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1. Introduction

Let C be a nonempty, closed and convex subset of a real Banach space X. Let
A : C → X be a single-valued nonlinear mapping and let B : X → 2X be a multi-
valued mapping. The quasi-variational inclusion problem is the problem of finding a
point x ∈ X such that

0 ∈ Ax+Bx. (1.1)

The set of all solutions of the problem (1.1) is denoted by (A+B)−10. This problem
includes several important problems, as special cases, such as, optimization problems,
variational inequality problems, split feasibility problems and equilibrium problems.
Moreover, the problem has wide applications in the fields of economics, mechanics,
structural analysis, signal processing and image restoration (see, e.g., [18, 10, 14, 7,
19], and the references therein).
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A classical method to solving the problem (1.1) is the forward-backward splitting
method in a Hilbert space H [20, 25, 33, 12] which was first introduced by Combettes
and Hirstoaga [11] in the following manner: x1 ∈ H and

xn+1 = (I + λB)−1(xn − λAxn), ∀n ≥ 1, (1.2)

where λ > 0. They defined JBλ = (I + λB)−1 which is called the resolvent of B
for λ. We see that the iteration (1.2) involves with I − λA as the forward step
and JBλ as the backward step, but not the sum of A and B. We also note that
the forward-backward splitting method includes, as special cases, the proximal point
algorithm [22, 27, 5, 15, 8] and the gradient method [13, 3]. In 2008, Zhang et al. [38]
introduced an iterative scheme for finding elements in the set F (S) ∩ (A+ B)−10 as
follows: u, x1 ∈ H and

xn+1 = αnu+ (1− αn)SJBλ (xn − λAxn), ∀n ≥ 1, (1.3)

where S : H → H is a nonexpansive mapping. They proved a strong convergence
theorem of the sequence {xn} under some suitable conditions of parameter {αn} and
λ. On the other hand, Takahashi et al. [30] considered the problem of finding elements
in the set F (S)∩(A+B)−10 in a Hilbert space as well. They introduced the following
iterative method: x1 = x ∈ C ⊂ H and let {xn} ⊂ C be a sequence generated by

xn+1 = βnxn + (1− βn)S(αnx+ (1− αn)JBλn
(xn − λnAxn)), ∀n ≥ 1. (1.4)

They also proved a strong convergence of {xn} under some mild conditions. In 2012,
Lopez et al. [21] proved a strong convergence theorem for finding a solution of (A+
B)−10 in a Banach space X by using the following Halpern-type forward-backward
method: u, x1 ∈ X and

xn+1 = αnu+ (1− αn)(JBλn
(xn − λn(Axn + an)) + bn), ∀n ≥ 1. (1.5)

Recently, Suantai et al. [28] proposed the explicit iteration to solving the fixed
point problem of nonexpansive mappings and the quasi-variational inclusion problem
in the framework of Banach spaces. They introduced the following iterative method:
x1 ∈ C arbitrary, {

yn = JBλn
(αnun + (1− αn)xn − λnAxn),

xn+1 = βnxn + (1− βn)Syn,∀n ≥ 1,
(1.6)

where {un} ⊂ X is a perturbation for the n-step with limn→∞ un = u′ ∈ X. They
proved that the iterative sequence {xn} converges strongly to x∗ ∈ F (S)∩(A+B)−10
under some appropriate conditions.

Motivated and inspired by all of these researches going on in this direction, in this
paper, we introduce a new algorithm for finding a solution of the quasi-variational
inclusion problems for a common zero point of a sum of a finite family of α-strongly
monotone operators and maximal monotone operators and a common fixed point of
a family of nonexpansive mappings in q-uniformly smooth Banach spaces. Our focus
in this work is the following: let C be a nonempty, closed and convex subset of a
q-uniformly smooth Banach space X. Let Ak : C → X, k = 1, 2, ..., N, be αk-inverse
strongly accretive of order q operators and let Bk : D(Bk) → 2X , k = 1, 2, ..., N, be
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m-accretive operators. Let Si : C → C, i = 1, 2, ...,M, be nonexpansive mappings.
Our proposed problem is to find a common element in the set

Ω :=

(
M⋂
i=1

F (Si)

)
∩

(
N⋂
k=1

(Ak +Bk)−10

)
under some suitable conditions. Then a strong convergence theorem will be estab-
lished under some control and suitable conditions. Moreover, we apply the main
results to solving convexly constrained minimization problems, variational inequality
problems and equilibrium problems. We also perform some numerical experiments
to solving the image restoration problems by utilizing our algorithms. The presented
results in this work also extend and improve many well-known results in the literature.

2. Preliminaries

The intention of this section is to recall some useful definitions and results for
proving our main results. We shall denote the notations xn → x that the sequence
{xn} converges strongly to x and xn ⇀ x that a sequence {xn} converges weakly to
x. Let X be a real Banach space with norm ‖ · ‖ and let C be a nonempty, closed
and convex subset of X. Let S : C → C be a mapping. A point x ∈ C is called fixed
point of S if x = Sx. We use F (S) to denote the set of all fixed points of S, i.e.,

F (S) := {x ∈ C : x = Sx}.
A mapping S : C → C is said to be L-Lipschitzian, if there exists a constant L > 0
such that

‖Sx− Sy‖ ≤ L‖x− y‖, ∀x, y ∈ C.
If L = 1, then S is said to be nonexpansive.

A Banach space X is said to be strictly convex if for

x, y ∈ S(X) := {x ∈ X : ‖x‖ = 1}

and x 6= y, one has ||x+y||
2 < 1.

A Banach space X is said to be uniformly convex if for any ε ∈ (0, 2], there exists

δ > 0 (depending only on ε) such that ‖x+y‖
2 ≤ 1 − δ, for all x, y ∈ S(X) with

‖x − y‖ ≥ ε. It is well-known that every uniformly convex Banach space is reflexive
strictly convex and every Hilbert space H is a uniformly convex space, (see [31] for
more details). The modulus of smoothness of X is the function ρX : [0,∞)→ [0,∞)
defined by

ρX(τ) := sup

{
1

2
(‖x+ τy‖+ ‖x− τy‖)− 1 : x, y ∈ S(X)

}
.

A Banach space X is said to be uniformly smooth if ρX(t)
t → 0 as t→ 0. Suppose

that q is a fixed real number with q > 1, a Banach space X is said to be q-uniformly
smooth (or to have a modulus of smoothness of power type q) if there exists a fixed
constant c > 0 such that ρX(t) ≤ ctq for all t > 0. If X is q-uniformly smooth,
then X is also uniformly smooth. Examples of p-uniformly smooth Banach spaces are
lp, Lp, (p ≥ 2), the Sobolev spaces W p

m, (p ≥ 2) and all Hilbert spaces. In fact, every
Hilbert space is 2-uniformly smooth.
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Let X∗ be a dual space of a Banach space X. Let q > 1 be a real number. We
denote by Jq the generalized duality mapping Jq : X → 2X

∗
defined by

Jq(x) := {jq(x) ∈ X∗ : 〈x, jq(x)〉 = ‖x‖q, ‖jq(x)‖ = ‖x‖q−1},
where 〈·, ·〉 denotes the duality pairing between element of X and X∗. In particular,
J2 is called the normalized duality mapping and it is known that Jq(x) = ‖x‖q−2J2(x)
for x 6= 0 and if X is a real Hilbert space, then Jq = I, where I is the identity mapping
and if a Banach space X is uniformly smooth, then Jq is a single-valued mapping and
it will be denoted by jq.

The generalized duality mapping jq is said to be weakly sequentially continuous if

for each {xn} in X with xn ⇀ x, we have jq(xn)
∗−⇀ jq(x).

Lemma 2.1. ([34]) Let q > 1, λ ∈ [0, 1] and Wq(λ) := λq(1− λ) + λ(1− λ)q. Let X
be a real q-uniformly smooth Banach space. Then there exists a constant cq > 0 such
that the following inequality holds:

‖λx+ (1− λ)y‖q ≤ λ‖x‖q + (1− λ)‖y‖q −Wq(λ)cq‖x− y‖q, ∀x, y ∈ X.

Lemma 2.2. ([9]) Let q > 1 and X be a real normed space with the generalized
duality mapping Jq. Then for any x, y ∈ X, we have

‖x+ y‖q ≤ ‖x‖q + q〈y, jq(x+ y)〉 where jq(x+ y) ∈ Jq(x+ y).

Lemma 2.3. ([34]) Let q > 1 be a fixed real number and X a Banach space. Then
X is q-uniformly smooth if and only if there is a constant κq > 0 which is called the
q-uniform smoothness coefficient of X such that

‖x+ y‖q ≤ ‖x‖q + q〈y, jq(x)〉+ κq‖y‖q, ∀x, y ∈ X.

In particular, if X = H, then κq = 1.

Lemma 2.4. ([34]) Let q > 1 and r > 1 be two fixed real numbers and X a Ba-
nach space. Then X is uniformly smooth if and only if there is a strictly increasing,
continuous and convex function g : (0,+∞)→ (0,+∞) such that g(0) = 0 and

g(‖x− y‖) ≤ ‖x‖q − q〈x, jq(y)〉+ (q − 1)‖y‖q, ∀x, y ∈ Br.

Let A : X → 2X be a set-valued mapping. The domain and range of A are denoted
by D(A) := {x ∈ X : Ax 6= ∅} and R(A) :=

⋃
{Az : z ∈ D(A)}, respectively. The

inverse of A is denoted by A−1 is defined as follows: x ∈ A−1y if and only if y ∈ Ax.
An operator A : X → 2X is said to be monotone if

〈u− v, x− y〉 ≥ 0, ∀u ∈ Ax, ∀v ∈ Ay.
A monotone operator A on X is said to be maximal if its graph

G(A) := {(x, u) : u ∈ Ax}
is not properly contained in the graph of any other monotone operator on X. That
is, a monotone operator A is maximal if and only if for x ∈ D(A) and u ∈ Ax such
that 〈u− v, x− y〉 ≥ 0 implies (y, v) ∈ G(A). A fundamental example of a maximally
monotone operator is the subdifferential of a proper lower semicontinuous convex
function.



PARALLEL ALGORITHM TO SOLVING A SYSTEM OF QUASI-VARIATIONAL 813

For a proper lower semicontinuous convex function f : X → (−∞,∞], the subdif-
ferential mapping ∂f ∈ X ×X∗ of f defined by

∂f(x) := {x∗ ∈ X∗ : f(x) + 〈y − x, x∗〉 ≤ f(y), y ∈ X},
for all x ∈ X, is a maximal monotone mapping (see [26] for more details).

Let q > 1. A set-valued mapping A : X → 2X is said to be accretive of order q if
for each x, y ∈ D(A), there exists jq(x− y) ∈ Jq(x− y) such that

〈u− v, jq(x− y)〉 ≥ 0, ∀u ∈ Ax, ∀v ∈ Ay.
An accretive operator A is said to be m-accretive if R(I + λA) = X for all λ > 0.
In a real Hilbert space, an operator A is m-acccretive if and only if A is maximal
monotone (see [31]).

Let A be an m-accretive operator on X. We use A−10 to denote the set of all zeros
of A, i.e., A−10 := {x ∈ D(A) : 0 ∈ Ax}. For an accretive operator A, we can define
a single-valued operator JAλ : R(I + λA)→ D(A) by

JAλ = (I + λA)−1, for each λ > 0,

which is call the resolvent of A for λ. It is well-known that JAλ is a nonexpansive
mapping with F (JAλ ) = A−10.

Let f ∈ Γ0(H), the set of proper lower semicontinuous convex functions from H to
(−∞,+∞], and a parameter λ > 0. The operator proxλf : H → H, say the proximity
operator of parameter λ of f at x ∈ H, is defined by

proxλfx := arg min
y∈H

{
f(y) +

1

2λ
‖y − x‖2

}
.

The well-known facts, if f ∈ Γ0(H), then J∂fλ = proxλf and if f = ‖ · ‖1, then

proxλ‖·‖1x := sgn(x) max{‖x‖1 − λ, 0},

where ‖x‖1 is l1-norm, the sum of the absolute values of each components of x.
Let α > 0 be a given constant and let C be a subset of a real Hilbert space H.
A mapping A : C → H is said to be α-inverse strongly monotone (α-ism) if

〈Ax−Ay, x− y〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ C.
Let α > 0 and q > 1. A mapping A : C → X is said to be α-inverse strongly

accretive (α-isa) of order q if there exists jq(x− y) ∈ Jq(x− y) such that

〈Ax−Ay, jq(x− y)〉 ≥ α‖Ax−Ay‖q, ∀x, y ∈ C.

It is easy to see that if A is α-inverse strongly accretive of order q, then A is 1
α -Lipschitz

continuous. Moreover, we have from [21], if A is an α-inverse strongly accretive of
order q operator and B is an m-accretive operator, then F (JBλ (I−λA)) = (A+B)−10.

The following lemmas and propositions are useful for proving our main results.

Lemma 2.5. ([21]) Let C be a subset of a real q-uniformly smooth Banach space X
and A : C → X α-inverse strongly accretive of order q. Then the following inequality
holds:

‖(I − λA)x− (I − λA)y‖q ≤ ‖x− y‖q − λ(αq − κqλq−1)‖Ax−Ay‖q, ∀x, y ∈ C.
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In particular, if 0 < λ ≤ (αqκq
)

1
q−1 , then I − λA is nonexpansive.

Lemma 2.6. ([2]) Let X be a real Banach space. Let A be an m-accretive operator.
For any λ, µ > 0, then

‖JAλ x− JAµ x‖ ≤
∣∣∣∣λ− µλ

∣∣∣∣ ‖JAλ x− x‖, ∀x ∈ X.
Proposition 2.7. ([28]) Let X be a real q-uniformly smooth Banach space. Let A be
an m-accretive operator on X and let JAλ be the resolvent operator associated with A
and λ. Then JAλ is firmly nonexpansive, i.e.,

‖JAλ x− JAλ y‖q ≤ 〈x− y, jq(JAλ x− JAλ y)〉, ∀x, y ∈ X.

Lemma 2.8. ([6]) Let C be a nonempty, closed and convex subset of a uniformly
convex Banach space X and let S : C → C be a nonexpansive mapping. Then I − S
is demiclosed at zero, i.e., for any sequence {xn} in C such that xn ⇀ x ∈ C and
xn − Sxn → 0 imply x = Sx.

Let C be a nonempty, closed convex subset of a Banach space X and let D be a
nonempty subset of C. A mapping Q : C → D is said to be sunny if Q(x+t(x−Qx)) =
Qx whenever Qx+ t(x−Qx) ∈ C for all x ∈ C and t ≥ 0. A retraction from C to D
is a mapping Q : C → D such that Qx = x for all x ∈ R(Q).

A sunny nonexpansive retraction is a sunny retraction which is also nonexpansive.
It is well-known that if X = H is a Hilbert space, then a sunny nonexpansive retrac-
tion QC is coincident with the metric projection from H onto C, that is QC = PC .

Lemma 2.9. Let C be a nonempty, closed convex subset of a smooth Banach space
X. Let QC : X → C be a sunny nonexpansive retraction from X onto C. Let x ∈ X
and let x0 ∈ C. Then x0 = QCx if and only if

〈x− x0, jq(y − x0)〉 ≤ 0, ∀y ∈ C.

Proposition 2.10. ([23]) Let q > 1. Then the following inequality holds:

aq − bq ≤ qaq−1(a− b),
for arbitrary positive real numbers a, b.

Lemma 2.11. ([29]) Let {xn} and {yn} be bounded sequences in a Banach space and
{βn} a sequence in [0,1] such that 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. Suppose
that

xn+1 = (1− βn)yn + βnxn,

for all n ∈ N and lim supn→∞(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0. Then

lim
n→∞

‖xn − yn‖ = 0.

Lemma 2.12. ([35]) Suppose that {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1− ηn)an + ηnδn,

for all n ∈ N, where {ηn} ⊂ (0, 1) such that
∑∞
n=1 ηn =∞ and {δn} is a sequence in

R such that lim supn→∞ δn ≤ 0. Then limn→∞ an = 0.
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3. Main results

The main aim of this section is to introduce a parallel algorithm for finding a
common element of solutions of quasi-variational inclusion problems and a common
fixed point of a finite family of nonexpansive mappings in q-uniformly smooth Banach
spaces. A strong convergence result of the proposed method is analyzed under some
suitable conditions.

Let C be a nonempty, closed and convex subset of a real uniformly convex and
q-uniformly smooth Banach space X which admits a weakly sequentially continuous
generalized duality mapping jq. Let Ak : C → X, k = 1, 2, ..., N, be αk-inverse
strongly accretive of order q operators and let Bk : D(Bk) → 2X , k = 1, 2, ..., N,
be m-accretive operators such that D(Bk) ⊂ C. Let Si : C → C, i = 1, 2, ...,M, be
nonexpansive mappings. Let {λn} be a positive real sequence and let {σn},{βn},{γi,n}
for all i = 1, 2, ...,M be sequences in (0,1). For x1 ∈ C, we introduce the following
parallel algorithm:

yk,n = JBk

λn
(σnun + (1− σn)xn − λnAkxn), k = 1, 2, ..., N,

choose kn such that ‖ykn,n − xn‖ = max
k=1,2,...,N

‖yk,n − xn‖,

zi,n = (1− γi,n)Sixn + γi,nykn,n, i = 1, 2, ...,M,

choose in such that ‖zin,n − xn‖ = max
i=1,2,...,M

‖zi,n − xn‖,

xn+1 = βnxn + (1− βn)zin,n,∀n ≥ 1,

(3.1)

where {un} is a sequence in X such that limn→∞ un = u′ ∈ X.
We next start by some lemmas.

Lemma 3.1. Suppose that

Ω :=

(
M⋂
i=1

F (Si)

)
∩

(
N⋂
k=1

(Ak +Bk)−10

)
6= ∅.

If 0 < e ≤ λn <
λn

1−σn
≤ f < (αqκq

)
1

q−1 , for some e, f ∈ R+, the set of all positive real

numbers, and α = min{α1, α2, ..., αN}, then the sequence {xn} generated by (3.1) is
bounded.

Proof. Let p ∈ Ω. Then we have p = Sip, for all i = 1, 2, ...,M, and

p = JBk

λn
(p− λnAkp) = JBk

λn

(
σnp+ (1− σn)

(
p− λn

1− σn
Akp

))
,

for all k = 1, 2, ..., N. Since {un} is bounded, there exists a positive constant M1 such
that

M1 = sup
n≥1
‖un − p‖.
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Since Sin , J
Bkn

λn
and I − λn

1−σn
Akn are nonexpansive (by Lemma 2.5), they follow that

‖ykn,n − p‖ =

∥∥∥∥JBkn

λn

(
σnun + (1− σn)

(
I − λn

1− σn
Akn

)
xn

)
−JBkn

λn

(
σnp+ (1− σn)

(
I − λn

1− σn
Akn

)
p

)∥∥∥∥
≤
∥∥∥∥σn(un−p) + (1−σn)

[(
I − λn

1− σn
Akn

)
xn −

(
I − λn

1− σn
Akn

)
p

] ∥∥∥∥
≤ σn‖un − p‖+ (1− σn)

∥∥∥∥(I − λn
1− σn

Akn

)
xn −

(
I − λn

1− σn
Akn

)
p

∥∥∥∥
≤ σn‖un − p‖+ (1− σn)‖xn − p‖. (3.2)

This together with nonexpansitivity of Sin , we have

‖zin,n − p‖ = ‖(1− γin,n)Sinxn + γin,nykn,n − p‖
≤ (1− γin,n)‖Sinxn − p‖+ γin,n‖ykn,n − p‖
≤ (1− γin,n)‖Sinxn − p‖+ γin,n[σn‖un − p‖+ (1− σn)‖xn − p‖]
≤ (1− γin,n)‖xn − p‖+ γin,n[σn‖un − p‖+ (1− σn)‖xn − p‖]
= (1− γin,nσn)‖xn − p‖+ γin,nσn‖un − p‖. (3.3)

By (3.2) and (3.3), we get

‖xn+1 − p‖ = ‖βnxn + (1− βn)zin,n − p‖
≤ βn‖xn − p‖+ (1− βn)‖zin,n − p‖
≤ βn‖xn − p‖+ (1− βn)[(1− γin,nσn)‖xn − p‖+ γin,nσn‖un − p‖]
= (1− (1− βn)γin,nσn)‖xn − p‖+ (1− βn)γin,nσn‖un − p‖
≤ max{‖xn − p‖,M1}.

By mathematical induction, we obtain

‖xn+1 − p‖ ≤ max{‖x1 − p‖,M1},
for all n ≥ 1. Hence, {xn} is bounded. It follows that {ykn,n}, {zin,n}, {Aknxn} and
{Sinxn} are also bounded. �

Lemma 3.2. Let {xn} be generated by (3.1) and α = min{α1, α2, ..., αN}. If the
control sequences satisfy the following conditions:

(i) limn→∞ σn = 0 and
∑∞
n=1 σn =∞;

(ii) 0 < ai ≤ γi,n ≤ bi < 1, i = 1, 2, ...,M and limn→∞ |γin,n+1 − γin,n| = 0;
(iii) 0 < c ≤ βn ≤ d < 1;

(iv) 0 < e ≤ λn < λn

1−σn
≤ f < (αqκq

)
1

q−1 and limn→∞ |λn+1 − λn| = 0,

for some ai, bi, c, d, e, f ∈ R+, then limn→∞ ‖xn+1 − xn‖ = 0.

Proof. For n ∈ N, we set

wkn,n := σnun + (1− σn)xn − λnAknxn.
By using Lemma 2.6, Lemma 3.1 and nonexpansitivity of the resolvent operator
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J
Bkn

λn+1
, I − λn+1

1−σn+1
Akn and I − λn

1−σn
Akn , we have

‖ykn,n+1 − ykn,n‖

= ‖JBkn

λn+1
wkn,n+1 − J

Bkn

λn
wkn,n‖

≤ ‖JBkn

λn+1
wkn,n+1 − J

Bkn

λn+1
wkn,n‖+ ‖JBkn

λn+1
wkn,n − J

Bkn

λn
wkn,n‖

≤ ‖wkn,n+1 − wkn,n‖+ ‖JBkn

λn+1
wkn,n − J

Bkn

λn
wkn,n‖

= ‖(σn+1un+1 + (1− σn+1)xn+1 − λn+1Aknxn+1)

− (σnun + (1− σn)xn − λnAknxn)‖+ ‖JBkn

λn+1
wkn,n − J

Bkn

λn
wkn,n‖

=

∥∥∥∥σn+1(un+1 − un) + (σn+1 − σn)(un − xn)

+ (1− σn+1)

[(
I − λn+1

1− σn+1
Akn

)
xn+1 −

(
I − λn

1− σn
Akn

)
xn

]
+ (λn − λn+1)Aknxn

∥∥∥∥+ ‖JBkn

λn+1
wkn,n − J

Bkn

λn
wkn,n‖

≤ σn+1(‖un+1‖+ ‖un‖) + |σn+1 − σn|(‖un‖+ ‖xn‖) + (1− σn+1)‖xn+1 − xn‖

+ |λn+1 − λn|‖Aknxn‖+ ‖JBkn

λn+1
wkn,n − J

Bkn

λn
wkn,n‖

≤ (1− σn+1)‖xn+1 − xn‖+ σn+1(‖un+1‖+ ‖un‖) + |σn+1 − σn|(‖un‖+ ‖xn‖)

+ |λn+1 − λn|‖Aknxn‖+
|λn+1 − λn|

λn+1
‖JBkn

λn+1
wkn,n − wkn,n‖

≤ (1−σn+1)‖xn+1 − xn‖+

(
σn+1 + |σn+1 − σn|+ |λn+1 − λn|+

|λn+1 − λn|
λn+1

)
M2,

(3.4)

where M2 = supn≥1{‖un+1‖+ ‖un‖, ‖un‖+ ‖xn‖, ‖Aknxn‖, ‖J
Bkn

λn+1
wkn,n − wkn,n‖}.

By (3.4), we get

‖zin,n+1 − zin,n‖ = ‖((1− γin,n+1)Sinxn+1 + γin,n+1ykn,n+1)

− ((1− γin,n)Sinxn + γin,nykn,n)‖
= ‖γin,n+1(ykn,n+1 − ykn,n) + (γin,n+1 − γin,n)(ykn,n − Sinxn)

+ (1− γin,n+1)(Sinxn+1 − Sinxn)‖
≤ γin,n+1‖ykn,n+1 − ykn,n‖+ |γin,n+1 − γin,n|‖ykn,n − Sinxn‖

+ (1− γin,n+1)‖Sinxn+1 − Sinxn‖
≤ (1− γin,n+1)‖xn+1 − xn‖+ |γin,n+1 − γin,n|‖ykn,n − Sinxn‖

+ γin,n+1

[
(1− σn+1)‖xn+1 − xn‖

+

(
σn+1 + |σn+1 − σn|+ |λn+1 − λn|+

|λn+1 − λn|
λn+1

)
M2

]
.
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It follows from conditions of {σn}, {γin,n} and {λn} that

lim sup
n→∞

(‖zin,n+1 − zin,n‖ − ‖xn+1 − xn‖) ≤ 0. (3.5)

This implies, by Lemma 2.11, that

lim
n→∞

‖xn − zin,n‖ = 0. (3.6)

Since xn+1 − xn = (1− βn)(zin,n − xn), we obtain limn→∞ ‖xn+1 − xn‖ = 0. �

Lemma 3.3. Let {xn} be generated by (3.1) and α = min{α1, α2, ..., αN}.
If the control sequences satisfy the same conditions as in Lemma 3.2, then

limn→∞ ‖xn − Sixn‖ = 0, for all i = 1, 2, ...,M.

Proof. In order to show this, we will first show that

lim
n→∞

‖Aknxn −Aknp‖ = 0 and lim
n→∞

‖xn − ykn,n‖ = 0.

Using (3.2) together with Lemma 2.1 and Lemma 2.3, we get

‖ykn,n − p‖q

≤
∥∥∥∥σn(un − p) +(1− σn)

[(
xn −

λn
1− σn

Aknxn

)
−
(
p− λn

1− σn
Aknp

)]∥∥∥∥q
≤ σn‖un − p‖q + (1− σn)

∥∥∥∥(xn − λn
1− σn

Aknxn

)
−
(
p− λn

1− σn
Aknp

)∥∥∥∥q
= σn‖un − p‖q + (1− σn)

∥∥∥∥(xn − p)−
λn

1− σn
(Aknxn −Aknp)

∥∥∥∥q
≤ σn‖un − p‖q + (1− σn)

[
‖xn − p‖q −

qλn
1− σn

〈Aknxn −Aknp, jq(xn − p)〉

+
κqλ

q
n

(1− σn)q
‖Aknxn −Aknp‖q

]
≤ σn‖un − p‖q + (1− σn)

[
‖xn − p‖q −

αqλn
1− σn

‖Aknxn −Aknp‖q

+
κqλ

q
n

(1− σn)q
‖Aknxn −Aknp‖q

]
= σn‖un − p‖q + (1− σn)‖xn − p‖q − λn

(
αq − κqλ

q−1
n

(1− σn)q−1

)
‖Aknxn −Aknp‖q

≤ σn‖un − p‖q + ‖xn − p‖q − λn
(
αq − κqλ

q−1
n

(1− σn)q−1

)
‖Aknxn −Aknp‖q. (3.7)
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Again, by Lemma 2.1 together with (3.7), we obtain

‖zin,n − p‖q

= ‖(1− γin,n)(Sinxn − p) + γin,n(ykn,n − p)‖q

≤ (1− γin,n)‖Sinxn − p‖q + γin,n‖ykn,n − p‖q

≤ (1− γin,n)‖xn − p‖q + γin,n

×
[
σn‖un − p‖q + ‖xn − p‖q − λn

(
αq − κqλ

q−1
n

(1− σn)q−1

)
‖Aknxn −Aknp‖q

]
= ‖xn − p‖q + γin,nσn‖un − p‖q − γin,nλn

(
αq − κqλ

q−1
n

(1− σn)q−1

)
‖Aknxn −Aknp‖q.

By Lemma 2.1 and above inequality, we get

‖xn+1 − p‖q = ‖βn(xn − p) + (1− βn)(zin,n − p)‖q

≤ βn‖xn − p‖q + (1− βn)‖zin,n − p‖q

≤ βn‖xn − p‖q + (1− βn)

[
‖xn − p‖q + γin,nσn‖un − p‖q

− γin,nλn
(
αq − κqλ

q−1
n

(1− σn)q−1

)
‖Aknxn −Aknp‖q

]
= ‖xn − p‖q + (1− βn)γin,nσn‖un − p‖q

− (1− βn)γin,nλn

(
αq − κqλ

q−1
n

(1− σn)q−1

)
‖Aknxn −Aknp‖q,

which implies by Proposition 2.10 that

aine(1− d)(αq − κq(f)q−1)‖Aknxn −Aknp‖q

≤ ‖xn − p‖q − ‖xn+1 − p‖q + (1− βn)γin,nσn‖un − p‖q

≤ q‖xn − q‖q−1(‖xn − p‖ − ‖xn+1 − p‖) + (1− βn)γin,nσn‖un − p‖q

≤ q‖xn − q‖q−1‖xn+1 − xn‖+ (1− βn)γin,nσn‖un − p‖q.
It follows from Lemma 3.1, Lemma 3.2 and σn → 0 that

lim
n→∞

‖Aknxn −Aknp‖ = 0. (3.8)

We next show that limn→∞ ‖xn− ykn,n‖ = 0. By Proposition 2.7 and Lemma 2.4, we
have

‖ykn,n − p‖q

= ‖JBkn

λn
(σnun + (1− σn)xn − λnAknxn)− JBkn

λn
(p− λnAknp)‖q

≤ 〈σnun + (1− σn)xn − λnAknxn − (p− λnAknp), jq(ykn,n − p)〉

≤ 1

q

[
‖σnun + (1− σn)xn − λnAknxn − (p− λnAknp)‖q

+ (q − 1)‖ykn,n − p‖q − g(‖σnun + (1− σn)xn − λn(Aknxn −Aknp)− ykn,n‖)
]
,
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which implies, by Lemma 2.1, that

‖ykn,n − p‖q ≤ ‖σnun + (1− σn)xn − λnAknxn − (p− λnAknp)‖q

− g(‖σnun + (1− σn)xn − λn(Aknxn −Aknp)− ykn,n‖)

=

∥∥∥∥σn(un−p)+(1−σn)

[(
I− λn

1− σn
Akn

)
xn −

(
I − λn

1− σn
Akn

)
p

] ∥∥∥∥q
− g(‖σnun + (1− σn)xn − λn(Aknxn −Aknp)− ykn,n‖)

≤ σn‖un − p‖q + (1− σn)‖xn − p‖q

− g(‖σnun + (1− σn)xn − λn(Aknxn −Aknp)− ykn,n‖)
≤ σn‖un − p‖q + ‖xn − p‖q

− g(‖σnun + (1− σn)xn − λn(Aknxn −Aknp)− ykn,n‖).

Using again Lemma 2.1 and above inequality, we get

‖zin,n − p‖q ≤ (1− γin,n)‖Sinxn − p‖q + γin,n‖ykn,n − p‖q

≤ (1− γin,n)‖xn − p‖q + γin,n

[
σn‖un − p‖q + ‖xn − p‖q

− g(‖σnun + (1− σn)xn − λn(Aknxn −Aknp)− ykn,n‖)
]

= ‖xn − p‖q + γin,nσn‖un − p‖q

− γin,ng(‖σnun + (1− σn)xn − λn(Aknxn −Aknp)− ykn,n‖).

This together with Lemma 2.1 yield

‖xn+1 − p‖q ≤ βn‖xn − p‖q + (1− βn)‖zin,n − p‖q

≤ βn‖xn − p‖q + (1− βn)

[
‖xn − p‖q + γin,nσn‖un − p‖q

− γin,ng(‖σnun + (1− σn)xn − λn(Aknxn −Aknp)− ykn,n‖)
]

= ‖xn − p‖q + (1− βn)γin,nσn‖un − p‖q

− (1−βn)γin,ng(‖σnun + (1− σn)xn − λn(Aknxn −Aknp)− ykn,n‖),

which implies, by Proposition 2.10, that

ain(1− d)g(‖σnun + (1− σn)xn − λn(Aknxn −Aknp)− ykn,n‖)
≤ ‖xn − p‖q − ‖xn+1 − p‖q + (1− βn)γin,nσn‖un − p‖q

≤ q‖xn − p‖q−1(‖xn − p‖ − ‖xn+1 − p‖) + (1− βn)γin,nσn‖un − p‖q

≤ q‖xn − p‖q−1(‖xn+1 − xn‖) + (1− βn)γin,nσn‖un − p‖q.

Then by Lemma 3.1, Lemma 3.2 and σn → 0, we get

lim
n→∞

g(‖σnun + (1− σn)xn − λn(Aknxn −Aknp)− ykn,n‖) = 0.
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By continuity of g and g(0) = 0, it follows from (3.8) that

lim
n→∞

‖xn − ykn,n‖ = 0. (3.9)

From zin,n−xn = (1− γin,n)(Sinxn−xn) + γin,n(ykn,n−xn), we obtain by (3.6) and
(3.9) that

‖xn − Sinxn‖ ≤
1

1− γin,n
(‖xn − zin,n‖+ γin,n‖xn − ykn,n‖)→ 0 as n→∞.

For each i = 1, 2, ...,M , we have

(1− γi,n)‖xn − Sixn‖ ≤ ‖xn − zi,n‖+ γi,n‖xn − ykn,n‖
≤ ‖xn − zin,n‖+ γi,n‖xn − ykn,n‖.

Hence, we obtain that limn→∞ ‖xn − Sixn‖ = 0, for all i = 1, 2, ...,M. �

Now, the strong convergence of algorithm (3.1) is given by the following theorem.

Theorem 3.4. Let C be a nonempty, closed and convex subset of a real uniformly con-
vex and q-uniformly smooth Banach space X which admits a weakly sequentially con-
tinuous generalized duality mapping jq. Let Ak : C → X, k = 1, 2, ..., N, be αk-inverse
strongly accretive of order q operators and let Bk : D(Bk) → 2X , k = 1, 2, ..., N, be
m-accretive operators such that D(Bk) ⊂ C. Let Si : C → C, i = 1, 2, ...,M, be

nonexpansive mappings such that Ω :=
(⋂M

i=1 F (Si)
)
∩
(⋂N

k=1(Ak +Bk)−10
)
6= ∅.

Let {λn} be a positive real sequence and let {σn},{βn},{γi,n} for all i = 1, 2, ...,M
be sequences in (0,1). Suppose that the control sequences satisfy the same conditions
as in Lemma 3.2. Then the sequence {xn} generated by (3.1) converges strongly to a
point x∗ = QΩu

′ where QΩ is a sunny nonexpansive retraction from C onto Ω.

Proof. First, we prove that

lim sup
n→∞

〈u′ − x∗, jq(ykn,n − x∗)〉 ≤ 0,

where x∗ = QΩu
′. Choose a subsequence {xnm

} of {xn} such that

lim sup
n→∞

〈u′ − x∗, jq(ykn,n − x∗)〉 = lim sup
n→∞

〈u′ − x∗, jq(xn − x∗)〉

= lim
m→∞

〈u′ − x∗, jq(xnm
− x∗)〉.

By the reflexivity of X and the boundedness of {xnm}, there exists a subsequence
{xnmi

} of {xnm
} such that xnmi

⇀ w for some w ∈ C. Without loss of generality, we

can assume that xnm
⇀ w. Since ‖xn − Sixn‖ → 0, for all i = 1, 2, ...,M , by Lemma

2.8, we get that w ∈
⋂M
i=1 F (Si). From ‖xn − ykn,n‖ → 0 as n → ∞, it is easy to

see that ‖xn − yk,n‖ → 0 as n → ∞, for all k = 1, 2, ..., N . Let vk ∈ Bkuk, for each

k = 1, 2, .., N . Since yk,n = JBk

λn
(σnun + (1− σn)xn − λnAkxn), we have

σnun + (1− σn)xn − λnAkxn ∈ (I + λnBk)yk,n,

so that,
1

λn
(σnun + (1− σn)xn − λnAkxn − yk,n) ∈ Bkyk,n.
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Since Bk is m−accretive, we have, for all vk ∈ Bkuk,〈
1

λn
(σnun + (1− σn)xn − λnAkxn − yk,n)− vk, jq(yk,n − uk)

〉
≥ 0.

Thus, 〈σnun + (1− σn)xn − λnAkxn − yk,n − λnvk, jq(yk,n − uk)〉 ≥ 0.
This follows that

〈Akxn + vk, jq(yk,n − uk)〉 ≤ 1

λn
〈xn − yk,n, jq(yk,n − uk)〉

+
σn
λn
〈un − xn, jq(yk,n − uk)〉

≤ 1

λn
‖xn − yk,n‖‖yk,n − uk‖q−1

+
σn
λn
‖un − xn‖‖yk,n − uk‖q−1

≤ (‖xn − yk,n)‖+ σn)Γk, (3.10)

where

Γk = sup
n≥1

{
1

λn
‖yk,n − uk‖q−1,

σn
λn
‖un − xn‖‖yk,n − uk‖q−1

}
.

Since jq is weakly sequentially continuous, ‖xn − yk,n‖ → 0, xnj
⇀ w and Ak is

Lipschitz continuous, we get from (3.10) that 〈Akw + vk, jq(w − uk)〉 ≤ 0, that is,
〈−Akw− vk, jq(w−uk)〉 ≥ 0. Since Bk is m-accretive, we obtain −Akw ∈ Bkw. This
implies that w ∈ (Ak +Bk)−10, for all k = 1, 2, ..., N . Thus,

w ∈

(
M⋂
i=1

F (Si)

)
∩

(
N⋂
k=1

(Ak +Bk)−10

)
.

Moreover, we have

lim sup
n→∞

〈u′ − x∗, jq(ykn,n − x∗)〉 = lim
m→∞

〈u′ − x∗, jq(xnm − x∗)〉

= 〈u′ − x∗, jq(w − x∗)〉 ≤ 0.

We then prove that ‖xn − x∗‖ → 0 as n→∞. By (3.2) and Lemma 2.2, we have

‖ykn,n − x∗‖q ≤
∥∥∥∥(1− σn)

[(
I − λn

1− σn
Akn

)
xn −

(
I − λn

1− σn
Akn

)
x∗
]

+ σn(un − x∗)
∥∥∥∥q

≤ (1− σn)q
∥∥∥∥(I − λn

1− σn
Akn

)
xn −

(
I − λn

1− σn
Akn

)
x∗
∥∥∥∥q

+ qσn〈un − x∗, jq(ykn,n − x∗)〉
≤ (1− σn)q‖xn − x∗‖q + qσn〈un − x∗, jq(ykn,n − x∗)〉.
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It follows that

‖zin,n − x∗‖q ≤ (1− γin,n)‖Sinxn − x∗‖q + γin,n‖ykn,n − x∗‖q

≤ (1− γin,n)‖xn − x∗‖q + γin,n‖ykn,n − x∗‖q

≤ (1− γin,n)‖xn − x∗‖q

+ γin,n
[
(1− σn)q‖xn − x∗‖q + qσn〈un − x∗, jq(ykn,n − x∗)〉

]
≤ (1− γin,n)‖xn − x∗‖q

+ γin,n
[
(1− σn)‖xn − x∗‖q + qσn〈un − x∗, jq(ykn,n − x∗)〉

]
= (1− γin,nσn)‖xn − x∗‖q + qγin,nσn〈un − x∗, jq(ykn,n − x∗)〉. (3.11)

From (3.1) and (3.11), we get

‖xn+1 − x∗‖q ≤ βn‖xn − x∗‖q + (1− βn)‖zin,n − x∗‖q

≤ βn‖xn − x∗‖q + (1− βn)

×
[
(1− γin,nσn)‖xn − x∗‖q + qγin,nσn〈un − x∗, jq(ykn,n − x∗)〉

]
≤
(
1− γin,nσn(1− βn)

)
‖xn − x∗‖q

+ (1− βn)qγin,nσn〈un − u′, jq(ykn,n − x∗)〉
+ (1− βn)qγin,nσn〈u′ − x∗, jq(ykn,n − x∗)〉

≤
(
1− γin,nσn(1− βn)

)
‖xn − x∗‖q

+ (1− βn)qγin,nσn‖un − u′‖‖ykn,n − x∗‖q−1

+ (1− βn)qγin,nσn〈u′ − x∗, jq(ykn,n − x∗)〉
≤ (1− ηn)‖xn − x∗‖q + ηnδn,

where

ηn := γin,nσn(1− βn)

and

δn := q‖un − u′‖‖ykn,n − x∗‖q−1 + q〈u′ − x∗, jq(ykn,n − x∗)〉.
It is easily checked that

∑∞
n=1 ηn = ∞ and lim supn→∞ δn ≤ 0. Therefore, we apply

Lemma 2.12, to conclude that ‖xn−x∗‖ → 0, as n→∞. The proof is now completed.
�

4. Deduced results of our main theorem

The following result in a Hilbert space is directly obtained by Theorem 3.4.

Corollary 4.1. Let C be a nonempty, closed and convex subset of a real Hilbert
space H. Let Ak : C → H, k = 1, 2, ..., N, be αk-ism and let Bk : D(Bk) →
2H , k = 1, 2, ..., N, be maximal monotone operators such that D(Bk) ⊂ C. Let
Si : C → C, i = 1, 2, ...,M, be nonexpansive mappings such that

Ω :=

(
M⋂
i=1

F (Si)

)
∩

(
N⋂
k=1

(Ak +Bk)−10

)
6= ∅.
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Let {λn} be a positive real sequence and let {σn},{βn},{γi,n} for all i = 1, 2, ...,M
be sequences in (0,1). Let x1 ∈ C, and let {xn} ⊂ C be a sequence generated by the
following 

yk,n = JBk

λn
(σnun + (1− σn)xn − λnAkxn), k = 1, 2, ..., N,

choose kn such that ‖ykn,n − xn‖ = max
k=1,2,...,N

‖yk,n − xn‖,

zi,n = (1− γi,n)Sixn + γi,nykn,n, i = 1, 2, ...,M,

choose in such that ‖zin,n − xn‖ = max
i=1,2,...,M

‖zi,n − xn‖,

xn+1 = βnxn + (1− βn)zin,n,∀n ≥ 1,

(4.1)

where JBλ = (I+λB)−1 and {un} is a sequence in H such that limn→∞ un = u′ ∈ H.
Suppose that the control sequences satisfy the following conditions:

(i) limn→∞ σn = 0 and
∑∞
n=1 σn =∞;

(ii) 0 < ai ≤ γi,n ≤ bi < 1, i = 1, 2, ...,M and limn→∞ |γin,n+1 − γin,n| = 0;
(iii) 0 < c ≤ βn ≤ d < 1;
(iv) 0 < e ≤ λn < λn

1−σn
≤ f < 2α and limn→∞ |λn+1 − λn| = 0,

for some ai, bi, c, d, e, f ∈ R+ and α = min{α1, α2, ..., αN}. Then {xn} generated by
(4.1) converges strongly to a point x∗ = QΩu

′.

If we put M = N = 1 in Theorem 3.4, then we obtain the following result.

Corollary 4.2. Let C be a nonempty, closed and convex subset of a real uniformly
convex and q-uniformly smooth Banach space X which admits a weakly sequentially
continuous generalized duality mapping jq. Let A : C → X be an α-isa of order q
operator and let B : D(B)→ 2X be an m-accretive operator such that D(B) ⊂ C. Let
S : C → C be a nonexpansive mapping such that Ω := F (S) ∩ (A + B)−10 6= ∅. Let
{λn} be a positive real sequence and let {σn},{βn} and {γn} be sequences in (0,1).
Let x1 ∈ C, and let {xn} ⊂ C be a sequence generated by

yn = JBλn
(σnun + (1− σn)xn − λnAxn),

zn = (1− γn)Sxn + γnyn,

xn+1 = βnxn + (1− βn)zn,∀n ≥ 1,

(4.2)

where {un} is a sequence in X such that limn→∞ un = u′ ∈ X. Suppose that the
control sequences satisfy the following conditions:

(i) limn→∞ σn = 0 and
∑∞
n=1 σn =∞;

(ii) 0 < a ≤ γn ≤ b < 1 and limn→∞ |γn+1 − γ,n| = 0;
(iii) 0 < c ≤ βn ≤ d < 1;

(iv) 0 < e ≤ λn < λn

1−σn
≤ f < (αqκq

)
1

q−1 and limn→∞ |λn+1 − λn| = 0,

for some a, b, c, d, e, f ∈ R+. Then {xn} generated by (4.2) converges strongly to
x∗ = QΩu

′.

Moreover, Theorem 3.4 can be reduced to find zeros of maximal monotone opera-

tors. Let S̃i : C → 2C , i = 1, 2, ...,M, be m-accretive operators on C. Put Si = J S̃i

λ ,
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for λ > 0 and i = 1, 2, ...,M . Then Si is nonexpansive and F (Si) = S̃−1
i 0 for all

i = 1, 2, ...,M . The following result is directly obtained by Theorem 3.4.

Corollary 4.3. Let C be a nonempty, closed and convex subset of a real uniformly
convex and q-uniformly smooth Banach space X which admits a weakly sequentially
continuous generalized duality mapping jq. Let Ak : C → X, k = 1, 2, ..., N, be αk-
isa of order q operators and let Bk : D(Bk) → 2X , k = 1, 2, ..., N, be m-accretive
such that D(Bk) ⊂ C. Let JBλ = (I + λB)−1 be a resolvent of B for λ > 0 and let

S̃i : C → 2C , i = 1, 2, ...,M, be m-accretive operators on C such that

Ω :=

(
M⋂
i=1

S̃−1
i 0

)
∩

(
N⋂
k=1

(Ak +Bk)−10

)
6= ∅.

Let {λn} be a positive real sequence and let {σn},{βn},{γi,n} for all i = 1, 2, ...,M be
sequences in (0,1). Let x1 ∈ C, and let {xn} ⊂ C be a sequence generated by

yk,n = JBk

λn
(σnun + (1− σn)xn − λnAkxn), k = 1, 2, ..., N,

choose kn such that ‖ykn,n − xn‖ = max
k=1,2,...,N

‖yk,n − xn‖,

zi,n = (1− γi,n)J S̃i

λ xn + γi,nykn,n, i = 1, 2, ...,M,

choose in such that ‖zin,n − xn‖ = max
i=1,2,...,M

‖zi,n − xn‖,

xn+1 = βnxn + (1− βn)zin,n,∀n ≥ 1,

(4.3)

where {un} is a sequence in X such that limn→∞ un = u′ ∈ X. Suppose that the
control sequences satisfy the same conditions as in Lemma 3.2. Then {xn} generated
by (4.3) converges strongly to a point x∗ = QΩu

′.

We also can apply Theorem 3.4 for finding a common zero of the sum of α-inverse
strongly monotone operators and maximal monotone operators in a q-uniformly
smooth Banach space.

Corollary 4.4. Let C be a nonempty, closed and convex subset of a real uniformly
convex and q-uniformly smooth Banach space X which admits a weakly sequentially
continuous generalized duality mapping jq. Let Ak : C → X, k = 1, 2, ..., N, be αk-isa
of order q and let Bk : D(Bk) ⊂ C → 2X , k = 1, 2, ..., N, be m-accretive operators.

Assume that
⋂N
k=1(Ak + Bk)−10 6= ∅. Let {λn} be a positive real sequence and let

{σn},{βn} are sequences in (0,1). Let x1 ∈ C, and let {xn} ⊂ C be a sequence
generated by the following

yk,n = JBk

λn
(σnun + (1− σn)xn − λnAkxn), k = 1, 2, ..., N,

choose kn such that ‖ykn,n − xn‖ = max
k=1,2,...,N

‖yk,n − xn‖,

xn+1 = βnxn + (1− βn)ykn,n,∀n ≥ 1,

(4.4)

where {un} is a sequence in X such that limn→∞ un = u′ ∈ X. Suppose that the
control sequences satisfy the following conditions:

(i) limn→∞ σn = 0 and
∑∞
n=1 σn =∞;

(ii) 0 < c ≤ βn ≤ d < 1;
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(iii) 0 < e ≤ λn < λn

1−σn
≤ f < (αqκq

)
1

q−1 and limn→∞ |λn+1 − λn| = 0,

for some c, d, e, f ∈ R+ and α = min{α1, α2, ..., αN}. Then {xn} generated by (4.4)

converges strongly to a point x∗ ∈
⋂N
k=1(Ak +Bk)−10.

In the following corollary, we apply Theorem 3.4 for finding a common fixed point
of a finite family of nonexpansive operators.

Corollary 4.5. Let C be a nonempty, closed and convex subset of a real uniformly
convex and q-uniformly smooth Banach space X. Let Si : C → C, i = 1, ...,M, be

nonexpansive mappings such that
⋂M
i=1 F (Si) 6= ∅. Let {γi,n} ⊂ (0, 1), i = 1, ...,M .

Let x1 ∈ C, and let {xn} ⊂ C be a sequence generated by
zi,n = (1− γi,n)Sixn + γi,nxn, i = 1, 2, ...,M,

choose in such that ‖zin,n − xn‖ = max
i=1,2,...,M

‖zi,n − xn‖,

xn+1 = βnxn + (1− βn)zin,n,∀n ≥ 1,

(4.5)

Suppose that the control sequences satisfy the following conditions:

(i) 0 < ai ≤ γi,n ≤ bi < 1, i = 1, 2, ...,M and limn→∞ |γin,n+1 − γin,n| = 0;
(ii) 0 < c ≤ βn ≤ d < 1, for some ai, bi, c, d ∈ R+.

Then {xn} generated by (4.5) converges strongly to a point x∗ ∈
⋂M
i=1 F (Si).

5. Applications

Now, we discuss some applications of our main results for convex minimization
problems, multiple sets variational inequality problems and multiple sets equilibrium
problems in the framework of Hilbert spaces. Throughout in this section, let C be a
nonempty, closed and convex subset of a real Hilbert space H.

5.1. Application for Convex Minimization Problems. The convex minimiza-
tion problem is formulated as follows:

find a point x̂ ∈ C such that f(x̂) + g(x̂) ≤ min
x∈C
{f(x) + g(x)}, (5.1)

where f : H → R is a convex smooth function and g : H → R is a convex, lower semi-
continuous and nonsmooth function. We denote the set of solutions of the problem
(5.1) by CMP (f, g). It is well-known, by Fremat’s rule, that the convex minimization
problem is equivalent to the following problem:

find a point x̂ ∈ C such that 0 ∈ ∇f(x̂) + ∂g(x̂), (5.2)

where ∇f is a gradient of f and ∂g is a subdifferential mapping of g. From [1],
we have that if ∇f is L-Lipschitzian continuous, then it is also 1

L−inverse strongly
monotone operator. Moreover, it is known that ∂g is maximal monotone. Therefore,
if we take Ak = ∇fk and Bk = ∂gk for k = 1, 2, ..., N, in Theorem 3.4, then we obtain
the following result.

Theorem 5.1. Let fk : H → R, k = 1, ..., N, be convex and differentiable function
with Lk-Lipschitzian continuous with gradient ∇fk and let gk : H → R, k = 1, ..., N,
be convex lower semicontinuous functions such that D(∂gk) ⊂ C.
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Let Si : C → C, i = 1, 2, ...,M, be nonexpansive mappings such that(
M⋂
i=1

F (Si)

)
∩

(
N⋂
k=1

CMP (fk, gk)

)
6= ∅.

Let {λn} be a positive real sequence and let {σn},{βn},{γi,n} for all i = 1, ...,M be
sequences in (0,1). Let x1 ∈ C, and let {xn} ⊂ C be a sequence generated by

yk,n = J∂gkλn
(σnun + (1− σn)xn − λn∇fk(xn)), k = 1, 2, ..., N,

choose kn such that ‖ykn,n − xn‖ = max
k=1,2,...,N

‖yk,n − xn‖,

zi,n = (1− γi,n)Sixn + γi,nykn,n, i = 1, 2, ...,M,

choose in such that ‖zin,n − xn‖ = max
i=1,2,...,M

‖zi,n − xn‖,

xn+1 = βnxn + (1− βn)zin,n,∀n ≥ 1,

(5.3)

where {un} is a sequence in H such that limn→∞ un = u′ ∈ H. Suppose that the
control sequences satisfy the following conditions:

(i) limn→∞ σn = 0 and
∑∞
n=1 σn =∞;

(ii) 0 < ai ≤ γi,n ≤ bi < 1, i = 1, 2, ...,M and limn→∞ |γin,n+1 − γin,n| = 0;
(iii) 0 < c ≤ βn ≤ d < 1;
(iv) 0 < e ≤ λn < λn

1−σn
≤ f < 2

L and limn→∞ |λn+1 − λn| = 0,

for some ai, bi, c, d, e, f ∈ R+ and L = max{L1, L2, ..., LN}. Then the sequence {xn}
converges strongly to a point x∗ ∈

(⋂M
i=1 F (Si)

)
∩
(⋂N

k=1 CMP (fk, gk)
)

.

5.2. Application for Multiple Sets Variational Inequality Problems. Now,
we apply our main theorem for finding a common solution of multiple sets variational
inequality problems. Let A : C → H be a nonlinear monotone operators. The
variational inequality problem is to find a point x̂ ∈ C satisfies

〈Ax̂, y − x̂〉 ≥ 0, ∀y ∈ C. (5.4)

The set of solutions of the problem (5.4) is denoted by V I(C,A). It is well-known
that

x̂ ∈ V I(C,A) if and only if x̂ = PC(x̂− λAx̂),

for all λ > 0 where PC is the metric projection from H onto C. Let us consider the
indicator function of C, denoted by ιC , which is defined as follows:

ιC(x) =

{
0 if x ∈ C;

+∞ if x /∈ C.
We know that ιC is a proper, convex and lower semicontinuous function on H and
∂ιC is a maximal monotone operator. Moreover, we have J∂ιCλ = (I + λ∂ιC)−1 for

each λ > 0 and for x ∈ H, y = J∂ιCλ x if and only if y = PCx. Further, we have
(A + ∂ιC)−10 = V I(C,A). By applying our main result, Theorem 3.4, we obtain
the following result for a common fixed point and multiple sets variational inequality
problems in Hilbert spaces.
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Theorem 5.2. Let Ck be nonempty, closed and convex subsets of a real Hilbert space
H. Let Ak : Ck → H, k = 1, ..., N, be αk-ism and let Si : C → C, i = 1, ...,M, be a
finite family of nonexpansive mappings such that(

M⋂
i=1

F (Si)

)
∩

(
N⋂
k=1

V I(Ck, Ak)

)
6= ∅.

Let {λn} be a positive real sequence and let {σn},{βn},{γi,n} for all i = 1, ...,M be
sequences in (0,1). Let x1 ∈ H, and let {xn} ⊂ H be a sequence generated by the
following 

yk,n = PCk
(σnun + (1− σn)xn − λnAkxn), k = 1, 2, ..., N,

choose kn such that ‖ykn,n − xn‖ = max
k=1,2,...,N

‖yk,n − xn‖,

zi,n = (1− γi,n)Sixn + γi,nykn,n, i = 1, 2, ...,M,

choose in such that ‖zin,n − xn‖ = max
i=1,2,...,M

‖zi,n − xn‖,

xn+1 = βnxn + (1− βn)zin,n,∀n ≥ 1,

(5.5)

where {un} is a sequence in H such that limn→∞ un = u′ ∈ H. Suppose that the
control sequences satisfy the same conditions as in Corollary 4.1. Then the sequence

{xn} converges strongly to a point x∗ ∈
(⋂M

i=1 F (Si)
)
∩
(⋂N

k=1 V I(Ck, Ak)
)

.

5.3. Application for Multiple Sets Equilibrium Problems. Let G : C×C → R
be a bi-function. The equilibrium problem for G is the problem of finding a point
x̂ ∈ C such that

G(x̂, y) ≥ 0, (5.6)

for all y ∈ C. We denote EP (G) by the set of solutions of equilibrium problem. For
solving the equilibrium problem, we assume that G : C×C → R satisfies the following
properties:

(a) G(x, x) = 0 for all x ∈ C;
(b) G is monotone, i.e., G(x, y) +G(y, x) ≤ 0 for all x, y ∈ C;
(c) for each x, y, z ∈ C, lim supt↓0G(tz + (1− t)x, y) ≤ G(x, y);
(d) for each x ∈ C, y 7→ G(x, y) is convex and lower semicontinuous.

Next, we have the following lemma which can be found in [4, 11].

Lemma 5.3. Let G : C ×C → R be a bi-function satisfying properties (a)− (d). For
λ > 0 and x ∈ H. Then there exists z ∈ C such that

G(z, y) +
1

λ
〈y − z, z − x〉 ≥ 0,

for all y ∈ C. Further, define a mapping Tλ : H → C, say the resolvent of G, for
λ > 0 as follows:

Tλ(x) :=

{
z ∈ C : G(z, y) +

1

λ
〈y − z, z − x〉 ≥ 0,∀y ∈ C

}
,

for all λ > 0 and x ∈ H. Then the following hold:



PARALLEL ALGORITHM TO SOLVING A SYSTEM OF QUASI-VARIATIONAL 829

(aa) Tλ is single-valued;
(bb) Tλ is firmly nonexpansive, that is, for x, y ∈ H,

‖Tλx− Tλy‖2 ≤ 〈Tλx− Tλy, x− y〉;

(cc) F (Tλ) = EP (G);
(dd) EP (G) is closed and convex.

Lemma 5.4. ([30]) Let G : C×C → R be a bi-function satisfying properties (a)−(d).
Let AG be a multi-valued mapping of H into itself defined by

AGx =

{
{z ∈ H : G(x, y) ≥ 〈y − x, z〉,∀y ∈ C} if x ∈ C;

∅ if x /∈ C.

Then EP (G) = A−1
G 0 and AG is maximal monotone with D(AG) ⊂ C. Further, for

any x ∈ H and λ > 0, the resolvent Tλ of G coincides with the resolvent of AG, i.e.,
Tλx = (I + λAG)−1x.

Theorem 5.5. Let Ck be nonempty, closed and convex subsets of a real Hilbert space
H. Let Ak : Ck → H, k = 1, 2, ..., N, be αk-inverse strongly monotone operators and
let Gk : Ck × Ck → R, k = 1, 2, ..., N, be bi-functions which satisfy the properties
(a)− (d). Let Si : C → C, i = 1, 2, ...,M, be nonexpansive mappings such that(

M⋂
i=1

F (Si)

)
∩

(
N⋂
k=1

EP (Gk)

)
6= ∅.

Let {λn} be a positive real sequence and let {σn},{βn},{γi,n} for all i = 1, 2, ...,M
be sequences in (0,1). Let x1 ∈ H, and let {xn} ⊂ H be a sequence generated by the
following 

yk,n = Tλn
(σnun + (1− σn)xn − λnAkxn), k = 1, 2, ..., N,

choose kn such that ‖ykn,n − xn‖ = max
k=1,2,...,N

‖yk,n − xn‖,

zi,n = (1− γi,n)Sixn + γi,nykn,n, i = 1, 2, ...,M,

choose in such that ‖zin,n − xn‖ = max
i=1,2,...,M

‖zi,n − xn‖,

xn+1 = βnxn + (1− βn)zin,n,∀n ≥ 1,

(5.7)

where {un} is a sequence in H such that limn→∞ un = u′ ∈ H. Suppose that the
control sequences satisfy the same conditions as in Corollary 4.1. Then the sequence

{xn} converges strongly to a point x∗ ∈
(⋂M

i=1 F (Si)
)
∩
(⋂N

k=1EP (Gk)
)

.

6. Numerical examples

In this section, we present some numerical examples to solving the image restora-
tion problems by using our proposed algorithms. Throughout this section, we let ‖·‖1
is l1-norm and ‖ · ‖2 is l2-norm. From the problem (5.1), we now consider the convex
minimization problem of sum of two functions as follows:

x̂ := arg min
x
{f(x) + g(x)}, (6.1)
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where f : Rn → R is a smooth convex loss function and differentiable with L-Lipschitz
continuous gradient (for constant L), i.e.,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖,
for all x, y ∈ Rn and g : Rn → R∪{+∞} is a proper convex and lower semicontinuous
function.

The problem (6.1) can be solved by using the proximal gradient technique which
was presented by Parikh and Boyd [24], i.e., if x̂ is a solution of this problem (6.1),
then it satisfies the following fixed point problem:

x̂ = T x̂, (6.2)

where T is a class of forward-backward operator defined by T := proxcg(I − c∇f) for
c > 0. It is also known that T is a nonexpansive mapping when c ∈

(
0, 2

L

)
.

We next discuss some preliminary numerical results for the image restoration prob-
lem as the following form:

Ax = b+ w, (6.3)

where x ∈ Rn×1 is an original image, b ∈ Rm×1 is an observed image, A ∈ Rm×n rep-
resents a blurring operator and w ∈ Rm×1 is an additive noise. For image restoration
problem, the size of the unknown true image x is assumed to be the same as that of
w, i.e., m = n. In order to solve this problem can be related to the problem (6.1) and
it is of the following form:

x̂ := arg min
x
{‖Ax− b‖22 + λ‖x‖1},

for some regularization parameter λ > 0, that is, we propose to estimate the original
image x by minimizing the additive noise.

In this situation, we choose the regularization parameter λ = 5e−5. For these
examples, we look at the 256 × 256 camera man (original image). We use a Gausssian
blur of size 9 × 9 and standard deviation σ = 4 to create the blurred and noisy image
(observed image).

In 2009, Thung and Raveendran [32] introduced Peak Signal-to-Noise Ratio
(PSNR) to measure a quality of restored images for each xn as the following:

PSNR(xn) = 10 log

(
2552

MSE

)
,

where the well-known Mean Square Error formula is MSE = 1
2562 ‖xn − x‖2 for x

is the original image. A higher PSNR implies that the restored image is of higher
quality.

In Theorem 3.4, we take the same as Theorem 5.1 and set the nonexpansive map-
pings Si as follows:

Si := proxcig(I − ci∇f),

for i = 1, 2, 3 when f(x) = ‖Ax− b‖22 and g(x) = λ‖x‖1. We also choose the Lipschitz
constant L of the gradient ∇f is the maximal value of eigenvalues of the matrix ATA
and the following parameters

σn =
1

n
, λn =

31n

20L(n+ 1)
, γi,n =

n

2n+ 1
, i = 1, 2, 3,
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(a) Original Image (b) Blurred Image (c) un with σ = 4

(d) 100th iter. (e) 500th iter. (f) 1000th iter.

Figure 1. Results of the restoration camera man for case un with
σ = 4

βn =
n

300n+ 1
, c1 =

1

2L
, c2 =

1

L
, c3 =

31

20L
.

So, these control parameters satisfy all conditions of Theorem 3.4. Moreover, for
here, we will consider two difference cases of the chosen constant sequence {un} in
Theorem 3.4:

Case 1. {un} is the blurred image by a Gausssian blur of size 9 × 9 and standard
deviation σ = 4 (PSNR = 21.367303).

Case 2. {un} is the blurred image by a Gausssian blur of size 9 × 9 and standard
deviation σ = 2 (PSNR = 22.712128).

Then we obtain the restoration images of 100th, 500th and 1000th iterations of
Camera man in Figure 1 (Case 1) and Figure 2 (Case 2). Their PSNR values of the
studied algorithms are also presented in Figure 3 and Table 1.

Finally, we observe that the PSNR values obtained by Case 1 and Case 2 at iteration
1000 are equal to 27.132789 and 27.447153, respectively, that increased from the
blurred image and un. Therefore, our experiments show that the proposed algorithm
can be applied to solve the images restoration problems. However, the performances
of our methods depend on choosing any parameters and the sequence un.
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(a) Original Image (b) Blurred Image (c) un with σ = 2

(d) 100th iter. (e) 500th iter. (f) 1000th iter.

Figure 2. Results of the restoration camera man for case un with
σ = 2
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Figure 3. Plotting of the values of PSNR of camera man
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Table 1. The values of PSNR at x1, x5, x10, x50, x100, x500 and
x1000

No. iterations
PSNR

un with σ = 4 un with σ = 2
1 21.738898 22.587446
5 22.194396 23.092401
10 22.510790 23.368955
50 23.751543 24.415867
100 24.518550 25.076645
500 26.372678 26.743317
1000 27.132789 27.447153

7. Conclusion

In this work, we establish a new iterative scheme for approximation a solution of
a common element of the set of all solutions of a finite family of quasi-variational
inclusion problems on monotone operators and the set of all common fixed points
of a finite family of nonexpansive mappings in Banach spaces. Under some mild
conditions, we obtaine the strong convergence theorem of this iteration. It also extend
and reduce to the corresponding results in the literature. Further, we also give some
applications including convex minimization problems, variational inequality problems
and equilibrium problems. Some numerical experiments of image restoration problems
supporting our main results are presented.

Acknowledgment. The authors would like to thank Chiang Mai University, Chiang
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