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1. Introduction

Fractional differential equations have recently been applied in various areas of
engineering, mathematics, physics and bio-engineering, and other applied sciences [10,
23]. For some fundamental results in the theory of fractional calculus and fractional
differential equations, we refer the reader to the monographs of Abbas et al. [1, 3, 4],
Samko et al. [21], Kilbas et al. [13] and Zhou et al. [28], and the papers [2, 6], and the
references therein. Recently, considerable attention has been given to the existence of
solutions of initial and boundary value problems for fractional differential equations
with Hilfer fractional derivative [7, 8, 10, 11, 24, 27], and the references therein.

In this paper we discuss the existence and uniqueness of solutions for the following
coupled system of Hilfer fractional differential equations{

(Dα1,β1

0 u)(t) = f1(t, u(t), v(t))

(Dα2,β2

0 v)(t) = f2(t, u(t), v(t))
; t ∈ I := [0, T ], (1.1)
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with the following initial conditions{
(I1−γ1

0 u)(0) = φ1

(I1−γ2
0 v)(0) = φ2,

(1.2)

where T > 0, αi ∈ (0, 1), βi ∈ [0, 1], γi = αi+βi−αiβi, φi ∈ Rm, fi : I×Rm×Rm →
Rm; i = 1, 2, are given functions, I1−γi

0 is the left-sided mixed Riemann-Liouville
integral of order 1 − γi, Rm; m ∈ N∗ is the Euclidian Banach space with a suitable

norm ‖·‖, and Dαi,βi
0 is the generalized Riemann-Liouville derivative (Hilfer) operator

of order αi and type βi : i = 1, 2.

Next, we consider the following coupled system of Hilfer-Hadamard fractional dif-
ferential equations{

(HDα1,β1

1 u)(t) = g1(t, u(t), v(t))

(HDα2,β2

1 v)(t) = g2(t, u(t, ), v(t))
; t ∈ [1, T ], (1.3)

with the following initial conditions{
(HI1−γ1

1 u)(1) = ψ1

(HI1−γ2
1 v)(1) = ψ2,

(1.4)

where T > 1, αi ∈ (0, 1), βi ∈ [0, 1], γi = αi + βi−αiβi, ψi ∈ Rm, gi : [1, T ]×Rm×
Rm → Rm; i = 1, 2 are given functions, HI1−γi

1 is the left-sided mixed Hadamard

integral of order 1 − γi, and HDαi,βi
1 is the Hilfer-Hadamard fractional derivative of

order αi and type βi; i = 1, 2.

2. Preliminaries

Let C be the Banach space of all continuous functions from I into Rm with the
supremum (uniform) norm ‖ · ‖∞. As usual, AC(I) denotes the space of absolutely
continuous functions from I into Rm. By L1(I), we denote the space of Lebesgue-
integrable functions v : I → Rm with the norm

‖v‖1 =

∫ T

0

‖v(t)‖dt.

By Cγ(I) and C1
γ(I), we denote the weighted spaces of continuous functions defined

by

Cγ(I) = {w : (0, T ]→ Rm : t1−γw(t) ∈ C},
with the norm

‖w‖Cγ := sup
t∈I
‖t1−γw(t)‖,

and

C1
γ(I) = {w ∈ C :

dw

dt
∈ Cγ},

with the norm

‖w‖C1
γ

:= ‖w‖∞ + ‖w′‖Cγ .
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Also, by C := Cγ1 × Cγ2 we denote the product weighted space with the norm

‖(u, v)‖C = ‖u‖Cγ1 + ‖v‖Cγ2 .

Now, we give some results and properties of fractional calculus.

Definition 2.1. [3, 13, 21] The left-sided mixed Riemann-Liouville integral of order
r > 0 of a function w ∈ L1(I) is defined by

(Ir0w)(t) =
1

Γ(r)

∫ t

0

(t− s)r−1w(s)ds; for a.e. t ∈ I,

where Γ(·) is the (Euler’s) Gamma function defined by

Γ(ξ) =

∫ ∞
0

tξ−1e−tdt; ξ > 0.

Notice that for all r, r1, r2 > 0 and each w ∈ C, we have Ir0w ∈ C, and

(Ir10 Ir20 w)(t) = (Ir1+r2
0 w)(t); for a.e. t ∈ I.

Definition 2.2. [3, 13, 21] The Riemann-Liouville fractional derivative of order r ∈
(0, 1] of a function w ∈ L1(I) is defined by

(Dr
0w)(t) =

(
d

dt
I1−r
0 w

)
(t)

=
1

Γ(1− r)
d

dt

∫ t

0

(t− s)−rw(s)ds; for a.e. t ∈ I.

Let r ∈ (0, 1], γ ∈ [0, 1) and w ∈ C1−γ(I). Then the following expression leads to
the left inverse operator as follows.

(Dr
0I
r
0w)(t) = w(t); for all t ∈ (0, T ].

Moreover, if I1−r
0 w ∈ C1

1−γ(I), then the following composition is proved in [21]

(Ir0D
r
0w)(t) = w(t)− (I1−r

0 w)(0+)

Γ(r)
tr−1; for all t ∈ (0, T ].

Definition 2.3. [3, 13, 21] The Caputo fractional derivative of order r ∈ (0, 1] of a
function w ∈ L1(I) is defined by

(cDr
0w)(t) =

(
I1−r
0

d

dt
w

)
(t)

=
1

Γ(1− r)

∫ t

0

(t− s)−r d
ds
w(s)ds; for a.e. t ∈ I.

In [10], R. Hilfer studied applications of a generalized fractional operator having
the Riemann-Liouville and the Caputo derivatives as specific cases (see also [11, 24].
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Definition 2.4. (Hilfer derivative). Let α ∈ (0, 1), β ∈ [0, 1], w ∈ L1(I), and

I
(1−α)(1−β)
0 w ∈ AC(I). The Hilfer fractional derivative of order α and type β of w is

defined as

(Dα,β
0 w)(t) =

(
I
β(1−α)
0

d

dt
I

(1−α)(1−β)
0 w

)
(t); for a.e. t ∈ I. (2.1)

Properties. Let α ∈ (0, 1), β ∈ [0, 1], γ = α+ β − αβ, and w ∈ L1(I).

1. The operator (Dα,β
0 w)(t) can be written as

(Dα,β
0 w)(t) =

(
I
β(1−α)
0

d

dt
I1−γ
0 w

)
(t) =

(
I
β(1−α)
0 Dγ

0w
)

(t); for a.e. t ∈ I.

Moreover, the parameter γ satisfies

γ ∈ (0, 1], γ ≥ α, γ > β, 1− γ < 1− β(1− α).

2. The generalization (2.1) for β = 0, coincides with the Riemann-Liouville derivative
and for β = 1 with the Caputo derivative.

Dα,0
0 = Dα

0 , and D
α,1
0 = cDα

0 .

3. If D
β(1−α)
0 w exists and is in L1(I), then

(Dα,β
0 Iα0 w)(t) = (I

β(1−α)
0 D

β(1−α)
0 w)(t); for a.e. t ∈ I.

Furthermore, if w ∈ Cγ(I) and I
1−β(1−α)
0 w ∈ C1

γ(I), then

(Dα,β
0 Iα0 w)(t) = w(t); for a.e. t ∈ I.

4. If Dγ
0w exists and is in L1(I), then

(Iα0 D
α,β
0 w)(t) = (Iγ0D

γ
0w)(t) = w(t)− I1−γ

0 (0+)

Γ(γ)
tγ−1; for a.e. t ∈ I.

Corollary 2.5. Let h ∈ Cγ(I). Then the Cauchy problem
(Dα,β

0 u)(t) = h(t); t ∈ I,

(I1−γ
0 u)(t)|t=0 = φ,

has the following unique solution

u(t) =
φ

Γ(γ)
tγ−1 + (Iα0 h)(t).

Let x, , y ∈ Rm with x = (x1, x2, . . . , xm), y = (y1, y2, . . . , ym).
By x ≤ y we mean xi ≤ yi; i = 1, . . . ,m. Also

|x| = (|x1|, |x2|, . . . , |xm|),

max(x, y) = (max(x1, y1),max(x2, y2), . . . ,max(xm, ym)),

and

Rm+ = {x ∈ Rm : xi ∈ R+, i = 1, . . . ,m}.
If c ∈ R, then x ≤ c means xi ≤ c; i = 1, . . . ,m.
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Definition 2.6. Let X be a nonempty set. By a vector-valued metric on X we mean
a map d : X ×X → Rm with the following properties:

(i) d(x, y) ≥ 0 for all x, y ∈ X, and if d(x, y) = 0, then x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

We call the pair (X, d) a generalized metric space with

d(x, y) :=


d1(x, y)
d2(x, y)
·
·
·

dm(x, y)

 .

Notice that d is a generalized metric space on X if and only if di, i = 1, . . . ,m are
metrics on X.

Definition 2.7. [5, 25] A square matrix of real numbers is said to be convergent to
zero if and only if its spectral radius ρ(M) is strictly less than 1. In other words, this
means that all the eigenvalues of M are in the open unit disc, i.e., |λ| < 1; for every
λ ∈ C with det(M − λI) = 0, where I denotes the unit matrix of Mm×m(R).

Example 2.8. The matrix A ∈M2×2(R) defined by

A =

(
a b
c d

)
,

converges to zero in the following cases:

(1) b = c = 0, a, d > 0 and max{a, d} < 1.
(2) c = 0, a, d > 0, a+ d < 1 and −1 < b < 0.
(3) a+ b = c+ d = 0, a > 1, c > 0 and |a− c| < 1.

In the sequel we will make use of the following fixed point theorems in generalized
Banach spaces:

Theorem 2.9. [19, 20] Let (X, d) be a complete generalized metric space and N :
X → X a contraction operator with a matrix M convergent to zero, i.e.,

d(N(x), N(y)) ≤Md(x, y), for every x, y ∈ X.

Then N has a unique fixed point x∗ and for each x ∈ X we have

d(Nk(x), x∗) ≤Mk(I −M)−1d(x,N(x)); for all k ∈ N.

For n = 1, we recover the classical Banach’s contraction principle.

Theorem 2.10. [16, 26] Let X be a generalized Banach space and N : X → X be a
continuous and compact mapping. Then either:
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(a) The set

A := {x ∈ X : x = λN(x) for some λ ∈ (0, 1)}
in unbounded, or

(b) The operator N has a fixed point.

Also, we will use the following Gronwall lemma:

Lemma 2.11. [9] Let u : I → [0,∞) be a real function and u(·) is a nonnegative,
locally integrable function on I. Assume that there exist constants c > 0 and r < 1
such that

u(t) ≤ v(t) + c

∫ t

0

u(s)

(t− s)r
ds,

then,there exists a constant K := K(r) such that

u(t) ≤ v(t) + cK

∫ t

0

v(s)

(t− s)r
ds,

for every t ∈ I.

3. Coupled Hilfer fractional differential systems

In this section, we are concerned with the existence and uniqueness results of the
system (1.1)-(1.2).

Definition 3.1. By a solution of the problem (1.1)-(1.2) we mean a coupled con-
tinuous functions (u, v) ∈ Cγ1 × Cγ2 those satisfy the equation (1.1) on I, and the

conditions (I1−γ1
0 u)(0+) = φ1, and (I1−γ2

0 v)(0+) = φ2.

The following hypotheses will be used in the sequel.

(H1) There exist continuous functions pi, qi : I → (0,∞); i = 1, 2 such that

‖fi(t, u1, v1)− fi(t, u2, v2)‖ ≤ pi(t)‖u1 − u2‖+ qi(t)‖v1 − v2‖;
for a.e. t ∈ I, and each ui, vi ∈ Rm, i = 1, 2.

(H2) There exist continuous functions ai, bi : I → (0,∞); i = 1, 2 such that

‖fi(t, u, v)‖ ≤ ai(t)‖u‖+ bi(t)‖v‖; for a.e. t ∈ I, and each u, v ∈ Rm.

First, we prove an existence and uniqueness result for the coupled system (1.1)- (1.2)
by using Banach’s fixed point theorem type in generalized Banach spaces. Set

p∗i := sup
t∈I

p(t), q∗i := sup
t∈I

q(t); i = 1, 2.

Theorem 3.2. Assume that the hypothesis (H1) holds. If the matrix

M :=

( Tα1

Γ(1+α1)p
∗
1

Tα1

Γ(1+α1)q
∗
1

Tα2

Γ(1+α2)p
∗
2

Tα2

Γ(1+α2)q
∗
2

)
converges to 0, then the coupled system (1.1)-(1.2) has a unique solution.
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Proof. Define the operators Ni : C → Cγi ; i = 1, 2 by

(N1(u, v))(t) =
φ1

Γ(γ1)
tγ1−1 +

∫ t

0

(t− s)α1−1 f1(s, u(s), v(s))

Γ(α1)
ds, (3.1)

and

(N2(u, v))(t) =
φ2

Γ(γ2)
tγ2−1 +

∫ t

0

(t− s)α2−1 f2(s, u(s), v(s))

Γ(α2)
ds. (3.2)

Consider the operator N : C → C defined by

(N(u, v))(t) = ((N1(u, v))(t), (N2(u, v))(t)). (3.3)

Clearly, the fixed points of the operator N are solutions of the system (1.1)-(1.2).
For any i ∈ {1, 2} and each (u1, v1), (u2, v2) ∈ C and t ∈ I, we have

‖t1−γ1(N1(u1, v1))(t)− t1−γ1(N1(u2, v2))(t)‖

≤ t1−γ1

Γ(α1)

∫ t

0

(t− s)α1−1‖f1(s, u1(s), v1(s))− f1(s, u2(s), v2(s))‖ds

≤ t1−γ1

Γ(α1)

∫ t

0

(t− s)α1−1(p1(t)‖u1(s)− v1(s)‖

+ q1(t)‖u2(s)− v2(s)‖)ds

≤ 1

Γ(α1)

∫ t

0

(t− s)α1−1(p1(t)s1−γ1‖u1(s)− v1(s)‖

+ q1(t)s1−γ1‖u2(s)− v2(s)‖)ds

≤
p1(t)‖u1 − v1‖Cγ1 + q1(t)‖u2 − v2‖Cγ2

Γ(α1)

×
∫ t

0

(t− s)α1−1ds

≤ Tα1

Γ(1 + α1)
(p1(t)‖u1 − v1‖Cγ1 + q1(t)‖u2 − v2‖Cγ2 ).

Then,

‖N1(u1, v1)−N1(u2, v2)‖Cγ1

≤ Tα1

Γ(1 + α1)
(p∗1‖u1 − v1‖Cγ1 + q1(∗‖u2 − v2‖Cγ2 ).

Also, for each (u1, v1), (u2, v2) ∈ C and t ∈ I, we get

‖N2(u1, v1)−N2(u2, v2)‖Cγ2

≤ Tα2

Γ(1 + α2)
(p∗2‖u1 − v1‖Cγ1 + q∗2‖u2 − v2‖Cγ2 ).

Thus,
d(N(u1, v1), N(u2, v2)) ≤Md((u1, v1), (u2, v2)),

where

d((u1, v1), (u2, v2)) =

(
‖u1 − v1‖Cγ1
‖u2 − v2‖Cγ2

)
.
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Since the matrix M converges to zero, then Theorem 2.9 implies that system (1.1)-
(1.2) has a unique solution.

Now, we prove an existence result for the coupled system (1.1)- (1.2) by using the
nonlinear alternative of Leray-Schauder type in generalized Banach space.

Theorem 3.3. Assume that the hypothesis (H2) holds. Then the coupled system
(1.1)-(1.2) has at least one solution.

Proof. We show that the operator N : C → C defined in (3.3) satisfies all conditions
of Theorem 2.10. The proof will be given in four steps.

Step 1. N is continuous.
Let (un, vn)n be a sequence such that (un, vn) → (u, v) ∈ C as n → ∞. For any
i ∈ {1, 2} and each t ∈ I, we have

‖t1−γi(Ni(un, vn))(t)− t1−γi(Ni(u, v))(t)‖

≤ t1−γi

Γ(αi)

∫ t

0

(t− s)αi−1‖fi(s, un(s), vn(s))− fi(s, u(s), v(s))‖ds

≤ 1

Γ(αi)

∫ t

0

(t− s)αi−1s1−γi‖fi(s, un(s), vn(s))− fi(s, u(s), v(s))‖ds

≤ Tαi

Γ(1 + αi)
‖fi(·, un(·), vn(·))− fi(·, u(·), v(·))‖Cγ1 .

Since fi is continuous, then by the Lebesgue dominated convergence theorem, we get

‖Ni(un, vn)−Ni(u, v)‖Cγ1 → 0 as n→∞.

Hence N is continuous.

Step 2. N maps bounded sets into bounded sets in C.
Set

a∗i := sup
t∈I

a(t), b∗i := sup
t∈I

b(t) : i = 1, 2.

Let R > 0 and set

BR := {(µ, ν) ∈ C : ‖µ‖Cγ1 ≤ R, ‖ν‖Cγ2 ≤ R}.

For each (u, v) ∈ BR and t ∈ I, we have

‖t1−γ1(N1(u, v))(t)‖ ≤ ‖φ1‖
Γ(γ1)

+
t1−γ1

Γ(α1)

∫ t

0

(t− s)α1−1‖f1(s, u(s), v(s))‖ds

≤ ‖φ1‖
Γ(γ1)

+
1

Γ(α1)

∫ t

0

(t− s)α1−1s1−γ1(a1(s)‖u(s‖+ b1(s)‖v(s)‖)ds
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≤ ‖φ1‖
Γ(γ1)

+
R

Γ(α1)

∫ t

0

(t− s)α1−1s1−γ1(a1(s) + b1(s))ds

≤ ‖φ1‖
Γ(γ1)

+
(a∗1 + b∗1T

α1

Γ(1 + α1)

:= `1.

Thus,

‖N1(u, v)‖Cγ1 ≤ `1.

Also, for each (u, v) ∈ BR and t ∈ I, we get

‖N2(u, v)‖Cγ2 ≤ ‖φ2‖
Γ(γ2)

+
(a∗2 + b∗2T

α2

Γ(1 + α)

:= `2.

Hence,

‖N(u, v)‖C ≤ (`1, `2) := `.

Step 3. N maps bounded sets into equicontinuous sets in C.
Let BR be the ball defined in Step 2. For each t1, t2 ∈ I with t1 ≤ t2 and (u, v) ∈ BR,
we have

‖t1−γ11 (N1(u, v))(t1)− t1−γ12 (N1(u, v))(t2)‖

≤ t1−γ12

Γ(α1)

∫ t2

t−1

(t2 − s)α1−1‖f1(s, u(s), v(s))‖ds

≤ Tα1

Γ(1 + α1)
(t2 − t1)α1(a∗1‖u‖Cγ1 + b1(∗‖v‖Cγ2 )

≤ RTα1(a∗1 + b∗1)

Γ(1 + α1)
(t2 − t1)α1

→ 0 as t1 → t2.

Also, we get

‖t1−γ21 (N2(u, v))(t1)− t1−γ22 (N2(u, v))(t2)‖

≤ RTα12(a∗2 + b∗2))

Γ(1 + α2)
(t2 − t1)α2

→ 0 as t1 → t2.

As a consequence of Steps 1 to 3, with the Arzela-Ascoli theorem, we conclude that
N maps BR into a precompact set in C.

Step 4. The set E consisting of (u, v) ∈ C such that (u, v) = λN(u, v) for some
λ ∈ (0, 1) is bounded in C.
Let (u, v) ∈ C such that (u, v) = λN(u, v). Then u = λN1(u, v) and v = λN2(u, v).
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Thus, for each t ∈ I, we have

‖t1−γ1u(t)‖ ≤ ‖φ1‖
Γ(γ1)

+
t1−γ1

Γ(α1)

∫ t

0

(t− s)α1−1‖f1(s, u(s), v(s))‖ds

≤ ‖φ1‖
Γ(γ1)

+
1

Γ(α1)

∫ t

0

(t− s)α1−1s1−γ1(a∗1‖u(s‖+ b∗1‖v(s)‖)ds.

Also, we get

‖t1−γ2v(t)‖ ≤ ‖φ2‖
Γ(γ2)

+
1

Γ(α2)

∫ t

0

(t− s)α2−1s1−γ2(a∗2‖u(s)‖+ b∗2‖v(s)‖)ds.

Hence, we obtain

‖t1−γ1u(t)‖+ ‖t1−γ2v(t)‖ ≤ a+ bc

∫ t

0

(t− s)α−1(‖s1−γ1u(s)‖+ ‖s1−γ2v(s)‖)ds,

where

a :=
‖φ1‖
Γ(γ1)

+
‖φ2‖
Γ(γ2)

, b :=
1

Γ(α1)
+

1

Γ(α2)
,

c := max{a∗1 + a∗2, b
∗
1 + b∗2}, α := max{α1, α2}.

Lemma 2.11 implies that there exists ρ := ρ(α) > 0 such that

‖t1−γ1u(t)‖+ ‖t1−γ2v(t)‖ ≤ a+ abcρ

∫ t

0

(t− s)α−1ds

≤ a+ abcρTα

α
= L.

This gives

‖u‖Cγ1 + ‖v‖Cγ2 ≤ L.
Hence

‖(u, v)‖C ≤ L.
This shows that the set E is bounded.

As a consequence of steps 1 to 4 together with Theorem 2.10, we can conclude that
N has at least one fixed point in BR which is a solution of the system (1.1)- (1.2).

4. Coupled Hilfer-Hadamard fractional differential systems

Now, we are concerned with the coupled system (1.3)-(1.4).
Set C := C([1, T ]), and denote the weighted space of continuous functions defined by

Cγ,ln([1, T ]) = {w(t) : (ln t)1−γw(t) ∈ C},

with the norm

‖w‖Cγ,ln := sup
t∈[1,T ]

|(ln t)1−rw(t)|.
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Also, by Cγ1,γ2,ln([1, T ]) := Cγ1,ln([1, T ]) × Cγ2,ln([1, T ]) we denote the product
weighted space with the norm

‖(u, v)‖Cγ1,γ2,ln([1,T ]) = ‖u‖Cγ1,ln + ‖v‖Cγ2,ln .

Let us recall some definitions and properties of Hadamard fractional integration
and differentiation. We refer to [13] for a more detailed analysis.

Definition 4.1. [13] (Hadamard fractional integral). The Hadamard fractional inte-
gral of order q > 0 for a function g ∈ L1([1, T ]), is defined as

(HIq1g)(x) =
1

Γ(q)

∫ x

1

(
ln
x

s

)q−1 g(s)

s
ds,

provided the integral exists.

Example 4.2. Let 0 < q < 1. Let g(x) = lnx, x ∈ [0, e]. Then

(HIq1g)(x) =
1

Γ(2 + q)
(lnx)1+q; for a.e. x ∈ [0, e].

Set

δ = x
d

dx
, q > 0, n = [q] + 1,

and

ACnδ := {u : [1, T ]→ E : δn−1[u(x)] ∈ AC(I)}.
Analogous to the Riemann-Liouville fractional derivative, the Hadamard fractional
derivative is defined in terms of the Hadamard fractional integral in the following
way:

Definition 4.3. [13] (Hadamard fractional derivative). The Hadamard fractional
derivative of order q > 0 applied to the function w ∈ ACnδ is defined as

(HDq
1w)(x) = δn(HIn−q1 w)(x).

In particular, if q ∈ (0, 1], then

(HDq
1w)(x) = δ(HI1−q

1 w)(x).

Example 4.4. Let 0 < q < 1. Let w(x) = lnx, x ∈ [0, e]. Then

(HDq
1w)(x) =

1

Γ(2− q)
(lnx)1−q, for a.e. x ∈ [0, e].

It has been proved (see e.g. Kilbas [[12], Theorem 4.8]) that in the space L1(I), the
Hadamard fractional derivative is the left-inverse operator to the Hadamard fractional
integral, i.e.

(HDq
1)(HIq1w)(x) = w(x).

From Theorem 2.3 of [13], we have

(HIq1 )(HDq
1w)(x) = w(x)− (HI1−q

1 w)(1)

Γ(q)
(lnx)q−1.
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Analogous to the Hadamard fractional calculus, the Caputo-Hadamard fractional
derivative is defined in the following way:

Definition 4.5. (Caputo-Hadamard fractional derivative) The Caputo-Hadamard
fractional derivative of order q > 0 applied to the function w ∈ ACnδ is defined as

(HcDq
1w)(x) = (HIn−q1 δnw)(x).

In particular, if q ∈ (0, 1], then

(HcDq
1w)(x) = (HI1−q

1 δw)(x).

From the Hadamard fractional integral, the Hilfer-Hadamard fractional derivative
(introduced for the first time in [17]) is defined in the following way:

Definition 4.6. (Hilfer-Hadamard fractional derivative). Let α ∈ (0, 1), β ∈ [0, 1],

γ = α + β − αβ, w ∈ L1(I), and HI
(1−α)(1−β)
1 w ∈ AC(I). The Hilfer-Hadamard

fractional derivative of order α and type β applied to the function w is defined as

(HDα,β
1 w)(t) =

(
HI

β(1−α)
1 (HDγ

1w)
)

(t)

=
(
HI

β(1−α)
1 δ(HI1−γ

1 w)
)

(t); for a.e. t ∈ [1, T ].
(4.1)

This new fractional derivative (4.1) may be viewed as interpolating the Hadamard
fractional derivative and the Caputo-Hadamard fractional derivative. Indeed for β = 0
this derivative reduces to the Hadamard fractional derivative and when β = 1, we
recover the Caputo-Hadamard fractional derivative.

HDα,0
1 = HDα

1 , and
HDα,1

1 = HcDα
1 .

From Theorem 21 in [18], we concluded the following lemma.

Lemma 4.7. Let g : [1, T ]× Rm → Rm be such that g(·, u(·)) ∈ Cγ,ln([1, T ]) for any
u ∈ Cγ,ln([1, T ]). Then problem (1.3) is equivalent to the following Volterra integral
equation

u(t) =
φ0

Γ(γ)
(ln t)γ−1 + (HIα1 g(·, u(·)))(t).

Definition 4.8. By a solution of the coupled system (1.3)-(1.4) we mean a coupled
continuous functions (u, v) ∈ Cγ1,ln×Cγ2,ln those satisfy the conditions (1.4) and the
equations (1.3) on [1, T ].

Now we give (without proof) similar existence and uniqueness results for the system
(1.3)-(1.4). Let us introduce the following hypotheses:

(H ′1) There exist continuous functions pi, qi : [1, T ]→ (0,∞); i = 1, 2 such that

‖gi(t, u1, v1)− gi(t, u2, v2)‖ ≤ pi(t)‖u1 − u2‖+ qi(t)‖v1 − v2‖;
for a.e. t ∈ [1, T ], and each ui, vi ∈ Rm, i = 1, 2.

(H ′2) There exist continuous functions ai, bi : [1, T ]→ (0,∞); i = 1, 2 such that

‖gi(t, u, v)‖ ≤ ai(t)‖u‖+ bi(t)‖v‖; for a.e. t ∈ [1, T ], and each u, v ∈ Rm.
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Theorem 4.9. Assume that the hypothesis (H ′1) holds. If the matrix (lnT )α1

Γ(1+α1)p
∗
1

(lnT )α1

Γ(1+α1)q
∗
1

(lnT )α2

Γ(1+α2)p
∗
2

(lnT )α2

Γ(1+α2)q
∗
2


converges to 0, then the coupled system (1.3)-(1.4) has a unique solution defined on
[1, T ].

Theorem 4.10. Assume that the hypothesis (H ′2) holds. Then the coupled system
(1.3)-(1.4) has at least one solution defined on [1, T ].

5. An example

Consider the following coupled system of Hilfer fractional differential equations
(D

1
2 ,

1
2

0 u)(t) = f(t, u(t), v(t));

(D
1
2 ,

1
2

0 v)(t) = g(t, u(t), v(t));

(I
1
4
0 u)(0) = 1,

(I
1
4
0 vn)(0) = 0,

: t ∈ [0, 1], (5.1)

where

f(t, u, v) =
t
−1
4 (u(t) + v(t)) sin t

64(1 +
√
t)(1 + |u|+ |v|)

; t ∈ [0, 1],

g(t, u, v) =
(u(t) + v(t)) cos t

64(1 + |u|+ |v|)
; t ∈ [0, 1].

Set αi = βi = 1
2 ; i = 1, 2, then γi = 3

4 ; i = 1, 2. The hypothesis (H1) is satisfied with

p1(t) = p2(t) = q1(t) = q2(t) =
1

64
.

Also the matrix
1

64
√
π

(
1 1
1 1

)
converges to 0. Hence, Theorem 3.2 implies that the system (5.1) has a unique solution
defined on [0, 1].
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