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1. Introduction

The classical Banach contraction principle is a very useful tool in nonlinear analysis
with many applications to integral and differential equations, optimization theory,
and other topics. There are many generalizations of this result, one of them is due
to A.I. Perov [16] and consists in replacing usual metric spaces by spaces endowed
with vector-valued metrics. According to this result, if a space X is a Cartesian
product X = X1×· · ·Xn and each component Xi is a complete metric space with the
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metric di, then instead of endowing X with some metric δ generated by d1, · · · , dn,
for instance any one of the metrics

δp(x, y) =

(
n∑
i=1

di(xi, yi)
p

) 1
p

, (1 ≤ p <∞),

δ∞(x, y) = max{d1(x1, y1), · · · , dn(xn, yn)},

and applying Banach’s contraction principle in the complete metric space (X, δ),
better results are obtained if one considers the vector-valued metric

d(x, y) = (d1(x1, y1), · · · , dn(xn, yn))T

and one requires a generalized contraction (in Perov’s sense) condition in the vector-
matrix form

d(F (x), F (y)) ≤ Ad(x, y), x, y ∈ X,

where A is a square matrix of type n × n with nonnegative elements having the
spectral radius ρ(A) < 1. This approach is very fruitful for the treatment of systems
of equations arising from various fields of applied mathematics. The advantage of
using vector-valued metrics and norms instead of usual scalar ones, in connexion
with several techniques of nonlinear analysis, has been pointed out in [20]. Roughly
speaking, by a vector approach it is allowed that the component equations of a system
behave differently, and thus more general results can be obtained.

In his Ph.D. thesis [22], A. Viorel used generalized contractions in Perov’s sense
and gave a vector version of Krasnoselskii’s fixed point theorem [13] for a some of two
operators A and B, where A is a compact map and B is a generalized contraction.
Applications were given to systems of semi-linear evolution equations. Viorel’s result
was extended for multi-valued mappings in [17]. The proofs of these results combine a
vector version of the contraction principle (Perov and Perov-Nadler theorems, respec-
tively) with Schauder’s fixed point theorem for maps that are compact with respect
to the strong topology.

Alternatively, instead of the strong topology of a Banach space, one may think to
use the weak topology. Fixed point results involving the weak topology have been
obtained by many authors in the last decades (see, e.g., [2, 5, 4, 6, 8]). The purpose of
this paper is to extend the Leray-Schauder and Krasnoselskii’s fixed point theorems
to sums of generalized contractions and compact maps with respect to the weak
topology. Note that our technique can also be used to give vector versions of the
results in [3]. Next, motivated by the papers [6], [15] and [11], we give applications
of the theoretical results to a system of transport equations, and a system of mixed
fractional differential equations.

The paper is organized as follows: In Section 2, we present some notations and
preliminary facts that we will need in what follows. In Section 3, we first give a vector
version of the Leray-Schauder fixed point theorem for weakly sequentially continuous
mappings and then we extend Viorel’s result by using the weak topology. In Sections
3 and 4, we apply these results to a system of transport equations and a system of
mixed fractional differential equations.
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2. Preliminaries

In this section, we recall from the literature some notations, definitions, and aux-
iliary results which will be used throughout this paper.

By a generalized metric space we mean a set X endowed with a vector-valued metric
d, that is a mapping d : X ×X → Rn+ which satisfies all the axioms of a usual metric,
with the inequality ≤ understood to act componentwise. In such a space, the notions
of a Cauchy sequence, convergent sequence, completeness, open and closed set, are
defined in a similar way to that of the corresponding notions in a usual metric space.

A mapping F : X −→ X, where X is a generalized metric space with the vector-
valued metric d is said to be a generalized contraction, or a Perov contraction, if there
exists a matrix (called Lipschitz matrix ) M ∈ Mn(R+) such that Mk tends to the
zero matrix as k →∞ and

d(F (x), F (y)) ≤Md(x, y) for all x, y ∈ X.
Here the vector d (x, y) and d (F (x) , F (y)) are seen like all the vectors in Rn as
column matrices. Notice that a matrix M as above is called to be convergent to
zero, and that this property is equivalent (see [19]) to each one of the following three
properties:

(a) I −M is non-singular and (I −M)−1 = I +M +M2 + · · · .
(Here I is the unit matrix of size n).

(b) |λ| < 1 for every λ ∈ C with det(M − λI) = 0.
(c) I −M is non-singular and (I −M)−1 has nonnegative elements.

Notice that in view of (c), a vector-matrix inequality like x ≤Mx for a nonnegative
vector-column

x = (x1, . . . , xn)T ∈ Rn+
first yields (I −M)x ≤ 0, and then x ≤ (I −M)−10, whence x = 0Rn .

Recall Perov’s fixed point theorem which states that any generalized contraction
F on a complete generalized metric space (X, d) has a unique fixed point x∗, and for
each x ∈ X one has

d(F k(x), x∗) ≤Mk(I −M)−1d(x, F (x)) for all k ∈ N.

Notice that, under the assumptions of Perov’s theorem, and if J is the identity map-
ping of X, the mapping J − F is bijective and (J − F )−1 is continuous.

By a vector-valued norm on a linear space X we mean a mapping ‖·‖ : X → Rn+
which satisfies the usual axioms of a norm, with the inequality ≤ understood to act
componentwise. Any linear space X endowed with a vector-valued norm ‖·‖ is a
generalized metric space with respect to the vector-valued metric d (x, y) = ‖x− y‖ .
In case that (X, d) is complete, we say that X is a generalized Banach space.

In particular, if X = X1 × · · · × Xn, where (Xi, ‖.‖i) is a Banach space for i =
1, · · · , n, then X is a Banach space with respect to the norm

|x| = ‖x1‖1 + · · ·+ ‖xn‖n ,
and a generalized Banach space with respect to the vector-valued norm

‖x‖ = (‖x1‖1 , · · ·, ‖xn‖n)
T
,
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where x = (x1, · · ·, xn) . On such a space one can define a vector measure of weak
noncompactness by

ω (V ) = (ω1 (V1) , · · ·, ωn (Vn))
T

for V = V1 × · · · × Vn and any bounded sets Vi ⊂ Xi, i = 1, · · ·, n, where ωi is the
De Blasi measure of weak noncompactness on Xi (see [8]). Recall that, if (Y, ‖.‖Y )
is any Banach space, the De Blasi weak measure of noncompactness ωY (C) of any
bounded set C ⊂ Y is given by

ωY (C)=inf
{
r>0:there is a weakly compact set K⊂Y such that C⊂K+BY (0, r)

}
,

where BY (0, r) = {y ∈ Y : ‖y‖Y ≤ r} . For completeness we recall some properties of
ωY needed below (for the proofs we refer to [1]). Let C1, C2 ⊂ Y be bounded. Then

(i) Monotonicity: If C1 ⊂ C2, then ωY (C1) ≤ ωY (C2).
(ii) Regularity: ωY (C1) = 0 if and only if C1 is relatively weakly compact.

(iii) Invariance under closure: ωY (Cω1 ) = ωY (C1), where Cω1 is the weak closure
of C1.

(iv) Semi-homogeneity: ωY (λC1) = |λ|ωY (C1) for all λ ∈ R.
(v) Invariance under passage to the convex hull: ωY (conv(C1)) = ωY (C1).
(vi) Semi-additivity: ωY (C1 + C2) ≤ ωY (C1) + ωY (C2).

(vii) Cantor’s intersection property: If (Ck)k>1 is a decreasing sequence of
nonempty, bounded and weakly closed subsets of Y with lim

k→+∞
ωY (Ck) = 0,

then
∞⋂
k=1

Ck 6= ∅ and ωY

( ∞⋂
k=1

Ck

)
= 0, i.e.

∞⋂
k=1

Ck is relatively weakly com-

pact.

Throughout this paper, for a mapping F : D → X, where X is the Cartesian
product X1 × · · · ×Xn of n Banach spaces and D = D1 × · · · ×Dn, for Di ⊂ Xi a
weakly closed subset of Xi (i = 1, · · ·, n) , we shall say that F is sequentially weakly
continuous if for any sequence

(
xk
)
⊂ D such that xki → xi weakly in Xi, i = 1, · · ·, n,

one has Fi
(
xk
)
→ Fi (x) weakly in Xi for i = 1, · · ·, n.

3. Fixed point results

We first state a useful result in terms of the vector measure of weak noncompact-
ness.

Proposition 3.1. Let (Xi, ‖·‖i) , i = 1, · · ·, n be Banach spaces, and let

X = X1 × · · · ×Xn.

If F : X → X is weakly sequentially continuous and there is a matrix M ∈ Mn(R+)
such that

‖F (x)− F (y)‖ ≤M ‖x− y‖ for all x, y ∈ X, (3.1)

then for any bounded sets Vi ⊂ Xi, i = 1, · · ·, n and V = V1 × · · · × Vn, one has

ω(F (V )) ≤Mω(V ). (3.2)
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Proof. For each i ∈ {1, . . . , n}, denote αi = ωi(Vi). Then for any εi > 0, there exists
a weakly compact subset Ki of Xi such that Vi ⊂ Ki + BXi(0, αi + εi). Hence, for
every x = (x1, · · · , xn) ∈ V, there is an y = (y1, · · · , yn) ∈ K = K1 × · · · ×Kn such
that ‖xi − yi‖i 6 αi + εi for i = 1, . . . , n. Let F = (F1, · · ·, Fn) , where Fi : X → Xi

and let M = (mij)1≤i,j≤n. Then using (3.1) gives

‖Fi(x)− Fi(y)‖i ≤
n∑
j=1

mij‖xj − yj‖j ≤
n∑
j=1

mij(αj + εj). (3.3)

As a result, Fi(x)− Fi(y) ∈ BXi(0,
n∑
j=1

mij(αj + εj)) for i = 1, . . . , n. Hence,

Fi(x) ∈ Fi(K) +BXi

0,

n∑
j=1

mij(αj + εj)

 , i = 1, . . . , n.

Consequently,

Fi(V ) ⊂ Fi(K) +BXi

0,

n∑
j=1

mij(αj + εj)

 , i = 1, . . . , n. (3.4)

Since Fi is weakly sequentially continuous and K is weakly compact, we have
Fi : K −→ Xi is weakly continuous. Thus, Fi(K) is weakly compact. As a result

ωi (Fi(V )) ≤
n∑
j=1

mij(αj + εj), i = 1, . . . , n. (3.5)

Letting εi → 0 for all i yields

ωi (Fi(V )) ≤
n∑
j=1

mijαj =

n∑
j=1

mijωj(Vj), i = 1, · · ·, n, (3.6)

or equivalently, in the vector form, (3.2). �

We now give some vector versions of the Leray-Schauder fixed point theorem for
weakly sequentially continuous mappings.

Theorem 3.1. Let (Xi, ‖·‖i) , i = 1, · · ·, n be Banach spaces. For each i ∈ {1, · · ·, n} ,
consider a nonempty closed and convex set Ωi ⊂ Xi and a weakly open subset Ui of
Ωi with 0 ∈ Ui such that Uωi is a weakly compact subset of Ωi. Let Ω = Ω1× · · ·×Ωn,

D = Uω1 ×·· ·×Uωn , and F : D → Ω a weakly sequentially continuous mapping . Then,
either

(i): F has a fixed point, or
(ii): there exist i ∈ {1, · · ·, n} , a point x = (x1, · · ·, xn) ∈ D with

xi ∈ ∂ΩiUi = Uωi \ Ui, and a number λ ∈ (0, 1) with x = λF (x).

Proof. Suppose (ii) does not hold. Let Σ be the set defined by

Σ = {x ∈ D : x = λF (x) for some λ ∈ [0, 1]}.
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The set Σ is non-empty because 0 ∈ D. We will show that Σ is weakly compact.
The weak sequentially continuity of F implies that Σ is weakly sequentially closed.
For that, let (xn)n be a sequence of Σ such that xn → x weakly, x ∈ D. For all
n ∈ N, there exists a λn ∈ [0, 1] such that xn = λnF (xn). Since λn ∈ [0, 1], we can
extract a subsequence (λnj

)j such that λnj
→ λ ∈ [0, 1]. So, λnj

F (xnj
) → λF (x)

weakly. Hence x = λF (x) and x ∈ Σ. Let x ∈ D. Since Σω is weakly compact by
the Eberlein-Smulian theorem ([10], Theorem 8.12.4, p. 549), there exists a sequence
(xn)n ⊂ Σ such that xn → x weakly, so x ∈ Σ. Hence Σω = Σ and Σ is a weakly
closed subset of the weakly compact set D. Therefore, Σ is weakly compact. Because
X endowed with its weak topology is a Hausdorff locally convex space, we have that
X is completely regular ([21], p. 16). Since Σ∩ (Ω \U1×· · ·×Un) = ∅, then by ([12],
p. 146), there is a weakly continuous function ϕ : Ω → [0, 1], such that ϕ(x) = 1 for
x ∈ Σ and ϕ(x) = 0 for x ∈ Ω \ U1 × · · · × Un. Let F ∗ : Ω → Ω be the mapping
defined by

F ∗(x) = ϕ(x)F (x),

Because ∂Ωi
Ui = ∂Ωi

Uωi , ϕ is weakly continuous and F is weakly sequentially contin-
uous, we have that F ∗ is weakly sequentially continuous. In addition

F ∗i (Ω) ⊂ conv(Fi(D) ∪ {0}).

Let D∗i = conv(Fi(D) ∪ {0}) and D∗ = D∗1 × · · · × D∗n. It follows, using the Krein-
Smulian theorem (see [9], p. 434) and the weakly sequential continuity of F that
D∗ is a weakly compact convex set. Moreover F ∗(D∗) ⊂ D∗. Since F ∗ is weakly
sequentially continuous, it follows using the Arino et al’s. theorem [2] that F ∗ has a
fixed point x0 ∈ Ω. If x0 /∈ U1 × · · · × Un, ϕ(x0) = 0 and x0 = 0, which contradicts
the hypothesis 0 ∈ U1 × · · · × Un. Then x0 ∈ U1 × · · · × Un and x0 = ϕ(x0)F (x0),
which implies that x0 ∈ Σ, and so ϕ(x0) = 1 and the proof is complete. �

In the next result, the weak compactness of the sets Uωi is removed and replaced
by a stronger condition on F. The proof is standard and we omit it.

Theorem 3.2. Let (Xi, ‖·‖i) , i = 1, · · ·, n be Banach spaces. For each i ∈ {1, · · ·, n} ,
consider a nonempty closed and convex set Ωi ⊂ Xi and a weakly open subset Ui of
Ωi with 0 ∈ Ui. Let Ω = Ω1 × · · · ×Ωn, D = Uω1 × · · · ×Uωn , and F : D → Ω a weakly
sequentially continuous mapping such that F (D) is relatively weakly compact. Then
the alternative result given by Theorem 3.1 holds.

Theorem 3.2 will now be exploited to derive a Krasnoselskii type fixed point theo-
rem which is the analogue for the weak topology of Viorel’s theorem [22], and a vector
version of Theorem 3.4 in [4].

Theorem 3.3. Let Xi, Ωi, Ui (i = 1, · · ·, n), Ω and D be as in Theorem 3.1, and
X = X1 × · · · ×Xn. Let A : D −→ X and B : X −→ X be two weakly sequentially
continuous mappings such that:

(a) A(D) is relatively weakly compact;
(b) B is a Perov contraction;

(c) (J −B)
−1
A (D) ⊂ Ω.
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Then, either

(i): A+B has a fixed point, or
(ii): there exist i ∈ {1, · · ·, n} , a point x = (x1, · · ·, xn) ∈ D with

xi ∈ ∂Ωi
Ui = Uωi \Ui, and a number λ ∈ (0, 1) such as x = λA(x)+λB(xλ ).

Proof. For any given x ∈ D, let Fx : X −→ X be defined by

Fx(y) = A (x) +B(y), y ∈ X.

Using (b) we have

‖Fx(y)− Fx(z)‖ = ‖B(y)−B(z)‖ 6M‖y − z‖, for all y, z ∈ X,

where M is the Lipschitz matrix of B. This shows that Fx is a Perov contraction with
the same Lipschitz matrix M. Perov’s theorem guarantees the existence of a unique
point yx ∈ X such that yx = A (x) +B (yx) . Let F : D → X be defined as

F (x) = yx, x ∈ D.

From (c), we have F (D) ⊂ Ω. Notice that

F (x) = (J −B)−1A(x), x ∈ D.

Our next task is to show that the mapping F := (J −B)−1A fulfills the conditions of
Theorem 3.2. Indeed, since from (a), the set A(D) is relatively weakly compact, it is
also a bounded set. Next using

‖(J −B)−1(x)− (J −B)−1(y)‖ ≤ (I −M)−1‖x− y‖ for all x, y ∈ X,

we see that F (D) = (J − B)−1A(D) is also bounded. We now claim that F (D) is
relatively weakly compact. Indeed, from

F (D) ⊂ A(D) +B(F (D)), (3.7)

we obtain

ω (F (D)) ≤ ω (A(D) +B(F (D))) . (3.8)

Further, taking into account that A(D) is relatively weakly compact and using the
property (vi) of ωi we deduce that

ω (F (D)) ≤ ω (A(D)) + ω (B(F (D))) = ω (B(F (D))) . (3.9)

Now, by Proposition 3.1 and inequality (3.9), we get

ω(F (D)) ≤Mω(F (D)).

So (I − M)ω(F (D)) ≤ 0Rn . Since matrix M is convergent to zero, we then have
ω(F (D)) = 0Rn and so ωi(Fi(D)) = 0 for all i ∈ {1, · · ·, n}. Consequently, F (D) is
relatively weakly compact as claimed.

Next, we show that F : D → Ω is weakly sequentially continuous. To do so, let
(xk)k ⊂ D be such that xki → xi weakly as k → ∞, for i = 1, · · ·, n. Because F (D)
is relatively weakly compact, it follows by the Eberlein-Smulian theorem ([9], p. 430)
that there exists a subsequence of (xk) (still denoted by

(
xk
)
) and y ∈ Ω such that

Fi(x
k) → yi weakly, for i = 1, · · ·, n. Now the weak sequentially continuity of B
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guarantees that B
(
F (xk)

)
→ B (y) weakly. Also, from the equality BF = −A + F,

it follows that

−A(xk) + F (xk)→ −A(x) + y weakly.

So y = F (x). It is now easy to see that the whole sequence
(
F
(
xk
))

weakly converges
to F (x) , which proves that F is weakly sequentially continuous. Finally, we note
that the fixed points of F are the same as the fixed points of A + B, and that the
equation x = λF (x) , where x ∈ D, is equivalent to the equation

x = λA(x) + λB
(x
λ

)
. �

Now we state a variant of the previous result where the assumptions on mapping B
are relaxed.

Theorem 3.4. Let Xi, Ωi, Ui (i = 1, · · ·, n), Ω, D and X be as in Theorem 3.3. Let
A : D −→ X and B : Ω −→ X be two weakly sequentially continuous mappings such
that:

(a) A(D) is relatively weakly compact;
(b) A(D) ⊂ (J −B) (Ω);
(c) If (J −B)(xk)→ y weakly, then (xk)k has a weakly convergent subsequence;
(d) J −B is invertible.

Then the alternative of Theorem 3.3 holds.

Proof. For any given y ∈ D, define F : D → Ω by F (y) := (J − B)−1A(y). F is well
defined by assumption (b). We show that F (D) is relatively weakly compact. For
any (yn)n ⊂ F (D), we choose (xn)n ⊂ D such that yn = F (xn). Taking into account
assumption (a), together with the Eberlein-Smulian’s theorem (see [9], p. 430), we get
a subsequence (yϕ1(n))n of (yn)n such that (J−B)yϕ1(n) → z weakly, for some z ∈ Ω.
Thus, by assumption (c), there exists a subsequence yϕ1(ϕ2(n)) converging weakly to
y0 ∈ Ω. Hence, F (D) is relatively weakly compact. Next, we show that F : D → Ω is
weakly sequentially continuous. To do so, let (xk)k ⊂ D be such that xki → xi weakly
as k → ∞, for i = 1, · · ·, n. Because F (D) is relatively weakly compact, it follows
by the Eberlein-Smulian theorem [[9], p. 430] that there exists a subsequence of (xk)
(still denoted by

(
xk
)
) and y ∈ Ω such that Fi(x

k)→ yi weakly, for i = 1, · · ·, n. Now

the weak sequentially continuity of B guarantees that B
(
F (xk)

)
→ B (y) weakly.

Also, from the equality BF = −A+ F, it follows that

−A(xk) + F (xk)→ −A(x) + y weakly.

So y = F (x). It is now easy to see that the whole sequence
(
F
(
xk
))

weakly converges
to F (x) , which proves that F is weakly sequentially continuous.
Consequently, using Theorem 3.2 we get either A+B has a fixed point or there exist
i ∈ {1, · · ·, n} , a point x = (x1, · · ·, xn) ∈ D with xi ∈ ∂Ωi

Ui = Uωi \Ui, and a number
λ ∈ (0, 1) such as x = λA(x) + λB(xλ ). �

Remark 3.1. Any Perov contraction B : Ω −→ X, with B(Ω) bounded, satisfies
condition (c) in Theorem 3.4. To prove this, assume that (J − F ) (xk) → y weakly,
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for some (xk)k ⊂ Ω and y ∈ X. Writing xk as xk = (J − B) (xk) + B (xk) and using
the subadditivity of the De Blasi measure of weak noncompactness, we get

ω({xk}) ≤ ω({(J −B) (xk)}) + ω({B (xk)}).
Since ω({(J−B) (xk)}) = 0Rn , we obtain ω({xk}) ≤ ω({B(xk)}). On the other hand,
if M is the Lipschitz matrix of B, then

ω({B(xk)}) ≤Mω({xk}).
It follows that (I −M)ω({xk}) ≤ 0Rn , and then ω({xk}) = 0Rn . Consequently, {xk}
is relatively weakly compact and then by the Eberlein-Smulian’s theorem, it has a
weakly convergent subsequence. Hence, condition (c) is satisfied.

As a consequence of Theorem 3.4 and Remark 3.1, we have the following result.

Corollary 3.1. Let Xi, Ωi, Ui (i = 1, · · ·, n), Ω, D and X be as in Theorem 3.3.
Assume that A : D −→ X and B : Ω −→ X are two weakly sequentially continuous
mappings such that:

(1) A(D) is relatively weakly compact;
(2) B is a Perov contraction and B(Ω) is bounded;
(3) A(D) +B(Ω) ⊂ Ω.

Then the alternative of Theorem 3.3 holds.

Notice that the vector versions of the original theorems applied to the product
space X = X1 × · · · ×Xn allow to use different measures of noncompactness on the
factor spaces Xi, such is the case in paper [7].

4. Application I: Solutions of a system
of nonlinear transport equations

We consider the following system:

v3
∂Ψ1

∂x
(x, v) + σ1(x, v,Ψ1(x, v),Ψ2(x, v))− λ1Ψ1(x, v)

=

∫
K

r1(x, v, v′,Ψ1(x, v′),Ψ2(x, v′))dv′

v3
∂Ψ2

∂x
(x, v) + σ2(x, v,Ψ1(x, v),Ψ2(x, v))− λ2Ψ2(x, v)

=

∫
K

r2(x, v, v′,Ψ1(x, v′),Ψ2(x, v′))dv′

(4.1)

where (x, v) ∈ D = (0, 1) × K with K the unit sphere of R3, x ∈ (0, 1), v =
(v1, v2, v3) ∈ K, rj(., ., ., .), j = 1, 2 is a nonlinear function of Ψj , σj(., ., ., .), j = 1, 2
is a function on [0, 1]×K × C2 and λj , j = 1, 2 is a complex number. The boundary
conditions are modeled by

Ψj |Di = Hj(Ψj |D0), for j = 1, 2 (4.2)

where Di (resp. D0) is the incoming ( resp. outgoing) part of the space boundary
and are given by

Di = Di
1 ∪Di

2 = {0} ×K1 ∪ {1} ×K0,
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D0 = D0
1 ∪D0

2 = {0} ×K0 ∪ {1} ×K1,

for

K0 = K ∩ {v3 < 0} and K1 = K ∩ {v3 > 0}.
We shall treat the problem (4.1)-(4.2) in the following functional setting: let

X := L1(D; dxdv),

and

Xi := L1
(
Di, |v3|dv

)
:= L1

(
Di

1, |v3|dv
)
⊕ L1

(
Di

2, |v3|dv
)

:= Xi
1 ⊕Xi

2,

endowed with the norm

‖Ψ‖Xi = ‖Ψi
1‖Xi

1
+ ‖Ψi

2‖Xi
2

=

∫
K1

|Ψ(0, v)||v3|dv +

∫
K0

|Ψ(1, v)||v3|dv,

and

X0 := L1
(
D0, |v3|dv

)
:= L1

(
D0

1, |v3|dv
)
⊕ L1

(
D0

2, |v3|dv
)

:= X0
1 ⊕X0

2 ,

endowed with the norm

‖Ψ‖X0 = ‖Ψ0
1‖X0

1
+ ‖Ψ0

2‖X0
2

=

∫
K0

|Ψ(0, v)||v3|dv +

∫
K1

|Ψ(1, v)||v3|dv.

For each j ∈ {1, 2}, let Hj be the following linear bounded boundary operator defined
by: 

Hj : X0
1 ⊕X0

2 −→ Xi
1 ⊕Xi

2

Hj

(
u1

u2

)
=

(
Hj

11 Hj
12

Hj
21 Hj

22

)(
u1

u2

)
where Hj

l,k ∈ L(X0
l , X

i
k), for l, k, j = 1, 2. The boundary condition can be written as

Ψi = Hj(Ψ0) for j = 1, 2. Now for each j ∈ {1, 2} we define the streaming operator
THj with domain including the boundary conditions

THj : D(THj ) ⊆ X −→ X,

Ψ 7−→ THjΨ(x, v) = v3
∂Ψ

∂x
(x, v)

D(THj ) =
{

Ψ ∈ X such that Ψi = Hj(Ψ0)
}
,

where Ψ0 = (Ψ0
1,Ψ

0
2)T and Ψi = (Ψi

1,Ψ
i
2)T where Ψ0

1,Ψ
0
2,Ψ

i
1 and Ψi

2 are given by
Ψi

1(v) = Ψ(0, v), for v ∈ K1,

Ψi
2(v) = Ψ(1, v), for v ∈ K0,

Ψ0
1(v) = Ψ(0, v), for v ∈ K0,

Ψ0
2(v) = Ψ(1, v), for v ∈ K1.

Remark 4.1. For each j ∈ {1, 2}, the derivative of Ψ in the definition of THj is
meant in distributional sense.
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For each j ∈ {1, 2}, let λj0 be the real defined by

λj0 :=

{
0 if ‖Hj‖ ≤ 1,

− log(‖Hj‖) if ‖Hj‖ > 1.

Proposition 4.1. For each j ∈ {1, 2}, we have{
λ ∈ C such that Re(λ) < λ0 = inf(λ1

0, λ
2
0)
}
⊂ ρ(THj ).

Proof. See reference ([5] Proposition 3.1). �

For our subsequent analysis, we need this hypothesis: For each j ∈ {1, 2},

(A1) rj
(
x, v, v′,Ψ1(x, v′),Ψ2(x, v′)

)
= κj(x, v, v

′)fj
(
x, v′, Lj(Ψ1,Ψ2)(x, v′)

)
,

with Lj := (L1([0, 1]×K))2 −→ L∞([0, 1]×K) is a continuous linear map and{
fj : [0, 1]×K × C2 −→ C

(x, v, u1, u2) 7−→ fj(x, v, u1, u2).

is a mesurable function. The function κj(., ., .), j = 1, 2 is a measurable function from
[0, 1]×K ×K into R. It defines a continuous linear operator Fj , j = 1, 2 by

Fj : X −→ X

Ψ 7−→ Fj(Ψ)(x, v) =

∫
K

κj(x, v, v
′)Ψ(x, v′)dv′ (4.3)

Note that dx⊗ dv − ess− sup
(x,v)∈[0,1]×K

∫
K

|κj(x, v, v′)|dv′ = ‖Fj‖ <∞.

Definition 4.1. A collision operator Fj , j = 1, 2 in form (4.3) is said to be regular if
the set {

κj(x, ., v
′) such that (x, v′) ∈ [0, 1]×K

}
is a relatively weakly compact subset of L1(K, dx).

We need also the following result which is an immediate consequence of Lemme 4.1
in [6] for σ ≡ 0.

Lemma 4.1. If the collision operator Fj , j = 1, 2 is regular on X, then (THj−λI)−1Fj
is weakly compact on X, for Re(λ) < λ0.

Definition 4.2. A function f : [0, 1] × K × C2 → C is a Carathéodory map if the
following conditions are satisfied{

(x, v) 7−→ f(x, v, u1, u2) is measurable on [0, 1]×K, for all (u1, u2) ∈ C2.

u 7−→ f(x, v, u1, u2) is continuous on C2, for almost all (x, v) ∈ [0, 1]×K.

If f satisfies the Carathéodory conditions, we can define the operator Nf on the
set of functions (Ψ1,Ψ2) : [0, 1]×K −→ C2 by

Nf (Ψ1,Ψ2)(x, v) = f(x, v,Ψ1(x, v),Ψ2(x, v)), for every (x, v) ∈ [0, 1]×K.
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The operator Nf is called the Nemytskii operator generated by f. We assume that

(A2)


For each j ∈ {1, 2}, fj is a Carathéodory map satisfying

|fj(x, v, u1, u2)| 6 aj(x, v)hj(‖(u1, u2)‖L1×L1),

where aj ∈ L1([0, 1]×K, dxdv) and

hj ∈ L∞loc(R+) a non-decreasing function.

The interest that an operator satisfies the property (A2) lies in the following lemma:

Lemma 4.2. For each j ∈ {1, 2}, let Lj : (L1([0, 1] × K, dxdv))2 −→ L∞([0, 1] ×
K, dxdv) be a continuous linear map and let fj : [0, 1] × K × C2 −→ C be a map
satisfying the hypothesis (A2). Then the map

Φj := Nfj ◦ Lj : (L1([0, 1]×K, dxdv))2 −→ L1([0, 1]×K, dxdv)

is weakly sequentially continuous.

Proof. Let (un, vn) ⇀ (u, v) in (L1([0, 1] × K, dxdv))2. By the Eberlein-Smulian
Theorem, the set G = {(un, vn), (u, v)}∞n=1 is weakly compact. Let us show that
Φj(G), j = 1, 2 is relatively weakly compact in L1([0, 1]×K, dxdv). Clearly Φj(G) is
bounded, once

‖Φj(u1, u2)‖L1 6 ‖aj‖L1hj(‖Lj‖‖(u1, u2)‖L1×L1).

Which also shows that Φj(G) is uniformly integrable. Since C2 is reflexive, we get,
according to Dunford’s Theorem ([3] Theorem 7.10), that Φj(G) is relatively weakly
compact in L1([0, 1]×K, dxdv). Up to a subsequence, Φj(un, vn) ⇀ wj ∈ L1([0, 1]×
K, dxdv). The idea is to show that actually wj = Φj(u, v).We know Lj(un, vn)(x, ξ) ⇀
Lj(u, v)(x, ξ) in C for a.e. (x, ξ) ∈ [0, 1] ×K. Since f is a Carathéodory map, then
Φj(un, vn)(x, ξ) ⇀ Φj(u, v)(x, ξ) in C for almost every (x, ξ) ∈ [0, 1] × K. Now we
shall conclude that wj = Φj(u, v) a.e. To this end, we start by throwing away a set
A0 of measure zero such that, for each j ∈ {1, 2} the space

Fj := span
(
wj(([0, 1]×K) \A0) ∪ Φj(u, v)(([0, 1]×K) \A0)

)
is a separable and reflexive Banach space. The existence of such a A0 is due to Pettis’
Theorem. Let now {ϕk} be a dense sequence of continuous linear functionals in Fj .
By Ergorov’s Theorem, for each ϕk fixed, there exists a negligible set Ak, such that
ϕk(wj) = ϕk(Φj(u, v)) in ([0, 1] × K) \ Ak. Finally we define A = ∪∞k=0Ak. In this
way λ(A) = 0 and by the Hahn-Banach Theorem, wj(x, ξ) = Φj(u, v)(x, ξ) for all
(x, ξ) ∈ ([0, 1]×K) \A. �

The following hypothesis will play a crucial role:

(A3)



For j = 1, 2, Nσj
is weakly sequentially continuous

and acts from Br1 ×Br2 into Brj∣∣Nσj
(Ψ1,Ψ2)(x, v))−Nσj

(Ψ′1,Ψ
′
2)(x, v))

∣∣
6 |ρj,1(x, v)||Ψ1 −Ψ′1|+ |ρj,2(x, v)||Ψ2 −Ψ′2|
where Br = {Ψ ∈ X such that ‖Ψ‖ 6 r}
and ρj,1(., .), ρj,2(., .) ∈ L∞(D, dxdv),



KRASNOSELSKII TYPE THEOREMS IN PRODUCT BANACH SPACES 117

Let λ be a complex number such that Re(λ) < λ0. Then due to Proposition 4.1,
the mapping THj − λI, j = 1, 2 is invertible and therefore, the problem (4.1)-(4.2) is
equivalent to the following system:

Ψ1 = F1(λ1)(Ψ1,Ψ2) +H1(λ1)(Ψ1,Ψ2)

Ψ2 = F2(λ2)(Ψ1,Ψ2) +H2(λ2)(Ψ1,Ψ2)

Ψ1 ∈ D(TH1),Ψ2 ∈ D(TH2), Re(λj) < λ0

(4.4)

where {
Fj(λj) := (THj − λjI)−1FjNfjLj
Hj(λj) := (THj − λjI)−1N−σj

j = 1, 2

Now, the system (4.4) is equivalent to the following fixed point problem:{
(Ψ1,Ψ2) = F(λ1, λ2)(Ψ1,Ψ2) +H(λ1, λ2)(Ψ1,Ψ2)

(Ψ1,Ψ2) ∈ D(TH1)×D(TH2), Re(λj) < λ0 for j = 1, 2
(4.5)

where

F(λ1, λ2) :=

(
F1(λ1)
F2(λ2)

)
=

(
(TH1 − λ1I)−1F1Nf1L1

(TH2 − λ2I)−1F2Nf2L2

)
,

H(λ1, λ2) :=

(
H1(λ1)
H2(λ2)

)
=

(
(TH1 − λ1I)−1N−σ1

(TH2 − λ2I)−1N−σ2

)
Theorem 4.1. Assume that A1 − A3 hold and that for j = 1, 2, Fj is a regular

operator on X. Let Ur1×Ur2 be a weakly open subset of Br1×Br2 with 0 ∈ Ur1×Ur2 .
In addition, suppose that: for any solution (Ψ1,Ψ2) ∈ X2 to

(Ψ1,Ψ2) = αF(λ)(Ψ1,Ψ2) + αH(λ)

(
Ψ1

α
,

Ψ2

α

)
a.e. 0 < α < 1, we have (Ψ1,Ψ2) /∈ ∂Br1

Ur1 × ∂Br2
Ur2 (the weak boundary of Urj in

Brj , j = 1, 2) holds. Then there exists λ∗ < λ0, such that for Re(λj) < λ∗, j = 1, 2

the problem (4.1)− (4.2) has a solution in Ur1
ω × Ur2

ω
.

Proof. The proof will be given in several steps:
Step 1: The maps F(λ1, λ2) and H(λ1, λ2) are weakly sequentially continuous for
suitable λ = (λ1, λ2). Indeed, we have for j = 1, 2, Nσj is weakly sequentially contin-

uous and for Re(λj) < λ0, the linear operator (THj − λj)−1, j = 1, 2 is bounded, so
the operator

H(λ1, λ2) := ((TH1 − λ1I)−1N−σ1
, (TH2 − λ2I)−1N−σ2

)

is weakly sequentially continuous, for Re(λj) < λ0, j = 1, 2. Moreover, using ([6] page
89), we have

F(λ1, λ2) :=
(
(TH1 − λ1I)−1F1Nf1L1, (TH2 − λ2I)−1F2Nf2L2

)
is weakly sequentially continuous, for Re(λj) < λ0, j = 1, 2.

Step 2: F(λ)(Ur1
ω×Ur2

ω
) is relatively weakly compact in X×X. Using the hypoth-

esis (A2), we get NfjLj(Ur1
ω ×Ur2

ω
) is a bounded subset of X. So from Lemma 4.1

we have F(λ)(Ur1
ω × Ur2

ω
) is relatively weakly compact in X ×X.
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Step 3: H(λ1, λ2) is a contraction mapping on Br1 ×Br2 .
Indeed, let (Ψ1,Ψ2), (Ψ′1,Ψ

′
2) ∈ Br1 ×Br2 . We have

‖H(λ)(Ψ1,Ψ2)−H(λ)(Ψ′1,Ψ
′
2)‖

=

(
‖(TH1 − λ1I)−1(N−σ1

(Ψ1,Ψ2)−N−σ1
(Ψ′1,Ψ

′
2))‖

‖(TH2 − λ2I)−1(N−σ2(Ψ1,Ψ2)−N−σ2(Ψ′1,Ψ
′
2))‖

)
6

(
‖(TH1 − λ1I)−1‖‖N−σ1

(Ψ1,Ψ2)−N−σ1
(Ψ′1,Ψ

′
2)‖

‖(TH2 − λ2I)−1‖‖N−σ2
(Ψ1,Ψ2)−N−σ2

(Ψ′1,Ψ
′
2)‖

)
6

(
‖(TH1 − λ1I)−1‖(‖ρ1,1‖∞‖Ψ1 −Ψ′1‖+ ‖ρ1,2‖∞‖Ψ2 −Ψ′2‖)
‖(TH2 − λ2I)−1‖(‖ρ2,1‖∞‖Ψ1 −Ψ′1‖+ ‖ρ2,2‖∞‖Ψ2 −Ψ′2‖)

)
6 max
j∈{1,2}

(‖(THj − λjI)−1‖)
(
‖ρ1,1‖∞ ‖ρ1,2‖∞
‖ρ2,1‖∞ ‖ρ2,2‖∞

)(
‖Ψ1 −Ψ′1‖
‖Ψ2 −Ψ′2‖

)
6M‖(Ψ1,Ψ2)− (Ψ′1 −Ψ′2)‖

where

M = max
j∈{1,2}

(
∥∥(THj − λjI)−1

∥∥)

(
‖ρ1,1‖∞ ‖ρ1,2‖∞
‖ρ2,1‖∞ ‖ρ2,2‖∞

)
On the other hand, we have for Re(λj) < λ0, j = 1, 2,

‖(THj − λj)−1‖ 6 −1

Re(λj)

(
1 +

‖Hj‖
1− eRe(λj)‖Hj‖

)
.

(See [6], page 89 ). So, ‖(THj − λj)−1‖ 6 Υ(Re(λj)) where

Υ(t) =
−1

t

(
1 +

‖Hj‖
1− et‖Hj‖

)
Clearly, Υ is continuous and satisfies lim

t→−∞
Υ(t) = 0. Hence there exists λ′ < 0 such

that for Re(λj) < min(λ0, λ
′), we have

( max
j∈{1,2}

‖(THj − λj)−1‖‖ρk,l‖∞)1≤k,l≤2

are small enough and so, M is a matrix convergent to zero. In conclusion, the operator
H(λ1, λ2) is a contraction mapping on Br1 ×Br2 .
Step 4: We will show that for suitable λ = (λ1, λ2), we have

F(λ)(Ur1
ω × Ur2

ω
) +H(λ)(Br1 ×Br2) ⊂ Br1 ×Br2 .

To do so, let (Ψ1,Ψ2) ∈ Ur1
ω × Ur2

ω
and (ϕ1, ϕ2) ∈ Br1 ×Br2 . Then we have

‖H(λ)(ϕ1, ϕ2) + F(λ)(Ψ1,Ψ2)‖

=

∥∥∥∥∥∥
(TH1 − λ1I)−1

(
N−σ1

(ϕ1, ϕ2) + F1Nf1L1(Ψ1,Ψ2)
)

(TH2 − λ2I)−1
(
N−σ2

(ϕ1, ϕ2) + F2Nf2L2(Ψ1,Ψ2)
)∥∥∥∥∥∥

6

(∥∥(TH1 − λ1I)−1
∥∥ (‖N−σ1

(ϕ1, ϕ2)‖+ ‖F1‖‖(Nf1L1(Ψ1,Ψ2))‖)∥∥(TH2 − λ2I)−1
∥∥ (‖N−σ2

(ϕ1, ϕ2)‖+ ‖F2‖‖(Nf2L2(Ψ1,Ψ2))‖)

)
6

(∥∥(TH1 − λ1I)−1
∥∥ (M1(r1, r2) + ‖F1‖(‖a1‖‖h1‖∞)∥∥(TH2 − λ2I)−1
∥∥ (M2(r1, r2) + ‖F2‖(‖a2‖‖h2‖∞)

)
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where for j = 1, 2,Mj(r1, r2) denotes respectively the upper bound of N−σj
on Br1 ×

Br2 . So, for Reλj < min(λ′, λ1), λ1 < 0, we obtain

‖H(λ)(ϕ1, ϕ2)+F(λ)(Ψ1,Ψ2)‖ ≤ max
j∈{1,2}

Υ(Re(λj))

(
M1(r1, r2) + ‖F1‖(‖a1‖‖h1‖∞
M2(r1, r2) + ‖F2‖(‖a2‖‖h2‖∞

)
,

where Υ is defined in step 3.
Thus, there exists λ′′ < 0 such that for Re(λj) < min(λ0, λ

′, λ′′), j = 1, 2, we have

H(λ1, λ2)(ϕ1, ϕ2) + F(λ1, λ2)(Ψ1,Ψ2) ⊂ Br1 ×Br2 .

Consequently, for Re(λj) < λ∗ = min(λ0, λ
′, λ′′), j = 1, 2 the mappings F(λ1, λ2) and

H(λ1, λ2) satisfy the assumptions of Corollary (3.1) on the nonempty bounded, closed
and convex subset Br1 × Br2 . Consequently the problem (4.1 − 4.2) has a solution
(ϕ,ψ) in Br1 ×Br2 for all λ = (λ1, λ2) such that Reλj < λ∗, j = 1, 2. �

5. Application II: Existence of weak solutions

We discuss the existence of weak solutions for a coupled system of mixed fractional
differential equations{

Dα
1−(Dβ1

0+u(t)) + f1(t, u(t), v(t)) = 0,

Dα
1−(Dβ2

0+v(t)) + f2(t, u(t), v(t)) = 0; t ∈ I := [0, 1],
(5.1)

with the following initial conditions:{
Dβ1

0+u(0) = Dβ1

0+u(1) = Dβ2

0+v(0) = Dβ2

0+v(1) = 0,
u(0) = u′(1) = v(0) = v′(1) = 0;

(5.2)

where α > 1, βi < 2, for i = {1, 2}, f1, f2 : I × E × E → E are given continuous
functions, E is a real (or complex) Banach space with norm ‖.‖E and dual E∗ such
that E is the dual of a weakly compactly generated Banach space X. Let’s remember
that

Dα
a+f(t) =

1

Γ(n− α)
(
d

dt
)n
∫ t

a

(t− s)n−α−1f(s)ds

and

Dα
b−f(t) =

1

Γ(n− α)
(− d

dt
)n
∫ b

t

(s− t)n−α−1f(s)ds

where n = [α] + 1, are, respectively, the right and left Riemann-Liouville fractional
derivatives of order α and

Iαa+f(t) =
1

Γ(α)

∫ t

a

(t− s)α−1f(s)ds

and

Iαb−f(t) =
1

Γ(α)

∫ b

t

(s− t)α−1f(s)ds

are, respectively, the right and left Riemann-Liouville fractional integrals of order α.
Let C(I, E) be the Banach space of all continuous functions w from I into E with
the supremum (uniform) norm. As usual, AC(I) denotes the space of absolutely
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continuous functions from I into E. Also by C(I, E)2 = C2, we denote the product
space of continuous functions with the norm

‖(u, v)‖C2 =

(
‖u‖C
‖v‖C

)
.

Let (E,w) = (E, σ(E,E∗)) be the Banach space E with its weak topology.

Definition 5.1. A Banach space X is called weakly compactly generated (WCG for
short) if it contains a weakly compact set whose linear span is dense in X.

Definition 5.2. ([18]) The function u : I → E is said to be Pettis integrable on I if
and only if there is an element uJ ∈ E corresponding to each J ⊂ I such that

φ(uJ) =

∫
J

φ(u(s))ds

for all φ ∈ E∗, where the integral on the right-hand side is assumed to exist in the
sense of Lebesgue (by definition, uJ =

∫
J
u(s)ds)

Let P (I, E) be the space of all E-valued Pettis integrable functions on I, and
L1(I, E) be the Banach space of Lebesgue integrable functions u : I → E. Define the
class P1(I, E) by

P1(I, E) =
{
u ∈ P (I, E) : φ(u) ∈ L1(I, E) for every φ ∈ E∗

}
.

The space P1(I, E) is normed by

‖u‖P1 = sup
φ∈E∗,‖φ‖61

∫ 1

0

|φ(u(x))|dλx,

where λ stands for a Lebesgue measure on I. The following result is due to Pettis
(see [18], Theorem 3.4 and Corollary 3.41).

Proposition 5.1. ([18]) If u ∈ P1(I, E) and h is a measurable and essentially bounded
E-valued function, then uh ∈ P1(J,E).

For all that follows, the symbol
∫

denotes the Pettis integral.

Proposition 5.2. Let E be a normed space, and x0 ∈ E with x0 6= 0. Then there
exists φ ∈ E∗ with ‖φ‖ = 1 and φ(x0) = ‖x0‖.

Let us start by defining what we mean by a weak solution of the coupled system
(5.1)− (5.2).

Definition 5.3. A coupled function (u, v) ∈ C2 is said to be a weak solution of the
system (5.1)− (5.2) if (u, v) satisfies equations (5.1) and conditions (5.2) on I.

The following hypotheses will be used in the sequel:
(H1) For a.e. t ∈ I, the functions u 7→ fi(t, u, .) and v 7→ fi(t, ., v); i = 1, 2 are weakly

sequentially continuous.
(H2) For a.e. u, v ∈ C(I, E), the functions t 7→ fi(t, u, v), i = 1, 2 are Pettis integrable

a.e. on I.
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(H3) There exist pij ∈ C(I, [0,∞)), i = 1, 2, such that

‖fi(t, u1(t), u2(t))−fi(t, v1(t), v2(t)‖E ≤ pi1(t)‖u1(t)−v1(t)‖E+pi2(t)‖u2(t)−v2(t)‖E
for a.e. t ∈ I and each u1, u2, v1, v2 ∈ C.
Let

p∗ij = sup
t∈I

pi,j(t), i, j = 1, 2.

We shall transform the system (5.1)− (5.2) to an equivalent system of integral equa-
tions. Consider the corresponding linear system:

Dα
1−(Dβi

0+ui(t)) = −yi(t), 0 < t < 1,

Dβi

0+ui(0) = Dβi

0+ui(1) = 0, ui(0) = u′i(1) = 0,

here i ∈ {1, 2}.

Lemma 5.1. [11] Assume that yi ∈ C(0, 1)∩L1(0, 1), for i ∈ {1, 2}, then the boundary
value problem (5.1)− (5.2), has a unique solution given by

ui(t) =

∫ 1

0

Gi(t, r)yi(r)dr + gi(t)

∫ 1

0

sα−1yi(s)ds,

where

Gi(t, r)=
1

Γ(βi)Γ(α)



∫ r

0

(tβi−1(1− s)βi−2 − (t− s)βi−1)(r − s)α−1ds,

0 ≤ r ≤ t ≤ 1,

tβi−1

∫ r

0

(1− s)βi−2(r − s)α−1ds−
∫ t

0

(t− s)βi−1(r − s)α−1ds,

0 ≤ t ≤ r ≤ 1.

gi(t) =
1

Γ(βi)Γ(α)

(∫ t

0

(t− s)βi−1(1− s)α−1ds− tβi−1

α+ βi − 2

)
.

Lemma 5.2. [11] The functions gi and Gi, for all i ∈ {1, 2} are continuous and
satisfy the following properties:

0 ≤ Gi(t, r) ≤
1

(α+ βi − 2)Γ(βi)Γ(α)
, 0 ≤ t, r ≤ 1

gi(t) ≤ 0, |gi(t)| ≤
1

(α+ βi − 2)Γ(βi)Γ(α)
, 0 ≤ t ≤ 1.

Define the integral operators A and B on C2 by

A(u1, u2)(t) =

(
A1(u1, u2)(t)
A2(u1, u2)(t)

)
, and B(u1, u2)(t) =

(
B1(u1, u2)(t)
B2(u1, u2)(t)

)
,

where

Ai(u1, u2)(t) =

∫ 1

0

Gi(t, r)fi(r, u1(r), u2(r))dr,

Bi(u1, u2)(t) = gi(t)

∫ 1

0

sα−1fi(s, u1(s), u2(s))ds.
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First notice that the hypotheses H1 and H2 imply that the operators A and B are
well defined. By [11], The function u = (u1, u2) ∈ C2 is a solution of the system
(5.1)− (5.2) if, and only if, Au(t) +Bu(t) = u(t) for all t ∈ I. Let R > 0 be such that

R > sup

{
4L

(α+ β1 − 2)Γ(β1)Γ(α)
,

4L

(α+ β2 − 2)Γ(β2)Γ(α)

}
where L = sup{|fi(t, 0, 0)|, 0 ≤ t ≤ 1, i = 1, 2}, and consider the closed subset of
(C(I, E))2 defined by:

BR =

{
(u, v) ∈ (C(I, E))2; ‖(u, v)‖C2 ≤

(
R
R

)}
.

Theorem 5.1. Assume that hypotheses (H1 − H3) hold. Let U be a weakly open
subset of BR. If

p∗i1 + p∗i2
(α+ βi − 2)Γ(βi)Γ(α)

<
1

4
(5.3)

for i ∈ {1, 2} and if for any solution (u, v) of (u, v) = λA(u, v) + λB(uλ ,
v
λ ) with

λ ∈ (0, 1), we have (u, v) 6∈ ∂BR
U,then the coupled system (5.1) − (5.2) has at least

one weak solution defined on I.

Proof. We shall show that the operators A and B satisfies all the assumptions of
Corollary 3.1. The proof will be given in several steps.
Step 1: A and B are relatively weakly compact. Let (un, vn) be a sequence in BR
and let (un(t), vn(t)) ⇀ (u(t), v(t)) in (E × E,ω) for each t ∈ I. Fix t ∈ I, since the
functions fi, i = 1, 2 satisfy the assumption (H1), we have fi(t, un(t), vn(t)) converge
weakly uniformly to fi(t, u(t), v(t)). Hence the Lebesgue dominated convergence theo-
rem for Pettis integral implies that A(un, vn)(t) (respectively B(un, vn)(t)) converges
weakly uniformly to A(u, v)(t) (respectively B(u, v)(t)) in (E ×E,ω), for each t ∈ I.
Thus, A(un, vn) ⇀ A(u, v) and B(un, vn) ⇀ B(u, v). Hence, A and B are weakly
sequentially continuous.
Step 2: The operator A is relatively weakly compact. Let U be a weakly open
subset of BR such that 0 ∈ U. Let (u, v) ∈ Uω be an arbitrary point. We shall prove
A(u, v) ∈ BR. Fix t ∈ I and consider A(u, v)(t). Without loss of generality, we may
assume that Ai(u, v)(t) 6= 0. By the Hahn-Banach Theorem there exists ϕ ∈ E∗ with
‖ϕ‖ = 1 such that ‖Ai(u, v)(t)‖E = ϕ(Ai(u, v)(t)). Thus,

‖Ai(u, v)(t)‖E ≤
∫ 1

0

Gi(t, r)ϕ(fi(r, u(r), v(r)))dr

≤ 1

(α+βi−2)Γ(βi)Γ(α)

∫ 1

0

ϕ(fi(r, u(r), v(r))−fi(r, 0, 0))+fi(r, 0, 0)dr

≤ 1

(α+ βi − 2)Γ(βi)Γ(α)
(p∗i1‖u‖E + p∗i2‖v‖E + L)

≤ p∗i1R+ p∗i2R+ L

(α+ βi − 2)Γ(βi)Γ(α)

≤ R

2
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Let (Ai(un, vn)) be any sequence in Ai(U
ω

). Notice that U
ω

is bounded.
By reflexiveness, for each t ∈ I the set {Ai(un, vn)(t), n ∈ N} is relatively weakly

compact. Let (u, v) ∈ Uω, 0 ≤ t ≤ s ≤ 1, we have

‖Ai(u, v)(t)−Ai(u, v)(s)‖E ≤
∫ t

0

|Gi(t, r)−Gi(s, r)|ϕ(fi(r, u(r), v(r)))dr

+

∫ s

t

|Gi(t, r)−Gi(s, r)|ϕ(fi(r, u(r), v(r)))dr

+

∫ 1

s

|Gi(t, r)−Gi(s, r)|ϕ(fi(r, u(r), v(r)))dr

≤ L

Γ(βi)Γ(α)

(
3(sβi−1 − tβi−1)

βi − 1
+

2((sβi − tβi)− (s− t)βi)

βi
+ 3(s− t)

)
.

Consequently, ‖Ai(u, v)(t) − Ai(u, v)(s)‖E → 0, when t 7→ s, for all i ∈ {1, 2}. One
shows that {A(un, vn);n ∈ N} is a weakly equicontinuous subset of C2. It follows now
from the Ascoli-Arzela Theorem that (A(un, vn)) is relatively weakly compact.

Step 3: B is M−contraction and B(BR) is bounded. Indeed, let (u, v) ∈ Uω, then
by using hypothesis (H3) it yields

‖Bi(u1, u2)(t)−Bi(v1, v2)(t)‖E

≤ |gi(t)|
∫ 1

0

sα−1ϕ(fi(s, u1(s), u2(s))− fi(s, v1(s), v2(s)))ds

≤ p∗i1‖u1 − v1‖C + p∗i2‖u2 − v2‖C
(α+ βi − 2)Γ(βi)Γ(α)

Then
‖B(u1, u2)−B(v1, v2)‖C2 ≤M‖u− v‖C2

where

M =


p∗11

(α+ β1 − 2)Γ(β1)Γ(α)

p∗12

(α+ β1 − 2)Γ(β1)Γ(α)

p∗21
(α+β2−2)Γ(β2)Γ(α)

p∗22

(α+ β2 − 2)Γ(β2)Γ(α)


Also as in step 2, we have

‖Bi(u, v)(t)‖E ≤
R

2

Step 4: Let (u1, u2) ∈ Uω and (v1, v2) ∈ BR.
It follows that A(u1, u2) +B(v1, v2) ∈ BR. Hence, the result follows.

Example 5.1. Let

E = l1 = {u = (u1, u2, · · · , un, · · · ),
∞∑
n=1

|un| <∞}

be the Banach space with the norm

‖u‖E =

∞∑
n=1

|un|.
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We consider the following coupled fractional order system

D1.2
1− (D1.9

0+ un(t)) = fn(t, u(t), v(t))

D1.2
1− (D1.9

0+ vn(t)) = gn(t, u(t), v(t))

D1.9
0+ un(0) = D1.9

0+ un(1) = 0

D1.9
0+ vn(0) = D1.9

0+ vn(1) = 0

u′n(1) = un(0) = 0, v′n(1) = vn(0) = 0,

(5.4)

(α = 1.2, β1 = β2 = 1.9), where

fn(t, u(t), v(t)) =
c

n2

(
te−7un(t) +

e−(t+5)

1 + vn(t)

)
,

and

gn(t, u(t), v(t)) =
c

n2

(
te−6

1 + vn(t)

)
, t ∈ I

with

u = (u1, u2, · · · , un, · · · ), v = (v1, v2, · · · , vn, · · · ), c :=
0.1e4

4
Γ(1.2)Γ(1.9).

Set

f = (f1, f2, · · · , fn, · · · ) and g = (g1, g2, · · · , gn, · · · ).
Clearly the functions f and g are continuous. For each u, v ∈ E and t ∈ I, we have

‖f(t, u1(t), u2(t))−f(t, v1(t), v2(t))‖E ≤ c(e−7‖u1(t)−v1(t)‖+e−(t+5)‖u2(t)−v2(t)‖),

‖g(t, u1(t), u2(t))− g(t, v1(t), v2(t))‖E ≤ cte−6‖u2(t)− v2(t)‖
and

L =
cπ2

6
e−5.

Hence, the hypothesis (H3) is satisfied with p∗11 = ce−7, p∗12 = ce−5, p∗21 = 0 and
p∗22 = ce−6. We shall show that condition (5.3) holds. Indeed:

sup
i=1,2

{
p∗i1 + p∗i2

(α+ βi − 2)Γ(βi)Γ(α)

}
<

1

8

So, all conditions of Theorem 5.1 are satisfied. Let now U be a weakly subset of

BR, (R > π2

6e ). Then the coupled system (5.4) has at least one solution (u, v) in BR
or for any solution (u, v) of (u, v) = λA(u, v) + λB(uλ ,

v
λ ) with λ ∈ (0, 1), we have

(u, v) 6∈ ∂BR
U. �
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Bolyai University, Cluj-Napoca, 2011.

Received: June 23, 2020; Accepted: September 19, 2020.



126 SANA HADJ AMOR, RADU PRECUP AND ABDELHAK TRAIKI


