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Abstract. We give here a dichotomic fixed point result for a certain class of mappings defined in
the closed unit ball of a Hilbert space. This dichotomy states that, for any of the mappings in this
class, either it has a fixed point or its Lipschitz constant with respect to any renorming of #5 has to
be strictly greater than 1.
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1. INTRODUCTION

If D is a nonempty subset of a Banach space (X, ||-]|), a mapping T : D — X is
said to be Lipschitzian whenever there is a positive constant M such that

[ T(x) =Ty | < M|z-yl, xzyeD.

When this happens T is said to be M-Lipschitzian in D. In an analogous manner, if
T is a self-mapping in D, i.e., T(D) C D, it is said to be M-uniformly Lipschitzian
provided that, for each n > 1, the iterate T satisfies

[ T"(x) =T"(y) [| < M- ||z —y|, for z,y € D.

The class of the 1-uniformly Lipschitzian self-mappings of D is just the same than
the 1-Lipschitzian self-mappings of this set D, and they are usually referred to as
nonexpansive mappings. Fixed point theory for nonexpansive mappings has been a
noteworthy subject of research since 1965. (For a historical development of the early
theory see [6]). A major problem in this theory is to give an answer to the following
question. (See [7]) ”Given a bounded closed convex subset K of the superreflexive
space X, if T is a self-mapping on K such that it is nonexpansive, must 7" have a
fixed point?”. Even in the particular case of the class of the Banach spaces which are
isomorphic to the classical Hilbert space ¢, the above problem remains open. In this
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connection, see also the papers by S. Reich [11] and [12], and the book by K. Goebel
and S. Reich [9].

A negative answer to this problem would generate a bounded closed convex subset
K of /5 and a fixed point free mapping T : K — K such that T is nonexpansive with
respect to some equivalent norm, say || - ||, on ¢5. With no loss of generality one may
suppose that K is a subset of the closed unit ball By, of f5. In this paper we show
that no such mapping can exist provided it satisfies some further and quite natural
assumptions. In fact, the most well known fixed point free self-mappings of By, fulfill
these assumptions. Consequently, in some sense, we give a partial positive answer to
the above question.

2. SPHERICAL MAPPINGS

In this section, X will stand for a Hilbert space, with (-,-) being its inner product
and ||-|| denoting the corresponding Euclidian norm. The next definition introduces a
class of self-mappings of the closed unit ball Bx for which we shall prove the following
dichotomy: For each mapping in this class, either it has fixed points or its Lipschitz
constant with respect to arbitrary renormings of X is strictly greater than 1. Given
a self-mapping T : Bx — Bx and a subset A C Bx, we define the sets

AT = {x €A : (T"(z)), converges weakly },
AT = {y € Bx : 3z € AT s.t. (T™(x)),, converges weakly to y}.

Notice that AT # 0 implies that AT # (. Given \ € [0, 1], we put
Sy = {zeX : |z|l= A}

For A € [0,1], the mapping T : Bx — Bx is said to be A-spherical provided the
following conditions are accomplished

(4) T(Sx) C Si.

(B) (T(0),T(-)) is constant in Sy.

© ST n{ous) £ 0.
We shall refer to the class of mappings which are A-spherical, for some A € [0,1],
as spherical mappings. Before giving the annunciated dichotomy, we need one more
definition plus an auxiliary result. If T': Bx — X is any mapping, we put
inf{M > 0:Tis M — Lips. r.t. a renorming of X}, for T Lipschitz,

L(T, Bx) = { 00, otherwise.

Proposition 2.1. For a mapping T : Bx — X,
d(T(0),T(S
L(T,BX) Z Sup ( ( )7 ( A))7
0<A<1 A
where d(-,-) stands for the distance induced by the Euclidian norm.
Proof. Arguing by contradiction, assume that
d(T(0),T(5x))

L(T,Bx) < sup ———————=.
0<A<1 A
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Then, there is a renorming |- || of X and a constant M > 0 such that T is M-
Lipschitzian in Bx with respect to ||| and

b d(T(0), T(5x))

> M.
0<A<1 A
Thus, there is 0 < Ag < 1 such that
d(T(0),T(S
(T0).T5w) _

Ao
We inductively construct the following vector sequence: Let yo € X be such that
llyo |= Ao, and for n > 1,

T(yn-1) = T(0)
I T'(yn—1) = T(0) |
For each n > 1, the vector y,, is well defined, for, if T(y,—1) = T(0), then

d(T(0), T(5x)) o 1 T(Yn—1) =T(0) || _

Yn = )\0

0
Ao - Ao ’
which is a contradiction. Clearly, (y,)52 is contained in Sy, and, writing for sim-
plicity
d(T(0),T(Sx
im WTOTE))

we have that, for each n > 2,

/\0 M)\O

I yn ll= 1T (yn—) =T < — e lyn-1ll
[T (yn—1) = TO)|| d(T(0), T(Sx,))
1 1 T(yn—2) — T(0)
= pnorl= Dotz ZTO Ly
p pe T (yn—2) = T0) |
1 Mo
< = o 1T (yn—2) — T(0)
o AT, TS0 I ) =TO)]
2 3 n
1 1 1
< () Bmeal= (3) Iimeal = oo < (3) ool
1 u 1
Now, since i < 1, taking limits as n — oo, we obtain that lim, ||y, || = 0. This
contradicts the fact that ||| is an equivalent renorming of X. O

Theorem 2.2. Let T be a spherical mapping in the Hilbert space X. Then:
Either T has a fixzed point, or  L(T,Bx) > 1.

Proof. According to the definition of a spherical mapping, there is A € [0, 1] such
that T is A-spherical, i.e., T satisfies conditions (A), (B), (C). We may assume that
the mapping T is Lipschitzian on By, otherwise the dichotomy clearly follows. From
condition (A), T(Sx) C Sx. We may also assume that A > 0, else we would have
that {T'(0)} = T(Sy) C So = {0}, i.e., T(0) = 0 and T would have a fixed point at
zero. From condition (B), there is k € R such that

(T(0),T(x)) =k, =€S8,.
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Thus, making use of the last proposition, we have

d(T(0),T(Sy))  infjzy=x || 7(0) — T(z) |

_infoes, /ITO) P+ [T@) 7 —2T0), T@)))
A
VIO 2= 2%
- - . (2.1)

Now, from condition (C), there is u € Sy such that the sequence (77 (u)), converges
weakly to a point v € Sy U {0}. Therefore, we consider two possibilities.
One. v € Sy. Then, since the sequence of norms (|| 7" (u) ||), is constantly equal
to A =[|v]|, and X has the Kadec-Klee property, it follows that (7" (u)), converges
to v in X. Clearly then, T'(v) = v.
Two. v =0. Then, since T"™(u) € S, n > 0,

ko= 1im(T(0), T(T""}(u)) = im(T(0),T"(w)) = (T(0),v) = (T(0),0) = 0.

n

If T(0) = 0 we are done, so we assume that 7'(0) # 0. Thus, from (2.1), we have that

2 )2
LT By > VITOTP X
A
Corollary 2.3. Let T be a spherical mapping. If L(T,Bx) <1, then T has a fized
point. In particular, if T is nonexpansive with respect to some renorming of X, then
it has fixed points.

If C is a closed bounded subset of the Hilbert space X, it is shown in [8] that
every uniformly Lipschitzian mapping T : C — C such that its uniform Lipschitz
constant, with respect to the Euclidian norm, is less than v/2 has fixed points. In this
connection, see also Section 8 on pages 34-38 of [9]. We give next a parallel result for
a particular class of self-mappings of the unit ball of X. Notice that these mappings
do not need to be (uniformly) Lipschitzian. (For an example, see the mapping T
below).

Corollary 2.4. Let T be a A-spherical mapping such that T(0) € Sy.

If L(T, Bx) < V/2, then T has a fized point.

Proof. As seen in the proof of Theorem 2.2, we may assume that A > 0. In view of
condition (C), there is v € ST N (Sy U {0}). Thus, for some u € Sy, the sequence
of iterates (T™(u)), converges weakly to v. In view of condition (B), there is k € R
such that (T(0),T(x)) = k, = € Sx. Hence, since T'(S)) C S by condition (A), it
follows that

> 1. (]

ko= m(T(0), T"(w)) = (T(0),v). (2.2)

Using Proposition 2.1, the proof of Theorem 2.2 and the assumption that T'(0) € Sy,
we can write

d(T(0), T(S)) _ ¢||T<o>||2+v—2k:\/2_2k

L(T,Bx) > 2
(T,Bx) = A A A2
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But recalling that v € {0} U S}, it follows that v # 0, otherwise, from (2.2), we would
have that k=0 and, from our hypothesis, we obtain the following contradiction

V2 > L(T,Bx) \/7 V2.

Thus, v € Sy. Given that the sequence of iterates (u))n is contained in Sy, it
follows that it converges to v in X, yielding that T( )=
O

3. CLASSICAL-TYPE MAPPINGS

We consider in this section a well-known class of self-mappings of the closed unit
ball of the Hilbert space {5 and we show that these mappings are spherical mappings,
thus justifying their introduction. Some self-mappings of By,, which have now become
classical, such that they have no fixed points, are those of Kakutani, which we denote
by Tk, Nirenberg’s mapping, represented as T, Lifschitz-Baillon’s, which we denote
as Tr,gp and Goebel-Kirk-Thelle’s, labeled as T 1. For the sake of completeness, we
list in the following lines the definitions of these mappings, with domain always all of
By,.

Kakutani’s mapping, see [10], is (in its generalized form), given 0 < & < 1,

Tk(x) = e(1-|z[)-ex + R,
where R denotes the right-shift operator in ¢y. Nirenberg’s mapping, see [13], is

defined as
Tn(z) = /1-||z||>-e1 + Rzx.

Lifschitz-Baillon’s mapping, see [1], is

sin(||]| %)

Typ(z) = { cos(llz| §) - ex + —= - Rz, @ EBgz \ {0},
€1, T = 07

Goebel-Kirk-Thelle’s mapping, see [8], is
(1= [z - e1 4+ Ra
VA=) [z ]2

In [2], [3], [4] and [5], we introduced and studied a certain type of self-mappings of
By, which generalize the above particular examples. Next we define a new class of
mappings, which we shall refer to as classical-type mappings, that contains the above
classical examples. Let ¢, : [0,1] = R be two continuous real functions such that
they satisfy that

Terr(x) =

et + Y’ <1,  0<t<1
In By,, the classical-type mapping associated to ¢, 1, is defined as

Top(x) = @(lzlD)-ex + ¢(lz])- Rz
where e; stands for the first unit vector of ¢3, ||| is the Euclidian norm and R
is the right-shift operator of f5. In view of the defining condition, it is plain that
Typ.(Be,) C By, ie, T,y is a self-mapping of B,,. Of course, T, is a continuous
mapping on By, .
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Proposition 3.1. Classical-type mappings are spherical.
Proof. Let Ty,  be a classical-type mapping. Consider the real function

FO) = [ Topen) = Vo2 +9(X)2A2, A€ 0,1].
Clearly, f is a continuous function such that f([0,1]) C [0,1] and so there is Ag € [0, 1]
such that f(Ao) = Ao. We show next that T, , is Ao-spherical. To do so, if x € Sy,

| Tpp(x) || =l e(lz])er + ¥(||z])Rz |
= | @(Ao)el + (o) Rz ||

\/<P A0)? 4+ ¥(X0)? A3

= f(Ao) = Ao,

i.e., condition (A) is satisfied.
To check that condition (B) is also satisfied, note that, if = € Sy,

(T.4(0), To () = (p(0)er, @(l[z[)er +(z])Rr) = ©(0)p(Ao)-

Finally, we see that condition (C) is accomplished, that is, we have to prove that

ST“’ “N({0}USy,) # 0. In other words, we have to show that there is a point u € Sy,
whose sequence of iterates (T ,,(u)), weakly converges either to zero or to an element
of Sy,. If z € S),, it can be seen with not much difficulty that, for n > 2,

(T ¢(Ao) Zw (M) -ejp1 + ®(Xo)" - Rz (3.1)

We may assume that A\g €]0, 1], otherwise, if Ay = 0, we would have that S, = {0},
¢(Xo) = ¢(0) = f(0) =0and T} ,(0) = 0,n > 1, and so (T ,(0)), clearly converges
to zero. Now, from the equality (o) 4+ (Xg)?A3 = A2, since \g > 0, it follows that
[ (Ag)| < 1. Thus, we may consider two possibilities.

Omne. [9(Ag)| = 1. Then, ¢(Ao) = 0 and so, after (3.1) we have that, for any « € S,
T3 p(x) = ¢(Xo)" - R"z, n > 2, and the sequence (17 ,(z)), converges weakly to
zZero.

Two. |9(Ao)| < 1. We first see that the vector w = ¢(Ag) (1, ¥(Ao), ¥(Ao)?, ...)
lies in S),. For this, given that w corresponds to a geometric progression whose ratio
has absolute value less than one,

up? = 200
1 —4(Xo)?

Now, again from (3), if m > 1, we have that, for any = € S,
li£n<€m7T$,¢(93)> = o(A)Y(X)™ " = (em,w).

Hence, the bounded sequence (17 ,,(x)), converges weakly to w € Sy,. We have thus
shown that, for any = € Sy, the sequence (17, (2)), weakly converges, either to
zero, or to a point of Sy, . O
Corollary 3.2. If a classical-type mapping T, . is such that L(T, ., Be,) < 1, then
it has fixed points.

As a consequence of Corollary 2.4, we have the following result.

= A}, ie, weS,,.
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Corollary 3.3. Let T, be a classical-type mapping such that
p(t)? +79(t)* = 1, te[0,1].
Then, if L(T, .y, Be,) < V2, the mapping T, has a fived point.
Remark. From our previous study, we can now completely describe the classical-
type mappings. Let T, 4 be a classical-type mapping. Let Fixz(T, ) stand for the
set of fixed points of T, ;. Then, T}, ; is under one of the following situations:
1) 0 € Fiz(T,.)-
2) Considering the function f(A) = /(A2 + A29(A)2, A € [0,1], let
F(f) {rel0,1]: f(A) = A}
For each \ € F(f), putting w()\) := p(\)(1,9(A),%(N)?,...), then
Fix(Ton) = {wh) : AeF(f), [vN)|< 1} # 0.
3) Fiz(Tw,w) = and L(T¢7w,Bg2) > 1.
Corollary 3.4. Let T, be a classical-type mapping. If L(Tyy,Be,) < 1 (in
particular, if T, 4 is nonezpansive with respect to a renorming of ly), then
0 # Fie(Tos) C {0} U {w(h) : AeF(f), [eW)|< 1}.
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