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Abstract. In this paper, we prove the existence of periodic points of asymptotically nonexpansive
mappings defined on non-convex domains in uniformly convex Banach spaces. We also introduce
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of such mappings with non-convex domains.
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1. Introduction

The notion of asymptotically nonexpansive mapping, which is a natural extension
of the idea of nonexpansive mapping, was first introduced by Goebel and Kirk [5] in
1972. There, the authors showed the existence of fixed points of any such mapping
acting on a nonempty, closed, convex domain of a uniformly convex Banach space.
Many researchers have extended this fixed point result and have proposed iteration
schemes for this kind of mappings, see for instance [3, 8, 9, 10, 13, 12, 14]. Most
recently, Alfuraidan and Khamsi [1] established an analog to the fixed point result
of [5] for monotone asymptotically nonexpansive mappings. All these results concern
mappings acting on a convex set. The classical fixed point result discussed in [5] does
not hold on non-convex domain.
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The discussion on fixed points of (firmly) nonexpansive mappings in a non-convex
domain has been undertaken in many studies, see for instance [2, 6, 7, 11] and some
references therein.

In the present work we deal with the non-convex situation and are, in fact, able
to prove the existence of periodic points of asymptotically nonexpansive mapping
acting on a non-convex subset of an arbitrary, uniformly convex Banach space. In
particular, we prove the existence of fixed point of such mappings (with asymptotic
regularity) in a non-convex domain. Furthermore, we introduce the notion of λ-firmly
asymptotically nonexpansive mapping and prove the existence of fixed points of such
mapping in a non-convex domain.

2. Preliminaries

We start with recalling the definition of asymptotically nonexpansive mapping
introduced in [5].

Definition 2.1. [5] Let D be a nonempty subset of a Banach space (X, ‖.‖). A
mapping T : D → D is said to be asymptotically nonexpansive if there exists a
sequence of positive numbers {kp} such that lim

p→∞
kp = 1 and

‖T px− T py‖ ≤ kp ‖x− y‖ ,

for every x, y ∈ D. A point x ∈ D is said to be a fixed point of T if T (x) = x; x is said
to be a periodic point of T if x is a fixed point of an iterate of T , i.e., if T p(x) = x,
for some integer p ≥ 1.

The concept of asymptotic regularity is due to Browder and Petryshyn [4].
Specifically,

Definition 2.2. [4] Led D be a nonempty subset of a Banach space (X, ‖.‖). A map-
ping T : D → D is said to be asymptotically regular if for each x ∈ D,

lim
p→∞

∥∥T px− T p+1x
∥∥→ 0. (2.1)

We will use the following technical lemma in the proof of the main theorems.

Lemma 2.1. [1] Let C be a nonempty, closed and convex subset of a uniformly convex
Banach space (X, ‖.‖). Let τ : C → [0,∞) be a type function, i.e., assume there exists
a bounded sequence {xn} ∈ X such that

τ(x) = lim sup
n→∞

‖xn − x‖,

for every x ∈ C. Then τ has a unique minimum point z ∈ C such that

τ(z) = inf{τ(x); x ∈ C}.

Moreover, if {zn} is a minimizing sequence in C, i.e., if lim
n→∞

τ(zn) = τ(z), then {zn}
converges strongly to z.
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3. Periodic points of asymptotically nonexpansive mappings

As stated in the introduction, the classical fixed point theorem for asymptotically
nonexpansive mappings [5] does not hold for mappings acting on non-convex domains.
Nonetheless, the following theorem shows that such mappings do possess periodic
points.

Theorem 3.1. Let (X, ‖.‖) be a uniformly convex Banach space and C =
m⋃
i=1

Ci be

a union of nonempty, closed, convex and bounded subsets of X. If T : C → C is an
asymptotically nonexpansive mapping, then T has a periodic point.

Proof. Let {kp} be the Lipschitz constants associated to the asymptotically nonex-
pansive mapping T . Without loss of generality, we may assume that kp ≥ 1 for every
p ∈ N. Let x0 ∈ C and consider the type function generated by {Tn(x0)}, i.e.,

τ(x) = lim sup
n→∞

‖Tn(x0)− x‖ .

Lemma 2.1 implies the existence of a unique minimum point zi ∈ Ci for all 1 ≤ i ≤ m,
i.e.

τ(zi) = inf{τ(x); x ∈ Ci}.
We will split the proof in the following two cases:

Case 1. There exists some i ∈ {1, 2, . . . ,m} such that a subsequence {Tϕi(p)(zi)} of
{T p(zi)} is in Ci, for all p ∈ N.

The asymptotic nonexpansive behavior of T implies the following inequality:

‖Tn(x0)− Tϕi(p)(zi)‖ ≤ kϕi(p)‖T
n−ϕi(p)(x0)− zi‖,

for every n ≥ ϕi(p). Letting n→∞, it follows that

τ(zi) ≤ τ(Tϕi(p)(zi)) ≤ kϕi(p)τ(zi).

The condition lim
p→∞

kϕi(p) = 1 yields

lim
p→∞

τ(Tϕi(p)(zi)) = τ(zi),

which means that {Tϕi(p)(zi)} is a minimizing sequence of τ in Ci. By virtue of
Lemma 2.1, {Tϕi(p)(zi)} converges to zi. Let q ≥ 1 be the smallest positive integer
such that T q(zi) ∈ Ci. Since τ and T q are continuous, it follows that

T q(zi) = T q
(

lim
p→∞

Tϕi(p)(zi)

)
= lim
p→∞

T q+ϕi(p)(zi),

and therefore that τ(T q(zi)) = lim
p→∞

τ(T q+ϕi(p)(zi)). The inequality

τ (T q(zi)) ≤ lim sup
p→∞

kq+ϕi(p) τ(zi) = τ(zi),

yields τ(zi) = τ(T q(zi)), since T q(zi) ∈ Ci. On account of the uniqueness of the
minimum point of τ in Ci it follows that T q(zi) = zi. In all, zi is a periodic point
of T .
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Case 2. For every i ∈ {1, 2, . . . ,m}, Ci contains only a finite number of elements of
the orbit {T p(zi)}.

In this case, there exist integers {m1,m2, . . . ,mr} in {1, 2, . . . ,m} such that a
subsequence {Tϕi(p)(zmi

)} of {T p(zmi
)} lies in Cmi+1

, i = 1, 2, . . . , r − 1, and a sub-

sequence {Tϕr(p)(zmr
)} of {T p(zmr

)} is contained in Cm1
. Without lost of generality,

the sequence Cmi
can be arranged in such a way that mi = i for all i = 1, 2, . . . , r−1.

In other words, we have {Tϕi(p)(zi)} is in Ci+1, for i = 1, 2, . . . , r−1, and {Tϕr(p)(zr)}
is in C1. Since T is asymptotically nonexpansive, the following inequalities hold

τ(z1) ≤τ
(
Tϕr(p)(zr)

)
≤ kϕr(p)τ(zr)

τ(zr) ≤τ
(
Tϕr−1(p)(zr−1)

)
≤ kϕr−1(p)τ(zr−1)

...

τ(z3) ≤τ
(
Tϕ2(p)(z2)

)
≤ kϕ2(p)τ(z2)

τ(z2) ≤τ
(
Tϕ1(p)(z1)

)
≤ kϕ1(p)τ(z1),

∀ p ∈ N. Since lim
p→∞

kp = 1, we obtain

τ(z1) ≤ τ(zr) ≤ τ(zr−1) ≤ · · · ≤ τ(z2) ≤ τ(z1),

which implies τ(z1) = τ(z2) = · · · = τ(zr−1) = τ(zr). Moreover, one has

τ(zi+1) ≤ lim
p→∞

τ
(
Tϕi(p)(zi)

)
≤ τ(zi),

∀ i = 1, 2, . . . , r, where zr+1 = z1. Using Lemma 2.1, we conclude that {Tϕi(p)(zi)}
converges to zi+1, ∀ i = 1, 2, . . . , r. Let qi ≥ 1 be the smallest integer such that
T qi(zi) ∈ Ci+1, for i = 1, 2, . . . , r. As in Case 1, the continuity of both τ and T p,
p ∈ N, allows us to conclude that

τ(zi+1) ≤ τ (T qi(zi)) = lim
p→∞

τ
(
T qi+ϕi−1(p)(zi−1)

)
,

≤ lim
p→∞

kqi+ϕi−1(p)τ(zi−1)

≤ τ(zi−1) = τ(zi+1),

for i = 2, . . . , r, and that

τ(z2) ≤ τ (T q1(z1)) = lim
p→∞

τ
(
T q1+ϕr(p)(zr)

)
≤ lim
p→∞

kq1+ϕr(p)τ(zr)

≤ τ(zr) = τ(z2).
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Hence τ (T qi(zi)) = τ(zi+1) ∀ i = 1, 2, . . . , r. An application of Lemma 2.1, yields

T qi(zi) = zi+1, ∀i = 1, 2, . . . , r. Let q =
r∑
i=1

qi, we have

T q(z1) = T qr+qr−1+···+q2+q1(z1)

= T qr+qr−1+···+q2(T q1(z1))

= T qr+qr−1+···+q2(z2)

= . . .

= T qr (T qr−1(zr−1))

= T qr (zr) = zr+1 = z1.

Hence, z1 is a periodic point of T . �

Next, we investigate the conditions under which a periodic point is in fact a fixed
point. This is not true in general, as the next example shows:

Example 3.1. Let X = Rn, endowed with the Euclidean norm and set

{ei; i = 1, · · · , n}
to be the canonical basis of X. Then, ‖ei − ej‖ =

√
2, for any i 6= j in {1, · · · , n}.

Let C = {ei; i = 1, · · · , n} =
n⋃
i=1

{ei} and T : C → C defined by

T (ei) = ei+1, i = 1, · · · , n− 1, and T (en) = e1.

It is easy to check that T is an isometry which obviously implies that T is asymptot-
ically nonexpansive. However, when n ≥ 2, T doesn’t have any fixed point.

This example shows that one cannot expect the existence of a fixed point under
the mere assumptions of Theorem 3.1. In order to discuss additional conditions
guaranteeing the existence of fixed points, we first observe that there is nothing special
about the mapping defined in Example 3.1. Let start with the following technical
lemma.

Lemma 3.1. Let C be a subset of a Banach space (X, ‖.‖) and T : C → C be an
asymptotically nonexpansive mapping. If z1 is a periodic point of T, then T is an
isometry on the orbit of z1.

Proof. Let q be the period of z1, i.e., T q(z1) = z1. Set zi = T i−1(z1), i = 1, 2, . . . , q.
Clearly, T q is the identity mapping when restricted to {z1, · · · , zq}.
Fix i, j ∈ {1, 2, . . . , q}. Since T is asymptotically nonexpansive, we get

‖T (zi)− T (zj)‖ = ‖T pqT (zi)− T pqT (zj)‖
≤ kpq+1‖zi − zj‖,

and

‖zi − zj‖ = ‖T pq(zi)− T pq(zj)‖
≤ kpq−1‖T (zi)− T (zj)‖,
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for all p ≥ 1. Moreover, it follows from lim
n→∞

kn = 1, that

‖T (zi)− T (zj)‖ ≤ ‖zi − zj‖ ≤ ‖T (zi)− T (zj)‖.
The last inequality completes the proof of Lemma 3.1. �

To the best of our knowledge, the following result on the existence of fixed points
of asymptotically nonexpansive mappings defined on non-convex domains is new.

Theorem 3.2. Let (X, ‖.‖) be a uniformly convex Banach space. Let C =
m⋃
i=1

Ci be

the union of nonempty, closed, convex and bounded subsets of X. If T : C → C is
asymptotically nonexpansive and asymptotically regular, then any periodic point of T
is a fixed point. In particular, T has a fixed point in C.

Proof. Let z1 be a periodic point of T with period q, that is, assume that T q(z1) = z1.
On account of Lemma 3.1, it is clear that

‖T (z1)− z1‖ = ‖T q+1(z1)− T q(z1)‖
= ‖T pq+1(z1)− T pq(z1)‖,

for any p ≥ 1. The asymptotic regularity of T implies that

‖T (z1)− z1‖ = lim
p→∞

‖T pq+1(z1)− T pq(z1)‖ = 0.

Hence, z1 is a fixed point of T. Theorem 3.1 implies such periodic points do exist.
The existence of fixed points of T has thus been proved. �

Another class of mappings for which the conclusion of Theorem 3.2 holds is given
in the next section.

4. Firmly asymptotically nonexpansive mappings

In this section, a new concept, referred to as λ-firmly asymptotic nonexpansiveness
is introduced and a fixed point theorem for such mappings acting on non-convex
domains in uniformly convex Banach spaces is proved.

Definition 4.1. Let C be a subset of a Banach space (X, ‖.‖). The mapping T :
C → C is said to be λ-firmly asymptotically nonexpansive, for some λ ∈ (0, 1), if
there exists a sequence of positive numbers {kp} such that lim

p→∞
kp = 1 and

‖T p(x)− T p(y)‖ ≤ kp‖(1− λ)(x− y) + λ(T p(x)− T p(y))‖,
for every x, y ∈ C.

We next present a remarkable result about λ-firmly asymptotically nonexpansive
mappings, as it connects periodic points and fixed points.

Theorem 4.1. Let C be a nonempty subset of a Banach space (X, ‖.‖). Let T : C →
C be a λ-firmly asymptotically nonexpansive mapping, for some λ ∈ (0, 1). Assume
that x ∈ C is a periodic point of T , i.e., T q(x) = x, for some q ≥ 1. Then x is a fixed
point of T .
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Proof. Since T is λ-firmly asymptotically nonexpansive, there exists a sequence of
positive numbers {kp} such that lim

p→∞
kp = 1 and for which

‖T p(x)− T p(y)‖ ≤ kp ‖(1− λ)(x− y) + λ(T p(x)− T p(y))‖
for every x, y ∈ C. Assume that x ∈ C is a periodic point of T of order q. Set x1 = x,
xi = T i−1(x), for i ≥ 2. Then, xi+q = xi, for i ≥ 1, which implies

T pq(xi) = xi+pq = xi,

for i ≥ 1 and p ∈ N. Hence for any i, j ≥ 1 and p ∈ N, we have

‖T (xi)− T (xj)‖ = ‖T pq+1(xi)− T pq+1(xj)‖
≤ kpq+1 ‖(1− λ)(xi − xj) + λ(T pq+1(xi)− T pq+1(xj))‖
≤ kpq+1 ‖(1− λ)(xi − xj) + λ(T (xi)− T (xj))‖.

Letting p→∞ and observing that lim
p→∞

kp = 1, it is easy to see that

‖T (xi)− T (xj)‖ ≤ ‖(1− λ)(xi − xj) + λ(T (xi)− T (xj))‖, (FN)

which implies ‖T (xi)− T (xj)‖ ≤ ‖xi − xj‖, for any i, j ≥ 1. It follows that

‖xi − xj‖ = ‖xi+q − xj+q‖ ≤ ‖xi+1 − xj+1‖ = ‖T (xi)− T (xj)‖,
and consequently

‖xi+1 − xj+1‖ = ‖T (xi)− T (xj)‖ = ‖xi − xj‖,
for any i, j ≥ 1. In other words, the restriction of T to the orbit {xi} of x is an
isometry. Define Tλ = (1− λ) I + λ T , where I is the identity map. Inequality (FN)
yields

‖xi − xj‖ = ‖T (xi)− T (xj)‖ ≤ ‖Tλ(xi)− Tλ(xj)‖ ≤ ‖xi − xj‖,
for any i, j ≥ 1. Hence, the restriction of Tλ to {xi} is also an isometry. Set

Rk = ‖x1 − xk+1‖ = ‖x1 − T k(x1)‖,
for any k ≥ 1. We claim that Rk = k R1, for any k ≥ 1. Indeed, the relation is true
for k = 1. Assume that it is true for all 1 ≤ k ≤ n. Then

Rn = ‖x1 − xn+1‖
= ‖Tλx1 − Tλxn+1‖
≤ (1− λ)‖x1 − Tλxn+1‖+ λ‖x2 − Tλxn+1‖
≤ (1− λ)2‖x1 − xn+1‖+ λ(1− λ)‖x1 − xn+2‖

+λ(1− λ)‖x2 − xn+1‖+ λ2‖x2 − xn+2‖
= (1− λ)2Rn + λ(1− λ)Rn+1 + λ(1− λ)Rn−1 + λ2Rn,

which implies(
n− (1− λ)2n− λ(1− λ)(n− 1)− λ2n

)
R1 ≤ λ(1− λ)Rn+1.

In other words,

λ(1− λ)(n+ 1)R1 ≤ λ(1− λ)Rn+1.
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Since λ ∈ (0, 1),

(n+ 1)R1 ≤ Rn+1

= ‖x1 − xn+2‖
≤ ‖x1 − xn+1‖+ ‖xn+1 − xn+2‖
≤ ‖x1 − xn+1‖+ ‖x1 − x2‖
= Rn +R1 = nR1 +R1 = (n+ 1)R1.

Hence, Rn+1 = (n+ 1)R1. The induction argument completes the proof of the claim,
that is, Rn = n R1 for any n ≥ 1. It follows thus

Rq = ‖x1 − xq+1‖ = ‖x1 − x1‖ = q ‖x1 − x2‖,
which implies x1 = x2 = T (x1), i.e., x1 = x is a fixed point of T . �

Next we discuss an analogue to Theorem 3.1 for λ-firmly asymptotically nonexpansive
mappings.

Theorem 4.2. Let (X, ‖.‖) be a uniformly convex Banach space and C =
m⋃
i=1

Ci be

the union of nonempty, closed, convex and bounded subsets of X. If T : C → C is
a λ-firmly asymptotically nonexpansive mapping, for some λ ∈ (0, 1), then T has a
periodic point.

Proof. Since T is λ-firmly asymptotically nonexpansive, there exists a sequence of
positive numbers {kp} such that lim

p→∞
kp = 1 and

‖T p(x)− T p(y)‖ ≤ kp ‖(1− λ)(x− y) + λ(T p(x)− T p(y))‖
for every x, y ∈ C. In view of the fact that lim

p→∞
λ kp = λ < 1, there exists p0 ≥ 1

such that λ kp < 1, for any p ≥ p0. In this case, we have

‖T p(x)− T p(y)‖ ≤ κp‖x− y‖,
where

κp =
kp(1− λ)

1− λkp
,

for p ≥ p0. Note that lim
p→∞

κp = 1. This implies that T p is asymptotically nonexpan-

sive, for any p ≥ p0. Using Theorem 3.1, we conclude that T p has a periodic point,
for any p ≥ p0, which is also a periodic point of T . �

A combination of the preceding two theorems in tandem yield the following fixed
point result:

Theorem 4.3. Let (X, ‖.‖) be a uniformly convex Banach space and C =
m⋃
i=1

Ci be

the union of nonempty, closed, convex and bounded subsets of X. If T : C → C is
a λ-firmly asymptotically nonexpansive mapping, for some λ ∈ (0, 1), then T has a
fixed point.
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