COUPLED HILFER AND HADAMARD FRACTIONAL DIFFERENTIAL SYSTEMS IN GENERALIZED BANACH SPACES

SAÏD ABBAS*, MOUFFAK BENCHOHRA** AND ADRIAN PETRUŞEL***
*Department of Electronics, Tahar Moulay University of Saïda, P.O. Box 138, EN-Nasr, 20000 Saïda, Algeria E-mail: said.abbas@univ-saida.dz, abbasmsaid@yahoo.fr
**Laboratory of Mathematics, Djillali Liabes University of Sidi Bel-Abbès, P.O. Box 89, Sidi Bel-Abbès 22000, Algeria
E-mail: benchohra@yahoo.com
***Department of Mathematics, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania E-mail: petrusel@math.ubbcluj.ro

Abstract

This article deals with some existence and uniqueness of solutions for some coupled systems of Hilfer and Hilfer-Hadamard fractional differential equations. Some applications are made of generalizations of classical fixed point theorems on generalized Banach spaces. Key Words and Phrases: Fractional differential equation, left-sided mixed Riemann-Liouville integral of fractional order, left-sided mixed Hadamard integral of fractional order, Hilfer fractional derivative, Hadamard fractional derivative, coupled system, generalized Banach space, fixed point. 2020 Mathematics Subject Classification: 26A33, 47H10, 54H25, 34A08.

1. Introduction

Fractional differential equations have recently been applied in various areas of engineering, mathematics, physics and bio-engineering, and other applied sciences [10, 23]. For some fundamental results in the theory of fractional calculus and fractional differential equations, we refer the reader to the monographs of Abbas et al. [1, 3, 4], Samko et al. [21], Kilbas et al. [13] and Zhou et al. [28], and the papers [2, 6], and the references therein. Recently, considerable attention has been given to the existence of solutions of initial and boundary value problems for fractional differential equations with Hilfer fractional derivative $[7,8,10,11,24,27]$, and the references therein.

In this paper we discuss the existence and uniqueness of solutions for the following coupled system of Hilfer fractional differential equations

$$
\left\{\begin{array}{l}
\left(D_{0}^{\alpha_{1}, \beta_{1}} u\right)(t)=f_{1}(t, u(t), v(t)) \tag{1.1}\\
\left(D_{0}^{\alpha_{2}, \beta_{2}} v\right)(t)=f_{2}(t, u(t), v(t))
\end{array} \quad ; t \in I:=[0, T]\right.
$$

with the following initial conditions

$$
\left\{\begin{array}{l}
\left(I_{0}^{1-\gamma_{1}} u\right)(0)=\phi_{1} \tag{1.2}\\
\left(I_{0}^{1-\gamma_{2}} v\right)(0)=\phi_{2}
\end{array}\right.
$$

where $T>0, \alpha_{i} \in(0,1), \beta_{i} \in[0,1], \gamma_{i}=\alpha_{i}+\beta_{i}-\alpha_{i} \beta_{i}, \phi_{i} \in \mathbb{R}^{m}, f_{i}: I \times \mathbb{R}^{m} \times \mathbb{R}^{m} \rightarrow$ $\mathbb{R}^{m} ; i=1,2$, are given functions, $I_{0}^{1-\gamma_{i}}$ is the left-sided mixed Riemann-Liouville integral of order $1-\gamma_{i}, \mathbb{R}^{m} ; m \in \mathbb{N}^{*}$ is the Euclidian Banach space with a suitable norm $\|\cdot\|$, and $D_{0}^{\alpha_{i}, \beta_{i}}$ is the generalized Riemann-Liouville derivative (Hilfer) operator of order α_{i} and type $\beta_{i}: \quad i=1,2$.

Next, we consider the following coupled system of Hilfer-Hadamard fractional differential equations

$$
\left\{\begin{array}{l}
\left({ }^{H} D_{1}^{\alpha_{1}, \beta_{1}} u\right)(t)=g_{1}(t, u(t), v(t)) \tag{1.3}\\
\left({ }^{H} D_{1}^{\alpha_{2}, \beta_{2}} v\right)(t)=g_{2}(t, u(t,), v(t))
\end{array} \quad ; t \in[1, T]\right.
$$

with the following initial conditions

$$
\left\{\begin{array}{l}
\left({ }^{H} I_{1}^{1-\gamma_{1}} u\right)(1)=\psi_{1} \tag{1.4}\\
\left({ }^{H} I_{1}^{1-\gamma_{2}} v\right)(1)=\psi_{2}
\end{array}\right.
$$

where $T>1, \alpha_{i} \in(0,1), \beta_{i} \in[0,1], \gamma_{i}=\alpha_{i}+\beta_{i}-\alpha_{i} \beta_{i}, \psi_{i} \in \mathbb{R}^{m}, g_{i}:[1, T] \times \mathbb{R}^{m} \times$ $\mathbb{R}^{m} \rightarrow \mathbb{R}^{m} ; i=1,2$ are given functions, ${ }^{H} I_{1}^{1-\gamma_{i}}$ is the left-sided mixed Hadamard integral of order $1-\gamma_{i}$, and ${ }^{H} D_{1}^{\alpha_{i}, \beta_{i}}$ is the Hilfer-Hadamard fractional derivative of order α_{i} and type $\beta_{i} ; i=1,2$.

2. Preliminaries

Let C be the Banach space of all continuous functions from I into \mathbb{R}^{m} with the supremum (uniform) norm $\|\cdot\|_{\infty}$. As usual, $A C(I)$ denotes the space of absolutely continuous functions from I into \mathbb{R}^{m}. By $L^{1}(I)$, we denote the space of Lebesgueintegrable functions $v: I \rightarrow \mathbb{R}^{m}$ with the norm

$$
\|v\|_{1}=\int_{0}^{T}\|v(t)\| d t
$$

By $C_{\gamma}(I)$ and $C_{\gamma}^{1}(I)$, we denote the weighted spaces of continuous functions defined by

$$
C_{\gamma}(I)=\left\{w:(0, T] \rightarrow \mathbb{R}^{m}: t^{1-\gamma} w(t) \in C\right\}
$$

with the norm

$$
\|w\|_{C_{\gamma}}:=\sup _{t \in I}\left\|t^{1-\gamma} w(t)\right\|
$$

and

$$
C_{\gamma}^{1}(I)=\left\{w \in C: \frac{d w}{d t} \in C_{\gamma}\right\}
$$

with the norm

$$
\|w\|_{C_{\gamma}^{1}}:=\|w\|_{\infty}+\left\|w^{\prime}\right\|_{C_{\gamma}}
$$

Also, by $\mathcal{C}:=C_{\gamma_{1}} \times C_{\gamma_{2}}$ we denote the product weighted space with the norm

$$
\|(u, v)\|_{\mathcal{C}}=\|u\|_{C_{\gamma_{1}}}+\|v\|_{C_{\gamma_{2}}} .
$$

Now, we give some results and properties of fractional calculus.
Definition 2.1. [3, 13, 21] The left-sided mixed Riemann-Liouville integral of order $r>0$ of a function $w \in L^{1}(I)$ is defined by

$$
\left(I_{0}^{r} w\right)(t)=\frac{1}{\Gamma(r)} \int_{0}^{t}(t-s)^{r-1} w(s) d s ; \text { for a.e. } t \in I
$$

where $\Gamma(\cdot)$ is the (Euler's) Gamma function defined by

$$
\Gamma(\xi)=\int_{0}^{\infty} t^{\xi-1} e^{-t} d t ; \xi>0
$$

Notice that for all $r, r_{1}, r_{2}>0$ and each $w \in C$, we have $I_{0}^{r} w \in C$, and

$$
\left(I_{0}^{r_{1}} I_{0}^{r_{2}} w\right)(t)=\left(I_{0}^{r_{1}+r_{2}} w\right)(t) ; \text { for a.e. } t \in I
$$

Definition 2.2. $[3,13,21]$ The Riemann-Liouville fractional derivative of order $r \in$ $(0,1]$ of a function $w \in L^{1}(I)$ is defined by

$$
\begin{aligned}
\left(D_{0}^{r} w\right)(t) & =\left(\frac{d}{d t} I_{0}^{1-r} w\right)(t) \\
& =\frac{1}{\Gamma(1-r)} \frac{d}{d t} \int_{0}^{t}(t-s)^{-r} w(s) d s ; \text { for a.e. } t \in I
\end{aligned}
$$

Let $r \in(0,1], \gamma \in[0,1)$ and $w \in C_{1-\gamma}(I)$. Then the following expression leads to the left inverse operator as follows.

$$
\left(D_{0}^{r} I_{0}^{r} w\right)(t)=w(t) ; \text { for all } t \in(0, T]
$$

Moreover, if $I_{0}^{1-r} w \in C_{1-\gamma}^{1}(I)$, then the following composition is proved in [21]

$$
\left(I_{0}^{r} D_{0}^{r} w\right)(t)=w(t)-\frac{\left(I_{0}^{1-r} w\right)\left(0^{+}\right)}{\Gamma(r)} t^{r-1} ; \text { for all } t \in(0, T]
$$

Definition 2.3. [3, 13, 21] The Caputo fractional derivative of order $r \in(0,1]$ of a function $w \in L^{1}(I)$ is defined by

$$
\begin{aligned}
\left({ }^{c} D_{0}^{r} w\right)(t) & =\left(I_{0}^{1-r} \frac{d}{d t} w\right)(t) \\
& =\frac{1}{\Gamma(1-r)} \int_{0}^{t}(t-s)^{-r} \frac{d}{d s} w(s) d s ; \text { for a.e. } t \in I
\end{aligned}
$$

In [10], R. Hilfer studied applications of a generalized fractional operator having the Riemann-Liouville and the Caputo derivatives as specific cases (see also [11, 24].

Definition 2.4. (Hilfer derivative). Let $\alpha \in(0,1), \beta \in[0,1], w \in L^{1}(I)$, and $I_{0}^{(1-\alpha)(1-\beta)} w \in A C(I)$. The Hilfer fractional derivative of order α and type β of w is defined as

$$
\begin{equation*}
\left(D_{0}^{\alpha, \beta} w\right)(t)=\left(I_{0}^{\beta(1-\alpha)} \frac{d}{d t} I_{0}^{(1-\alpha)(1-\beta)} w\right)(t) ; \text { for a.e. } t \in I \tag{2.1}
\end{equation*}
$$

Properties. Let $\alpha \in(0,1), \beta \in[0,1], \gamma=\alpha+\beta-\alpha \beta$, and $w \in L^{1}(I)$.

1. The operator $\left(D_{0}^{\alpha, \beta} w\right)(t)$ can be written as

$$
\left(D_{0}^{\alpha, \beta} w\right)(t)=\left(I_{0}^{\beta(1-\alpha)} \frac{d}{d t} I_{0}^{1-\gamma} w\right)(t)=\left(I_{0}^{\beta(1-\alpha)} D_{0}^{\gamma} w\right)(t) ; \text { for a.e. } t \in I
$$

Moreover, the parameter γ satisfies

$$
\gamma \in(0,1], \gamma \geq \alpha, \gamma>\beta, 1-\gamma<1-\beta(1-\alpha)
$$

2. The generalization (2.1) for $\beta=0$, coincides with the Riemann-Liouville derivative and for $\beta=1$ with the Caputo derivative.

$$
D_{0}^{\alpha, 0}=D_{0}^{\alpha}, \text { and } D_{0}^{\alpha, 1}={ }^{c} D_{0}^{\alpha}
$$

3. If $D_{0}^{\beta(1-\alpha)} w$ exists and is in $L^{1}(I)$, then

$$
\left(D_{0}^{\alpha, \beta} I_{0}^{\alpha} w\right)(t)=\left(I_{0}^{\beta(1-\alpha)} D_{0}^{\beta(1-\alpha)} w\right)(t) ; \text { for a.e. } t \in I
$$

Furthermore, if $w \in C_{\gamma}(I)$ and $I_{0}^{1-\beta(1-\alpha)} w \in C_{\gamma}^{1}(I)$, then

$$
\left(D_{0}^{\alpha, \beta} I_{0}^{\alpha} w\right)(t)=w(t) ; \text { for a.e. } t \in I
$$

4. If $D_{0}^{\gamma} w$ exists and is in $L^{1}(I)$, then

$$
\left(I_{0}^{\alpha} D_{0}^{\alpha, \beta} w\right)(t)=\left(I_{0}^{\gamma} D_{0}^{\gamma} w\right)(t)=w(t)-\frac{I_{0}^{1-\gamma}\left(0^{+}\right)}{\Gamma(\gamma)} t^{\gamma-1} ; \text { for a.e. } t \in I
$$

Corollary 2.5. Let $h \in C_{\gamma}(I)$. Then the Cauchy problem

$$
\left\{\begin{array}{l}
\left(D_{0}^{\alpha, \beta} u\right)(t)=h(t) ; t \in I \\
\left.\left(I_{0}^{1-\gamma} u\right)(t)\right|_{t=0}=\phi
\end{array}\right.
$$

has the following unique solution

$$
u(t)=\frac{\phi}{\Gamma(\gamma)} t^{\gamma-1}+\left(I_{0}^{\alpha} h\right)(t)
$$

Let $x,, y \in \mathbb{R}^{m}$ with $x=\left(x_{1}, x_{2}, \ldots, x_{m}\right), y=\left(y_{1}, y_{2}, \ldots, y_{m}\right)$.
By $x \leq y$ we mean $x_{i} \leq y_{i} ; i=1, \ldots, m$. Also

$$
\begin{gathered}
|x|=\left(\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{m}\right|\right) \\
\max (x, y)=\left(\max \left(x_{1}, y_{1}\right), \max \left(x_{2}, y_{2}\right), \ldots, \max \left(x_{m}, y_{m}\right)\right)
\end{gathered}
$$

and

$$
\mathbb{R}_{+}^{m}=\left\{x \in \mathbb{R}^{m}: x_{i} \in \mathbb{R}_{+}, i=1, \ldots, m\right\}
$$

If $c \in \mathbb{R}$, then $x \leq c$ means $x_{i} \leq c ; i=1, \ldots, m$.

Definition 2.6. Let X be a nonempty set. By a vector-valued metric on X we mean a map $d: X \times X \rightarrow \mathbb{R}^{m}$ with the following properties:
(i) $d(x, y) \geq 0$ for all $x, y \in X$, and if $d(x, y)=0$, then $x=y$;
(ii) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(iii) $d(x, z) \leq d(x, y)+d(y, z)$ for all $x, y, z \in X$.

We call the pair (X, d) a generalized metric space with

$$
d(x, y):=\left(\begin{array}{c}
d_{1}(x, y) \\
d_{2}(x, y) \\
\cdot \\
\cdot \\
\cdot \\
d_{m}(x, y)
\end{array}\right)
$$

Notice that d is a generalized metric space on X if and only if $d_{i}, i=1, \ldots, m$ are metrics on X.

Definition 2.7. [5, 25] A square matrix of real numbers is said to be convergent to zero if and only if its spectral radius $\rho(M)$ is strictly less than 1 . In other words, this means that all the eigenvalues of M are in the open unit disc, i.e., $|\lambda|<1$; for every $\lambda \in \mathbb{C}$ with $\operatorname{det}(M-\lambda I)=0$, where I denotes the unit matrix of $M_{m \times m}(\mathbb{R})$.

Example 2.8. The matrix $A \in M_{2 \times 2}(\mathbb{R})$ defined by

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

converges to zero in the following cases:
(1) $b=c=0, a, d>0$ and $\max \{a, d\}<1$.
(2) $c=0, a, d>0, a+d<1$ and $-1<b<0$.
(3) $a+b=c+d=0, a>1, c>0$ and $|a-c|<1$.

In the sequel we will make use of the following fixed point theorems in generalized Banach spaces:

Theorem 2.9. [19, 20] Let (X, d) be a complete generalized metric space and N : $X \rightarrow X$ a contraction operator with a matrix M convergent to zero, i.e.,

$$
d(N(x), N(y)) \leq M d(x, y), \text { for every } x, y \in X
$$

Then N has a unique fixed point x^{*} and for each $x \in X$ we have

$$
d\left(N^{k}(x), x^{*}\right) \leq M^{k}(I-M)^{-1} d(x, N(x)) ; \text { for all } k \in \mathbb{N}
$$

For $n=1$, we recover the classical Banach's contraction principle.
Theorem 2.10. [16, 26] Let X be a generalized Banach space and $N: X \rightarrow X$ be a continuous and compact mapping. Then either:
(a) The set

$$
\mathcal{A}:=\{x \in X: x=\lambda N(x) \text { for some } \lambda \in(0,1)\}
$$

in unbounded, or
(b) The operator N has a fixed point.

Also, we will use the following Gronwall lemma:
Lemma 2.11. [9] Let $u: I \rightarrow[0, \infty)$ be a real function and $u(\cdot)$ is a nonnegative, locally integrable function on I. Assume that there exist constants $c>0$ and $r<1$ such that

$$
u(t) \leq v(t)+c \int_{0}^{t} \frac{u(s)}{(t-s)^{r}} d s
$$

then, there exists a constant $K:=K(r)$ such that

$$
u(t) \leq v(t)+c K \int_{0}^{t} \frac{v(s)}{(t-s)^{r}} d s
$$

for every $t \in I$.

3. Coupled Hilfer fractional differential systems

In this section, we are concerned with the existence and uniqueness results of the system (1.1)-(1.2).

Definition 3.1. By a solution of the problem (1.1)-(1.2) we mean a coupled continuous functions $(u, v) \in C_{\gamma_{1}} \times C_{\gamma_{2}}$ those satisfy the equation (1.1) on I, and the conditions $\left(I_{0}^{1-\gamma_{1}} u\right)\left(0^{+}\right)=\phi_{1}$, and $\left(I_{0}^{1-\gamma_{2}} v\right)\left(0^{+}\right)=\phi_{2}$.

The following hypotheses will be used in the sequel.
$\left(H_{1}\right)$ There exist continuous functions $p_{i}, q_{i}: I \rightarrow(0, \infty) ; i=1,2$ such that

$$
\left\|f_{i}\left(t, u_{1}, v_{1}\right)-f_{i}\left(t, u_{2}, v_{2}\right)\right\| \leq p_{i}(t)\left\|u_{1}-u_{2}\right\|+q_{i}(t)\left\|v_{1}-v_{2}\right\|
$$

for a.e. $t \in I$, and each $u_{i}, v_{i} \in \mathbb{R}^{m}, i=1,2$.
$\left(H_{2}\right)$ There exist continuous functions $a_{i}, b_{i}: I \rightarrow(0, \infty) ; i=1,2$ such that $\left\|f_{i}(t, u, v)\right\| \leq a_{i}(t)\|u\|+b_{i}(t)\|v\| ;$ for a.e. $t \in I$, and each $u, v \in \mathbb{R}^{m}$.

First, we prove an existence and uniqueness result for the coupled system (1.1)- (1.2) by using Banach's fixed point theorem type in generalized Banach spaces. Set

$$
p_{i}^{*}:=\sup _{t \in I} p(t), q_{i}^{*}:=\sup _{t \in I} q(t) ; i=1,2 .
$$

Theorem 3.2. Assume that the hypothesis $\left(H_{1}\right)$ holds. If the matrix

$$
M:=\left(\begin{array}{cc}
\frac{T^{\alpha_{1}}}{\Gamma\left(1+\alpha_{1}\right)} p_{1}^{*} & \frac{T^{\alpha_{1}}}{\Gamma\left(1+\alpha_{1}\right)} q_{1}^{*} \\
\frac{T^{\alpha_{2}}}{\Gamma\left(1+\alpha_{2}\right)} p_{2}^{*} & \frac{T^{\alpha_{2}}}{\Gamma\left(1+\alpha_{2}\right)} q_{2}^{*}
\end{array}\right)
$$

converges to 0 , then the coupled system (1.1)-(1.2) has a unique solution.

Proof. Define the operators $N_{i}: \mathcal{C} \rightarrow C_{\gamma_{i}} ; i=1,2$ by

$$
\begin{equation*}
\left(N_{1}(u, v)\right)(t)=\frac{\phi_{1}}{\Gamma\left(\gamma_{1}\right)} t^{\gamma_{1}-1}+\int_{0}^{t}(t-s)^{\alpha_{1}-1} \frac{f_{1}(s, u(s), v(s))}{\Gamma\left(\alpha_{1}\right)} d s \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(N_{2}(u, v)\right)(t)=\frac{\phi_{2}}{\Gamma\left(\gamma_{2}\right)} t^{\gamma_{2}-1}+\int_{0}^{t}(t-s)^{\alpha_{2}-1} \frac{f_{2}(s, u(s), v(s))}{\Gamma\left(\alpha_{2}\right)} d s \tag{3.2}
\end{equation*}
$$

Consider the operator $N: \mathcal{C} \rightarrow \mathcal{C}$ defined by

$$
\begin{equation*}
(N(u, v))(t)=\left(\left(N_{1}(u, v)\right)(t),\left(N_{2}(u, v)\right)(t)\right) \tag{3.3}
\end{equation*}
$$

Clearly, the fixed points of the operator N are solutions of the system (1.1)-(1.2).
For any $i \in\{1,2\}$ and each $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right) \in \mathcal{C}$ and $t \in I$, we have

$$
\begin{aligned}
& \left\|t^{1-\gamma_{1}}\left(N_{1}\left(u_{1}, v_{1}\right)\right)(t)-t^{1-\gamma_{1}}\left(N_{1}\left(u_{2}, v_{2}\right)\right)(t)\right\| \\
\leq & \frac{t^{1-\gamma_{1}}}{\Gamma\left(\alpha_{1}\right)} \int_{0}^{t}(t-s)^{\alpha_{1}-1}\left\|f_{1}\left(s, u_{1}(s), v_{1}(s)\right)-f_{1}\left(s, u_{2}(s), v_{2}(s)\right)\right\| d s \\
\leq & \frac{t^{1-\gamma_{1}}}{\Gamma\left(\alpha_{1}\right)} \int_{0}^{t}(t-s)^{\alpha_{1}-1}\left(p_{1}(t)\left\|u_{1}(s)-v_{1}(s)\right\|\right. \\
+ & \left.q_{1}(t)\left\|u_{2}(s)-v_{2}(s)\right\|\right) d s \\
\leq & \frac{1}{\Gamma\left(\alpha_{1}\right)} \int_{0}^{t}(t-s)^{\alpha_{1}-1}\left(p_{1}(t) s^{1-\gamma_{1}}\left\|u_{1}(s)-v_{1}(s)\right\|\right. \\
+ & \left.q_{1}(t) s^{1-\gamma_{1}}\left\|u_{2}(s)-v_{2}(s)\right\|\right) d s \\
\leq & \frac{p_{1}(t)\left\|u_{1}-v_{1}\right\|_{C_{\gamma_{1}}}+q_{1}(t)\left\|u_{2}-v_{2}\right\|_{C_{\gamma_{2}}}}{\Gamma\left(\alpha_{1}\right)} \\
\times & \int_{0}^{t}(t-s)^{\alpha_{1}-1} d s \\
\leq & \frac{T^{\alpha_{1}}}{\Gamma\left(1+\alpha_{1}\right)}\left(p_{1}(t)\left\|u_{1}-v_{1}\right\|_{C_{\gamma_{1}}}+q_{1}(t)\left\|u_{2}-v_{2}\right\|_{C_{\gamma_{2}}}\right) .
\end{aligned}
$$

Then,

$$
\begin{aligned}
& \left\|N_{1}\left(u_{1}, v_{1}\right)-N_{1}\left(u_{2}, v_{2}\right)\right\|_{C_{\gamma_{1}}} \\
\leq & \frac{T^{\alpha_{1}}}{\Gamma\left(1+\alpha_{1}\right)}\left(p_{1}^{*}\left\|u_{1}-v_{1}\right\|_{C_{\gamma_{1}}}+q_{1}\left({ }^{*}\left\|u_{2}-v_{2}\right\|_{C_{\gamma_{2}}}\right) .\right.
\end{aligned}
$$

Also, for each $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right) \in \mathcal{C}$ and $t \in I$, we get

$$
\begin{aligned}
& \left\|N_{2}\left(u_{1}, v_{1}\right)-N_{2}\left(u_{2}, v_{2}\right)\right\|_{C_{\gamma_{2}}} \\
\leq & \frac{T^{\alpha_{2}}}{\Gamma\left(1+\alpha_{2}\right)}\left(p_{2}^{*}\left\|u_{1}-v_{1}\right\|_{C_{\gamma_{1}}}+q_{2}^{*}\left\|u_{2}-v_{2}\right\|_{C_{\gamma_{2}}}\right)
\end{aligned}
$$

Thus,

$$
d\left(N\left(u_{1}, v_{1}\right), N\left(u_{2}, v_{2}\right)\right) \leq M d\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)
$$

where

$$
d\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)=\binom{\left\|u_{1}-v_{1}\right\|_{C_{\gamma_{1}}}}{\left\|u_{2}-v_{2}\right\|_{C_{\gamma_{2}}}}
$$

Since the matrix M converges to zero, then Theorem 2.9 implies that system (1.1)(1.2) has a unique solution.

Now, we prove an existence result for the coupled system (1.1)- (1.2) by using the nonlinear alternative of Leray-Schauder type in generalized Banach space.

Theorem 3.3. Assume that the hypothesis $\left(\mathrm{H}_{2}\right)$ holds. Then the coupled system (1.1)-(1.2) has at least one solution.

Proof. We show that the operator $N: \mathcal{C} \rightarrow \mathcal{C}$ defined in (3.3) satisfies all conditions of Theorem 2.10. The proof will be given in four steps.

Step 1. N is continuous.
Let $\left(u_{n}, v_{n}\right)_{n}$ be a sequence such that $\left(u_{n}, v_{n}\right) \rightarrow(u, v) \in \mathcal{C}$ as $n \rightarrow \infty$. For any $i \in\{1,2\}$ and each $t \in I$, we have

$$
\begin{aligned}
& \left\|t^{1-\gamma_{i}}\left(N_{i}\left(u_{n}, v_{n}\right)\right)(t)-t^{1-\gamma_{i}}\left(N_{i}(u, v)\right)(t)\right\| \\
\leq & \frac{t^{1-\gamma_{i}}}{\Gamma\left(\alpha_{i}\right)} \int_{0}^{t}(t-s)^{\alpha_{i}-1}\left\|f_{i}\left(s, u_{n}(s), v_{n}(s)\right)-f_{i}(s, u(s), v(s))\right\| d s \\
\leq & \frac{1}{\Gamma\left(\alpha_{i}\right)} \int_{0}^{t}(t-s)^{\alpha_{i}-1} s^{1-\gamma_{i}}\left\|f_{i}\left(s, u_{n}(s), v_{n}(s)\right)-f_{i}(s, u(s), v(s))\right\| d s \\
\leq & \frac{T^{\alpha_{i}}}{\Gamma\left(1+\alpha_{i}\right)}\left\|f_{i}\left(\cdot, u_{n}(\cdot), v_{n}(\cdot)\right)-f_{i}(\cdot, u(\cdot), v(\cdot))\right\|_{C_{\gamma_{1}}}
\end{aligned}
$$

Since f_{i} is continuous, then by the Lebesgue dominated convergence theorem, we get

$$
\left\|N_{i}\left(u_{n}, v_{n}\right)-N_{i}(u, v)\right\|_{C_{\gamma_{1}}} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Hence N is continuous.
Step 2. N maps bounded sets into bounded sets in \mathcal{C}.
Set

$$
a_{i}^{*}:=\sup _{t \in I} a(t), b_{i}^{*}:=\sup _{t \in I} b(t): i=1,2
$$

Let $R>0$ and set

$$
B_{R}:=\left\{(\mu, \nu) \in \mathcal{C}:\|\mu\|_{C_{\gamma_{1}}} \leq R,\|\nu\|_{C_{\gamma_{2}}} \leq R\right\}
$$

For each $(u, v) \in B_{R}$ and $t \in I$, we have

$$
\begin{aligned}
\left\|t^{1-\gamma_{1}}\left(N_{1}(u, v)\right)(t)\right\| \leq & \frac{\left\|\phi_{1}\right\|}{\Gamma\left(\gamma_{1}\right)}+\frac{t^{1-\gamma_{1}}}{\Gamma\left(\alpha_{1}\right)} \int_{0}^{t}(t-s)^{\alpha_{1}-1}\left\|f_{1}(s, u(s), v(s))\right\| d s \\
\leq & \frac{\left\|\phi_{1}\right\|}{\Gamma\left(\gamma_{1}\right)} \\
& +\frac{1}{\Gamma\left(\alpha_{1}\right)} \int_{0}^{t}(t-s)^{\alpha_{1}-1} s^{1-\gamma_{1}}\left(a_{1}(s) \| u\left(s\left\|+b_{1}(s)\right\| v(s) \|\right) d s\right.
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{\left\|\phi_{1}\right\|}{\Gamma\left(\gamma_{1}\right)}+\frac{R}{\Gamma\left(\alpha_{1}\right)} \int_{0}^{t}(t-s)^{\alpha_{1}-1} s^{1-\gamma_{1}}\left(a_{1}(s)+b_{1}(s)\right) d s \\
& \leq \frac{\left\|\phi_{1}\right\|}{\Gamma\left(\gamma_{1}\right)}+\frac{\left(a_{1}^{*}+b_{1}^{*} T^{\alpha_{1}}\right.}{\Gamma\left(1+\alpha_{1}\right)} \\
& :=\ell_{1}
\end{aligned}
$$

Thus,

$$
\left\|N_{1}(u, v)\right\|_{C_{\gamma_{1}}} \leq \ell_{1}
$$

Also, for each $(u, v) \in B_{R}$ and $t \in I$, we get

$$
\begin{aligned}
\left\|N_{2}(u, v)\right\|_{C_{\gamma_{2}}} & \leq \frac{\left\|\phi_{2}\right\|}{\Gamma\left(\gamma_{2}\right)}+\frac{\left(a_{2}^{*}+b_{2}^{*} T^{\alpha_{2}}\right.}{\Gamma(1+\alpha)} \\
& :=\ell_{2}
\end{aligned}
$$

Hence,

$$
\|N(u, v)\|_{\mathcal{C}} \leq\left(\ell_{1}, \ell_{2}\right):=\ell
$$

Step 3. N maps bounded sets into equicontinuous sets in \mathcal{C}.
Let B_{R} be the ball defined in Step 2. For each $t_{1}, t_{2} \in I$ with $t_{1} \leq t_{2}$ and $(u, v) \in B_{R}$, we have

$$
\begin{aligned}
& \left\|t_{1}^{1-\gamma_{1}}\left(N_{1}(u, v)\right)\left(t_{1}\right)-t_{2}^{1-\gamma_{1}}\left(N_{1}(u, v)\right)\left(t_{2}\right)\right\| \\
\leq & \frac{t_{2}^{1-\gamma_{1}}}{\Gamma\left(\alpha_{1}\right)} \int_{t-1}^{t_{2}}\left(t_{2}-s\right)^{\alpha_{1}-1}\left\|f_{1}(s, u(s), v(s))\right\| d s \\
\leq & \frac{T^{\alpha_{1}}}{\Gamma\left(1+\alpha_{1}\right)}\left(t_{2}-t_{1}\right)^{\alpha_{1}}\left(a_{1}^{*}\|u\|_{C_{\gamma_{1}}}+b_{1}\left({ }^{*}\|v\|_{C_{\gamma_{2}}}\right)\right. \\
\leq & \frac{R T^{\alpha_{1}}\left(a_{1}^{*}+b_{1}^{*}\right)}{\Gamma\left(1+\alpha_{1}\right)}\left(t_{2}-t_{1}\right)^{\alpha_{1}} \\
& \rightarrow 0 \text { as } t_{1} \rightarrow t_{2}
\end{aligned}
$$

Also, we get

$$
\begin{aligned}
& \left\|t_{1}^{1-\gamma_{2}}\left(N_{2}(u, v)\right)\left(t_{1}\right)-t_{2}^{1-\gamma_{2}}\left(N_{2}(u, v)\right)\left(t_{2}\right)\right\| \\
\leq & \frac{\left.R T^{\alpha_{1} 2}\left(a_{2}^{*}+b_{2}^{*}\right)\right)}{\Gamma\left(1+\alpha_{2}\right)}\left(t_{2}-t_{1}\right)^{\alpha_{2}} \\
& \rightarrow 0 \text { as } t_{1} \rightarrow t_{2}
\end{aligned}
$$

As a consequence of Steps 1 to 3, with the Arzela-Ascoli theorem, we conclude that N maps B_{R} into a precompact set in \mathcal{C}.

Step 4. The set E consisting of $(u, v) \in \mathcal{C}$ such that $(u, v)=\lambda N(u, v)$ for some $\lambda \in(0,1)$ is bounded in \mathcal{C}.
Let $(u, v) \in \mathcal{C}$ such that $(u, v)=\lambda N(u, v)$. Then $u=\lambda N_{1}(u, v)$ and $v=\lambda N_{2}(u, v)$.

Thus, for each $t \in I$, we have

$$
\begin{aligned}
\left\|t^{1-\gamma_{1}} u(t)\right\| \leq & \frac{\left\|\phi_{1}\right\|}{\Gamma\left(\gamma_{1}\right)}+\frac{t^{1-\gamma_{1}}}{\Gamma\left(\alpha_{1}\right)} \int_{0}^{t}(t-s)^{\alpha_{1}-1}\left\|f_{1}(s, u(s), v(s))\right\| d s \\
\leq & \frac{\left\|\phi_{1}\right\|}{\Gamma\left(\gamma_{1}\right)} \\
& +\frac{1}{\Gamma\left(\alpha_{1}\right)} \int_{0}^{t}(t-s)^{\alpha_{1}-1} s^{1-\gamma_{1}}\left(a_{1}^{*} \| u\left(s\left\|+b_{1}^{*}\right\| v(s) \|\right) d s\right.
\end{aligned}
$$

Also, we get

$$
\left\|t^{1-\gamma_{2}} v(t)\right\| \leq \frac{\left\|\phi_{2}\right\|}{\Gamma\left(\gamma_{2}\right)}+\frac{1}{\Gamma\left(\alpha_{2}\right)} \int_{0}^{t}(t-s)^{\alpha_{2}-1} s^{1-\gamma_{2}}\left(a_{2}^{*}\|u(s)\|+b_{2}^{*}\|v(s)\|\right) d s
$$

Hence, we obtain

$$
\left\|t^{1-\gamma_{1}} u(t)\right\|+\left\|t^{1-\gamma_{2}} v(t)\right\| \leq a+b c \int_{0}^{t}(t-s)^{\alpha-1}\left(\left\|s^{1-\gamma_{1}} u(s)\right\|+\left\|s^{1-\gamma_{2}} v(s)\right\|\right) d s
$$

where

$$
\begin{gathered}
a:=\frac{\left\|\phi_{1}\right\|}{\Gamma\left(\gamma_{1}\right)}+\frac{\left\|\phi_{2}\right\|}{\Gamma\left(\gamma_{2}\right)}, b:=\frac{1}{\Gamma\left(\alpha_{1}\right)}+\frac{1}{\Gamma\left(\alpha_{2}\right)} \\
c:=\max \left\{a_{1}^{*}+a_{2}^{*}, b_{1}^{*}+b_{2}^{*}\right\}, \alpha:=\max \left\{\alpha_{1}, \alpha_{2}\right\}
\end{gathered}
$$

Lemma 2.11 implies that there exists $\rho:=\rho(\alpha)>0$ such that

$$
\begin{aligned}
\left\|t^{1-\gamma_{1}} u(t)\right\|+\left\|t^{1-\gamma_{2}} v(t)\right\| & \leq a+a b c \rho \int_{0}^{t}(t-s)^{\alpha-1} d s \\
& \leq \frac{a+a b c \rho T^{\alpha}}{\alpha} \\
& =L
\end{aligned}
$$

This gives

$$
\|u\|_{C_{\gamma_{1}}}+\|v\|_{C_{\gamma_{2}}} \leq L
$$

Hence

$$
\|(u, v)\|_{\mathcal{C}} \leq L
$$

This shows that the set E is bounded.
As a consequence of steps 1 to 4 together with Theorem 2.10, we can conclude that N has at least one fixed point in B_{R} which is a solution of the system (1.1)- (1.2).

4. Coupled Hilfer-Hadamard fractional differential systems

Now, we are concerned with the coupled system (1.3)-(1.4).
Set $C:=C([1, T])$, and denote the weighted space of continuous functions defined by

$$
C_{\gamma, \ln }([1, T])=\left\{w(t):(\ln t)^{1-\gamma} w(t) \in C\right\}
$$

with the norm

$$
\|w\|_{C_{\gamma, \ln }}:=\sup _{t \in[1, T]}\left|(\ln t)^{1-r} w(t)\right| .
$$

Also, by $\mathcal{C}_{\gamma_{1}, \gamma_{2}, \ln }([1, T]):=C_{\gamma_{1}, \ln }([1, T]) \times C_{\gamma_{2}, \ln }([1, T])$ we denote the product weighted space with the norm

$$
\|(u, v)\|_{\mathcal{C}_{\gamma_{1}, \gamma_{2}, \ln ([1, T])}=\|u\|_{C_{\gamma_{1}, \ln }}+\|v\|_{C_{\gamma_{2}, \ln }} ~}
$$

Let us recall some definitions and properties of Hadamard fractional integration and differentiation. We refer to [13] for a more detailed analysis.

Definition 4.1. [13] (Hadamard fractional integral). The Hadamard fractional integral of order $q>0$ for a function $g \in L^{1}([1, T])$, is defined as

$$
\left({ }^{H} I_{1}^{q} g\right)(x)=\frac{1}{\Gamma(q)} \int_{1}^{x}\left(\ln \frac{x}{s}\right)^{q-1} \frac{g(s)}{s} d s
$$

provided the integral exists.
Example 4.2. Let $0<q<1$. Let $g(x)=\ln x, x \in[0, e]$. Then

$$
\left({ }^{H} I_{1}^{q} g\right)(x)=\frac{1}{\Gamma(2+q)}(\ln x)^{1+q} ; \text { for a.e. } x \in[0, e]
$$

Set

$$
\delta=x \frac{d}{d x}, q>0, n=[q]+1
$$

and

$$
A C_{\delta}^{n}:=\left\{u:[1, T] \rightarrow E: \delta^{n-1}[u(x)] \in A C(I)\right\}
$$

Analogous to the Riemann-Liouville fractional derivative, the Hadamard fractional derivative is defined in terms of the Hadamard fractional integral in the following way:
Definition 4.3. [13] (Hadamard fractional derivative). The Hadamard fractional derivative of order $q>0$ applied to the function $w \in A C_{\delta}^{n}$ is defined as

$$
\left({ }^{H} D_{1}^{q} w\right)(x)=\delta^{n}\left({ }^{H} I_{1}^{n-q} w\right)(x)
$$

In particular, if $q \in(0,1]$, then

$$
\left({ }^{H} D_{1}^{q} w\right)(x)=\delta\left({ }^{H} I_{1}^{1-q} w\right)(x)
$$

Example 4.4. Let $0<q<1$. Let $w(x)=\ln x, x \in[0, e]$. Then

$$
\left({ }^{H} D_{1}^{q} w\right)(x)=\frac{1}{\Gamma(2-q)}(\ln x)^{1-q}, \text { for a.e. } x \in[0, e] .
$$

It has been proved (see e.g. Kilbas [[12], Theorem 4.8]) that in the space $L^{1}(I)$, the Hadamard fractional derivative is the left-inverse operator to the Hadamard fractional integral, i.e.

$$
\left({ }^{H} D_{1}^{q}\right)\left({ }^{H} I_{1}^{q} w\right)(x)=w(x)
$$

From Theorem 2.3 of [13], we have

$$
\left({ }^{H} I_{1}^{q}\right)\left({ }^{H} D_{1}^{q} w\right)(x)=w(x)-\frac{\left({ }^{H} I_{1}^{1-q} w\right)(1)}{\Gamma(q)}(\ln x)^{q-1}
$$

Analogous to the Hadamard fractional calculus, the Caputo-Hadamard fractional derivative is defined in the following way:

Definition 4.5. (Caputo-Hadamard fractional derivative) The Caputo-Hadamard fractional derivative of order $q>0$ applied to the function $w \in A C_{\delta}^{n}$ is defined as

$$
\left({ }^{H c} D_{1}^{q} w\right)(x)=\left({ }^{H} I_{1}^{n-q} \delta^{n} w\right)(x)
$$

In particular, if $q \in(0,1]$, then

$$
\left({ }^{H c} D_{1}^{q} w\right)(x)=\left({ }^{H} I_{1}^{1-q} \delta w\right)(x)
$$

From the Hadamard fractional integral, the Hilfer-Hadamard fractional derivative (introduced for the first time in [17]) is defined in the following way:
Definition 4.6. (Hilfer-Hadamard fractional derivative). Let $\alpha \in(0,1), \beta \in[0,1]$, $\gamma=\alpha+\beta-\alpha \beta, w \in L^{1}(I)$, and ${ }^{H} I_{1}^{(1-\alpha)(1-\beta)} w \in A C(I)$. The Hilfer-Hadamard fractional derivative of order α and type β applied to the function w is defined as

$$
\begin{align*}
\left({ }^{H} D_{1}^{\alpha, \beta} w\right)(t) & =\left({ }^{H} I_{1}^{\beta(1-\alpha)}\left({ }^{H} D_{1}^{\gamma} w\right)\right)(t) \tag{4.1}\\
& =\left({ }^{H} I_{1}^{\beta(1-\alpha)} \delta\left({ }^{H} I_{1}^{1-\gamma} w\right)\right)(t) ; \text { for a.e. } t \in[1, T]
\end{align*}
$$

This new fractional derivative (4.1) may be viewed as interpolating the Hadamard fractional derivative and the Caputo-Hadamard fractional derivative. Indeed for $\beta=0$ this derivative reduces to the Hadamard fractional derivative and when $\beta=1$, we recover the Caputo-Hadamard fractional derivative.

$$
{ }^{H} D_{1}^{\alpha, 0}={ }^{H} D_{1}^{\alpha}, \text { and }{ }^{H} D_{1}^{\alpha, 1}={ }^{H c} D_{1}^{\alpha} .
$$

From Theorem 21 in [18], we concluded the following lemma.
Lemma 4.7. Let $g:[1, T] \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be such that $g(\cdot, u(\cdot)) \in C_{\gamma, \ln }([1, T])$ for any $u \in C_{\gamma, \ln }([1, T])$. Then problem (1.3) is equivalent to the following Volterra integral equation

$$
u(t)=\frac{\phi_{0}}{\Gamma(\gamma)}(\ln t)^{\gamma-1}+\left({ }^{H} I_{1}^{\alpha} g(\cdot, u(\cdot))\right)(t)
$$

Definition 4.8. By a solution of the coupled system (1.3)-(1.4) we mean a coupled continuous functions $(u, v) \in C_{\gamma_{1}, \ln } \times C_{\gamma_{2}, \ln }$ those satisfy the conditions (1.4) and the equations (1.3) on $[1, T]$.

Now we give (without proof) similar existence and uniqueness results for the system (1.3)-(1.4). Let us introduce the following hypotheses:
$\left(H_{1}^{\prime}\right)$ There exist continuous functions $p_{i}, q_{i}:[1, T] \rightarrow(0, \infty) ; i=1,2$ such that

$$
\left\|g_{i}\left(t, u_{1}, v_{1}\right)-g_{i}\left(t, u_{2}, v_{2}\right)\right\| \leq p_{i}(t)\left\|u_{1}-u_{2}\right\|+q_{i}(t)\left\|v_{1}-v_{2}\right\|
$$

for a.e. $t \in[1, T]$, and each $u_{i}, v_{i} \in \mathbb{R}^{m}, i=1,2$.
$\left(H_{2}^{\prime}\right)$ There exist continuous functions $a_{i}, b_{i}:[1, T] \rightarrow(0, \infty) ; i=1,2$ such that $\left\|g_{i}(t, u, v)\right\| \leq a_{i}(t)\|u\|+b_{i}(t)\|v\| ;$ for a.e. $t \in[1, T]$, and each $u, v \in \mathbb{R}^{m}$.

Theorem 4.9. Assume that the hypothesis $\left(H_{1}^{\prime}\right)$ holds. If the matrix

$$
\left(\begin{array}{cc}
\frac{(\ln T)^{\alpha_{1}}}{\Gamma\left(1+\alpha_{1}\right)} p_{1}^{*} & \frac{(\ln T)^{\alpha_{1}}}{\Gamma\left(1+\alpha_{1}\right)} q_{1}^{*} \\
\frac{(\ln T)^{\alpha_{2}}}{\Gamma\left(1+\alpha_{2}\right)} p_{2}^{*} & \frac{(\ln T)^{\alpha_{2}}}{\Gamma\left(1+\alpha_{2}\right)} q_{2}^{*}
\end{array}\right)
$$

converges to 0 , then the coupled system (1.3)-(1.4) has a unique solution defined on $[1, T]$.

Theorem 4.10. Assume that the hypothesis $\left(H_{2}^{\prime}\right)$ holds. Then the coupled system (1.3)-(1.4) has at least one solution defined on $[1, T]$.

5. An example

Consider the following coupled system of Hilfer fractional differential equations

$$
\left\{\begin{array}{l}
\left(D_{0}^{\frac{1}{2}, \frac{1}{2}} u\right)(t)=f(t, u(t), v(t)) ; \tag{5.1}\\
\left(D_{0}^{\frac{1}{2}, \frac{1}{2}} v\right)(t)=g(t, u(t), v(t)) ; \\
\left(I_{0}^{\frac{1}{4}} u\right)(0)=1 \\
\left(I_{0}^{\frac{1}{4}} v_{n}\right)(0)=0
\end{array} \quad: t \in[0,1]\right.
$$

where

$$
\begin{gathered}
f(t, u, v)=\frac{t^{\frac{-1}{4}}(u(t)+v(t)) \sin t}{64(1+\sqrt{t})(1+|u|+|v|)} ; t \in[0,1] \\
g(t, u, v)=\frac{(u(t)+v(t)) \cos t}{64(1+|u|+|v|)} ; t \in[0,1]
\end{gathered}
$$

Set $\alpha_{i}=\beta_{i}=\frac{1}{2} ; i=1,2$, then $\gamma_{i}=\frac{3}{4} ; i=1,2$. The hypothesis $\left(H_{1}\right)$ is satisfied with

$$
p_{1}(t)=p_{2}(t)=q_{1}(t)=q_{2}(t)=\frac{1}{64}
$$

Also the matrix

$$
\frac{1}{64 \sqrt{\pi}}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

converges to 0 . Hence, Theorem 3.2 implies that the system (5.1) has a unique solution defined on $[0,1]$.

References

[1] S. Abbas, M. Benchohra, J.R. Graef, J. Henderson, Implicit Fractional Differential and Integral Equations: Existence and Stability, De Gruyter, Berlin, 2018.
[2] S. Abbas, M. Benchohra, J.E. Lazreg, Y.Zhou, A survey on Hadamard and Hilfer fractional differential equations: analysis and stability, Chaos, Solitons \& Fractals, 102(2017), 47-71.
[3] S. Abbas, M. Benchohra, G.M. N' Guérékata, Topics in Fractional Differential Equations, Springer, New York, 2012.
[4] S. Abbas, M. Benchohra, G.M. N’Guérékata, Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015.
[5] G. Allaire, S.M. Kaber, Numerical Linear Algebra, Texts in Applied Mathematics, Springer, New York, 2008.
[6] M. Benchohra, J. Henderson, S.K. Ntouyas, A. Ouahab, Existence results for functional differential equations of fractional order, J. Math. Anal. Appl., 338(2008), 1340-1350.
[7] K.M. Furati, M.D. Kassim, Non-existence of global solutions for a differential equation involving Hilfer fractional derivative, Electron. J. Differential Equations, 2013, no. 235, 10 pp.
[8] K. M. Furati, M.D. Kassim, N.E. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64(2012), 1616-1626.
[9] J.R. Graef, J. Henderson, A. Ouahab, Some Krasnosel'skii type random fixed point theorems, J. Nonlinear Funct. Anal., 2017 (2017), 1-34, Article ID 46.
[10] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
[11] R. Kamocki, C. Obczńnski, On fractional Cauchy-type problems containing Hilfer's derivative, Electron. J. Qual. Theory Differ. Equ., 2016, no. 50, 1-12.
[12] A.A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38(6)(2001), 1191-1204.
[13] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006.
14] L. Liu, F. Guo, C. Wu, Y. Wu, Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces, J. Math. Anal. Appl., 309(2005), 638-649.
[15] H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal., 4(1980), 985-999.
[16] D. O'Regan, R. Precup, Theorems of Leray-Schauder Type and Applications, Gordon and Breach, Amsterdam, 2001.
[17] M.D. Qassim, K.M. Furati, N.E. Tatar, On a differential equation involving Hilfer-Hadamard fractional derivative, Abstr. Appl. Anal., vol. 2012, Article ID 391062, 17 pages, 2012.
[18] M.D. Qassim, N.E. Tatar, Well-posedness and stability for a differential problem with HilferHadamard fractional derivative, Abstr. Appl. Anal., Volume 2013, Article ID 605029, 12 pages, 2013.
[19] I.R. Petre, A. Petruşel, Krasnoselskii's theorem in generalized Banach spaces and applications, Electron. J. Qualitative Theory Differ. Equ., (2012), no. 85, 20 pp.
[20] R. Precup, Methods in Nonlinear Integral Equations, Kluwer Academic Publishers, Dordrecht, 2002.
[21] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Amsterdam, 1987, Engl. Trans. from the Russian.
[22] M.L. Sinacer, J.J. Nieto, A. Ouahab, Random fixed point theorems in generalized Banach spaces and applications, Random Oper. Stoch. Equ., 24(2016), 93-112.
[23] V.E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg; Higher Education Press, Beijing, 2010.
[24] Ž. Tomovski, R. Hilfer, H.M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions, Integral Transform. Spec. Funct., 21(11)(2010), 797-814.
[25] R.S. Varga, Matrix Iterative Analysis, Springer Series in Computational Mathematics, 27, Springer-Verlag, Berlin, 2000.
[26] A. Viorel, Contributions to the Study of Nonlinear Evolution Equations, Ph.D. Thesis, BabeşBolyai University Cluj-Napoca, Department of Mathematics, 2011.
[27] J.-R. Wang, Y. Zhang, Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Appl. Math. Comput., 266(2015), 850-859.
[28] Y. Zhou, J.-R. Wang, L. Zhang, Basic Theory of Fractional Differential Equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.

Received: November 4, 2020; Accepted: June 14, 2021.

