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Abstract. Let a < c < b real numbers, (B, |·|) a (real or complex) Banach space, H ∈ C([a, b]×[a, c]×
B,B), K ∈ C([a, b]2 × B,B), g ∈ C([a, b],B), A : C([a, c],B) → C([a, c],B) and B : C([a, b],B) →
C([a, b],B). In this paper we study the following functional integral equation,

x(t) =

∫ c

a
H(t, s, A(x)(s))ds +

∫ t

a
K(t, s, B(x)(s))ds + g(t), t ∈ [a, b].

By a new variant of fibre contraction principle (A. Petruşel, I.A. Rus, M.A. Şerban, Some variants
of fibre contraction principle and applications: from existence to the convergence of successive ap-

proximations, Fixed Point Theory, 22 (2021), no. 2, 795-808) we give existence, uniqueness and
convergence of successive approximations results for this equation. In the case of ordered Banach

space B, Gronwall-type and comparison-type results are also given.

Key Words and Phrases: Functional integral equation, Volterra operator, Picard operator, fibre
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1. Introduction

In this paper we study the following functional integral equation,

x(t) =

∫ c

a

H(t, s, A(x)(s))ds+

∫ t

a

K(t, s, B(x)(s))ds+ g(t), t ∈ [a, b], (1.1)

where a < c < b are real numbers, (B, |·|) is a Banach space, H ∈ C([a, b] × [a, c] ×
B,B), K ∈ C([a, b]2 × B,B), g ∈ C([a, b],B) and A : C([a, c],B) → C([a, c],B) and
B : C([a, b],B)→ C([a, b],B) are given operators.

For some examples of such integral equations see [5], [6], [16], [28], [2], [4], [7].
Let V : C([a, b],B)→ C([a, b],B) be defined by

V (x)(t) :=

∫ c

a

H(t, s, A(x)(s))ds+

∫ t

a

K(t, s, B(x)(s))ds+ g(t), t ∈ [a, b].

In this paper we consider on the spaces of continuous functions max-norms.
Let us suppose that

(C1) ∃LH > 0 : |H(t, s, η1)−H(t, s, η2)| ≤ LH |η1 − η2| , for all t ∈ [a, b], s ∈ [a, c],
η1, η2 ∈ B;

(C2) ∃LK > 0 : |K(t, s, η1)−K(t, s, η2)| ≤ LK |η1 − η2| , for all t, s ∈ [a, b], η1, η2 ∈
B;

(C3) ∃LA > 0 : max
[a,c]
|A(y)(t)−A(z)(t)| ≤ LAmax

[a,c]
|y(t)− z(t)| , for all y, z ∈

C([a, c],B);
(C4) ∃LB > 0 : |B(y)(t)−B(z)(t)| ≤ LBmax

[a,t]
|y(s)− z(s)| , for all t ∈ [a, b].

If we apply the contraction principle, in a standard way, for equation (1.1), we
have the following result:

Theorem 1.1. In addition to the above conditions we suppose that:

(C ′5) LHLA(c− a) + LKLB(b− a) < 1.

Then the equation (1.1) has in C([a, b],B) a unique solutions, x∗ and x∗ = lim
n→∞

xn,

where xn is defined by x0 ∈ C([a, b],B), xn+1 = V (xn), n ∈ N, i.e., V is a Picard
operator.

The aim of this paper is to improve condition (C ′5), obtaining the same conclusions.
In order to do this we shall apply instead of contraction principle, a new variant of
fibre contraction principle, variant given in [13].

In a similar way we study the equation

x(t) =

∫ c

b

H(t, s, A(x)(s))ds+

∫ t

b

K(t, s, B(x)(s))ds+ g(t), t ∈ [a, b],

with suitable conditions on H, K, A and B.
Throughout this paper we shall use the notations from [28], [22] and [13].
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2. Preliminaries

2.1. Weakly Picard operators. Let (X,→) be an L-space, where X is a nonempty
set and → is a convergence structure defined on X. If T : X → X is an operator,
then we denote by FT := {x ∈ X : x = T (x)} the fixed point set of T .

In the above context, T : X → X is called a weakly Picard operator (briefly
WPO) if, for each x ∈ X, the sequence of Picard iterations (Tn(x))n∈N converges
with respect to → to a fixed point of T . In particular, if FT = {x∗}, then T is called
a Picard operator (briefly PO).

If T : X → X is a WPO, then we define a set retraction T∞ : X → FT by the
formula

T∞(x) := lim
n→∞

Tn(x).

If T is PO with its unique fixed point x∗, then T∞(X) = {x∗}.
For the weakly Picard operator theory see [21], [29], [25], [27], [30].

Theorem 2.1. (Abstract Gronwall lemma)([21], [29]) Let (X,→,≤) be an ordered
L-space and T : X → X be an operator. We suppose that:

(i) T is a WPO;
(ii) T is increasing.

Then:

(a) x ≤ T (x) =⇒ x ≤ T∞(x);
(b) x ≥ T (x) =⇒ x ≥ T∞(x).

Theorem 2.2. (Abstract Comparison lemma)([21], [29]) Let (X,→,≤) be an ordered
L-space and T,U, V : X → X be three operators. We suppose that:

(i) T ≤ U ≤ V ;
(ii) T , U and V are WPOs;
(iii) the operator U is increasing.

Then:
x ≤ y ≤ z ⇒ T∞(x) ≤ U∞(y) ≤ V∞(z).

2.2. Fibre contraction principle. The standard fibre contraction principle has the
following statement:

Theorem 2.3. Let (X0,→) be an L-space. For m ∈ N∗, let (Xi, di), i ∈ {1, . . . ,m}
be complete metric spaces. Let T0 : X0 → X0 be an operator and, for i ∈ {1, . . . ,m},
let us consider Ti : X0 ×X1 × · · · ×Xi → Xi. We suppose that:

(1) T0 is a WPO;
(2) for each i ∈ {1, 2, . . . ,m}, the operators Ti(x0, . . . , xi−1, ·) : Xi → Xi are

li-contractions;
(3) for each i ∈ {1, 2, . . . ,m}, the operators Ti are continuous.

Then, the operator T = (T0, T1, . . . , Tm) :

m∏
i=0

Xi →
m∏
i=0

Xi, defined by

T (x0, . . . , xm) := (T0(x0), T1(x0, x1), . . . , Tm(x0, . . . , xm))
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is a WPO. Moreover, when T0 is a PO, then T is a PO too.

For other results regarding fibre contractions, see [11], [23], [30], [25], [34], [31], ...,
fibre generalized contractions, see [20], [32], [33], [34], ..., fibre generalized contractions
on generalized metric spaces, see [1], [3], [18], [24], [20], ... .

In [19] it is obtained a new type of fibre contraction principle in the following
settings:

Let (Xi, di) (i ∈ {1, ...,m} where m ≥ 2) be metric spaces and U1 ⊂ X1 × X2,
U2 ⊂ U1 ×X3, . . ., Um−1 ⊂ Um−2 ×Xm, be nonempty subsets.

For x ∈ X1, we define

U1x := {x2 ∈ X2 | (x, x2) ∈ U1},

for x ∈ U1, we define

U2x := {x3 ∈ X3 | (x, x3) ∈ U2}, . . . ,

and for x ∈ Um−2, we define

Um−1x := {xm ∈ Xm | (x, xm) ∈ Um−1}.

We suppose that U1x, U2x, . . . , Um−1x are nonempty.
If T1 : X1 → X1, T2 : U1 → X2, . . ., Tm : Um−1 → Xm, then we consider the

operator

T : Um−1 → X1 ×X2 × . . .×Xm,

defined by

T (x1, . . . , xm) := (T1(x1), T2(x1, x2), . . . , Tm(x1, x2, . . . , xm)).

The result is the following.

Theorem 2.4. ([19]) We suppose that:
(1) (Xi, di), i ∈ {2, ...,m} are complete metric spaces and Ui, i ∈ {1, ...,m−1} are

closed subsets;
(2) (T1, T2, . . . , Ti+1)(Ui) ⊂ Ui, i ∈ {1, ...,m− 1};
(3) T1 is a WPO;
(4) there exist Li > 0 and 0 < li < 1, i ∈ {1, ...,m− 1} such that

di+1(Ti+1(x, y, ), Ti+1(x̃, ỹ)) ≤ Lid̃i(x, x̃) + lidi+1(y, ỹ),

for all (x, y), (x̃, ỹ) ∈ Ui, i ∈ {1, ...,m− 1}, where d̃i is a metric induced by d1, . . . , di
on X1 × · · · ×Xi, defined by d̃i := max{d1, . . . , di}.

Then T is WPO. If T1 is PO, then T is a PO too.
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3. Abstract Volterra operators on spaces of continuous functions
of one variable

By definition, an operator V : C([a, b],B)→ C([a, b],B) is forward Volterra opera-
tor if the following implication holds:

x, y ∈ C([a, b],B), x|[a,t] = y|[a,t] ⇒ V (x)|[a,t] = V (y)|[a,t] ,

for all t ∈ [a, b].
An operator V : C([a, b],B)→ C([a, b],B) is backward Volterra operator iff:

x, y ∈ C([a, b],B), x|[t,b] = y|[t,b] ⇒ V (x)|[t,b] = V (y)|[t,b] ,

for all t ∈ [a, b].
If a < c < b then V is forward Volterra operator w.r.t. the interval [c, b] iff

x, y ∈ C([a, b],B), x|[a,t] = y|[a,t] ⇒ V (x)|[a,t] = V (y)|[a,t] , for all t ∈ [c, b].

The operator V is backward Volterra operator w.r.t. the interval [a, c] iff:

x, y ∈ C([a, b],B), x|[t,b] = y|[t,b] ⇒ V (x)|[t,b] = V (y)|[t,b] , for all t ∈ [a, c].

Example 3.1. For f ∈ C([a, b]× Rp,Rp) let us consider the Cauchy problem

x′(t) = f(t, x(t)), t ∈ [a, b],

x(a) = α.

This problem is equivalent with the following integral equation

x(t) = α+

∫ t

a

f(s, x(s))ds, t ∈ [a, b].

Let V : C([a, b],Rp)→ C([a, b],Rp) be defined by

V (x)(t) := α+

∫ t

a

f(s, x(s))ds, t ∈ [a, b].

The operator V is a forward Volterra operator.
If we consider the Cauchy problem

x′(t) = f(t, x(t)), t ∈ [a, b],

x(b) = β,

then this problem is equivalent with the integral equation,

x(t) = β +

∫ t

b

f(s, x(s))ds, t ∈ [a, b].

In this case the corresponding operator, V : C([a, b],Rp) → C([a, b],Rp) defined by
the second part of this integral equation is backward Volterra operator.

If for t0 ∈]a, b[, we consider the Cauchy problem

x′(t) = f(t, x(t)), t ∈ [a, b],

x(t0) = γ,
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then this problem is equivalent with the integral equation

x(t) = γ +

∫ t

t0

f(s, x(s))ds, t ∈ [a, b],

and the corresponding operator V is a forward Volterra operator with respect to [t0, b]
and is backward Volterra operator w.r.t. the interval [a, t0].

Example 3.2. Let the operator V : C[a, b] → C[a, b] defined by V (x)(t) := x(g(t)),
where g ∈ C([a, b], [a, b]). If g(t) ≤ t, ∀t ∈ [a, b], then V is forward Volterra operator
and if g(t) ≥ t, ∀t ∈ [a, b] then V is a backward Volterra operator.

Example 3.3. V : C[a, b] → C[a, b], V (x)(t) := max
[a,t]

u(τ), t ∈ [a, b] is a forward

Volterra operator.

Example 3.4. Let A : C([a, b],B) → C([a, b],B) be a forward Volterra operator.
Then the operator V : C([a, b],B)→ C([a, b],B) defined by

V (x)(t) :=

∫ t

a

A(u)(s)ds

is a forward Volterra operator.

Example 3.5. ([2], [16]) Let V : C([0, b],B)→ C([0, b],B) be such that

|V (x)(t)− V (y)(t)| ≤ α |x(t)− y(t)|+ γ

tβ

∫ t

0

|x(s)− y(s)| ds,

∀x, y ∈ C([0, b],B), ∀t ∈ [0, b], where α, β ∈ [0, 1[ and γ > 0 are given real numbers.
The operator V is a forward Volterra operator.

For more considerations on abstract Volterra operator, see [9], [36]. For other
examples see [2], [4], [5], [6], [7], [12], [14], [16], [17], [22], [35], ...

4. Basic results

Let us consider the equation (1.1) in the conditions (C1)− (C4). For m ∈ N,m ≥ 2
we shall use the following notations:

t0 := c, tk := c+
k(b− c)
m

, k = 1,m, X0 = C([a, c],B),

Xi = C([ti−1, ti],B), X =

m∏
i=0

Xi.

We consider the spaces of continuous functions with the max-norms. In order
to use the variant of fibre contraction principle given by Theorem 2.4, we need the
following subsets:

Ui = {(x0, x1, . . . , xi) ∈
i∏

k=0

Xk| xk(tk) = xk+1(tk), k = 1,m− 1}, i = 1,m.

For x ∈ X0,
U1x := {x1 ∈ X1| (x, x1) ∈ U1},
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for x ∈ Xi−1,
Uix := {xi ∈ Xi| (x, xi) ∈ Ui}, i = 2,m.

We remark that, Ui, Uix, i = 1,m are nonempty closed subsets.
We also need the following operators:

Ri : C([a, ti],B)→
i∏

k=0

Xk, Ri(x) =
(
x|[a,t0] , x|[t0,t1] , . . . , x|[ti−1,ti]

)
, i = 1,m.

It is clear that, Ri (C([a, ti],B)) = Ui and Ri : C([a, ti],B) → Ui is an increasing
homeomorphism.

Since the operator, V : C([a, b],B) → C([a, b],B) defined by V (x)(t) := second
part of equation (1.1), is a forward Volterra operator on [c, b], it induces the following
operators:

T0 : X0 → X0,

T0(x0)(t) = V (x0)(t), t ∈ [a, c],

T1 : U1 → X1,

T1(x0, x1)(t) :=

∫ c

a

H(t, s, A(x0)(s))ds+

∫ c

a

K(t, s, B(x0)(s))ds

+

∫ t

c

K(t, s, B(R−1
1 (x0, x1)(s))ds+ g(t), t ∈ [c, t1],

T2 : U2 → X2,

T1(x0, x1, x2)(t) :=

∫ c

a

H(t, s, A(x0)(s))ds+

∫ c

a

K(t, s, B(x0)(s))ds

+

∫ t1

c

K(t, s, B(R−1
1 (x0, x1)(s))ds

+

∫ t

t1

K(t, s, B(R−1
2 (x0, x1, x2)(s))ds+ g(t), t ∈ [t1, t2],

· · ·
Tm : Um → Xm,

Tm(x0, x1, . . . , xm)(t) :=

∫ c

a

H(t, s, A(x0)(s))ds+

∫ c

a

K(t, s, B(x0)(s))ds+ . . .

+

∫ t

tm−1

K(t, s, B(R−1
m (x0, x1, . . . , xm)(s))ds+ g(t), t ∈ [tm−1, b].

Let

T : = (T0, T1, . . . , Tm),

T (x0, x1, . . . , xm) : = (T0(x0), T1(x0, x1), . . . , Tm(x0, x1, . . . , xm)).

If on the cartesian product we consider max-norms, the operators Ri, i = 1,m are
isometries. From the above definitions, we remark that

(T0, T1)(U1) ⊂ U1, (T0, T1, . . . , Tm)(Um) ⊂ Um.
In the conditions (C1)−(C4) we have that: T0 is (LHLA+LKLB)(c−a)-Lipschitz.
If we suppose that



286 V. ILEA, D. OTROCOL, I.A. RUS, M.A. ŞERBAN

(C5) (LHLA + LKLB)(c− a) < 1

then we are in the conditions of Theorem 2.4 with

Li = max

{
(LHLA + LKLB)(c− a),

LKLB(b− c)
m

}
and li =

LKLB(b− c)
m

, with suitable m ∈ N.
From this theorem we have that T is PO.
Since V = R−1

m TRm and V n = R−1
m TnRm, it follows that V is PO.

So, we have:

Theorem 4.1. We consider the equation (1.1) in the condition (C1) − (C5). Under
these conditions we have that:

(i) The equation (1.1) has in C([a, b],B) a unique solution, x∗.
(ii) The sequence, (xn)n∈N, defined by

x0 ∈ C([a, b],B),

xn+1(t) =

∫ c

a

H(t, s, A(xn)(s))ds+

∫ t

a

K(t, s, B(xn)(s))ds+ g(t), t ∈ [a, b],

converges to x∗, i.e., the operator V is PO.

Remark 4.2. If we take, B = Rp or Cp or another finite dimensional Banach space,
then Theorem 4.1 is a result for a system of functional integral equations.

Remark 4.3. If we take, B := lp(C) or B := lp(R), 1 ≤ p ≤ ∞, or another Banach
space of sequences, Theorem 4.1 is a result for an infinite system of functional integral
equations.

Remark 4.4. For some particular cases of A and B our result is in connection with
some result given in [2], [4], [5], [6], [7], [10], [14], [26], [28], [35], [8], [12], [13], [15].

5. Equations with backward Volterra operators

In this section we consider the following integral equation

x(t) =

∫ c

b

H(t, s, A(x)(s))ds+

∫ t

b

K(t, s, B(x)(s))ds+ g(t), t ∈ [a, b], (5.1)

where a < c < b are real numbers, (B, |·|) is a Banach space, H ∈ C([a, b] × [c, b] ×
B,B), K ∈ C([a, b]2 × B,B), g ∈ C([a, b],B) and A : C([c, b],B) → C([c, b],B) and
B : C([a, b],B)→ C([a, b],B) are operators. We suppose that:

(C̃1) ∃LH > 0 : |H(t, s, η1)−H(t, s, η2)| ≤ LH |η1 − η2| , for all t ∈ [a, b], s ∈
[c, b], η1, η2 ∈ B;

(C̃2) ∃LK > 0 : |K(t, s, η1)−K(t, s, η2)| ≤ LK |η1 − η2| , for all t, s ∈ [a, b], η1, η2 ∈
B;

(C̃3) ∃LA > 0 : max
[c,b]
|A(y)(t)−A(z)(t)| ≤ LAmax

[c,b]
|y(t)− z(t)| , for all y, z ∈

C([c, b],B);

(C̃4) ∃LB > 0 : |B(y)(t)−B(z)(t)| ≤ LBmax
[t,b]
|y(s)− z(s)| , for all t ∈ [a, b];
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(C̃5) (LHLA + LKLB)(b− c) < 1.

For m ∈ N,m ≥ 2 we shall use the following notations:

t0 := c, tk := c− k(c− a)

m
, k = 1,m, X0 = C([c, b],B),

Xi = C([ti+1, ti],B), X =

m∏
i=0

Xi.

We will apply again Theorem 2.4 in the following settings. The continuous func-
tions spaces are endowed with the max-norms. We consider the following subsets:

Ui = {(x0, x1, . . . , xi) ∈
i∏

k=0

Xk| xk(tk) = xk+1(tk), k = 0,m− 1}, i = 1,m,

U1x := {x1 ∈ X1| (x, x1) ∈ U1}, for x ∈ X0.

For x ∈ X0, for x ∈ Xi−1, Uix := {xi ∈ Xi| (x, xi) ∈ Ui}, i = 2,m.
We remark that, Ui, Uix, i = 1,m are nonempty closed subsets.
We also need the following operators:

Ri : C([ti, b],B)→
i∏

k=0

Xk, Ri(x) =
(
x|[t0,b] , x|[t1,t0] , . . . , x|[ti,ti−1]

)
, i = 1,m.

It is clear that, Ri (C([ti, b],B)) = Ui and Ri : C([ti, b],B) → Ui is an increasing
homeomorphism.

Since the operator, V : C([a, b],B)→ C([a, b],B) defined by V (x)(t) := second part
of equation (5.1), is a backward Volterra operator on [a, c], it induces the following
operators:

T0 : X0 → X0,

T0(x0)(t) : = V (x0) (t) , t ∈ [c, b],

T1 : U1 → X1,

T1(x0, x1)(t) :=

∫ c

b

H(t, s, A(x0)(s))ds+

∫ c

b

K(t, s, B(x0)(s))ds

+

∫ t

c

K(t, s, B(R−1
1 (x0, x1)(s))ds+ g(t), t ∈ [t1, c],

T2 : U2 → X2,

T1(x0, x1, x2)(t) :=

∫ c

b

H(t, s, A(x0)(s))ds+

∫ c

b

K(t, s, B(x0)(s))ds

+

∫ t1

c

K(t, s, B(R−1
1 (x0, x1)(s))ds

+

∫ t

t1

K(t, s, B(R−1
2 (x0, x1, x2)(s))ds+ g(t), t ∈ [t2, t1],

· · ·
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Tm : Um → Xm,

Tm(x0, x1, . . . , xm)(t) :=

∫ c

b

H(t, s, A(x0)(s))ds+

∫ c

b

K(t, s, B(x0)(s))ds+ . . .

+

∫ t

tm−1

K(t, s, B(R−1
m (x0, x1, . . . , xm)(s))ds+ g(t), t ∈ [a, tm−1].

Let

T : = (T0, T1, . . . , Tm),

T (x0, x1, . . . , xm) : = (T0(x0), T1(x0, x1), . . . , Tm(x0, x1, . . . , xm))).

If on the cartesian product we consider max-norms, the operators Ri, i = 1,m are
isometries. From the above definitions, we remark that

(T0, T1)(U1) ⊂ U1, (T0, T1, . . . , Tm)(Um) ⊂ Um.
In the conditions (C1) − (C4) we have that: T0 is (LHLA + LKLB)(b − c)-

contraction and Ti, i = 1, ...,m, satisfy the condition (5) from the Theorem 2.4 with

Li = max

{
(LHLA + LKLB)(b− c), LKLB(c− a)

m

}
and li =

LKLB(c− a)

m
, with

suitable m ∈ N.
From this theorem we have that T is PO.
Since V = R−1

m TRm and V n = R−1
m TnRm, it follows that V is PO.

So, we have:

Theorem 5.1. We consider the equation (5.1) in the condition (C̃1) − (C̃5). Under
these conditions we have that:

(i) The equation (5.1) has in C([a, b],B) a unique solution, x∗.
(ii) The sequence, (xn)n∈N, defined by

x0 ∈ C([a, b],B),

xn+1(t) =

∫ c

a

H(t, s, A(xn)(s))ds+

∫ t

a

K(t, s, B(xn)(s))ds+ g(t), t ∈ [a, b],

converges to x∗, i.e., the operator V is PO.

6. Gronwall-type results

In this section we consider (B, |·| ,≤) an ordered Banach space. Related to the
equation (1.1)

x(t) =

∫ c

a

H(t, s, A(x)(s))ds+

∫ t

a

K(t, s, B(x)(s))ds+ g(t), t ∈ [a, b],

we consider the inequalities:

x(t) ≤
∫ c

a

H(t, s, A(x)(s))ds+

∫ t

a

K(t, s, B(x)(s))ds+ g(t), t ∈ [a, b] (6.1)
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and

x(t) ≥
∫ c

a

H(t, s, A(x)(s))ds+

∫ t

a

K(t, s, B(x)(s))ds+ g(t), t ∈ [a, b]. (6.2)

As an application of the Theorem 2.1 we have

Theorem 6.1. We consider the equation (1.1) under the hypotheses (C1) − (C5) of
the Theorem 4.1. In addition, we suppose that

(C6) H(t, s, ·), K(t, s, ·), A and B are increasing.

Then

(a) x ≤ x∗ for any x solution of (6.1);
(b) x ≥ x∗ for any x solution of (6.2);

where x∗ is the unique solution of (1.1).

Proof. It follows from Theorem 4.1 that the operator V : C([a, b],B) → C([a, b],B)
defined by V (x)(t) := second part of equation (1.1) is a PO and from (C6) we have
that V is an increasing operator, so the conclusion is obtained from Theorem 2.1. �

7. Comparison-type results

We consider the functional integral equations:

xi(t) =

∫ c

a

Hi(t, s, A(x)(s))ds+

∫ t

a

Ki(t, s, B(x)(s))ds+ gi(t), (7.1)

t ∈ [a, b], i = 1, 3,

where a < c < b are real numbers, (B, |·| ,≤) an ordered Banach space, Hi ∈ C([a, b]×
[a, c] × B,B), Ki ∈ C([a, b]2 × B,B), gi ∈ C([a, b],B), i = 1, 3, and A : C([a, c],B) →
C([a, c],B) and B : C([a, b],B) → C([a, b],B) are given operators. We have the
following comparison result:

Theorem 7.1. We suppose that:

(i) Hi, Ki, gi, i = 1, 3, A, B satisfy the conditions (C1)− (C5);
(ii) H1 ≤ H2 ≤ H3 and K1 ≤ K2 ≤ K3;

(iii) H2(t, s, ·), K2(t, s, ·), A and B are increasing.

If x1 (a) ≤ x2 (a) ≤ x3 (a) then x∗1 ≤ x∗2 ≤ x∗3, where x∗i is the unique solution of
(7.1), i = 1, 3.

Proof. From Theorem 4.1 we have that operator Vi : C([a, b],B)→ C([a, b],B) defined
by

Vi(x)(t) :=

∫ c

a

Hi(t, s, A(x)(s))ds+

∫ t

a

Ki(t, s, B(x)(s))ds+ gi(t), t ∈ [a, b]

is PO, i = 1, 3. Let FVi
= {x∗i }, i = 1, 3.

If u ∈ B then we denote by ũ the constant function

ũ : [a, b]→ B, ũ (t) = u.
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It is clear that

V∞i (x̃i (a)) = x∗i , i = 1, 3,

and from (ii) we get that

V1(x) ≤ V2(x) ≤ V3(x), ∀x ∈ C([a, b],B).

From condition (iii) we have that operator V2 is an increasing operator, so, the
conclusion is obtained from Theorem 2.2. �
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