
Fixed Point Theory, 22(2021), No. 2, 779-784

DOI: 10.24193/fpt-ro.2021.2.50

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.html

ESSENTIAL WEAKLY MÖNCH TYPE MAPS
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1. Introduction

In this paper we introduce the notion of an essential map for a general class of
Mönch type maps. Essential maps were originally introduced by Granas [2] and ex-
tended by many authors in the literature; see the book by O’Regan and Precup [11]
and the references therein. In particular Leray–Schauder type alternatives for a vari-
ety of compact and noncompact (including contractive, condensing, 1–set contractive,
countably condensing) classes of maps (single and multivalued) were discussed exten-
sively in the literature; we refer the reader to the book of O’Regan and Precup [11]
(see also the reference list therein) and the papers of Petryshyn and Fitzpatrick [12]
and Väth [14]. The most general type of noncompact map seems to be Mönch [6]
type maps and these maps were considered in detail for different classes of maps in
Cardinali, O’Regan and Rubbioni [4], Precup [13] and O’Regan and Precup [10, 11].
Leray–Schauder type alternatives in the weak topology setting for different classes of
maps (including weakly sequentially upper semicontinuous, weakly compact or more
generally weakly condensing maps) were considered also in the literature; we refer the
reader to the book by Ben Amar and O’Regan [3] (see also the reference list therein)
and the papers of Ben Amar and Mnif [2] and O’Regan [1, 7]. In this paper we
present new Leray–Schauder type alternatives for general weakly Mönch type maps
(these maps generalize weakly compact, weakly condensing and weakly countable
condensing maps).
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2. Main results

Let Y be a Hausdorff locally convex topological vector space and U a weakly
open subset of X where X is a closed convex subset of Y (alternatively, assume X is
a weakly closed subset of Y ). In this section we consider classes A and D of maps.

Definition 2.1. We say F ∈M(Uw, X) (respectively F ∈MD(Uw, X)) if F : Uw →
2X and F ∈ A(Uw, X) (respectively F ∈ D(Uw, X)); here Uw denotes the weak
closure of U in X.

Definition 2.2. We say F ∈ MA(Uw, X) if F ∈ M(Uw, X) and there exists a
selection Ψ ∈MD(Uw, X) of F .

Remark 2.3. (i) Note in Definition 2.2, Ψ is a selection of F if Ψ(x) ⊆ F (x) for
x ∈ Uw.

(ii) In many applications the spaces MA and MD are the same. For examples
where the spaces MA and MD are different we refer the reader to [1] (for example,
MA is the space of WDKT maps [1] and MD is the space of weakly continuous single
valued maps).

Definition 2.4. (i) We say Ψ ∈ MDM (Uw, X) if Ψ ∈ MD(Uw, X) and if D ⊆ Uw

and D ⊆ co ({0}∪Ψ(D)) with C ⊆ D countable and C ⊆ co ({0}∪Ψ(C)) then Cw is
weakly compact.

(ii) We say F ∈ MAM (Uw, X) if F ∈ MA(Uw, X) and there exists a selection
Ψ ∈MDM (Uw, X) of F .

(iii) We say Ψ ∈ MDMM (Ω, X) (here Ω ⊆ X) if Ψ ∈ MD(Ω, X) and if D ⊆ Ω,
D = co ({0} ∪ Ψ(D)) with C ⊆ D countable and C ⊆ co ({0} ∪ Ψ(C)) (or Cw =
co ({0} ∪Ψ(C))) then Cw is weakly compact.

(iv). We say F ∈ MAMM (Ω, X) (here Ω ⊆ X) if F ∈ MA(Ω, X) and there exists
a selection Ψ ∈MDMM (Ω, X) of F .

Definition 2.5. We say F ∈ MAM∂U (Uw, X) (respectively F ∈ MDM
∂U (Uw, X)) if

F ∈ MAM (Uw, X) (respectively F ∈ MDM (Uw, X)) with x /∈ F (x) for x ∈ ∂U ;
here ∂U denotes the weak boundary of U in X.

Definition 2.6. Let F ∈ MAM∂U (Uw, X). We say F is essential in MAM∂U (Uw, X)

if for any selection Ψ ∈ MDM (Uw, X) of F and any map J ∈ MDM
∂U (Uw, X) with

J |∂U = Ψ|∂U there exists an x ∈ U with x ∈ J (x).

Remark 2.7. (i) Note if F ∈ MAM∂U (Uw, X) is essential in MAM∂U (Uw, X) and if

Ψ ∈ MDM (Uw, X) is any selection of F then there exists an x ∈ U with x ∈ Ψ (x)
(take J = Ψ in Definition 2.6; note if x ∈ ∂U then Ψ(x) ⊆ F (x) so x /∈ Ψ(x)). Finally
note if x ∈ Ψ(x) for x ∈ U then x ∈ Ψ(x) ⊆ F (x).

(ii) In Definition 2.4 (and throughout the paper) we could replace {0} with {x0}
where x0 ∈ X is fixed.

(iii) We note here that an assumption was inadvertently left out in [1]. In [1,
Definition 2.8] the weakly continuous selection Ψ of F should be required to satisfy
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Property (A) (this was inadvertently left out) i.e. if F satisfies Property (A) then it
should be assumed that any weakly continuous selection Ψ of F satisfies Property (A)
(of course this assumption is automatically satisfied for the type of map considered
in the literature i.e. Property (A) usually means that the map is weakly compact or
weakly condensing).

We begin with a nonlinear alternative of Leray–Schauder type (a more general
result will be presented in Theorem 2.14 and Theorem 2.15).

Theorem 2.8. Let Y be a Hausdorff locally convex topological vector space, U
a weakly open subset of X where X is a closed convex subset of Y and F ∈
MAM (Uw, X). Also assume

the zero map (denoted by 0) is in MAM∂U (Uw, X)
and in MD(Uw, X) and 0 is essential
in MAM∂U (Uw, X).

(2.1)

In addition for any selection Ψ ∈MDM (Uw, X) of F suppose{
µΨ ∈MD(Uw, X) for any weakly continuous
map µ : Uw → [0, 1] with µ(∂U) = 0

(2.2)

x /∈ tΨ(x) for every x ∈ ∂U and t ∈ (0, 1) (2.3)

and {
Ω = {x ∈ Uw : x ∈ tΨ(x) for some t ∈ [0, 1]}
is weakly compact.

(2.4)

Then there exists an x ∈ Uw with x ∈ F (x).

Remark 2.9. In (2.1) if 0 ∈MA(Uw, X) then 0 ∈MAM (Uw, X) since if there exists
a selection Λ ∈MDM (Uw, X) of 0 (note Λ = 0 since Λ(x) ⊆ 0(x) for x ∈ Uw and in
(2.1) we have 0 ∈MD(Uw, X)) then if D ⊆ Uw, D ⊆ co ({0}∪Λ(D)) = co ({0}∪0(D))
with C ⊆ D countable and C ⊆ co ({0} ∪ 0(C)) (note 0(x) = {0} for x ∈ C) so
(trivially) Cw is weakly compact.
Proof. Suppose x /∈ F (x) for x ∈ ∂U (otherwise we are finished).
Let Ψ ∈ MDM (Uw, X) be any selection of F and let Ω be as in the statement of
Theorem 2.8. Note Ω 6= ∅ since 0 is essential in MAM∂U (Uw, X) (see Remark 2.7
(i)). Next note Ω ∩ ∂U = ∅ (see (2.3), x /∈ F (x) for x ∈ ∂U is assumed at the
beginning of the proof, and 0 ∈ MAM∂U (Uw, X)). Now recall Y = (Y,w), the space
Y endowed with the weak topology, is completely regular. Thus there exists a weakly
continuous map µ : Uw → [0, 1] with µ(∂U) = 0 and µ(Ω) = 1 (note ∂U is weakly
closed in X and X is weakly closed in Y so ∂U is weakly closed in Y ). Define a
map R by R(x) = µ(x) Ψ(x) and note (2.2) guarantees that R ∈ MD(Uw, X). We
now show R ∈ MDM (Uw, X). To see this let D ⊆ Uw and D ⊆ co ({0} ∪ R(D))
with C ⊆ D countable and C ⊆ co ({0} ∪ R(C)). Note R(C) ⊆ co ({0} ∪ Ψ(C)),
R(D) ⊆ co ({0} ∪Ψ(D)) so

co ({0}∪R(D)) ⊆ co ({0}∪ co ({0}∪Ψ(D))) = co (co ({0}∪Ψ(D))) = co ({0}∪Ψ(D))
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and
co ({0} ∪R(C)) ⊆ co ({0} ∪Ψ(C)).

Thus
D ⊆ co ({0} ∪Ψ(D)) and C ⊆ co ({0} ∪Ψ(C)).

Then since Ψ ∈MDM (Uw, X) we have that Cw is weakly compact.
Thus R ∈ MDM (Uw, X). Next notice if x ∈ ∂U then R(x) = {0} (note µ(∂U) = 0)
and since 0 ∈MAM∂U (Uw, X) then x /∈ R(x). Thus R ∈MDM

∂U (Uw, X)) with R|∂U =

0|∂U and since 0 is essential in MAM∂U (Uw, X) (note any selection Λ ∈MDM (Uw, X)

of 0 is 0 since 0 ∈ MD(Uw, X) from (2.1) and Λ(x) ⊆ 0(x) for x ∈ Uw) then there
exists a x ∈ U with x ∈ R(x) = µ(x) Ψ(x). Thus x ∈ Ω so µ(x) = 1 and as a result
x ∈ Ψ(x) ⊆ F (x). �

Remark 2.10. Note (2.3) in Theorem 2.3 could be replaced by x /∈ t F (x) for every
x ∈ ∂U and t ∈ (0, 1).

We now present a result which guarantees (2.1).

Theorem 2.9. Let Y be a Hausdorff locally convex topological vector space, U a
weakly open subset of X where X is a closed convex subset of Y , 0 ∈ U and assume
the following conditions hold:

0 ∈MA(Uw, X) and 0 ∈MD(Uw, X) (2.5)
for any map J ∈MDM

∂U (Uw, X) with J |∂U = 0|∂U and

R(x) =

{
J(x), x ∈ Uw
{0}, x ∈ X \Uw,

we have that R ∈MD(X,X)

(2.6)


for any map J ∈MDM

∂U (Uw, X) with J |∂U = 0|∂U and for any
countable set P ⊆ X with P ∩ Uw relatively weakly compact
we have that the set co ({0} ∪ J(P ∩ Uw) ) is weakly compact

(2.7)

and {
for any map H ∈MDMM (X,X) there exists
x ∈ X with x ∈ H(x).

(2.8)

Then the zero map is essential in MAM∂U (Uw, X).

Remark 2.12. Note conditions to guarantee (2.8) can be found in [8, 9].

Remark 2.13. In the proof below we will in fact show R in (2.6) is in MDMM (X,X)
so one could replace (2.8) with: there exists x ∈ X with x ∈ R(x).
Proof. Let Ψ ∈ MDM (Uw, X) be any selection of 0; note Ψ = 0 (note Ψ(x) ⊆ 0(x)
for x ∈ Uw and 0 ∈ MD(Uw, X)). Now consider the map J ∈ MDM

∂U (Uw, X) with
J |∂U = Ψ|∂U = 0|∂U . We must show there exists a x ∈ U with x ∈ J(x). Let R be
as in (2.6) and note R ∈ MD(X,X). We claim R ∈ MDMM (X,X). To see this let
D ⊆ X and D = co ({0}∪R(D)) with C ⊆ D countable and C ⊆ co ({0}∪R(C)) (or
Cw = co ({0} ∪R(C))). First note co ({0} ∪R(D)) ⊆ co ({0} ∪ J(D ∩ Uw)) so

D = co ({0} ∪R(D)) ⊆ co ({0} ∪ J(D ∩ Uw))
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and

C ⊆ co ({0} ∪ J(C ∩ Uw)).

As a result

D ∩ Uw ⊆ co ({0} ∪ J(D ∩ Uw)) and C ∩ Uw ⊆ co ({0} ∪ J(C ∩ Uw)); (2.9)

note C ∩ Uw is countable. Now since J ∈ MDM (Uw, X) we have (see (2.9)) that

C ∩ Uw
w

is weakly compact. Now (2.7) guarantees that Cw is weakly compact (recall
C ⊆ co ({0} ∪ J(C ∩ Uw)). Thus R ∈MDMM (X,X).

Now (2.8) guarantees that there exists a x ∈ X with x ∈ R(x). There are two
cases to consider, namely x ∈ U and x ∈ X \U . If x ∈ U then x ∈ J(x), and we
are finished. If x ∈ X \U then since R(x) = {0} (note also J |∂U = 0|∂U ) we have
0 ∈ X \U , and this contradicts 0 ∈ U . �

Our final two results are generalizations of Theorem 2.8.

Theorem 2.14. Let Y be a Hausdorff locally convex topological vector space,
U a weakly open subset of X where X is a closed convex subset of Y (alterna-
tively, assume X is a weakly closed subset of Y ), F ∈ MAM (Uw, X) and G ∈
MAM∂U (Uw, X) is essential in MAM∂U (Uw, X). For any selector Ψ ∈ MDM (Uw, X)

(respectively Λ ∈ MDM (Uw, X)) of F (respectively G) suppose there exists a map
HΛ,Ψ : Uw × [0, 1] → 2X with HΛ,Ψ( . , η( . )) ∈ MDM (Uw, X) for any weakly

continuous function η : Uw → [0, 1] with η(∂U) = 0, x /∈ HΛ,Ψ
t (x) for any

x ∈ ∂U and t ∈ (0, 1) (here HΛ,Ψ
t (x) = HΛ,Ψ(x, t)), HΛ,Ψ

1 = Ψ, HΛ,Ψ
0 = Λ and

Ω =
{
x ∈ Uw : x ∈ HΛ,Ψ(x, t) for some t ∈ [0, 1]

}
is weakly compact. Then there

exists a x ∈ Uw with x ∈ F (x).
Proof. Suppose x /∈ F (x) for x ∈ ∂U (otherwise we are finished).
Let Ψ ∈ MDM (Uw, X) (respectively Λ ∈ MDM (Uw, X)) be any selector of F (re-
spectively G) and let Ω and HΛ,Ψ be as in the statement of Theorem 2.14. Note

Ω 6= ∅ (note G is essential in MAM∂U (Uw, X) and HΛ,Ψ
0 = Λ) and Ω ∩ ∂U = ∅.

Note Y = (Y,w) is completely regular so there exists a weakly continuous map
µ : Uw → [0, 1] with µ(∂U) = 0 and µ(Ω) = 1. Define the map R by
R(x) = HΛ,Ψ(x, µ(x)) and note R ∈ MDM

∂U (Uw, X) with R|∂U = Λ|∂U (note if

x ∈ ∂U then R(x) = HΛ,Ψ(x, 0) = Λ(x)). Since G is essential in MAM∂U (Uw, X)

there an exists x ∈ U with x ∈ R(x) = HΛ,Ψ
µ(x)(x). Thus x ∈ Ω so µ(x) = 1. As a

result x ∈ HΛ,Ψ
1 (x) = Ψ(x). �

It is also possible to generalize slightly the result in Theorem 2.14 if one modifies
slightly the assumptions.

Theorem 2.15. Let Y be a Hausdorff locally convex topological vector space, U a
weakly open subset of X where X is a closed convex subset of Y (alternatively, as-
sume X is a weakly closed subset of Y ), F ∈MAM∂U (Uw, X) and G ∈MAM∂U (Uw, X)

is essential in MAM∂U (Uw, X).

For any selector Ψ ∈ MDM (Uw, X) (respectively Λ ∈ MDM (Uw, X)) of F (re-
spectively G) and any map J ∈ MDM

∂U (Uw, X) with J |∂U = Ψ|∂U there exists a
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map HJ,Λ,Ψ : Uw × [0, 1] → 2X with HJ,Λ,Ψ( . , η( . )) ∈ MDM (Uw, X) for any

weakly continuous function η : Uw → [0, 1] with η(∂U) = 0, x /∈ HJ,Λ,Ψ
t (x) for any

x ∈ ∂U and t ∈ (0, 1) (here HJ,Λ,Ψ
t (x) = HJ,Λ,Ψ(x, t)), HJ,Λ,Ψ

1 = J , HJ,Λ,Ψ
0 = Λ and

Ω =
{
x ∈ Uw : x ∈ HJ,Λ,Ψ(x, t) for some t ∈ [0, 1]

}
is weakly compact. Then F is

essential in MAM∂U (Uw, X).

Proof. Let Ψ ∈ MDM (Uw, X) (respectively Λ ∈ MDM (Uw, X)) be any selector of
F (respectively G). Consider any map J ∈ MDM

∂U (Uw, X) with J |∂U = Ψ|∂U . We
must show there exists a x ∈ U with x ∈ J(x). Now let HJ,Λ,Ψ and Ω be as in the
statement of Theorem 2.15. Note Ω 6= ∅ (note G is essential in MAM∂U (Uw, X) and

HJ,Λ,Ψ
0 = Λ) and Ω∩ ∂U = ∅. There exists a weakly continuous map µ : Uw → [0, 1]

with µ(∂U) = 0 and µ(Ω) = 1. Define the map R by R(x) = HJ,Λ,Ψ(x, µ(x)) and

note R ∈ MDM
∂U (Uw, X) with R|∂U = HJ,Λ,Ψ

0 |∂U = Λ|∂U so since G is essential in

MAM∂U (Uw, X) there exists an x ∈ U with x ∈ R(x) = HJ,Λ,Ψ
µ(x) (x). Thus x ∈ Ω so

µ(x) = 1. As a result x ∈ HJ,Λ,Ψ
1 (x) = J(x). �
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