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Abstract. Let (X1,→) and (X2, ↪→) be two L-spaces, U be a nonempty subset of X1×X2 such that

Ux1 := {x2 ∈ X2 | (x1, x2) ∈ U} is nonempty, for each x1 ∈ X1. Let T1 : X1 → X1, T2 : U → X2

be two operators and T : U → X1 ×X2 defined by T (x1, x2) := (T1(x1), T2(x1, x2)). If we suppose
that T (U) ⊂ U , FT1

6= ∅ and FT2(x1,·) 6= ∅ for each x1 ∈ X1, the problem is in which additional

conditions T is a weakly Picard operator ? In this paper we study this problem in the case when the

convergence structures on X1 and X2 are defined by metrics. Some applications to the fixed point
equations on spaces of continuous functions are also given.
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1. Introduction

The purpose of this paper is to give some (partial) answers to the following
general problems.
Problem 1.1. Let (X1,→) and (X2, ↪→) be two L-spaces in the sense of Fréchet,
see e.g. [32]. Given T1 : X1 → X1 and T2 : X1 × X2 → X2 we define the following
triangular operator

T : X1 ×X2 → X1 ×X2 given by T (x1, x2) := (T1(x1), T2(x1, x2)).

We consider the following problem:
We suppose that:

(i) the fixed point set FT1
:= {u ∈ X1 : u = T1(u)} of T1 is nonempty;

(ii) the fixed point set of the operator T2(x1, ·) is nonempty, for each x1 ∈ X1.
The problem is in which conditions the operator T is weakly Picard.
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Problem 1.2. Let (X1,→) and (X2, ↪→) be two L-spaces and U ⊂ X1 × X2 be
a nonempty set, such that Ux1 := {x2 ∈ X2 : (x1, x2) ∈ U} is nonempty, for each
x1 ∈ X1. Given T1 : X1 → X1, T2 : U → X2 and the triangular operator

T : U → X1 ×X2 defined by T (x1, x2) := (T1(x1), T2(x1, x2)),

we suppose that:
(i) FT1 is nonempty;
(ii) the fixed point set of the operator T2(x1, ·)|Ux1

is nonempty;

(iii) T (U) ⊂ U .
The problem is in which conditions T is a weakly Picard operator.

Problem 1.1 is well-known in the literature, see [10], [24], [40], [41], [42], [32], ... In
this paper, we will study Problem 1.2 in the case when the convergence structures →
and ↪→ are generated by metrics. Some applications of the fixed point equations on
spaces of continuous functions are also given.

The structure of the paper is the following one:
1. Introduction
2. Preliminaries

2.1. Weakly Picard operators
2.2. Standard fibre contractions
2.3. Applications of the standard fibre contraction

3. Fibre contractions on metric spaces
4. Fibre generalized contractions on metric spaces
5. Fibre generalized contractions on some generalized metric spaces
6. Technique of Rp+-valued metrics in the theory of fibre contractions
7. Applications.
Throughout the paper we shall use the notations and the terminology from [27],

[32], [31].

2. Preliminaries

2.1. Weakly Picard operators. Let (X,→) be an L-space, where X is a nonempty
set and → is a convergence structure defined on X. If T : X → X is an operator,
then we denote by FT := {x ∈ X : x = T (x)} the fixed point set of T .

In the above context, T : X → X is called a weakly Picard operator (briefly
WPO) if, for each x ∈ X, the sequence of Picard iterations (Tn(x))n∈N converges
with respect to → to a fixed point of T . In particular, if FT = {x∗}, then T is called
a Picard operator (briefly PO).

If T : X → X is a WPO, then we define a set retraction T∞ : X → FT by the
formula

T∞(x) := lim
n→∞

Tn(x).

If T is PO with its unique fixed point x∗, then T∞(X) = {x∗}.

References: [27], [32], [26].
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2.2. Standard fibre contractions. We recall now the following standard fibre con-
traction theorem.

Theorem 2.1. Let (X0,→) be an L-space. For m ∈ N∗, let (Xi, di), i ∈ {1, · · · ,m}
be complete metric spaces. Let T0 : X0 → X0 be an operator and, for i ∈ {1, · · · ,m},
let us consider Ti : X0 ×X1 × · · · ×Xi → Xi. We suppose that:

(1) T0 is a WPO;
(2) for each i ∈ {1, 2, · · · ,m}, the operators Ti(x0, . . . , xi−1, ·) : Xi → Xi are

li-contractions;
(3) for each i ∈ {1, 2, · · · ,m}, the operators Ti are continuous.

Then, the operator T = (T0, T1, · · · , Tm) :

m∏
i=0

Xi →
m∏
i=0

Xi, defined by

T (x0, . . . , xm) := (T0(x0), T1(x0, x1), . . . , Tm(x0, . . . , xm))

is a WPO. Moreover, when T0 is a PO, then T is a PO too.

References:
(1) fibre contractions: [10], [24], [32], [26], [42], ...
(2) fibre generalized contractions: [23], [35], [40], [42], ...
(3) fibre generalized contractions on generalized metric spaces: [1], [2], [22], [25],

[23], [33], [34], [39], ...

2.3. Applications of standard fibre contractions. The fibre contraction princi-
ples are essential tools in the study of regularity of solution of various equations, such
as: operatorial, differential, integral, functional differential, functional integral. See
[4], [5], [8], [13], [15], [14], [16], [17], [33], [37], [38], [43], [44], ...

There exists another direction of application of the fibre contraction principle, as
the following example illustrates.

Example 2.2. Let us consider the following functional differential equation

x′(t) = f(t, x(t), x(t− h)), t ∈ [a, a+ 2h], (2.1)

with Cauchy condition

x(t) = ϕ(t), t ∈ [a− h, a], (2.2)

where h > 0, f ∈ C([a, a+ 2h]×R2), ϕ ∈ C[a−h, a] and there exists L > 0 such that

|f(t, u, v)− f(t, ũ, v)| ≤ L|u− ũ|, (2.3)

for all t ∈ [a, a+ 2h], u, ũ ∈ R.
We are looking for solutions x ∈ C[a−h, a+2h]∩C1[a, a+2h] of problem (2.1)-(2.2).
The problem (2.1)-(2.2) is equivalent with the following functional integral equation

x(t) =


ϕ(t), t ∈ [a− h, a]

ϕ(a) +

∫ t

a

f(s, x(s), x(s− h))ds, t ∈ [a, a+ 2h].
(2.4)
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Now we consider the operator V : C[a− h, a+ 2h]→ C[a− h, a+ 2h] defined by

V (x)(t) := second part of (2.4).

By step method one proves that FV = {x∗}. The proof is as follow.
First we consider the operator V1 : C[a − h, a + h] → C[a − h, a + h] defined by

V1(x1) := V (x̃), where x̃ ∈ C[a− h, a+ 2h] is such that x̃
∣∣∣
[a−h,a+h]

= x1.

By the Contraction Principle we have that FV1 = {x∗1} and V n1 (x0
1) → x∗1 for all

x0
1 ∈ C[a− h, a+ h].

Secondly, we consider the operator V2 : C[a+ h, a+ 2h]→ C[a+ h, a+ 2h] defined
by

V2(x2)(t) := x∗1(a+ h) +

∫ t

a+h

f(s, x2(s), x∗1(s− h))ds, t ∈ [a+ h, a+ 2h].

Again, by the Contraction Principle we have that FV2
= {x∗2} and V n2 (x0

2)→ x∗2 as
n→∞, for all x∗2 ∈ C[a+ h, a+ 2h].

It is clear that

x∗(t) =

{
x∗1(t), t ∈ [a− h, a+ h]
x∗2(t), t ∈ [a+ h, a+ 2h].

Let xn := V n(x0), x0 ∈ C[a − h, a + 2h]. The problem is in which conditions
xn → x∗ as n→∞?

Let X1 := C[a−h, a+h], X2 := C[a+h, a+ 2h] and X := X1×X2 endowed with
suitable Bielecki norms. The following relations:

V (x)(t) =


ϕ(t), t ∈ [a− h, a],

ϕ(a) +

∫ t

a

f(s, x(s), ϕ(s− h))ds, t ∈ [a, a+ h]

and

V (x)(t) = ϕ(a) +

∫ a+h

a

f(s, x(s), ϕ(s− h))ds

+

∫ t

a+h

f(s, x(s), x(s− h))ds, t ∈ [a+ h, a+ 2h]

suggest us to consider the following operators:

T1 : X1 → X1, T1(x1) = V1(x1),

T2 : X1 ×X2 → X2,

defined by

T2(x1, x2)(t) = ϕ(a) +

∫ a+h

a

f(s, x1(s), ϕ(s− h))ds

+

∫ t

a+h

f(s, x2(s), x1(s− h))ds, t ∈ [a+ h, a+ 2h]

and
T : X1 ×X2 → X1 ×X2, T (x1, x2) := (T1(x1), T2(x1, x2)).

By the standard fibre contraction principle (see Theorem 2.1), T is a PO.
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Let R : X → X1 ×X2 defined by

R(x) :=
(
x
∣∣
[a−h,a+h]

, x
∣∣
[a+h,a+2h]

)
and

U := {(x1, x2) ∈ X1 ×X2 | x1(a+ h) = x2(a+ h)}.
We observe that R(X) = U and R : X → U is an homeomorphism. Moreover we

have V = R−1TR and V n = R−1TnR. Since T is PO it follows that V is a PO.

For more considerations on this example, see [28]. For other applications of the
fibre contraction principle to integro-differential equations with delays see [9], [12],
[18], [36].

3. Fibre contractions on metric spaces

For i ∈ {1, 2}, let (Xi, di) be two metric spaces, U ⊂ X1 × X2 be a nonempty
subset, such that

Ux1
:= {x2 ∈ X2 | (x1, x2) ∈ U} 6= ∅, for all x1 ∈ X1.

For two operators T1 : X1 → X1, T2 : U → X2, we consider the operator T : U →
X1 ×X2 defined by

T (x1, x2) := (T1(x1), T2(x1, x2)).

For the problem formulated in Introduction, we have in this case the following
result.

Theorem 3.1. We suppose that:
(1) (X2, d2) is a complete metric space and U is a closed subset of X1 ×X2;
(2) T (U) ⊂ U ;
(3) T1 is a WPO;
(4) there exist L > 0 and 0 < l < 1 such that

d2(T2(x1, x2), T2(x̃1, x̃2)) ≤ Ld1(x1, x̃1) + ld2(x2, x̃2),

for all (x1, x2), (x̃1, x̃2) ∈ U .
Then T is a WPO. If T1 is a PO, then T is a PO too.

Proof. Let (x0
1, x

0
2) ∈ U . Since T1 is WPO, the sequence xn1 := Tn1 (x0

1) → x∗1 ∈ FT1

as n → ∞. From (1), Ux∗
1

is a closed subset of X2. From (4), T2(x∗1, ·) : Ux∗
1
→ Ux∗

1

is an l-contraction. Let x∗2 its unique fixed point. It is clear that (x∗1, x
∗
2) ∈ FT .

Let xn+1
2 := T2(xn1 , x

n
2 ). From (2) this sequence is well defined. We shall prove

that xn2 → x∗2 as n→∞.
From (2) and (4) we have:

d2(xn+1
2 , x∗2) = d2(T2(xn1 , x

n
2 ), T2(x∗1, x

∗
2)) ≤ Ld1(xn1 , x

∗
1) + ld2(xn2 , x

∗
2)

≤ Ld1(xn1 , x
∗
1) + l[Ld1(xn−1

1 , x∗1) + ld2(xn−1
2 , x∗2)]

= Ld1(xn1 , x
∗
1) + lLd1(xn−1

1 , x∗1) + l2d2(xn−1
2 , x∗2)

≤ . . . ≤ Ld1(xn1 , x
∗
1) + lLd1(xn−1

1 , x∗1) + . . .+

+ lnLd1(x0
1, x
∗
1) + ln+1d2(x0

2, x
∗
2)→ 0 as n→∞.
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This follows from a well known Cauchy lemma (see [35]). �

By a successive application of Theorem 3.1 we have the general following result.

Let (Xi, di) (i ∈ {1, ...,m} where m ≥ 2) be metric spaces and U1 ⊂ X1 × X2,
U2 ⊂ U1 ×X3, . . ., Um−1 ⊂ Um−2 ×Xm, be nonempty subsets.

For x ∈ X1, we define

U1x := {x2 ∈ X2 | (x, x2) ∈ U1},
for x ∈ U1, we define

U2x := {x3 ∈ X3 | (x, x3) ∈ U2}, . . . ,
and for x ∈ Um−2, we define

Um−1x := {xm ∈ Xm | (x, xm) ∈ Um−1}.
We suppose that U1x, U2x, . . . , Um−1x are nonempty.
If T1 : X1 → X1, T2 : U1 → X2, . . ., Tm : Um−1 → Xm, then we consider the

operator

T : Um−1 → X1 ×X2 × . . .×Xm,

defined by

T (x1, . . . , xm) := (T1(x1), T2(x1, x2), . . . , Tm(x1, x2, . . . , xm)).

The result is the following.

Theorem 3.2. We suppose that:
(1) for m ∈ N, m ≥ 2 and for i ∈ {2, ...,m}, the pairs (Xi, di) are complete metric

spaces;
(2) for i ∈ {1, ...,m− 1}, the sets Ui are closed;
(3) (T1, T2, . . . , Ti+1)(Ui) ⊂ Ui, i ∈ {1, ...,m− 1};
(4) T1 is a WPO;
(5) there exist Li > 0 and 0 < li < 1, i ∈ {1, ...,m− 1} such that

di+1(Ti+1(x, y, ), Ti+1(x̃, ỹ)) ≤ Lid̃i(x, x̃) + lidi+1(y, ỹ),

for all (x, y), (x̃, ỹ) ∈ Ui, i ∈ {1, ...,m− 1}, where d̃i is a metric induced by d1, . . . , di
on X1 × . . .×Xi, defined by d̃i := max{d1, · · · , di}.

Then T is WPO. If T1 is PO, then T is a PO too.

Remark 3.3. Notice that the completeness of the metric space (X1, d1) is not re-
quired in Theorem 3.1 and Theorem 3.2.

4. Fibre generalized contractions on metric spaces

Let us look to condition (4) in Theorem 3.1:

there exist L > 0 and 0 < l < 1 such that :

d2(T2(x1, x2), T2(x̃1, x̃2)) ≤ Ld1(x1, x̃1) + ld2(x2, x̃2), for all (x1, x2), (x̃1, x̃2) ∈ U.

This condition suggest us to consider similar conditions coming from generalized
contractions. Here are some of such conditions:
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(4′) there exist L > 0 and 0 < l <
1

2
such that

d2(T2(x1, x2), T2(x̃1, x̃2)) ≤ Ld1(x1, x̃1) + l[d2(T2(x1, x2), x2) + d2(T2(x̃1, x̃2), x̃2)],

∀ (x1, x2), (x̃1, x̃2) ∈ U ;

(4′′) there exist L > 0 and a comparison function, ϕ : R+ → R+ such that

d2(T2(x1, x2), T2(x̃1, x̃2)) ≤ Ld1(x1, x̃1) + ϕ(d2(x2, x̃2)), ∀ (x1, x2), (x̃1, x̃2) ∈ U.

As an example, in this section we shall study the problem in the case of condition
(4′) of Kannan type. We have:

Theorem 4.1. We suppose that we are in the conditions of Theorem 3.1, where
instead of condition (4) we consider condition (4′). Then the operator T is WPO. If
T1 is PO then T is PO.

Proof. The proof is similar with that of Theorem 3.1. Let us prove that xn2 → x∗2 as
n→∞. We have that:

d2(xn+1
2 , x∗2) = d2(T2(xn1 , x

n
2 ), T2(x∗1, x

∗
2))

≤ Ld1(xn1 , x
∗
1) + ld2(T2(xn1 , x

n
2 ), xn2 )

≤ Ld1(xn1 , x
∗
1) + ld2(xn+1

2 , x∗2) + ld(xn2 , x
∗
2).

This implies that

d2(xn+1
2 , x∗2) ≤ L

1− l
d1(xn1 , x

∗
1) +

l

1− l
d2(xn2 , x

∗
2)

≤ L

1− l
d1(xn1 , x

∗
1) +

l

1− l

[
L

1− l
d1(xn−1

1 , x∗1) +
l

1− l
d2(xn−1

2 , x∗2)

]
≤ L

1− l
d1(xn1 , x

∗
1) +

l

1− l
· L

1− l
d1(xn−1

1 , x∗1) + . . .

+

(
l

1− l

)n
L

1− l
d1(x0

1, x
∗
1) +

(
l

1− l

)n+1

d2(x0
2, x
∗
2)→ 0

as n→∞, as above, by the Cauchy lemma.

5. Fibre generalized contractions on some generalized metric spaces

The problem is to study the fixed points of operator which are fibre generalized
contractions on generalized metric spaces. Here, by a generalized metric we under-
stand a distance (dislocated metric, partial metric, quasimetric, pseudometric,...), a
vector-valued metric, cone-valued metric,... (see [7], [26], [31], [33], [42], ...).

As an example we shall study the problem in the case m = 2 and the metrics
having values in Rp+, p ∈ N, p ≥ 2.

Let (X1, d1) and (X2, d2) be two generalized metric spaces with d1 : X1×X1 → Rp+
and d2 : X2 ×X2 → Rp+, U ⊂ X1 ×X2 be a nonempty subset and, for x1 ∈ X1, the
set

Ux1
:= {x2 ∈ X2 | (x1, x2) ∈ U} 6= ∅.
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For T1 : X1 → X1 and T2 : U → X2 we consider the triangular operator

T : U → X1 ×X2,

defined by
T (x1, x2) := (T1(x1), T2(x1, x2)).

For our problem we have the following result:

Theorem 5.1. We suppose that:
(1) (X2, d2) is a complete metric space and U is a closed subset;
(2) T (U) ⊂ U ;
(3) T1 is WPO;

(4) there exist matrices L ∈ Rp×p+ and S ∈ Rp×p+ (where S has its spectral radius
ρ(S) < 1), such that:

d2(T2(x1, x2), T2(x̃1, x̃2)) ≤ Ld1(x1, x̃1) + Sd2(x̃1, x̃2), ∀ (x1, x2), (x̃1, x̃2) ∈ U.
Then T is WPO. If T1 is a PO, then T is a PO.

Proof. Let (x0
1, x

0
2) ∈ U . Since T1 is WPO the sequence xn1 := Tn1 (x0

1) converges to
x∗1 ∈ FT1 . From (1), Ux∗

1
⊂ X2 is a closed subset. From (4), T2(x∗1, ·) : Ux∗

1
→ Ux∗

1
is

a S-contraction. Let x∗2 its unique fixed point. We have that (x∗1, x
∗
2) ∈ FT .

Let (xn+1
1 , xn+2

2 ) := (T1(xn1 ), T2(xn1 , x
n
2 )). From (2), this sequence is well defined.

For to prove that T is a WPO it is necessary to prove that xn2 → x∗2 as n→∞.
From (2) and (4) we have:

d2(xn+1
2 , x∗2) = d2(T2(xn1 , x

n
2 ), T2(x∗1, x

∗
2))

≤ Ld1(xn1 , x
∗
1) + Sd2(xn2 , x

∗
2)

≤ Ld1(x1, x
∗
1) + SLd1(xn−1

1 , x∗1) + S2d2(xn−1
2 , x∗2) ≤ . . .

≤ Ld1(xn1 , x
∗
1) + SLd1(xn−1

1 , x∗1) + . . .

+ SnLd1(x0
1, x
∗
1) + Sn+1d2(x0

2, x
∗
2)→ 0

as n→∞, by a generalized Cauchy lemma (see [23], [35]).

6. Technique of Rp+-valued metrics in the theory of fibre contractions

The basic tool in the proofs of various fibre contraction-type principles is the
Cauchy-Toeplitz Lemma (see [10], [23], [40], [42], [35], ...). In this section, we will
present a variant of the fibre contraction principle which is a consequence of Perov’s
fixed point theorem (see [26], [32], [20], [19], [42], ...) in complete Rp+-valued metric
spaces. We think that this approach open a new door for the use of vector-valued
metrics in the theory of fibre contractions.

Let (Xi, di) (i ∈ {1, ...,m} with m ≥ 2) be metric spaces and U1 ⊂ X1 × X2,
U2 ⊂ U1 ×X3, . . ., Um−1 ⊂ Um−2 ×Xm, be nonempty and closed subsets.

If T1 : X1 → X1, T2 : U1 → X2, . . ., Tm : Um−1 → Xm are given operators, then
we consider the operator T : Um−1 → X1 ×X2 × . . .×Xm, defined by

T (x1, . . . , xm) := (T1(x1), T2(x1, x2), . . . , Tm(x1, x2, . . . , xm)).

In the framework of the Section 3’s notation we have the following result.
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Theorem 6.1. We suppose that:
(1) for i ∈ {1, ...,m} (where m ≥ 2) the pairs (Xi, di) are complete metric spaces;
(2) (T1, · · · , Ti+1)(Ui) ⊂ Ui, for each i ∈ {1, ...,m− 1};
(3) there exists l1 ∈]0, 1[ such that d1(T1(x1), T1(x̃1)) ≤ l1d1(x1, x̃1), for each

x1, x̃1 ∈ X1;
(4) there exist Lij > 0 and li+1 ∈]0, 1[, for i ∈ {1, · · · ,m − 1} and j ∈ {1, · · · , i}

such that

di+1(Ti+1(x, y), Ti+1(x̃, ỹ)) ≤
i∑

j=1

Lijdj(xj , x̃j) + li+1di+1(y, ỹ),

for each (x, y), (x̃, ỹ) ∈ Ui, i ∈ {1, ...,m− 1}.
Then, the triangular operator T : Um−1 → Um−1, T := (T1, T2, . . . , Tm) is a Picard

operator with respect to the coordinatewise convergence on Um−1.

Proof. On X =

m∏
i=1

Xi, we consider the Rm+ -valued metric dV defined by

dV (x, y) :=

 d1 (x1, y1)
...

dm (xm, ym)

 .

We notice first that dV induces on X the coordinatewise convergence. Secondly, from
(3) and (4) we obtain that

dV (T (x), T (y)) ≤ SdV (x, y), for every x, y ∈ Um−1,

where

S =


l1 0 0 · · · 0 0
L11 l2 0 · · · 0 0
L21 L22 l3 · · · 0 0

...
Lm−1 1 Lm−1 2 Lm−1 3 · · · Lm−1 m lm

 .

Since the spectral radius of S is ρ(S) = max{l1, · · · lm} < 1, the matrix S is convergent
to 0 and Perov’s theorem (see [32], [26], [19], [20]) applies. Thus, T is a PO. �

Since T is an S-contraction, we also have the following saturated variant of the
above theorem, see [30].

Theorem 6.2. In the conditions of Theorem 6.1, we also have the following conclu-
sions:

(i) FT = FTm = {x∗};
(ii) Tn(x)→ x∗ as n→∞, for every x ∈ Um−1 (i.e., T is a PO);
(iii) dV (x, x∗) ≤ (Im − S)−1dV (x, T (x)), for every x ∈ Um−1;
(iv) xn ∈ Um−1 and dV (xn, T (xn))→ 0 as n→∞ implies that xn → x∗ as n→∞

(i.e., the fixed point problem for T is well-posed);
(v) xn ∈ Um−1 and dV (xn+1, T (xn)) → 0 as n → ∞ implies that xn → x∗ as

n→∞ (i.e., the operator T satisfies the Ostrowski property);
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(vi) for each ε ∈ (R∗+)m and each y∗ε satisfying the inequation dV (y, T (y)) ≤ ε we
have that dV (y∗ε , x

∗) ≤ (Im−S)−1ε (i.e., the fixed point problem for T is Ulam-Hyers
stable).

For other types of saturated fibre contraction principle see [41].

7. Applications

Let us consider the following Cauchy problem:

x′(t) = f(t, φ(x)(t)), t ∈ [a, b], (7.1)

x(a) = α, (7.2)

where (B, | · |) is a (real or complex) Banach space, f ∈ C([a, b] × B,B), α ∈ B,
φ : C([a, b],B)→ C([a, b],B) is a given operator.

We suppose that:
(C1) ∃ Lf > 0: |f(t, u)− f(t, v)| ≤ Lf |u− v|, ∀ t ∈ [a, b], u, v ∈ B;
(C2) ∃ Lφ > 0: |φ(y)(t)− φ(z)(t)| ≤ Lφ max

a≤τ≤t
|y(τ)− z(τ)|, for all t ∈ [a, b].

For a better understanding of condition (C2) we consider the following examples:
(E1) φ(x) := x;
(E2) φ(x)(t) := x(g(t)), t ∈ [a, b], where g ∈ C([a, b], [a, b]), g(t) ≤ t, t ∈ [a, b];
(E3) φ(x)(t) := max

a≤τ≤t
|x(τ)|, t ∈ [a, b];

(E4) B := R, φ(x)(t) := max
a≤τ≤t

x(τ), t ∈ [a, b].

In all these cases, Lφ = 1.
The problem (7.1)− (7.2) is equivalent with the following functional integral equa-

tion:

x(t) = α+

∫ t

a

f(s, φ(x)(s))ds, t ∈ [a, b]. (7.3)

Let V : C([a, b],B)→ C([a, b],B) be defined by

V (x)(t) := second part of (7.3).

For problem (7.1)− (7.2) we have the following result.

Theorem 7.1. In the condition (C1)− (C2) we have that:
(i) the problem (7.1)− (7.2) has in C1([a, b],B) a unique solution denoted by x∗;

(ii) the sequence xn := V n(x0), n ∈ N, converges in
(
C([a, b],B)

unif−→
)

to x∗, for

each x0 ∈ B.

Proof. For m ∈ N∗ we consider

tk := a+
k(b− a)

m
, k =∈ {0, ...,m}.
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Let Xi = C[ti−1, ti], i ∈ {1, ...,m}, X =

m∏
i=1

Xi, endowed with the max-norm. We

consider the following subsets:

U1 := {(x1, x2) ∈ X1 ×X2 | x1(t1) = x2(t1)},
U2 := {(x1, x2, x3) ∈ U1 ×X3 | x2(t2) = x3(t2)},
...

Um−1 := {(x1, x2, . . . , xm) ∈ Um−2 ×Xm | xm−1(tm−1) = xm(tm−1)},

and

U1x := {x2 ∈ X2 | (x, x2) ∈ U1}, for x ∈ X1,

U2x := {x3 ∈ X3 | (x, x3) ∈ U2}, for x ∈ U1, . . . ,

Um−1x := {xm ∈ Xm | (x, xm) ∈ Um−1}, for x ∈ Um−2.

We remark that Ui 6= ∅, Uix 6= ∅ and closed sets, i ∈ {1, ...,m− 1}.
In our considerations we need the following operators:

Ri : C([a, ti+1],B)→ X1 × . . .×Xi+1

defined by

Ri(x) :=
(
x
∣∣
[a,t1]

, x
∣∣
[t1,t2]

, . . . , x
∣∣
[ti,ti+1]

)
, i ∈ {1, ...,m− 1}.

We observe that Ri(C([a, ti+1],B)) = Ui and Ri : C([a, ti+1],B)→ Ui is an home-
omorphism, i ∈ {1, ...,m− 1}.

From the definition of the operator V , we have the following relations:

V (x)(t) = α+

∫ t

a

f(s, φ(x)(s))ds, t ∈ [t0, t1],

V (x)(t) = α+

∫ t1

a

f(s, φ(x)(s))ds+

∫ t

t1

f(s, φ(x)(s))ds, t ∈ [t1, t2],

...

V (x)(t) = α+

∫ t1

a

f(s, φ(x)(s))ds+

∫ t2

t1

f(s, φ(x)(s))ds+ . . .

+

∫ tm−1

tm−2

f(s, φ(x)(s))ds+

∫ t

tm−1

f(s, φ(x)(s))ds, t ∈ [tm−1, b].

In the conditions (C1)− (C2) the operators φ and V are Volterra operators, i.e.,

x, y ∈ C([a, b],B), x
∣∣
[a,t]

= y
∣∣
[a,t]
⇒

φ(x)
∣∣
[a,t]

= φ(y)
∣∣
[a,t]

and V (x)
∣∣
[a,t]

= V (y)
∣∣
[a,t]

.
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The above relations suggest us to consider the following operators induced by the
operator V :

T1 : X1 → X1, T1(x1)(t) := α+

∫ t

a

f(s, φ(x1)(s))ds,

T2 : U1 → X2, T2(x1, x2)(t) := α+

∫ t1

a

f(s, φ(x1)(s))ds

+

∫ t

t1

f(s, φ(R−1
1 (x1, x2))(s))ds,

...

Tm : Um−1 → Xm, Tm(x1, x2, . . . , xm)(t) := α+

∫ t1

a

f(s, φ(x1)(s))ds

+

∫ t2

t1

f(s, φ(R−1
1 (x1, x2)(s)))ds+ . . .

+

∫ t

tm−1

f(s, φ(R−1
m−1(x1, x2, . . . , xm)(s)ds, t ∈ [tm−1, b].

If we choose on X1× . . .×Xi, i ∈ {2, · · · ,m}, the norm max(‖x1‖, . . . , ‖xi‖), then

Ri : C([a, ti+1],B)→ Ui

is an isometry, i ∈ {1, ...,m− 1}.
From the conditions (C1)− (C2), for a suitable choice of m, the operator

T := (T1, T2, . . . , Tm)

is in the conditions of Theorem 3.2. From this theorem, T is a PO.
Since V = R−1

m−1TRm−1 and V n = R−1
m−1T

nRm−1, the operator V is PO.

Remark 7.2. If B := Rm or Cm, then the problem (7.1) − (7.2) take the following
form:

x′k(t) = fk(t, φ(x1, . . . , xm)(t)), t ∈ [a, b],
xk(a) = αk, k ∈ {1, ...,m},

where fk ∈ C
(

[a, b]× Rm
Cm

)
, φ : C

(
[a, b],

Rm
Cm

)
→ C

(
[a, b],

Rm
Cm

)
.

Remark 7.3. If B := lp(R) or B := lp(C), 1 ≤ p ≤ +∞, or other Banach spaces of
sequences, then the problem (7.1)− (7.2) is a Cauchy problem for an infinite system
of functional differential equations.

Remark 7.4. For other applications of the abstract results of this paper to functional
integral equations see [11], [21].

Remark 7.5. For functional differential and integral equations see [3], [6], [29], [13],
[14], [17], [18], [28], [31], [37], [42], [43].
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[11] V. Ilea, D. Otrocol, I.A. Rus, M.A. Şerban, Applications of fibre contraction principle to some

classes of functional integral equations, to appear.
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