Fixed Point Theory, 23(2022), No. 1, 279-292 DOI: 10.24193/fpt-ro.2022.1.18 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

APPLICATIONS OF FIBRE CONTRACTION PRINCIPLE TO SOME CLASSES OF FUNCTIONAL INTEGRAL EQUATIONS

VERONICA ILEA*, DIANA OTROCOL**, IOAN A. RUS*** AND MARCEL-ADRIAN ŞERBAN****

*Babeş-Bolyai University, Faculty of Mathematics and Computer Science, M. Kogălniceanu St. 1, RO-400084 Cluj-Napoca, Romania E-mail: vdarzu@math.ubbcluj.ro

> **Technical University of Cluj-Napoca, Memorandumului St. 28, 400114, Cluj-Napoca, Romania, and

Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, P.O.Box. 68-1, 400110, Cluj-Napoca, Romania E-mail: dotrocol@ictp.acad.ro

***Babeş-Bolyai University, Faculty of Mathematics and Computer Science, M. Kogălniceanu St. 1, RO-400084 Cluj-Napoca, Romania E-mail: iarus@math.ubbcluj.ro

****Babeş-Bolyai University, Faculty of Mathematics and Computer Science, M. Kogălniceanu St. 1, RO-400084 Cluj-Napoca, Romania E-mail: mserban@math.ubbcluj.ro

Abstract. Let a < c < b real numbers, $(\mathbb{B}, |\cdot|)$ a (real or complex) Banach space, $H \in C([a, b] \times [a, c] \times \mathbb{B}, \mathbb{B})$, $K \in C([a, b]^2 \times \mathbb{B}, \mathbb{B})$, $g \in C([a, b], \mathbb{B})$, $A : C([a, c], \mathbb{B}) \to C([a, c], \mathbb{B})$ and $B : C([a, b], \mathbb{B}) \to C([a, b], \mathbb{B})$. In this paper we study the following functional integral equation,

$$x(t) = \int_{a}^{c} H(t, s, A(x)(s))ds + \int_{a}^{t} K(t, s, B(x)(s))ds + g(t), \ t \in [a, b].$$

By a new variant of fibre contraction principle (A. Petruşel, I.A. Rus, M.A. Şerban, Some variants of fibre contraction principle and applications: from existence to the convergence of successive approximations, Fixed Point Theory, 22 (2021), no. 2, 795-808) we give existence, uniqueness and convergence of successive approximations results for this equation. In the case of ordered Banach space \mathbb{B} , Gronwall-type and comparison-type results are also given.

Key Words and Phrases: Functional integral equation, Volterra operator, Picard operator, fibre contraction principle, Gronwall lemma, comparison lemma.

2020 Mathematics Subject Classification: 47N05, 47H10, 45D05, 47H09, 54H25.

1. INTRODUCTION

In this paper we study the following functional integral equation,

$$x(t) = \int_{a}^{c} H(t, s, A(x)(s))ds + \int_{a}^{t} K(t, s, B(x)(s))ds + g(t), \ t \in [a, b],$$
(1.1)

where a < c < b are real numbers, $(\mathbb{B}, |\cdot|)$ is a Banach space, $H \in C([a, b] \times [a, c] \times \mathbb{B}, \mathbb{B})$, $K \in C([a, b]^2 \times \mathbb{B}, \mathbb{B})$, $g \in C([a, b], \mathbb{B})$ and $A : C([a, c], \mathbb{B}) \to C([a, c], \mathbb{B})$ and $B : C([a, b], \mathbb{B}) \to C([a, b], \mathbb{B})$ are given operators.

For some examples of such integral equations see [5], [6], [16], [28], [2], [4], [7]. Let $V: C([a, b], \mathbb{B}) \to C([a, b], \mathbb{B})$ be defined by

$$V(x)(t) := \int_{a}^{c} H(t, s, A(x)(s))ds + \int_{a}^{t} K(t, s, B(x)(s))ds + g(t), \ t \in [a, b].$$

In this paper we consider on the spaces of continuous functions max-norms. Let us suppose that

- $(C_1) \ \exists L_H > 0: |H(t, s, \eta_1) H(t, s, \eta_2)| \le L_H |\eta_1 \eta_2|, \text{ for all } t \in [a, b], s \in [a, c], \\ \eta_1, \eta_2 \in \mathbb{B};$
- $\begin{array}{l} \eta_1, \eta_2 \in \mathbb{Z}, \\ (C_2) \quad \exists L_K > 0 : |K(t, s, \eta_1) K(t, s, \eta_2)| \le L_K |\eta_1 \eta_2|, \text{ for all } t, s \in [a, b], \eta_1, \eta_2 \in \mathbb{B}; \\ \mathbb{B}; \end{array}$
- $(C_3) \stackrel{-}{\exists} L_A > 0 : \max_{[a,c]} |A(y)(t) A(z)(t)| \leq L_A \max_{[a,c]} |y(t) z(t)|, \text{ for all } y, z \in C([a,c], \mathbb{B});$
- $(C_4) \ \exists L_B > 0: \ |B(y)(t) B(z)(t)| \le L_B \max_{[a,t]} |y(s) z(s)|, \text{ for all } t \in [a,b].$

If we apply the contraction principle, in a standard way, for equation (1.1), we have the following result:

Theorem 1.1. In addition to the above conditions we suppose that:

$$(C'_5) L_H L_A(c-a) + L_K L_B(b-a) < 1.$$

Then the equation (1.1) has in $C([a,b],\mathbb{B})$ a unique solutions, x^* and $x^* = \lim_{n \to \infty} x_n$, where x_n is defined by $x_0 \in C([a,b],\mathbb{B})$, $x_{n+1} = V(x_n)$, $n \in \mathbb{N}$, *i.e.*, V is a Picard operator.

The aim of this paper is to improve condition (C'_5) , obtaining the same conclusions. In order to do this we shall apply instead of contraction principle, a new variant of fibre contraction principle, variant given in [13].

In a similar way we study the equation

$$x(t) = \int_{b}^{c} H(t, s, A(x)(s))ds + \int_{b}^{t} K(t, s, B(x)(s))ds + g(t), \ t \in [a, b],$$

with suitable conditions on H, K, A and B.

Throughout this paper we shall use the notations from [28], [22] and [13].

2. Preliminaries

2.1. Weakly Picard operators. Let (X, \rightarrow) be an L-space, where X is a nonempty set and \rightarrow is a convergence structure defined on X. If $T: X \rightarrow X$ is an operator, then we denote by $F_T := \{x \in X : x = T(x)\}$ the fixed point set of T.

In the above context, $T: X \to X$ is called a weakly Picard operator (briefly WPO) if, for each $x \in X$, the sequence of Picard iterations $(T^n(x))_{n \in \mathbb{N}}$ converges with respect to \rightarrow to a fixed point of T. In particular, if $F_T = \{x^*\}$, then T is called a Picard operator (briefly PO).

If $T: X \to X$ is a WPO, then we define a set retraction $T^{\infty}: X \to F_T$ by the formula

$$T^{\infty}(x) := \lim_{n \to \infty} T^n(x).$$

If T is PO with its unique fixed point x^* , then $T^{\infty}(X) = \{x^*\}$.

For the weakly Picard operator theory see [21], [29], [25], [27], [30].

Theorem 2.1. (Abstract Gronwall lemma)([21], [29]) Let (X, \rightarrow, \leq) be an ordered L-space and $T: X \to X$ be an operator. We suppose that:

- (i) T is a WPO;
- (ii) T is increasing.

Then:

- (a) $x \leq T(x) \Longrightarrow x \leq T^{\infty}(x);$ (b) $x \geq T(x) \Longrightarrow x \geq T^{\infty}(x).$

Theorem 2.2. (Abstract Comparison lemma)([21], [29]) Let (X, \rightarrow, \leq) be an ordered L-space and $T, U, V : X \to X$ be three operators. We suppose that:

- (i) T < U < V;
- (ii) T, U and V are WPOs;
- (iii) the operator U is increasing.

Then:

$$x \le y \le z \implies T^{\infty}(x) \le U^{\infty}(y) \le V^{\infty}(z).$$

2.2. Fibre contraction principle. The standard fibre contraction principle has the following statement:

Theorem 2.3. Let (X_0, \rightarrow) be an L-space. For $m \in \mathbb{N}^*$, let (X_i, d_i) , $i \in \{1, \ldots, m\}$ be complete metric spaces. Let $T_0: X_0 \to X_0$ be an operator and, for $i \in \{1, \ldots, m\}$, let us consider $T_i: X_0 \times X_1 \times \cdots \times X_i \to X_i$. We suppose that:

- (1) T_0 is a WPO;
- (2) for each $i \in \{1, 2, \ldots, m\}$, the operators $T_i(x_0, \ldots, x_{i-1}, \cdot) : X_i \to X_i$ are l_i -contractions;
- (3) for each $i \in \{1, 2, ..., m\}$, the operators T_i are continuous.

Then, the operator $T = (T_0, T_1, \dots, T_m) : \prod_{i=0}^m X_i \to \prod_{i=0}^m X_i$, defined by $T(x_0, \dots, x_m) := (T_0(x_0), T_1(x_0, x_1), \dots, T_m(x_0, \dots, x_m))$ is a WPO. Moreover, when T_0 is a PO, then T is a PO too.

For other results regarding fibre contractions, see [11], [23], [30], [25], [34], [31], ..., fibre generalized contractions, see [20], [32], [33], [34], ..., fibre generalized contractions on generalized metric spaces, see [1], [3], [18], [24], [20],

In [19] it is obtained a new type of fibre contraction principle in the following settings:

Let (X_i, d_i) $(i \in \{1, ..., m\}$ where $m \geq 2$) be metric spaces and $U_1 \subset X_1 \times X_2$, $U_2 \subset U_1 \times X_3, \ldots, U_{m-1} \subset U_{m-2} \times X_m$, be nonempty subsets.

For $x \in X_1$, we define

$$U_{1x} := \{ x_2 \in X_2 \mid (x, x_2) \in U_1 \},\$$

for $x \in U_1$, we define

$$U_{2x} := \{ x_3 \in X_3 \mid (x, x_3) \in U_2 \}, \dots,$$

and for $x \in U_{m-2}$, we define

$$U_{m-1x} := \{ x_m \in X_m \mid (x, x_m) \in U_{m-1} \}.$$

We suppose that $U_{1x}, U_{2x}, \ldots, U_{m-1x}$ are nonempty.

If $T_1: X_1 \to X_1, T_2: U_1 \to X_2, \ldots, T_m: U_{m-1} \to X_m$, then we consider the operator

$$T: U_{m-1} \to X_1 \times X_2 \times \ldots \times X_m,$$

defined by

$$T(x_1, \dots, x_m) := (T_1(x_1), T_2(x_1, x_2), \dots, T_m(x_1, x_2, \dots, x_m)).$$

The result is the following.

Theorem 2.4. ([19]) We suppose that:

(1) $(X_i, d_i), i \in \{2, ..., m\}$ are complete metric spaces and $U_i, i \in \{1, ..., m-1\}$ are closed subsets;

- (2) $(T_1, T_2, \dots, T_{i+1})(U_i) \subset U_i, i \in \{1, \dots, m-1\};$
- (3) T_1 is a WPO;
- (4) there exist $L_i > 0$ and $0 < l_i < 1$, $i \in \{1, ..., m-1\}$ such that

$$d_{i+1}(T_{i+1}(x,y,),T_{i+1}(\widetilde{x},\widetilde{y})) \le L_i d_i(x,\widetilde{x}) + l_i d_{i+1}(y,\widetilde{y}),$$

for all $(x, y), (\tilde{x}, \tilde{y}) \in U_i, i \in \{1, ..., m-1\}$, where d_i is a metric induced by $d_1, ..., d_i$ on $X_1 \times \cdots \times X_i$, defined by $\tilde{d}_i := \max\{d_1, ..., d_i\}$.

Then T is WPO. If T_1 is PO, then T is a PO too.

3. Abstract Volterra operators on spaces of continuous functions of one variable

By definition, an operator $V : C([a, b], \mathbb{B}) \to C([a, b], \mathbb{B})$ is forward Volterra operator if the following implication holds:

$$x, y \in C([a, b], \mathbb{B}), \ x|_{[a,t]} = y|_{[a,t]} \Rightarrow V(x)|_{[a,t]} = V(y)|_{[a,t]}$$

for all $t \in [a, b]$.

An operator $V: C([a, b], \mathbb{B}) \to C([a, b], \mathbb{B})$ is backward Volterra operator iff:

$$x,y\in C([a,b],\mathbb{B}), \ x|_{[t,b]}=y|_{[t,b]} \Rightarrow V(x)|_{[t,b]}=V(y)|_{[t,b]}\,,$$

for all $t \in [a, b]$.

If a < c < b then V is forward Volterra operator w.r.t. the interval [c, b] iff

$$x, y \in C([a, b], \mathbb{B}), \ x|_{[a, t]} = y|_{[a, t]} \Rightarrow V(x)|_{[a, t]} = V(y)|_{[a, t]}, \text{ for all } t \in [c, b].$$

The operator V is backward Volterra operator w.r.t. the interval [a, c] iff:

$$x, y \in C([a, b], \mathbb{B}), \ x|_{[t, b]} = y|_{[t, b]} \Rightarrow V(x)|_{[t, b]} = V(y)|_{[t, b]}, \text{ for all } t \in [a, c]$$

Example 3.1. For $f \in C([a, b] \times \mathbb{R}^p, \mathbb{R}^p)$ let us consider the Cauchy problem

$$x'(t) = f(t, x(t)), \ t \in [a, b],$$
$$x(a) = \alpha.$$

This problem is equivalent with the following integral equation

$$x(t) = \alpha + \int_a^t f(s, x(s)) ds, \ t \in [a, b].$$

Let $V: C([a, b], \mathbb{R}^p) \to C([a, b], \mathbb{R}^p)$ be defined by

$$V(x)(t) := \alpha + \int_a^t f(s, x(s)) ds, \ t \in [a, b].$$

The operator V is a forward Volterra operator.

If we consider the Cauchy problem

$$x'(t) = f(t, x(t)), \ t \in [a, b],$$

 $x(b) = \beta,$

then this problem is equivalent with the integral equation,

$$x(t) = \beta + \int_b^t f(s, x(s)) ds, \ t \in [a, b]$$

In this case the corresponding operator, $V : C([a, b], \mathbb{R}^p) \to C([a, b], \mathbb{R}^p)$ defined by the second part of this integral equation is backward Volterra operator.

If for $t_0 \in]a, b[$, we consider the Cauchy problem

$$x'(t) = f(t, x(t)), \ t \in [a, b],$$
$$x(t_0) = \gamma,$$

then this problem is equivalent with the integral equation

$$x(t) = \gamma + \int_{t_0}^t f(s, x(s)) ds, \ t \in [a, b].$$

and the corresponding operator V is a forward Volterra operator with respect to $[t_0, b]$ and is backward Volterra operator w.r.t. the interval $[a, t_0]$.

Example 3.2. Let the operator $V : C[a, b] \to C[a, b]$ defined by V(x)(t) := x(g(t)), where $g \in C([a, b], [a, b])$. If $g(t) \le t$, $\forall t \in [a, b]$, then V is forward Volterra operator and if $g(t) \ge t$, $\forall t \in [a, b]$ then V is a backward Volterra operator.

Example 3.3. $V: C[a,b] \to C[a,b], V(x)(t) := \max_{[a,t]} u(\tau), t \in [a,b]$ is a forward

Volterra operator.

Example 3.4. Let $A : C([a,b], \mathbb{B}) \to C([a,b], \mathbb{B})$ be a forward Volterra operator. Then the operator $V : C([a,b], \mathbb{B}) \to C([a,b], \mathbb{B})$ defined by

$$V(x)(t) := \int_{a}^{t} A(u)(s) ds$$

is a forward Volterra operator.

Example 3.5. ([2], [16]) Let $V : C([0, b], \mathbb{B}) \to C([0, b], \mathbb{B})$ be such that

$$|V(x)(t) - V(y)(t)| \le \alpha |x(t) - y(t)| + \frac{\gamma}{t^{\beta}} \int_0^t |x(s) - y(s)| \, ds$$

 $\forall x, y \in C([0, b], \mathbb{B}), \ \forall t \in [0, b], \text{ where } \alpha, \beta \in [0, 1[\text{ and } \gamma > 0 \text{ are given real numbers.}$ The operator V is a forward Volterra operator.

For more considerations on abstract Volterra operator, see [9], [36]. For other examples see [2], [4], [5], [6], [7], [12], [14], [16], [17], [22], [35], ...

4. Basic results

Let us consider the equation (1.1) in the conditions $(C_1) - (C_4)$. For $m \in \mathbb{N}, m \ge 2$ we shall use the following notations:

$$t_0 := c, \ t_k := c + \frac{k(b-c)}{m}, \ k = \overline{1, m}, \ X_0 = C([a, c], \mathbb{B}),$$
$$X_i = C([t_{i-1}, t_i], \mathbb{B}), \ X = \prod_{i=0}^m X_i.$$

We consider the spaces of continuous functions with the max-norms. In order to use the variant of fibre contraction principle given by Theorem 2.4, we need the following subsets:

$$U_i = \{(x_0, x_1, \dots, x_i) \in \prod_{k=0}^i X_k | x_k(t_k) = x_{k+1}(t_k), \ k = \overline{1, m-1}\}, \ i = \overline{1, m}.$$

For $x \in X_0$,

$$U_{1x} := \{ x_1 \in X_1 | (x, x_1) \in U_1 \},\$$

for $x \in X_{i-1}$,

$$U_{ix} := \{ x_i \in X_i | (x, x_i) \in U_i \}, \ i = \overline{2, m}.$$

We remark that, $U_i, U_{ix}, i = \overline{1, m}$ are nonempty closed subsets. We also need the following operators:

$$R_i: C([a,t_i], \mathbb{B}) \to \prod_{k=0}^i X_k, \ R_i(x) = \left(x|_{[a,t_0]}, x|_{[t_0,t_1]}, \dots, x|_{[t_{i-1},t_i]} \right), \ i = \overline{1, m}.$$

It is clear that, $R_i(C([a, t_i], \mathbb{B})) = U_i$ and $R_i : C([a, t_i], \mathbb{B}) \to U_i$ is an increasing homeomorphism.

Since the operator, $V : C([a, b], \mathbb{B}) \to C([a, b], \mathbb{B})$ defined by V(x)(t) := second part of equation (1.1), is a forward Volterra operator on [c, b], it induces the following operators:

$$\begin{split} T_0 &: X_0 \to X_0, \\ T_0(x_0)(t) &= V(x_0)(t), \ t \in [a,c], \\ T_1 : U_1 \to X_1, \\ T_1(x_0,x_1)(t) &:= \int_a^c H(t,s,A(x_0)(s))ds + \int_a^c K(t,s,B(x_0)(s))ds \\ &+ \int_c^t K(t,s,B(R_1^{-1}(x_0,x_1)(s))ds + g(t), \ t \in [c,t_1], \\ T_2 : U_2 \to X_2, \\ T_1(x_0,x_1,x_2)(t) &:= \int_a^c H(t,s,A(x_0)(s))ds + \int_a^c K(t,s,B(x_0)(s))ds \\ &+ \int_c^{t_1} K(t,s,B(R_1^{-1}(x_0,x_1)(s))ds \\ &+ \int_t^t K(t,s,B(R_2^{-1}(x_0,x_1,x_2)(s))ds + g(t), \ t \in [t_1,t_2], \\ &\dots \\ \\ &\dots \\ \end{split}$$

$$T_m : U_m \to X_m,$$

$$T_m(x_0, x_1, \dots, x_m)(t) := \int_a^c H(t, s, A(x_0)(s))ds + \int_a^c K(t, s, B(x_0)(s))ds + \dots$$

$$+ \int_{t_{m-1}}^t K(t, s, B(R_m^{-1}(x_0, x_1, \dots, x_m)(s))ds + g(t), \ t \in [t_{m-1}, b].$$

Let

$$T := (T_0, T_1, \dots, T_m),$$

$$T(x_0, x_1, \dots, x_m) := (T_0(x_0), T_1(x_0, x_1), \dots, T_m(x_0, x_1, \dots, x_m)).$$

If on the cartesian product we consider max-norms, the operators R_i , $i = \overline{1, m}$ are isometries. From the above definitions, we remark that

$$(T_0, T_1)(U_1) \subset U_1, \ (T_0, T_1, \dots, T_m)(U_m) \subset U_m.$$

In the conditions $(C_1) - (C_4)$ we have that: T_0 is $(L_H L_A + L_K L_B)(c-a)$ -Lipschitz. If we suppose that $(C_5) (L_H L_A + L_K L_B)(c-a) < 1$

then we are in the conditions of Theorem 2.4 with

$$L_i = \max\left\{ (L_H L_A + L_K L_B)(c-a), \frac{L_K L_B (b-c)}{m} \right\}$$

and $l_i = \frac{L_K L_B (b-c)}{m}$, with suitable $m \in \mathbb{N}$.

From this theorem we have that T is PO.

Since $V = R_m^{-1}TR_m$ and $V^n = R_m^{-1}T^nR_m$, it follows that V is PO. So, we have:

Theorem 4.1. We consider the equation (1.1) in the condition $(C_1) - (C_5)$. Under these conditions we have that:

- (i) The equation (1.1) has in $C([a, b], \mathbb{B})$ a unique solution, x^* .
- (ii) The sequence, $(x_n)_{n \in \mathbb{N}}$, defined by

$$x^0 \in C([a,b],\mathbb{B}),$$

$$x^{n+1}(t) = \int_{a}^{c} H(t, s, A(x^{n})(s))ds + \int_{a}^{t} K(t, s, B(x^{n})(s))ds + g(t), \ t \in [a, b],$$

converges to x^* , i.e., the operator V is PO.

Remark 4.2. If we take, $\mathbb{B} = \mathbb{R}^p$ or \mathbb{C}^p or another finite dimensional Banach space, then Theorem 4.1 is a result for a system of functional integral equations.

Remark 4.3. If we take, $\mathbb{B} := l^p(\mathbb{C})$ or $\mathbb{B} := l^p(\mathbb{R})$, $1 \le p \le \infty$, or another Banach space of sequences, Theorem 4.1 is a result for an infinite system of functional integral equations.

Remark 4.4. For some particular cases of A and B our result is in connection with some result given in [2], [4], [5], [6], [7], [10], [14], [26], [28], [35], [8], [12], [13], [15].

5. Equations with backward Volterra operators

In this section we consider the following integral equation

$$x(t) = \int_{b}^{c} H(t, s, A(x)(s))ds + \int_{b}^{t} K(t, s, B(x)(s))ds + g(t), \ t \in [a, b],$$
(5.1)

where a < c < b are real numbers, $(\mathbb{B}, |\cdot|)$ is a Banach space, $H \in C([a, b] \times [c, b] \times \mathbb{B}, \mathbb{B})$, $K \in C([a, b]^2 \times \mathbb{B}, \mathbb{B})$, $g \in C([a, b], \mathbb{B})$ and $A : C([c, b], \mathbb{B}) \to C([c, b], \mathbb{B})$ and $B : C([a, b], \mathbb{B}) \to C([a, b], \mathbb{B})$ are operators. We suppose that:

- $(\hat{C}_1) \exists L_H > 0 : |H(t, s, \eta_1) H(t, s, \eta_2)| \le L_H |\eta_1 \eta_2|, \text{ for all } t \in [a, b], s \in [c, b], \eta_1, \eta_2 \in \mathbb{B};$
- $(\widetilde{C}_2) \begin{array}{l} \exists L_K > 0 : |K(t, s, \eta_1) K(t, s, \eta_2)| \le L_K |\eta_1 \eta_2|, \text{ for all } t, s \in [a, b], \eta_1, \eta_2 \in \mathbb{B}; \end{array}$
- $(\widetilde{C}_3) \ \exists L_A > 0 : \max_{[c,b]} |A(y)(t) A(z)(t)| \leq L_A \max_{[c,b]} |y(t) z(t)|, \text{ for all } y, z \in C([c,b], \mathbb{B});$

$$(\widetilde{C}_4) \ \exists L_B > 0: \ |B(y)(t) - B(z)(t)| \le L_B \max_{[t,b]} |y(s) - z(s)|, \text{ for all } t \in [a,b];$$

286

 $(\widetilde{C}_5) \ (L_H L_A + L_K L_B)(b-c) < 1.$

For $m \in \mathbb{N}, m \geq 2$ we shall use the following notations:

$$t_0 := c, \ t_k := c - \frac{k(c-a)}{m}, \ k = \overline{1, m}, \ X_0 = C([c, b], \mathbb{B}),$$
$$X_i = C([t_{i+1}, t_i], \mathbb{B}), X = \prod_{i=0}^m X_i.$$

We will apply again Theorem 2.4 in the following settings. The continuous functions spaces are endowed with the max-norms. We consider the following subsets:

$$U_i = \{ (x_0, x_1, \dots, x_i) \in \prod_{k=0}^i X_k | x_k(t_k) = x_{k+1}(t_k), \ k = \overline{0, m-1} \}, \ i = \overline{1, m},$$
$$U_{1x} := \{ x_1 \in X_1 | \ (x, x_1) \in U_1 \}, \ \text{ for } x \in X_0.$$

For $x \in X_0$, for $x \in X_{i-1}$, $U_{ix} := \{x_i \in X_i | (x, x_i) \in U_i\}$, $i = \overline{2, m}$. We remark that, $U_i, U_{ix}, i = \overline{1, m}$ are nonempty closed subsets. We also need the following operators:

$$R_i: C([t_i, b], \mathbb{B}) \to \prod_{k=0}^i X_k, \ R_i(x) = \left(x|_{[t_0, b]}, x|_{[t_1, t_0]}, \dots, x|_{[t_i, t_{i-1}]} \right), \ i = \overline{1, m}.$$

It is clear that, $R_i(C([t_i, b], \mathbb{B})) = U_i$ and $R_i : C([t_i, b], \mathbb{B}) \to U_i$ is an increasing homeomorphism.

Since the operator, $V : C([a, b], \mathbb{B}) \to C([a, b], \mathbb{B})$ defined by V(x)(t) := second part of equation (5.1), is a backward Volterra operator on [a, c], it induces the following operators:

$$\begin{split} T_0 &: X_0 \to X_0, \\ T_0(x_0)(t) &: = V\left(x_0\right)(t), \ t \in [c, b], \\ T_1 : U_1 \to X_1, \\ T_1(x_0, x_1)(t) &:= \int_b^c H(t, s, A(x_0)(s))ds + \int_b^c K(t, s, B(x_0)(s))ds \\ &+ \int_c^t K(t, s, B(R_1^{-1}(x_0, x_1)(s))ds + g(t), \ t \in [t_1, c], \\ T_2 : U_2 \to X_2, \\ T_1(x_0, x_1, x_2)(t) &:= \int_b^c H(t, s, A(x_0)(s))ds + \int_b^c K(t, s, B(x_0)(s))ds \\ &+ \int_c^{t_1} K(t, s, B(R_1^{-1}(x_0, x_1)(s))ds \\ &+ \int_t^t K(t, s, B(R_2^{-1}(x_0, x_1, x_2)(s))ds + g(t), \ t \in [t_2, t_1], \\ &\dots \end{split}$$

$$T_m : U_m \to X_m,$$

$$T_m(x_0, x_1, \dots, x_m)(t) := \int_b^c H(t, s, A(x_0)(s))ds + \int_b^c K(t, s, B(x_0)(s))ds + \dots$$

$$+ \int_{t_{m-1}}^t K(t, s, B(R_m^{-1}(x_0, x_1, \dots, x_m)(s))ds + g(t), \ t \in [a, t_{m-1}].$$

Let

$$T := (T_0, T_1, \dots, T_m),$$

$$T(x_0, x_1, \dots, x_m) := (T_0(x_0), T_1(x_0, x_1), \dots, T_m(x_0, x_1, \dots, x_m))).$$

If on the cartesian product we consider max-norms, the operators R_i , $i = \overline{1, m}$ are isometries. From the above definitions, we remark that

 $(T_0, T_1)(U_1) \subset U_1, \ (T_0, T_1, \dots, T_m)(U_m) \subset U_m.$

In the conditions $(C_1) - (C_4)$ we have that: T_0 is $(L_H L_A + L_K L_B)(b - c)$ contraction and T_i , i = 1, ..., m, satisfy the condition (5) from the Theorem 2.4 with $L_i = \max\left\{(L_H L_A + L_K L_B)(b - c), \frac{L_K L_B(c - a)}{m}\right\}$ and $l_i = \frac{L_K L_B(c - a)}{m}$, with
suitable $m \in \mathbb{N}$.

From this theorem we have that T is PO.

Since $V = R_m^{-1}TR_m$ and $V^n = R_m^{-1}T^nR_m$, it follows that V is PO. So, we have:

Theorem 5.1. We consider the equation (5.1) in the condition $(\tilde{C}_1) - (\tilde{C}_5)$. Under these conditions we have that:

- (i) The equation (5.1) has in $C([a, b], \mathbb{B})$ a unique solution, x^* .
- (ii) The sequence, $(x_n)_{n \in \mathbb{N}}$, defined by

$$\begin{aligned} x^0 &\in C([a,b],\mathbb{B}), \\ x^{n+1}(t) &= \int_a^c H(t,s,A(x^n)(s))ds + \int_a^t K(t,s,B(x^n)(s))ds + g(t), \ t \in [a,b], \end{aligned}$$

converges to x^* , i.e., the operator V is PO.

6. GRONWALL-TYPE RESULTS

In this section we consider $(\mathbb{B}, |\cdot|\,, \leq)$ an ordered Banach space. Related to the equation (1.1)

$$x(t) = \int_{a}^{c} H(t, s, A(x)(s))ds + \int_{a}^{t} K(t, s, B(x)(s))ds + g(t), \ t \in [a, b],$$

we consider the inequalities:

$$x(t) \le \int_{a}^{c} H(t, s, A(x)(s))ds + \int_{a}^{t} K(t, s, B(x)(s))ds + g(t), \ t \in [a, b]$$
(6.1)

and

$$x(t) \ge \int_{a}^{c} H(t, s, A(x)(s))ds + \int_{a}^{t} K(t, s, B(x)(s))ds + g(t), \ t \in [a, b].$$
(6.2)

As an application of the Theorem 2.1 we have

Theorem 6.1. We consider the equation (1.1) under the hypotheses $(C_1) - (C_5)$ of the Theorem 4.1. In addition, we suppose that

(C₆) $H(t, s, \cdot)$, $K(t, s, \cdot)$, A and B are increasing.

Then

- (a) $x \leq x^*$ for any x solution of (6.1);
- (b) $x \ge x^*$ for any x solution of (6.2);

where x^* is the unique solution of (1.1).

Proof. It follows from Theorem 4.1 that the operator $V : C([a, b], \mathbb{B}) \to C([a, b], \mathbb{B})$ defined by V(x)(t) := second part of equation (1.1) is a PO and from (C_6) we have that V is an increasing operator, so the conclusion is obtained from Theorem 2.1. \Box

7. Comparison-type results

We consider the functional integral equations:

$$x_{i}(t) = \int_{a}^{c} H_{i}(t, s, A(x)(s))ds + \int_{a}^{t} K_{i}(t, s, B(x)(s))ds + g_{i}(t), \qquad (7.1)$$
$$t \in [a, b], \ i = \overline{1.3},$$

where a < c < b are real numbers, $(\mathbb{B}, |\cdot|, \leq)$ an ordered Banach space, $H_i \in C([a, b] \times [a, c] \times \mathbb{B}, \mathbb{B})$, $K_i \in C([a, b]^2 \times \mathbb{B}, \mathbb{B})$, $g_i \in C([a, b], \mathbb{B})$, $i = \overline{1, 3}$, and $A : C([a, c], \mathbb{B}) \to C([a, c], \mathbb{B})$ and $B : C([a, b], \mathbb{B}) \to C([a, b], \mathbb{B})$ are given operators. We have the following comparison result:

Theorem 7.1. We suppose that:

- (i) H_i , K_i , g_i , $i = \overline{1,3}$, A, B satisfy the conditions $(C_1) (C_5)$;
- (ii) $H_1 \le H_2 \le H_3$ and $K_1 \le K_2 \le K_3$;
- (iii) $H_2(t, s, \cdot)$, $K_2(t, s, \cdot)$, A and B are increasing.

If $x_1(a) \leq x_2(a) \leq x_3(a)$ then $x_1^* \leq x_2^* \leq x_3^*$, where x_i^* is the unique solution of (7.1), $i = \overline{1,3}$.

Proof. From Theorem 4.1 we have that operator $V_i : C([a, b], \mathbb{B}) \to C([a, b], \mathbb{B})$ defined by

$$V_i(x)(t) := \int_a^c H_i(t, s, A(x)(s))ds + \int_a^t K_i(t, s, B(x)(s))ds + g_i(t), \ t \in [a, b]$$

is PO, $i = \overline{1,3}$. Let $F_{V_i} = \{x_i^*\}, i = \overline{1,3}$.

If $u \in \mathbb{B}$ then we denote by \tilde{u} the constant function

$$\tilde{u}: [a,b] \to \mathbb{B}, \tilde{u}(t) = u.$$

It is clear that

$$V_i^{\infty}(\widetilde{x_i(a)}) = x_i^*, \ i = \overline{1,3},$$

and from (ii) we get that

$$V_1(x) \le V_2(x) \le V_3(x), \ \forall x \in C([a, b], \mathbb{B}).$$

From condition (*iii*) we have that operator V_2 is an increasing operator, so, the conclusion is obtained from Theorem 2.2.

References

- S. András, Fibre φ-contraction on generalized metric spaces and applications, Mathematica, 45(68)(2003), no. 1, 3-8.
- [2] C. Avramescu, C. Vladimirescu, Fixed points for some non-obviously contractive operators defined in a space of continuous functions, Electronic J. Qualit. Th. Diff, Eq., 2004, no. 3, 1-7.
- [3] C. Bacoțiu, Fibre Picard operators on generalized metric spaces, Sem. Fixed Point Theory Cluj-Napoca, 1(2000), 5-8.
- [4] D.D. Bainov, S. Hristova, Differential Equations with Maxima, Chapman & Hall/CRC Pure and Applied Mathematics, 2011.
- [5] O.-M. Bolojan, Fixed Point Methods for Nonlinear Differential Systems with Nonlocal Conditions, Casa Cărții de Știință, Cluj-Napoca, 2013.
- [6] A. Boucherif, R. Precup, On the nonlocal initial value problem for first order differential equations, Fixed Point Theory, 4(2003), 205-212.
- [7] T.A. Burton, Stability by Fixed Point Theory for Functional Differential Equations, Dover Publ. New York, 2006.
- [8] T.A. Burton, A note on existence and uniqueness for integral equations with sum of two operators: progressive contractions, Fixed Point Theory, 20(2019), no. 1, 107-112.
- [9] C. Corduneanu, Abstract Volterra equations: a survey, Math. and Computer Model, 32(11-13)(2000), 1503-1528.
- [10] E. Egri, On First and Second Order Iterative Functional Differential Equations and Systems, Presa Univ. Clujeană, Cluj-Napoca, 2008.
- [11] W.M. Hirsch, C.C. Pugh, Stable manifolds and hyperbolic sets, Proc. Symp. in Pure Math., 14(1970), 133-163.
- [12] V. Ilea, D. Otrocol, On the Burton method of progressive contractions for Volterra integral equations, Fixed Point Theory, 21(2020), no. 2, 585-594.
- [13] V. Ilea, D. Otrocol, Functional differential equations with maxima, via step by step contraction principle, Carpathian J. Math., 37(2021), no. 2, 195-202.
- [14] V. Mureşan, Functional Integral Equations, Mediamira, Cluj-Napoca, 2003.
- [15] D. Otrocol, I.A. Rus, Functional-differential equations with maxima of mixed type argument, Fixed Point Theory, 9(2008), no. 1, 207-220.
- [16] E. De Pascale, L. De Pascale, Fixed points for some norm-obviously contractive operators, Proc. Amer. Math. Soc., 130(2002), no. 11, 3249-3254.
- [17] E. De Pascale, P.P. Zabreiko, Fixed point theorems for operators in spaces of continuous functions, Fixed Point Theory, 5(2004), no. 1, 117-129.
- [18] A. Petruşel, I.A. Rus, M.A. Şerban, Fixed points for operators on generalized metric spaces, CUBO - A Mathematical Journal, 10(2008), no. 4, 45-66.
- [19] A. Petruşel, I.A. Rus, M.A. Şerban, Some variants of fibre contraction principle and applications: from existence to the convergence of successive approximations, Fixed Point Theory, 22(2021), no. 2, 795-808.
- [20] I.A. Rus, A fibre generalized contraction theorem and applications, Mathematica, 41(1999), no. 1, 85-90.
- [21] I.A. Rus, Picard operators and applications, Scientiae Mathematicae Japon., 58(2003), no. 1, 191-219.

290

- [22] I.A. Rus, Abstract models of step method which imply the convergence of successive approximations, Fixed Point Theory, 9(2008), no. 1, 293-307.
- [23] I.A. Rus, Fibre Picard operators and applications, Stud. Univ. Babeş-Bolyai Math., 44(1999), 89-98.
- [24] I.A. Rus, Fibre Picard operators on generalized metric spaces and applications, Scripta Sc. Math., 1(1999), 326-334.
- [25] I.A. Rus, Generalized Contractions and Applications, Cluj University Press Cluj-Napoca, 2001.
- [26] I.A. Rus, Some nonlinear functional differential and integral equations, via weakly Picard operator theory: a survey, Carpathian J. Math., 26(2010), no. 2, 230-258.
- [27] I.A. Rus, Some variants of contraction principle, generalizations and applications, Stud. Univ. Babeş-Bolyai Math., 61(2016), no. 3, 343-358.
- [28] I.A. Rus, Some variants of contraction principle in the case of operators with Volterra property: step by step contraction principle, Advances in the Theory of Nonlinear Analysis and its Applications, 3(2019) no. 3, 111-120.
- [29] I.A. Rus, Weakly Picard operators and applications, Seminar on Fixed Point Theory, Cluj-Napoca, 2(2001), 41-58.
- [30] I.A. Rus, A. Petruşel, G. Petruşel, Fixed Point Theory, Cluj Univ. Press, Cluj-Napoca, 2008.
- [31] I.A. Rus, M.A. Şerban, Operators on infinite dimensional Cartesian product, Analele Univ. Vest, Timişoara, Math.-Inf., 48(2010), 253-263.
- [32] I.A. Rus, M.A. Şerban, Some generalizations of a Cauchy lemma and applications, Topics in Mathematics, Computer Science and Philosophy, Ed. St. Cobzaş, Cluj University Press, 2008, 173-181.
- [33] M.A. Şerban, Fibre φ -contractions, Stud. Univ. Babeş-Bolyai, Math., 44(1999), no. 3, 99-108.
- [34] M.A. Şerban, Fixed Point Theory for Operators on Cartesian Product, (in Romanian), Cluj University Press, Cluj-Napoca, 2002.
- [35] M.A. Şerban, I.A. Rus, A. Petruşel, A class of abstract Volterra equations, via weakly Picard operators technique, Math. Ineq. Appl., 13(2010), no. 2, 255-269.
- [36] E.S. Zhukovskii, M.J. Alves, Abstract Volterra operators, Russian Mathematics (Iz. VUZ), 52(2008), no. 3, 1-14.

Received: January 11, 2021; Accepted: March 4, 2021.

V. ILEA, D. OTROCOL, I.A. RUS, M.A. ŞERBAN