1 CUp—2 X X;,, be nonempty subsets.

For z € X, we define

Urr :={x2 € Xo | (z,22) € Uy },
for x € Uy, we define
Usy :={x3 € X3 | (z,23) € Ua}y ...,
and for z € U,,_o, we define
Un-1z :={2m € Xim | (x,2m) € Upn—1}.

We suppose that Ui, Uss, ..., Up_1, are nonempty.
T X1 - X4, T : Uy —» Xo,..., Ty : Up—1 — X, then we consider the
operator

T:Up-1— X1 X Xox...x X,
defined by
T(x1,...,2m) = (T (z1), To(z1,22), ..., T (1,22, . . ., Tin))-
The result is the following.

Theorem 2.4. ([19]) We suppose that:

(1) (Xi,d;), i € {2,...,m} are complete metric spaces and U;, i € {1,...,m—1} are
closed subsets;

(2) (T17T27 cee an+1)(Ui) - Ui’ i€ {17 ey T — 1};

(3) Ty is a WPO;

(4) there exist Ly >0 and 0 <l; <1, i€ {1,...,m — 1} such that

diir (Tia (@,9,), Tia (7, 7)) < Lidi (2, %) + Lidi1 (y, 9),

for all (z,y),(Z,y) € U;, 1 € {}, weym — 1}, where d; is a metric induced by di,...,d;
on X1 X -+ x X;, defined by d; := max{ds,...,d;}.
Then T is WPO. If Ty is PO, then T is a PO too.
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3. ABSTRACT VOLTERRA OPERATORS ON SPACES OF CONTINUOUS FUNCTIONS
OF ONE VARIABLE

By definition, an operator V : C([a,b], B) — C([a, b],B) is forward Volterra opera-
tor if the following implication holds:

2,y € C([a, 0], B), @l = Yluy = V@lag= V¥l

for all ¢t € [a, b].
An operator V : C([a, b],B) — C([a,b],B) is backward Volterra operator iff:

z,y € C([a,b], B), 17|[t,b] = y‘[t,b] = V(x)ht,b] = V(y)|[t7b],

for all ¢ € [a, b].
If a < ¢ < b then V is forward Volterra operator w.r.t. the interval [c, b] iff

z,y € C([a,b],B), [y =Yl = V@)= VW, foralteleb]
The operator V' is backward Volterra operator w.r.t. the interval [a, ] iff:
2,y € C([a,b],B), [y = ylyy = V(@lypy = V@)l foralltela,c
Example 3.1. For f € C([a,b] x RP,RP) let us consider the Cauchy problem
2'(t) = f(t,2(t)), t € [a,b],
z(a) = a.

This problem is equivalent with the following integral equation

z(t) = « +/ f(s,z(s))ds, t € [a,b].
Let V : C([a,b],RP) — C([a, b], RP) be defined by

V(z)(t) := a+/ f(s,z(s))ds, t € [a,b].

The operator V is a forward Volterra operator.
If we consider the Cauchy problem

2'(t) = f(t, x(t)), t € [a,0],
z(b) = B,

then this problem is equivalent with the integral equation,

(1) =,8+/b F(s,2(s))ds, ¢ € [a, )]

In this case the corresponding operator, V : C([a, ], R?) — C([a,b], RP) defined by
the second part of this integral equation is backward Volterra operator.
If for tg €]a, b], we consider the Cauchy problem

x/(t) = f(tax(t))v le [a’b]a
.T(t()) =7
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then this problem is equivalent with the integral equation

a:(t)=7+/t F(s,2(s))ds, ¢ € [a,b)],

and the corresponding operator V is a forward Volterra operator with respect to [tg, 0]
and is backward Volterra operator w.r.t. the interval [a, to].

Example 3.2. Let the operator V : Cl[a,b] — Cla,b] defined by V(z)(¢) := x(g(t)),

where g € C([a, b], [a,b]). If g(t) < t, Vt € [a,b], then V is forward Volterra operator

and if g(t) > ¢, Vt € [a,b] then V is a backward Volterra operator.

Example 3.3. V : Cla,b] — Cla,b], V(z)(t) = r[naﬁ(u(T), t € [a,b] is a forward
K

Volterra operator.

Example 3.4. Let A : C([a,b],B) — C([a,b],B) be a forward Volterra operator.
Then the operator V : C([a, b],B) — C([a,b],B) defined by

is a forward Volterra operator.

Example 3.5. ([2], [16]) Let V : C([0,b],B) — C(]0,b],B) be such that

V(@)(t) = V(y)(®)] < afz(t) |+t5/ |(s) = y(s)| ds,

Va,y € C([0,b],B), Vt € [0,b], where o, 8 € [0,1] and y > 0 are given real numbers.
The operator V is a forward Volterra operator.

For more considerations on abstract Volterra operator, see [9], [36]. For other
examples see [2], [4], [5], [6], [7], [12], [14], [16], [17], [22], [35], ...

4. BASIC RESULTS

Let us consider the equation (1.1) in the conditions (C}) — (Cy). For m € N;m > 2
we shall use the following notations:

to :=c, g ::c—i—w, kE=1,m, Xo=C([a,d,B),
m
Xi:C([l 17 ’ X HX

We consider the spaces of continuous functions Wlth the max-norms. In order
to use the variant of fibre contraction principle given by Theorem 2.4, we need the
following subsets:

Ui ={(z0,21,...,2) € H Xi| (te) = zp1(t), k=1,m -1}, i=1,m.
k=0
For x € Xy,
U1z = {1‘1 c X1| (.%‘,.”L'l) S Ul},
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forx € X; 1,

Uip := {.’)31 S Xz| (.’)371‘1) S Ul}, 1 =2,m.
We remark that, U;, U;,, ¢ = 1, m are nonempty closed subsets.
We also need the following operators:

Ri: Clla.t:],B) — [[ Xi. Rilw) = (m|[a7t0] Sl [ti,l,m) L i=T,m.
k=0
It is clear that, R; (C([a,t;],B)) = U; and R; : C([a,t;],B) — U; is an increasing
homeomorphism.
Since the operator, V : C([a,b],B) — C([a,b],B) defined by V(z)(¢) := second
part of equation (1.1), is a forward Volterra operator on [c, b], it induces the following
operators:

To : Xo— XQ,
To(wo)(t) = V(xo)(t), t € [a,c],
T1 : U1 — Xl,

T1(zg, z1)(t) := /CH(t,s,A(xo)(s))ds + /CK(t,s,B(xo)(s))dS

+/ K(t,s, B(Ry (w0, x1)(s))ds + g(t), t € [c,t1],
T : Uy — XQ,
i (0, 21, 2) (1) ::/ H(t,s,A(xo)(s))ds+/ K(t, 5, B(xo)(s))ds

i1

+ K(t,s,B(Rfl(mo,xl)(s))ds

t
+ / K(t, 5, B(Ry (20, 21, 2)(s))ds + g(t), ¢ € [t2, ta],
t1

T 2 U — X,
T (o, @1, - ooy Ty ) (E) = / H(t,s, A(zo)(s))ds + / K(t,s,B(x0)(s))ds + ...
t a a
[ Kt B oo, . wm)(s)ds + g(0), £ € [t b
tnL—l
Let
T : :(T‘O,Tyl,...,T’,ﬂ)7
T(xg, 21, &Tm) : = (To(zo), Th(xo, 1), Tin(To, 1, .., Tm))-

If on the cartesian product we consider max-norms, the operators R;, i = 1,m are
isometries. From the above definitions, we remark that

(T07T1)(U1) C U17 (T07T17~ .. 7Tm)(Um) C Um

In the conditions (C;)—(Cy) we have that: Ty is (LgLa+ Lx Lp)(c—a)-Lipschitz.
If we suppose that
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(Cs) (LHLA + LKLB)(C — a) <1
then we are in the conditions of Theorem 2.4 with

Li = max {(LHLA + Lk Lp)(c—a), LKLB(b_C)}

m

Ly Lp(b—
and [; = m, with suitable m € N.

m
From this theorem we have that T" is PO.

Since V = R TR, and V" = R 'T"R,,, it follows that V is PO.
So, we have:

Theorem 4.1. We consider the equation (1.1) in the condition (Cy) — (C5). Under
these conditions we have that:

(i) The equation (1.1) has in C([a,b],B) a unique solution, x*.
(ii) The sequence, (Tn)nen, defined by

¥ € C(a,b],B),
A (7 /HtsA ds—i—/Kts ™ (s))ds + g(t), t € [a,b],

converges to x*, i.e., the operator V is PO.

Remark 4.2. If we take, B = RP or CP or another finite dimensional Banach space,
then Theorem 4.1 is a result for a system of functional integral equations.

Remark 4.3. If we take, B := [P(C) or B := [P(R), 1 < p < 0o, or another Banach
space of sequences, Theorem 4.1 is a result for an infinite system of functional integral
equations.

Remark 4.4. For some particular cases of A and B our result is in connection with
some result given in [2], [4], [5], [6], [7], [10], [14], [26], [28], [35], [8], [12], [13], [15].

5. EQUATIONS WITH BACKWARD VOLTERRA OPERATORS

In this section we consider the following integral equation

= /bc H(t,s,A(a:)(s))ds+/b K(t,s,B(x)(s))ds + g(t), t € [a,b], (5.1)

where a < ¢ < b are real numbers, (B, |-|) is a Banach space, H € C([a,b] X [c,b] x
B,B), K € C([a,b]?> x B,B), g € C([a,b],B) and A : C([c,b],B) — C([c,b],B) and
B : C([a,b],B) — C([a,b],B) are operators. We suppose that:

(C1) 3Ly > 0 : |H(t,s,m) — H(t,s,m2)| < Ly |m — |, for all t € [a,b], s

e d], m,me € B;

(Co) ALk > 0: |K(t,s,m) — K(t,8,m2)| < L |m1 —n2|, for allt, s € [a,b], n1,1m2 €
B;

(@) 3La > 0 maxlAQ)(O) — ABO)] < Lamaxly(t) — =(0)], for all v,z €
(e, b, B); ’

(Ca) AL >0: |B(y)(t) — B(2)(1)] < LBT?%(W( s) — z(s)|, for all t € [a, b];
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(Cs) (LyLa+ LgLp)(b—c)< 1.
For m € N, m > 2 we shall use the following notations:

k(e —
to :=c, tg IZC—M, k=1,m, Xo=C([c,}],B),
m

Xi:C([erl, X HX

We will apply again Theorem 2.4 in the followmg settlngs. The continuous func-
tions spaces are endowed with the max-norms. We consider the following subsets:

Ui = {(zo,21,...,m:) € [[ Xil or(te) = wpqa(t), k=0,m—1}, i =T,m,
k=0
Uy, :i={x1 € X4| (z,21) € Uy}, for z € X.

For x € Xy, for x € X;_1, Uy, := {x; € Xi| (z, ;) € U;}, i =2,m.
We remark that, U;, U,,, i = 1, m are nonempty closed subsets.
We also need the following operators:

, ) i=T,m.
i)

R; : C([t;,b],B) — H Xk, Ri(z) = (x\[to,b] s By g0 T

It is clear that, R; (C([t;,b],B)) = U; and R; : C([t;,b],B) — U; is an increasing
homeomorphism.

Since the operator, V : C([a,b],B) — C([a,b], B) defined by V(z)(t) := second part
of equation (5.1), is a backward Volterra operator on [a,c], it induces the following
operators:

Ty : Xo— X,
To(@o)(t) : =V (w0) (1), t € [c,b],
. T : U — Xq, .
Tu(oo.o0)(0) = [ H(ts Ao (@)ds + [ K(t.s,Blao)(s)ds

/ K(t,s, B(R; (o, 21)(s))ds + g(t), t € [t1,],

T2 : U2 — XQ,
Ty (2o, 21, 22)(t) ::/b H(t,&A(xO)(s))ds—i—/b K(t,s, B(xo)(s))ds

+ K(t,s, B(Ry (0, 21)(s))ds

c

4 [ Kt B woo1,22) () ds + g(0), 1 € oz, 1],
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T 2 U — X,
T (o, 1, -+ oy Ty ) ( / H(t,s, A(zo)(s) der/ K(t,s, B(xo)(s))ds + ..

/ K(t5, B(R= (20,21, -, 2)(5))ds + g(£), £ € [a, b _1].
Let
T . = (T(),Tl,...,Tm)7
T(wo,xl,...,xm) : = (To(il,'o), Tl(l'o,l'l),...,Tm(xo,.’tl,..‘,wm))).

If on the cartesian product we consider max-norms, the operators R;, i = 1, m are
isometries. From the above definitions, we remark that

(TOaTl)(Ul) - Ula (T05T17' .. 7Tm)(Um) C Um

In the conditions (Cy) — (C4) we have that: Ty is (LgyLa + LxLp)(b — ¢)-
contraction and T;, i = 1,...,m, satisfy the condition (5) from the Theorem 2.4 with

LgLp(c— LrLp(c—
Li = max (LHLA‘FLKLB)(b_C)vKBTr(Lca)} and ll = W

, with

suitable m € N.
From this theorem we have that T is PO.
Since V = R TR, and V" = R 'T"R,,, it follows that V is PO.
So, we have:

Theorem 5.1. We consider the equation (5.1) in the condition (Cy) — (Cs). Under
these conditions we have that:

(i) The equation (5.1) has in C([a,b],B) a unique solution, x*.
(ii) The sequence, (Tn)nen, defined by

2 € O(a,b],B),
P = [ HGs AN+ [ Kb B )+ gl0), ¢ € o],

converges to x*, i.e., the operator V is PO.

6. GRONWALL-TYPE RESULTS

In this section we consider (B, |-|,<) an ordered Banach space. Related to the
equation (1.1)

/HtsA ds+/KtsB (s))ds +g(t), t € [a,b],

we consider the inequalities:

t) < /CH(t,s,A(a:)(s))ds +/ K(t,s,B(x)(s))ds + g(t), t € [a,]] (6.1)
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and

c t
x(t) > / H(t,s,A(x)(s))ds—l—/ K(t,s,B(z)(s))ds + g(t), t € [a,b]. (6.2)
As an application of the Theorem 2.1 we have
Theorem 6.1. We consider the equation (1.1) under the hypotheses (C1) — (Cs) of
the Theorem 4.1. In addition, we suppose that
(Cs) H(t,s,-), K(t,s,-), A and B are increasing.
Then

(a) x < a* for any x solution of (6.1);
(b) & > x* for any x solution of (6.2);

where x* is the unique solution of (1.1).
Proof. Tt follows from Theorem 4.1 that the operator V : C([a,b],B) — C([a,b],B)

defined by V(z)(t) := second part of equation (1.1) is a PO and from (Cs) we have
that V is an increasing operator, so the conclusion is obtained from Theorem 2.1. [

7. COMPARISON-TYPE RESULTS

We consider the functional integral equations:

z;i(t) = /C H;(t, s, A(x)(s))ds +/ K;(t,s, B(z)(s))ds + g;(t), (7.1)

telab, i=1,3,

where a < ¢ < b are real numbers, (B, ||, <) an ordered Banach space, H; € C(]a, b] x
[a,c] x B,B), K; € C([a,b]?> x B,B), g; € C([a,b],B), i = 1,3, and A : C([a,c],B) —
C(la,c],B) and B : C([a,b],B) — C([a,b],B) are given operators. We have the
following comparison result:
Theorem 7.1. We suppose that:

(i) H;, K;, g;, i =1,3, A, B satisfy the conditions (C1) — (Cs);

(i) Hy < Hy < Hz and Ky < Ky < K3;

(iil) Ha(t,s,-), Ka(t,s, ), A and B are increasing.
If 1 (a) < x2(a) < x3(a) then 7 < x < xi, where x} is the unique solution of
(7.1),i=1,3.

Proof. From Theorem 4.1 we have that operator V; : C([a, b],B) — C([a, b],B) defined
by
c t
Vi(z)(t) ::/ H;(t,s, A(x)(s))ds —|—/ K;(t,s,B(z)(s))ds + gi(t), t € [a,b]

is PO, i=1,3. Let Fy, = {z}},i=1,3.
If u € B then we denote by @ the constant function

@ [a,b] = B, 4 (t) = u.



290

V. ILEA, D. OTROCOL, I.LA. RUS, M.A. SERBAN

It is clear that

ViF(wi(a) = 7, i=1,3,

and from (i) we get that

Vi(z) < Va(z) < Va(x), Vo € C(la,b],B).

From condition (i4i) we have that operator V5 is an increasing operator, so, the

conclusion is obtained from Theorem 2.2. O
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