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Abstract. We give here a dichotomic fixed point result for a certain class of mappings defined in
the closed unit ball of a Hilbert space. This dichotomy states that, for any of the mappings in this

class, either it has a fixed point or its Lipschitz constant with respect to any renorming of `2 has to

be strictly greater than 1.
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1. Introduction

If D is a nonempty subset of a Banach space (X, ‖·‖), a mapping T : D → X is
said to be Lipschitzian whenever there is a positive constant M such that

‖ T (x)− T (y) ‖ ≤ M ‖ x− y ‖, x, y ∈ D.
When this happens T is said to be M -Lipschitzian in D. In an analogous manner, if
T is a self-mapping in D, i.e., T (D) ⊂ D, it is said to be M -uniformly Lipschitzian
provided that, for each n ≥ 1, the iterate Tn satisfies

‖ Tn(x)− Tn(y) ‖ ≤ M · ‖ x− y ‖, for x, y ∈ D.
The class of the 1-uniformly Lipschitzian self-mappings of D is just the same than

the 1-Lipschitzian self-mappings of this set D, and they are usually referred to as
nonexpansive mappings. Fixed point theory for nonexpansive mappings has been a
noteworthy subject of research since 1965. (For a historical development of the early
theory see [6]). A major problem in this theory is to give an answer to the following
question. (See [7]) ”Given a bounded closed convex subset K of the superreflexive
space X, if T is a self-mapping on K such that it is nonexpansive, must T have a
fixed point?”. Even in the particular case of the class of the Banach spaces which are
isomorphic to the classical Hilbert space `2, the above problem remains open. In this
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connection, see also the papers by S. Reich [11] and [12], and the book by K. Goebel
and S. Reich [9].

A negative answer to this problem would generate a bounded closed convex subset
K of `2 and a fixed point free mapping T : K → K such that T is nonexpansive with
respect to some equivalent norm, say ‖ · ‖, on `2. With no loss of generality one may
suppose that K is a subset of the closed unit ball B`2 of `2. In this paper we show
that no such mapping can exist provided it satisfies some further and quite natural
assumptions. In fact, the most well known fixed point free self-mappings of B`2 fulfill
these assumptions. Consequently, in some sense, we give a partial positive answer to
the above question.

2. Spherical mappings

In this section, X will stand for a Hilbert space, with 〈·, ·〉 being its inner product
and ‖·‖ denoting the corresponding Euclidian norm. The next definition introduces a
class of self-mappings of the closed unit ball BX for which we shall prove the following
dichotomy: For each mapping in this class, either it has fixed points or its Lipschitz
constant with respect to arbitrary renormings of X is strictly greater than 1. Given
a self-mapping T : BX → BX and a subset A ⊂ BX , we define the sets

AT := { x ∈ A : (Tn(x))n converges weakly },

ÃT := {y ∈ BX : ∃x ∈ AT s.t. (Tn(x))n converges weakly to y}.

Notice that ÃT 6= ∅ implies that AT 6= ∅. Given λ ∈ [0, 1], we put

Sλ := { x ∈ X : ‖x‖ = λ }.
For λ ∈ [0, 1], the mapping T : BX → BX is said to be λ-spherical provided the
following conditions are accomplished

(A) T (Sλ) ⊂ Sλ.
(B) 〈T (0), T (·)〉 is constant in Sλ.

(C) S̃Tλ ∩ ({0} ∪ Sλ) 6= ∅.
We shall refer to the class of mappings which are λ-spherical, for some λ ∈ [0, 1],
as spherical mappings. Before giving the annunciated dichotomy, we need one more
definition plus an auxiliary result. If T : BX → X is any mapping, we put

L(T,BX) :=

{
inf{M > 0 : T is M − Lips. r.t. a renorming of X}, for T Lipschitz,
∞, otherwise.

Proposition 2.1. For a mapping T : BX → X,

L(T,BX) ≥ sup
0<λ≤1

d(T (0), T (Sλ))

λ
,

where d(·, ·) stands for the distance induced by the Euclidian norm.
Proof. Arguing by contradiction, assume that

L(T,BX) < sup
0<λ≤1

d(T (0), T (Sλ))

λ
.
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Then, there is a renorming ||| · ||| of X and a constant M > 0 such that T is M -
Lipschitzian in BX with respect to |||·||| and

sup
0<λ≤1

d(T (0), T (Sλ))

λ
> M.

Thus, there is 0 < λ0 ≤ 1 such that

d(T (0), T (Sλ0
))

λ0
> M.

We inductively construct the following vector sequence: Let y0 ∈ X be such that
‖y0 ‖= λ0, and for n ≥ 1,

yn := λ0
T (yn−1)− T (0)

‖ T (yn−1)− T (0) ‖
.

For each n ≥ 1, the vector yn is well defined, for, if T (yn−1) = T (0), then

d(T (0), T (Sλ0
))

λ0
≤ ‖ T (yn−1)− T (0) ‖

λ0
= 0,

which is a contradiction. Clearly, (yn)∞n=1 is contained in Sλ0 and, writing for sim-
plicity

µ :=
d(T (0), T (Sλ0

))

Mλ0
> 1,

we have that, for each n ≥ 2,

||| yn |||=
λ0

‖T (yn−1)− T (0)‖
|||T (yn−1)− T (0) ||| ≤ Mλ0

d(T (0), T (Sλ0))
|||yn−1 |||

=
1

µ
|||yn−1 |||=

1

µ
|||λ0

T (yn−2)− T (0)

‖ T (yn−2)− T (0) ‖
|||

≤ 1

µ
· Mλ0
d(T (0), T (Sλ0

))
|||T (yn−2)− T (0) |||

≤
(

1

µ

)2

|||yn−2 ||| ≤
(

1

µ

)3

|||yn−3 ||| ≤ ... ≤
(

1

µ

)n
|||y0 ||| .

Now, since 1
µ < 1, taking limits as n → ∞, we obtain that limn ||| yn |||= 0. This

contradicts the fact that |||·||| is an equivalent renorming of X. �
Theorem 2.2. Let T be a spherical mapping in the Hilbert space X. Then:

Either T has a fixed point, or L(T,BX) > 1.

Proof. According to the definition of a spherical mapping, there is λ ∈ [0, 1] such
that T is λ-spherical, i.e., T satisfies conditions (A), (B), (C). We may assume that
the mapping T is Lipschitzian on BX , otherwise the dichotomy clearly follows. From
condition (A), T (Sλ) ⊂ Sλ. We may also assume that λ > 0, else we would have
that {T (0)} = T (S0) ⊂ S0 = {0}, i.e., T (0) = 0 and T would have a fixed point at
zero. From condition (B), there is k ∈ R such that

〈T (0), T (x)〉 = k, x ∈ Sλ.
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Thus, making use of the last proposition, we have

L(T,BX) ≥ d(T (0), T (Sλ))

λ
=

inf‖x‖=λ ‖ T (0)− T (x) ‖
λ

=
infx∈Sλ

√
‖T (0)‖2 + ‖T (x)‖2 −2〈T (0), T (x)〉)

λ

=

√
‖T (0)‖2 +λ2 − 2k

λ
. (2.1)

Now, from condition (C), there is u ∈ Sλ such that the sequence (Tn(u))n converges
weakly to a point v ∈ Sλ ∪ {0}. Therefore, we consider two possibilities.
One. v ∈ Sλ. Then, since the sequence of norms (‖Tn(u) ‖)n is constantly equal
to λ =‖v‖, and X has the Kadec-Klee property, it follows that (Tn(u))n converges
to v in X. Clearly then, T (v) = v.
Two. v = 0. Then, since Tn(u) ∈ Sλ, n ≥ 0,

k = lim
n
〈T (0), T (Tn−1(u))〉 = lim

n
〈T (0), Tn(u)〉 = 〈T (0), v〉 = 〈T (0), 0〉 = 0.

If T (0) = 0 we are done, so we assume that T (0) 6= 0. Thus, from (2.1), we have that

L(T,BX) ≥
√
‖T (0)‖2 +λ2

λ
> 1. �

Corollary 2.3. Let T be a spherical mapping. If L(T,BX) ≤ 1, then T has a fixed
point. In particular, if T is nonexpansive with respect to some renorming of X, then
it has fixed points.

If C is a closed bounded subset of the Hilbert space X, it is shown in [8] that
every uniformly Lipschitzian mapping T : C → C such that its uniform Lipschitz
constant, with respect to the Euclidian norm, is less than

√
2 has fixed points. In this

connection, see also Section 8 on pages 34-38 of [9]. We give next a parallel result for
a particular class of self-mappings of the unit ball of X. Notice that these mappings
do not need to be (uniformly) Lipschitzian. (For an example, see the mapping TN
below).
Corollary 2.4. Let T be a λ-spherical mapping such that T (0) ∈ Sλ.

If L(T,BX) <
√

2, then T has a fixed point.
Proof. As seen in the proof of Theorem 2.2, we may assume that λ > 0. In view of

condition (C), there is v ∈ S̃Tλ ∩ (Sλ ∪ {0}). Thus, for some u ∈ Sλ, the sequence
of iterates (Tn(u))n converges weakly to v. In view of condition (B), there is k ∈ R
such that 〈T (0), T (x)〉 = k, x ∈ Sλ. Hence, since T (Sλ) ⊂ Sλ by condition (A), it
follows that

k = lim
n
〈T (0), Tn(u)〉 = 〈T (0), v〉. (2.2)

Using Proposition 2.1, the proof of Theorem 2.2 and the assumption that T (0) ∈ Sλ,
we can write

L(T,BX) ≥ d(T (0), T (Sλ))

λ
=

√
‖T (0)‖2 +λ2 − 2k

λ
=

√
2− 2k

λ2
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But recalling that v ∈ {0}∪Sλ, it follows that v 6= 0, otherwise, from (2.2), we would
have that k = 0 and, from our hypothesis, we obtain the following contradiction

√
2 > L(T,BX) ≥

√
2− 2k

λ2
=
√

2.

Thus, v ∈ Sλ. Given that the sequence of iterates (Tn(u))n is contained in Sλ, it
follows that it converges to v in X, yielding that T (v) = v.

�

3. Classical-type mappings

We consider in this section a well-known class of self-mappings of the closed unit
ball of the Hilbert space `2 and we show that these mappings are spherical mappings,
thus justifying their introduction. Some self-mappings of B`2 , which have now become
classical, such that they have no fixed points, are those of Kakutani, which we denote
by TK , Nirenberg’s mapping, represented as TN , Lifschitz-Baillon’s, which we denote
as TLB and Goebel-Kirk-Thelle’s, labeled as TGKT . For the sake of completeness, we
list in the following lines the definitions of these mappings, with domain always all of
B`2 .
Kakutani’s mapping, see [10], is (in its generalized form), given 0 < ε ≤ 1,

TK(x) = ε (1− ‖x‖) · e1 + Rx,

where R denotes the right-shift operator in `2. Nirenberg’s mapping, see [13], is
defined as

TN (x) =
√

1− ‖x‖2 · e1 + Rx.

Lifschitz-Baillon’s mapping, see [1], is

TLB(x) =

{
cos(‖x‖ π2 ) · e1 +

sin(‖x‖π2 )

‖x‖ ·Rx, x ∈ B`2 \ {0},
e1, x = 0,

Goebel-Kirk-Thelle’s mapping, see [8], is

TGKT (x) =
(1− ‖x‖) · e1 +Rx√

(1− ‖x‖)2+ ‖x ‖2
.

In [2], [3], [4] and [5], we introduced and studied a certain type of self-mappings of
B`2 which generalize the above particular examples. Next we define a new class of
mappings, which we shall refer to as classical-type mappings, that contains the above
classical examples. Let ϕ,ψ : [0, 1]→ R be two continuous real functions such that
they satisfy that

ϕ(t)2 + ψ(t)2 t2 ≤ 1, 0 ≤ t ≤ 1.

In B`2 , the classical-type mapping associated to ϕ,ψ, is defined as

Tϕ,ψ(x) := ϕ(‖x‖) · e1 + ψ(‖x‖) ·Rx,
where e1 stands for the first unit vector of `2, ‖ · ‖ is the Euclidian norm and R
is the right-shift operator of `2. In view of the defining condition, it is plain that
Tϕ.ψ(B`2) ⊂ B`2 , i.e, Tϕ,ψ is a self-mapping of B`2 . Of course, Tϕ,ψ is a continuous
mapping on B`2 .



244 J. FERRER AND E. LLORENS-FUSTER

Proposition 3.1. Classical-type mappings are spherical.
Proof. Let Tϕ,ψ be a classical-type mapping. Consider the real function

f(λ) := ‖Tϕ,ψ(λe1)‖=
√
ϕ(λ)2 + ψ(λ)2λ2, λ ∈ [0, 1].

Clearly, f is a continuous function such that f([0, 1]) ⊂ [0, 1] and so there is λ0 ∈ [0, 1]
such that f(λ0) = λ0. We show next that Tϕ,ψ is λ0-spherical. To do so, if x ∈ Sλ0

,

‖ Tϕ,ψ(x) ‖ =‖ ϕ(‖x‖)e1 + ψ(‖x‖)Rx ‖
= ‖ ϕ(λ0)e1 + ψ(λ0)Rx ‖
=
√
ϕ(λ0)2 + ψ(λ0)2λ20

= f(λ0) = λ0,

i.e., condition (A) is satisfied.
To check that condition (B) is also satisfied, note that, if x ∈ Sλ0

,

〈Tϕ,ψ(0), Tϕ,ψ(x)〉 = 〈ϕ(0)e1, ϕ(‖x‖)e1 + ψ(‖x‖)Rx〉 = ϕ(0)ϕ(λ0).

Finally, we see that condition (C) is accomplished, that is, we have to prove that

S̃
Tϕ,ψ
λ0
∩ ({0}∪Sλ0) 6= ∅. In other words, we have to show that there is a point u ∈ Sλ0

whose sequence of iterates (Tnϕ,ψ(u))n weakly converges either to zero or to an element
of Sλ0 . If x ∈ Sλ0 , it can be seen with not much difficulty that, for n ≥ 2,

Tnϕ,ψ(x) = ϕ(λ0)

n−1∑
j=0

ψ(λ0)j · ej+1 + ψ(λ0)n ·Rnx. (3.1)

We may assume that λ0 ∈]0, 1], otherwise, if λ0 = 0, we would have that Sλ0 = {0},
ϕ(λ0) = ϕ(0) = f(0) = 0 and Tnϕ,ψ(0) = 0, n ≥ 1, and so (Tnϕ,ψ(0))n clearly converges

to zero. Now, from the equality ϕ(λ0)2 +ψ(λ0)2λ20 = λ20, since λ0 > 0, it follows that
|ψ(λ0) | ≤ 1. Thus, we may consider two possibilities.
One. |ψ(λ0) | = 1. Then, ϕ(λ0) = 0 and so, after (3.1) we have that, for any x ∈ Sλ0

,
Tnϕ,ψ(x) = ψ(λ0)n · Rnx, n ≥ 2, and the sequence (Tnϕ,ψ(x))n converges weakly to
zero.
Two. |ψ(λ0) | < 1. We first see that the vector w := ϕ(λ0) (1, ψ(λ0), ψ(λ0)2, ... )
lies in Sλ0

. For this, given that w corresponds to a geometric progression whose ratio
has absolute value less than one,

‖w‖2 =
ϕ(λ0)2

1− ψ(λ0)2
= λ20, i.e., w ∈ Sλ0 .

Now, again from (3), if m ≥ 1, we have that, for any x ∈ Sλ0
,

lim
n
〈em, Tnϕ,ψ(x)〉 = ϕ(λ0)ψ(λ0)m−1 = 〈em, w〉.

Hence, the bounded sequence (Tnϕ,ψ(x))n converges weakly to w ∈ Sλ0
. We have thus

shown that, for any x ∈ Sλ0 , the sequence (Tnϕ,ψ(x))n weakly converges, either to
zero, or to a point of Sλ0

. �
Corollary 3.2. If a classical-type mapping Tϕ,ψ is such that L(Tϕ,ψ, B`2) ≤ 1, then
it has fixed points.

As a consequence of Corollary 2.4, we have the following result.



FIXED POINT DICHOTOMY 245

Corollary 3.3. Let Tϕ,ψ be a classical-type mapping such that

ϕ(t)2 + t2ψ(t)2 = 1, t ∈ [0, 1].

Then, if L(Tϕ,ψ, B`2) <
√

2, the mapping Tϕ,ψ has a fixed point.
Remark. From our previous study, we can now completely describe the classical-
type mappings. Let Tϕ,ψ be a classical-type mapping. Let Fix(Tϕ,ψ) stand for the
set of fixed points of Tϕ,ψ. Then, Tϕ,ψ is under one of the following situations:

1) 0 ∈ Fix(Tϕ,ψ).

2) Considering the function f(λ) =
√
ϕ(λ)2 + λ2ψ(λ)2, λ ∈ [0, 1], let

F (f) := {λ ∈ [0, 1] : f(λ) = λ}.
For each λ ∈ F (f), putting w(λ) := ϕ(λ)(1, ψ(λ), ψ(λ)2, ...), then

Fix(Tϕ,ψ) = { w(λ) : λ ∈ F (f), |ψ(λ) | < 1 } 6= ∅.
3) Fix(Tϕ,ψ) = ∅ and L(Tϕ,ψ, B`2) > 1.
Corollary 3.4. Let Tϕ,ψ be a classical-type mapping. If L(Tϕ,ψ, B`2) ≤ 1 (in
particular, if Tϕ,ψ is nonexpansive with respect to a renorming of `2), then

∅ 6= Fix(Tϕ,ψ) ⊂ {0} ∪ { w(λ) : λ ∈ F (f), |ψ(λ) | < 1 }.

References
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