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Abstract. We introduce two new iterative algorithms with line-search process for solving a varia-
tional inequality problem with pseudomonotone and Lipschitz continuous mapping and a common
fixed-point problem of an asymptotically nonexpansive mapping and a strictly pseudocontractive
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mild conditions, we prove strong convergence of the proposed algorithms in a real Hilbert space.
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1. INTRODUCTION-PRELIMINARIES

Monotone variational inequalities act as an efficient mathematical modelling to
solve a number of real problems in various engineering, medicine, economics etc. Their
solutions have been studied by many authors via iterative methods; see, [7, 4, 3, 14, 12]
and the references therein. From now on, we always assume that C'is a convex, closed
nonempty set in a real Hilbert space H. For each point * € H, we know that there
exists a unique nearest point in C, denoted by Pcx, such that

le = Peal| < |l - yll, ¥y € C.

The mapping P¢ is called the metric projection of H onto C. Let S be a mapping
on C and denote by Fix(S) the set of fixed points of S. S is called an asymptotically
nonexpansive mapping if 3{6,,} C [0, +00) with lim,_, 8, = 0 such that

Tz — Tyl < (14 6,)||lz —y|l, ¥n > 1, 2,y € C.
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In particular, if 6,, = 0, then 7' is called a nonexpansive mapping. S is called a strictly
pseudocontractive mapping if 3¢ € [0,1) such that

IT2 — Tyl < lle — y|2 + ¢l — T — (I - T)y|l?, Yy € C.

Fixed points of (asymptotically) nonexpansive mappings and strictly pseudocontrac-
tive mappings were studied through iterative methods recently; see, [5, 6, 11, 13, 17]
and the references therein.

Let A: H — H be a mapping. Recall that A is said to be

(i) L-Lipschitz continuous (or L-Lipschitzian) if 3L > 0 such that

[Tz —Ty|| < Lllz - yll, Yo,y € C;

(i) monotone if (Tx — Ty, z —y) > 0, Y,y € C;|
(iil) pseudomonotone if (Tz,y —x) > 0= (Ty,y —x) > 0, Va,y € C;
(iv) a-strongly monotone if o > 0 such that

(Te —Ty,z —y) > allz —y||?, Va,y € C;
(v) sequentially weakly continuous if V{x,} C C, the relation holds:
T, =Tz, = Tx.
The classical variational inequality problem (VIP) is to find z* € C such that
(Az*,x —2*) >0, VxeCl. (1.1)

The solution set of the VIP is denoted by VI(C, A). At present, one of the most

popular methods for solving the VIP is the extragradient method introduced by Ko-

rpelevich [9] in 1976, that is, for any initial g € C, the sequence {z,} is generated
by

{ Yn = Po(x, — TAx,), (1.2)

Tne1 = Po(z, — TAy,) Vn >0, '

with 7 € (0, 1). If VI(C, A) # 0, then the sequence {z,,} generated by process (1.2)
converges weakly to an element in VI(C, A). Recently, gradient-based methods have
been considered by many authors in infinite dimensional spaces; see e.g., [1, 10, 16, 15]
and references therein, to name but a few.

In the extragradient methods, one needs to compute two projections onto C for
each iteration. It is known that the projection onto a closed convex set C' is closely
related to a minimum distance problem. If C is a general closed and convex set, this
might require a prohibitive amount of computation time. In 2011, Censor et al. [1]
modified Korpelevich’s extragradient method and first introduced the subgradient ex-
tragradient method, in which the second projection onto C'is replaced by a projection
onto a half-space:

Yn = PC(xn - TAxn)7
Cp={x€H: (v, —TAT, — Yn,x — yn) < 0}, (1.3)
Zn+1 = Po, (xp — TAy,) Vn >0,

with 7 € (0, %) In 2014, Kraikaew and Saejung [10] introduced the Halpern subgradi-
ent extragradient method for solving the VIP (1.1), and proved strong convergence of
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the proposed method to a solution of VIP (1.1). In 2018, by virtue of the inertial tech-
nique, Thong and Hieu [15] introduced the inertial subgradient extragradient method,
and proved weak convergence of the proposed method to a solution of VIP (1.1). Very
recently, Thong and Hieu [16] introduced two inertial subgradient extragradient al-
gorithms with linear-search process for solving the VIP (1.1) with monotone and
Lipschitz continuous mapping A and the fixed-point problem of a quasi-nonexpansive
mapping T with a demiclosedness property in a real Hilbert space. Under mild con-
ditions, Thong and Hieu [16] proved weak convergence of the proposed algorithms
to an element of Fix(T) N VI(C, A). Inspired by the research work by Thong and
Hieu [16], we introduce two asymptotic inertial subgradient extragradient algorithms
with line-search process for solving the VIP (1.1) with pseudomonotone and Lips-
chitz continuous mapping and common fixed point problems of an asymptotically
nonexpansive mapping and a strictly pseudocontractive mapping in H. Convergence
theorems are established in Hilbert spaces.
The following tools are essential for our main results.

Lemma 1.1. [8] Let A: C — H be pseudomonotone and continuous. Then z* € C
is a solution to the VIP (Az*,x — x*) > 0 Va € C, if and only if

(Az,z —2*) >0, Yz e C.

Lemma 1.2. [18] Let {a,} be a sequence of nonnegative real numbers satisfying the
conditions: apt1 < (1= Ap)an + Anvn Y > 1, where {\,} and {v,,} are sequences of
real numbers such that

(i) {\n} C[0,1] and i)‘" = 00, and

n=1

(%) imsup,,_, o v < 0 or Z [Anyn| < oo. Then lim, o0 ayn = 0.

n=1

Lemma 1.3. [21] Let T : C — C be a (-strict pseudocontraction. Then I — T
is demiclosed at zero, i.e., if {x,} is a sequence in C such that x, — x € C and
(I —=T)x, — 0, then (I —T)x =0, where I is the identity mapping of H.

Lemma 1.4. [19] Let A € (0,1], T : C — H be a nonexpansive mapping, and
the mapping T® : C — H be defined by Tz := Tax — \uF(Txz) Yz € C, where
F : H — H is k-Lipschitzian and n-strongly monotone. Then T is a contraction
provided 0 < p < %, i.e.,

1Tz = Ty[l < (1 = A7)llz — yl|, Va,y € C,

where 7 =1 — /1 — pu(2n — px?) € (0,1].

Lemma 1.5. [2] Let X be a Banach space which admits a weakly continuous duality
mapping, C be a nonempty closed convex subset of X, and T : C — C be an asymp-
totically nonexpansive mapping with Fix(T) # 0. Then I — T is demiclosed at zero,
i.e., if {zn} is a sequence in C such that x, — x € C and (I — T)x, — 0, then
(I —T)x =0, where I is the identity mapping of X .

Lemma 1.6. [20] Let T : C — C be a (-strictly pseudocontractive mapping. Let ~
and 0 be two nonnegative real numbers. Assume (v + 0)¢ <. Then

vz —y)+6(Tx —Ty)|| < (v+6)||z — y|| Yo,y € C.
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2. MAIN RESULTS

In this section, we assume the following.

T : H — H is an asymptotically nonexpansive mapping with {6,} and S: H — H
is a (-strictly pseudocontractive mapping.

A : H — H is L-Lipschitz continuous, pseudomonotone on H, and sequentially
weakly continuous on C, such that 2 = Fix(T) N Fix(S) N VI(C, A) # (.

f: H — H is a contraction with constant 6 € [0,1), and F : H — H is n-strongly
monotone and s-Lipschitzian such that 6 < 7:=1—4/1 — p(2n — pr?) for p € (0, Z—Z)

{on} C[0,1] and {an}, {Bn}, {7}, {0n} C (0,1) such that

(i) sup,>1 g* < oo and By + yn + 6 =1 Vn > 1;

(ii) limy, oo vy, =0 and Y7 | @ = 00;

(ifi) limy, oo &= =0 and (v, + 6,)¢ < v V¥ > 1

(

n

iv) 0 < liminf, o B, < limsup,,_, . Bn < 1 and liminf, . 6, > 0.

Algorithm 2.1.

Initialization: Given v >0, [ € (0,1), u € (0,1). Let o, z1 € H be arbitrary.
Iterative Steps: Calculate z,,41 as follows:

Step 1. Set w,, = T"xp, + 0p(T" 2z, — T"xp—1) and compute y,, = Po(w, — 1 Awy,),
where 7, is chosen to be the largest 7 € {,~l,7I?, ...} satisfying

7| Awy, — Ayl < pllwn — ynll- (2.1)
Step 2. Compute z, = an f(2n) + (I — anpF)T" Po, (W, — Th Ayn) with
Cpn:i={z € H: {(w, — AW, — Yn,T — yn) < 0}
Step 3. Compute
Tnt1 = BuTn + Yn2n + 00 Szn. (2.2)
Again set n :=n + 1 and go to Step 1.
Lemma 2.1. The Armijo-like search rule (2.1) is well defined, and the inequality

holds: min{y, 4} <1, <.
Proof. From the L-Lipschitz continuity of A, we get

%HAwn — APo(wy, — Y™ Aw,) || < pllwy — Po(wy, — 1™ Awy,)||.

Thus, (2.1) holds for all yI™ < £. So 7, is well defined. Obviously, 7,, <. If 7, = 7,
then the inequality is true. If 7,, < -y, then we get from (2.1)

T, T,
| Awn = APo(w, = 2 Aw,) | > 2wy, — Pe(wn — o Aw,)|.
1
From the L-Lipschitz continuity of A, we obtain 7, > "fl Hence the inequality is

valid.
Lemma 2.2. Let {wy,},{yn} and {z,} be the sequences generated by Algorithm 2.1.
Then ) ) )
lzn = PII” < andllzn = plI” + (1 = an7)(1 + 05)|lwn — p
— (1= an7)(1+60,) (1 = @) [[lwn = ynll* + [lun = ynll*] (2.3)
=+ 20‘n<(.f - ,[)F)p7 Zn _p> vp € .Q,TL > no,
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for some ng > 1, where u,, ;== Pc, (W, — T Ayn).

Proof. By fixing p € 2 C C C C,,, we have

<un — P, W — TnAyn _p>
%”un —p||2 + %Hwn —p||2 - %Hun - wn||2 - <un — D, TnAyn).

[|wn, _pH2

[ IA

So, it follows that |lu, — p||* < |lwn — plI? = [|un — wal|* — 2(un — p, 7 Ayn), which
together with (2.1) and the pseudomonotonicity of A, we deduce that (Ay,,, p—yn) <0
and

lun =2l < llwn = plI* = lun = yull* = llyn — wal®

2.4
+2<wn _TnAyn — Yn, Un _yn>' ( )

Since u, = Po, (wy, — Th Ay, ) with C,, :={x € H : (w, — ThAwy, — Yn, T — yn) < 0},
we have (w,, — T, AW, — Yn, Un — yn) < 0, which together with (2.1), implies that

lun =l < llwn = plI* = (1 = Wllwn = yall* = 1 = Wllun —yal* Vo€ 2. (2.5)

Taking into account lim,,_~ % = 0, we know that
n 1-— n - 5
b2+ 6,) < U =B)T=0) o

2 b
for some ng > 1. Hence we have that for all n > ng,

and+ (L—a,m)(1+6,) =1—a,(t—96)+ (1 —a,7)0,
<1—ap(r—0)+0, <1- =0 <1,

Using Lemma 1.4, and the convexity of the function h(t) = t? Vt € R, we obtain that,
for all n > ng,

|20 — plI?

< [andllzn = pll + (1 = ) (14 0p)|un — pl]* + 200 ((f — pF)p, 20 — )

< andl|lzn = plI” + (1 = an)(1 4 0n)llun — pl* + 200 ((f — pF)p, 20 — p)

= andllzn = p|? + (1 — an7) (L4 0n) [wn — pl|* = (1 — anT) (1 + 0,) (1 — p1)

X[lwn = yall® + l[un = ynll?] + 200 ((f — pF)p, 20 — p).
This completes the proof.
Lemma 2.3. Let {w,},{zn}, {yn} and {z,} be bounded sequences generated by Al-
gorithm 2.1. If T"x,, — T" o, =0, 2, — Tpy1 — 0, wy, — 2y, — 0, Wy — 2, — 0
and FH{wy, } C {wn} such that wy,, — z € H, then z € (2.

Proof. From Algorithm 2.1, we have ||[T"z,, — x| < ||wn — 2|+ (14 0)|| 20 — Tn-1].
Utilizing the assumptions z,, — 41 — 0 and w,, — x,, — 0, we have from 6,, — 0
that

lim ||z, — T"a,|| = 0. (2.6)
n—oo
Combining the assumptions w,, — x,, — 0 and w,, — z,, — 0 implies that, as n — oo,

[2n = @nll < lwn = 20l + lwn — @all = 0.
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Note that, for each p € 12,

Jwn —pl* < (T, —QPH +on||T"zn — T”iﬂwl||)22
<o = plI* + T+ 00(2 + 00) (20 — plI* + ),

where I, = op||Xn — Tn—1]|(2|| 2y, — 0| + on||Tn — 2n—1]|). So it follows from (2.3) that
for all n > ng,

(1 — )L+ 0,) (L = )llwn — yall> + l[un — yall?)

andllzn, —pl? + (1 — anm)(1 4+ 60,)[||zn — pl|* + T

0(2+ 0,) (|20 — plI2 + T)] = 20 — Pl + 20l|(f — pF)pllll 20 — 1
[1— 22Tz, — p)|2 — 20 — | + (1 — anr) (1 + 6,) [T
0(2+0,) (|2 — p|I* + T)] + 200 | (f — pF)plll|z0 — pll

|z — 2all(ll2n — 2l + 120 — pII) + (1 + 6a) [T

+0n (2 + 0n) (lzn — pII> + )] + 200 (f — pF)plll|2n — pl|-

Since o, — 0, 6,, =+ 0, I}, — 0 and x,, — z, — 0, we get

lim ||lwy, —yn||=0 and lim |jun —yu||=0.
n—oo n—oo
It follows that as n — oo,
lwn—unl| < lwn=ynll+yn—unll = 0 and ||zp—un| < |20 —wn ||+ [lwy—un| — 0.
By using Algorithm 2.1 we get
OnllSzn = znll = |Tn41 — Tn + (L= Bp)(@n — 20)[| < |41 — Znl + 20 — 2all-

Since z,, — 41 — 0, 2, — x, — 0 and liminf,,_, 6, > 0, we obtain

nl;rr;o |z, — Szn|| = 0. (2.7)
Note that
1
— (W, — Yny & — Yn) + (Awp, yn — wy) < (Awp,z —w,) VzeCl. (2.8)
Tn

Since 7, > min{~, %}, we get liminfy_, oo (Awp, , 2 — wy, ) > 0 Ve € C.

Since wy, — y, — 0, we obtain from (2.8) that lim infy_,o0 (AYn,, T — Yn,) > 0 Ve € C.
Next we show that xz,, — Tx,, — 0. Indeed,

T2y —2pll <[ Tan — T || + [T 2y — Tran|| + || T 20 — 24|
< (24 01|y — Ty || + | T 2y — Ty
From (2.6) and the assumption T"z,, — T" 1z, — 0 we get
lim |2, — Tz,| = 0. (2.9)
n—oo

We now take a sequence {e} C (0, 1) satisfying e | 0 as k — oco. For all k£ > 1, we
denote by mj the smallest positive integer such that

(AYn;, ® = yn,;) +e >0 Vj>my. (2.10)
Setting i, = H:;%’ we get (AYm,, m,,) = 1 Vk > 1. From (2.10), we get
mE

<Aymk>$+5kﬂmk - ymk> > 0, Vk > 1.
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From the pseudomonotonicity of A, we have
(Az, T —Ym,) > (Ax—A(z+Ertimy ) THERLmy, —Ymy) —ER{AT, b, ) V> 1. (2.11)

We claim that limg_,o0 €xptm, = 0. Indeed, from w,, — z and w, —y, — 0, we
obtain y,, — z. So, {yn} C C guarantees z € C'. Again from the sequentially weak
continuity of A, we know that Ay,, — Az. Thus, Az # 0 (otherwise, z is a solution).
Taking into account the sequentially weak lower semicontinuity of the norm || - ||, we
get 0 < ||Az|| < liminfy oo ||Ayn, ||. Note that {ym,} C {yn,} and e, L 0 as k — oo.
So it follows that

lim supy,_, . €k

0 < limsup ||egtim, || = lim sup K =0.
T k—oo § koo ([ AYmy |l — Hminfr oo [|Ayn, |
Hence we get e ptm, — 0.

Next we show that z € (2. Indeed, from w, — x, — 0 and w,, — z, we get
Zp, — z. From (2.9) we have z,, — Tx,, — 0. Note that Lemma 1.5 guarantees the
demiclosedness of I — T at zero. Thus z € Fix(T'). Meantime, from w,, — z, — 0 and
Wp, — 2, We get z,, — z. From (2.7) we have z,, — Sz,, — 0. From Lemma 1.3, it
follows that I — S is demiclosed at zero. Hence we get (I —S)z =0, i.e., z € Fix(5).
On the other hand, letting k¥ — oo, we deduce that the right hand side of (2.11) tends
to zero by the uniform continuity of A, the boundedness of {y,,, }, {ttm, } and the limit
limg 00 €k tm, = 0. Thus, we get (Az,z—2z) = liminfy_, oo (AT, T — Y, ) > 0 V2 € C.
By Lemma 1.1, we have z € VI(C, A). Therefore,

z € Fix(T) NFix(S)NVI(C, A) = 0.
This completes the proof.

Theorem 2.1. Let the sequence {x,} be generated by Algorithm 1.1. Assume that
Trx, —T" e, — 0. Then

Tp — Tn+1 — 0,

*
Ty — T GQ@{ T — g — 0

where x* € 2 is a unique solution to the VIP: ((pF — faz*,p —x*) > 0 Vp € 2.

Proof. From 0 < liminf,, ,o B, < limsup,,_,., Bn < 1, we may assume, without
loss of generality, that {8,} C [a,b] C (0,1). We claim that Po(f + I — pF') is a
contraction. Indeed, by Lemma 1.4, we have that Po(f + I — pF) is a contraction.
Banach’s Contraction Mapping Principle guarantees that P (f+1—pF') has a unique
fixed point. Say z* € H, that is, 2* = Po(f + I — pF)x*. Thus, there exists a unique
solution z* € 2 = Fix(T) N Fix(S) N VI(C, A) to the VIP

((pF — flz*,p—a*) >0 Vpe . (2.12)

It is now easy to see that the necessity of the theorem is valid.
Indeed, if x,, — z* € 2 = Fix(T) NFix(S) N VI(C, A), then z* = Tx*, «* = Sz* and
x* = Po(x* — 1, Ax™), which together with Algorithm 2.1, implies that

lwn = ™| < (L4 0n)([J2n — 27| + onllen = 2nall) = 0 (n = o0),
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and hence

lyn — 2ol < ||Po(wn — TnAw,) — Po(z* — 1 Az™)|| + ||z, — 2|

< (I +~LD)||wy —z*|| + ||z — 2*|| = 0 (n = 0).

In addition, it is clear that

20 = Znga || < flzn — 2% + [[na — 27| = 0 (n = o0).

Next we show the sufficiency of the theorem. To the aim, we assume

lim (||lz, — Tpy | + Hxn —yull) =0
n— o0

and divide the proof of the sufficiency into several steps.

Step 1. We show that {z,} is bounded. Fixing p € 2 = Fix(T) NFix(S)NVI(C, A),
we have that Tp = p, Sp = p, and (2.5) holds, i.e.,

lun = pI* < wn = plI* = (= w)llwn = yall* = (1= p)llun — ynll*.

This immediately implies that

tn = pll < lwn —pll  Vn > 1.

From the definition of w,,, we get

lwn =pll - < |T"2n = pll + o T 20 — T"xn ||

< (L4 0n)([[2n —pll + - 2

Since sup,,>1 <

2x < oo and sup,,>q [[2n —

Qn

o
sup —||@, — 21| < 00,

n>1 On

Tn — Tn-1l])-

ZTn—1]] < 00, we know that

which hence implies that there exists a constant M; > 0 such that

o
—||zn — Tp—
(e70)

Combining (2.14), (2.15) and (2.16), we obtain
[un —pll < llwn = pll < (1 +0n)(|lzn — pll + 0nMy)  ¥Vn > 1.
From Algorithm 2.1, Lemma 1.4 and (2.17), it follows that for all n > ny,

lzn =Pl < andllen = pll + (1= an)(1 + On)llun — pll + anl|(f = pF)pll

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

<ond +1 = anT + 60,2+ 6,)] (|20 — pll + M) + anl|(f — pF)p||

< (1 -2z, —p|| + an(My + [|(f — pF)pl),

which together with Lemma 1.6 and (7, + 0,)¢ < 7, implies that, for all n > ny,

[#n41 =l < Bullzn —pl + (1 = ﬁn)“ﬁhn(zn =)+ 0n(Szn = )|
O‘n(l_BQn)(T_‘S) .

an(1—=Bn)(1—46
<[1- ( 52 )( )]
< max { |lz, - pll, 2

By induction, we obtain

2 — || < max { lms — 2,

[z —pll +
M+ o)) } ,

2(Mai+|[(f=pF)plD)

2(My + || (pF = f)pll)

T—90

}, Vn > ng.

T—9
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Thus, {z,} is bounded, and so are the sequences {u,}, {wn}, {yn}, {zn}, {f(@n)},
{Szn}, {T"u,} and {T"z,}.
Step 2. We show that for all n > ng,

(1= anm) (1 = Bn) (1 +0,) (1 = 1) [llwn = ynll* + un = ynl|’]

<l = plI* = 241 = plI* + an M,

with constant My > 0. Indeed, utilizing Lemma 2.2 and the convexity of || - ||, from
(Yn + 61)¢ < 7, we obtain that for all n > ng,
fomss ol 1 2
< ﬂn”xn _pll + (1 - Bn)”?ﬁnh’n(zn - p) + 5n(Tzn - p)]” (318)

< Bullzn —p||2 + (1 — 5n){an6 |xn - sz + (1 —a,T)(1+ en)Hwn —p||2
(1= an7)(1+0,)(1 — p)[|lwn — yn||2 + [Jun — yn||2] +anMa},

where sup,,>q 2||(f — pF)pll||zn — pl| < My for some My > 0. Also, from (2.17) we
have

[wn = p?

1+ 02+ 0n)][llzn — p”2 + an(2M; ||z, — pl| + anM12)]
|z

2.19
(@ — p|12 + anMs, (2.19)

<
<
where

On
sup{2Mu||zn —pl| oM+~ (240n) |20 = pII* + an (2Mi]|zp —pll + 0 MP)]} < Ms
n> n

for some Mz > 0. Note that a,d + (1 — a,7)(1+6,) < 1 — 220=9) for all n > ny,.
Substituting (2.19) for (2.18), we deduce that for all n > ng,

[Zn41 = plI?
< Bullzn = plI? + (1= Ba){(1 = 225=2) [, — p|2 + (1 = ) (1 + 6 )ty Ms
(1 = anr) (L4 0)(1 = 1) {[m — gl + i — 9ll?] + 0 Mo}
< Nlom = plI2 = (1= anr)(1 = Ba)(1 +60)(1 — 2)[l0m — > + 1w — 1)
+anM4a
(2.20)
where sup,,~, (M2 + (1 + 0,)M3) < My for some My > 0. This immediately implies
that for all n > ng,

(1= ) (1= Bn) (1 + 0,) (1 — ) [[lwn — ynl? + 1t — yall’]
< lzn = plI* = #ns1 — plI* + anMj.
Step 3. We show that for all n > ng,
lnss = pl? < [1 - @200, — p?
=BT [ A ((f — pF)p, 2, — p)

2
Nwn = zn-all + ilrj\:[(; : %]v

(2.21)

4 M On
T755 an

with constant M > 0. Indeed, we have
[wn, —pl* < llzn —pl* + onllen — 01 |2llzn — pl| + onllzn — 2n-all)

+0n(2+ 05)([|xn — pll + onllzn — zn-])? (2.22)
< ”xn _p||2 + O'n”mn - xn—lnM + eany
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where sup,,~(2 + 0,)([|[zn — pl| + onllzn — 20—1]]) < M for some M > 0. Combining
(2.18) and (2.22), we have that for all n > ny,

||37n+1 _pH2
< Bonn - p||2 + (1 - ﬁn){an(snxn —p||2 + (1 - anT)(l + en)[”xn _pH2
"’O'n”xn - xn—luM + 0nM2] + 2an<(f - PF)pa Zn —p>}
< [1— @0=BIC=D ) pl2 4 (1 = By)[onln — a1 |2M + 0,2M2]  (2.23)
+200, (1 = Bp)((f — pF)p, 2n — D)
= [1 - @8O0y p|2 4 @UBCD [ pF)p, 2, — p)
=i

anl’

4 M On
TI25 " am

NEn = Tn—all +

Step 4. We show that {z,,} converges strongly to a unique solution z* € 2 to the
VIP (2.12). Indeed, putting p = z*, we deduce from (2.23) that
lnss = a7 < (1 - L=, — g2 4 ealfll=s)
X5 ((f = pF)a” 20— a%) + 2% 22l —woa || + 25 - S,
(2.24)
By Lemma 1.2, it suffices to show that limsup,, , ((f — pF)a*, z, — 2*) < 0. From
(2.21), pp — Tpy1 — 0, a — 0, 6, — 0 and {B,} C [a,b] C (0,1), we obtain

limsup(1 — a,7) (1 0)(1+0,)(1 = w)llwn — yal2 + s — ya 2]
n—oo
< timsup(le, — pl2 - lenr1 - plI2 + @ Mi]
—00

n
< timsup(an — pll + @01 = pl)llen — 2] = 0.
n— oo

This immediately implies that
lim ||w, —yn||=0 and lim |jun —ys|| =0. (2.25)
n—oo n—oo

Obviously, the assumption ||z, — y,| — 0 together with (2.25), guarantees that
lwn — zn|| < lJwn = Ynll + |Yyn — zn|]l = 0 (n = c0). It follows that

1T xp — xnll = llwn — 20 — o0 (T"2y — T"2n—1)||

2.2
< llwn — 2ol + (1 + 0) |2n — ni] =0 (n—o0). (220

Since z, = anf(xn) + (I — anpF)T"u, with u, = Po, (w, — T, Ay, ), from (2.25),
(2.26) and the boundedness of {z,}, {T™uy}, we conclude that as n — oo,

20 = @nll = l[an f(zn) — anpF T " up + T un — 20|
< an (| f(@n)ll + |pFT unl]) + 1T tun — 24|
< an([lf(@n)ll + [PFT"unl)) + (1 + On)([un = ynll + lyn = znll) + [ T"20 — zall
—0
(2.27)
(due to the assumption ||z, — yn|| — 0). Obviously, the limit lim, o ||wy, — 25| =0
together with (2.27), guarantees that ||w, —z, || < ||wp—2n||+||xn—2a| = 0 (n = o).
From the boundedness of {z,}, it follows that there exists a subsequence {z,, } of {z,}
such that
limsup((f — pF)x*, 2z, — ") = khﬁngo«f - pF)fE*,an — ). (2.28)

n—oo
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Since H is reflexive and {z,} is bounded, we may assume, without loss of generality,
that z,, — Z. Hence from (2.28) we get

limsup((f — pF)z”, 20 —a*) = lim ((f = pF)z”, zn, —27) = ((f = pF)2”, 2 — 27).

n—oo
(2.29)
It is easy to see from w,, — z, — 0 and z,, — Z that w,, — Z.
Since Tz, —Tn—‘rlxn — O7 Ty — Tyl — O7 Wy, — Ty — 07 Wy — 2 — 0 and Wy, — 2’
by Lemma 2.3 we infer that Z € 2. Therefore, from (2.12) and (2.29) we conclude
that

limsup((f — pF)a™, zp, —a™) = ((f — pF)a™,Z —a™) <0. (2.30)
n—oo
Note that {8} C [a,] C (0,1), {2=2U0=EC=00} ¢ [o,1], 3072 | 225 — o,
and
. AM oy AM2 0,
lim s — oF)x* —z* L — T, 2 <0.
imsup | < ((f = pF)a%, 2n —2") + 5 = llon — 2l + 5 0= <0
(2.31)

Consequently, applying Lemma 1.2 to (2.24), we have lim,_,¢ ||z, — 2*|| = 0. This
completes the proof.

Next, we introduce another asymptotic inertial subgradient extragradient algorithm
with line-search process.

Algorithm 2.2.

Initialization: Given v >0, [ € (0,1), p € (0,1). Let 9, z1 € H be arbitrary.
Iterative Steps: Calculate z,,41 as follows:

Step 1. Set w,, = T"x,, + 0, (T" 2z, — T"x,,—1) and compute y,, = Po(w, — 7, Awy,),
where 7, is chosen to be the largest 7 € {7, ~l,vI?, ...} satisfying

7| Awy, — Ayl < pllwn — ynll- (2.32)
Step 2. Compute z, = a, f(2n) + (I — anpF)T" Po, (W, — T Ayn) with
Cp:={x € H: (w, — T Awp, — Yn,x — yn) < 0}.

Step 3. Compute
Tna1 = BnWn + Ynzn + 0nSzn. (2.33)
Again set n:=n 4+ 1 and go to Step 1.

It is worth pointing out that Lemmas 2.1, 2.2 and 2.3 are still valid for Algorithm 2.2.

Theorem 2.2. Let the sequence {x,} be generated by Algorithm 2.2. Assume that
Trz, — Tz, — 0. Then
Tp — Tny1 — 0,

Ty — T 6(2(:){ T — g — 0

where x* € 2 is a unique solution to the VIP: ((pF — f)z*,p —x*) > 0 Vp € 2.
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Proof. Utilizing the same arguments as in the proof of Theorem 2.1, we deduce that
there exists a unique solution z* € 2 = Fix(T') NFix(S) N VI(C, A) to the VIP (2.12),
and that the necessity of the theorem is valid.
Next we show the sufficiency of the theorem. To the aim, we assume

nll_{go(nxn = Tptall + |20 —yull) =0
and divide the proof of the sufficiency into several steps.
Step 1. We show that {x,} is bounded. Indeed, utilizing the same arguments as
in Step 1 of the proof of Theorem 2.1, we obtain that inequalities (2.13)-(2.17) hold.

Taking into account lim,,_~ % = 0, we know that
(1= Bp) (T —6
9n(2+9n)§a ( ﬁQ)(T ),Vnzno

for some ng > 1. Hence we deduce that for all n > ng,

an(1 = )8+ [1 — an(l — B)7](1 + 0,)2
=1 an(1—Bo)(T—6) + 1 — an(l — Ba)7]0n(2 + 02)
<1- eal=fn)(r=0)

Also, from Algorithm 2.2, Lemma 1.4 and (2.17), it follows that

lzn =2l < andllzn —pll + (1 = an7) (1 + 6n)|[un = pll + anl|(f = pE)p|
< andlzn —pll + (1 = an7)(1+ 0n)|[wn = pll + anll(f — pF)pl|,

which together with Lemma 1.6 and (v, + 6,)¢ < 7, implies that for all n > ny,

[Znt1 =l < Ballwn —pll + (1 = Ba) | 125 [ (20 — ) + 60(T 20 — D)
< Bllwn = pll + (1 = Bn)llzn — pll
< fan(l=Bn)d + (1 —an(l = Bu)7)(1 + en)Q](Hxn —pll + o, M)
+an(1 = Bu)ll(f — pF)p|
<[1- an(lfﬁ;)(‘rﬁ)]

|0 — p|| + 220=B)=0) . 2<1¥5n+n<§—pF)pn>
My _
< max{”% il 2<+l<_f6pF>I>}

By induction, we obtain

20 4 ||(f — pF
IIxn—pSmax{llxno—pll, (1% H(f(s p )pl)}7 Vn > no.
P

Thus, {z,} is bounded, and so are the sequences {u,}, {wn}, {yn}, {zn}, {f(2n)},
{Szp}, {T"un} and {T"z, }.
Step 2. We show that for all n > ng,
(1= )1 = Ba) (L +0n) (L = ) lwn =yl + [un — yal’]
< lwn = pl1? = lznts — plI* + an My,
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with constant My > 0. Indeed, utilizing Lemma 1.6, Lemma 2.2 and the convexity of
” : ”2» from ('Vn + 5n)< < v we get
o o, 2

< ﬁnHwn _pH ( Bn)” = ['Vn(zn —p)+ 5n(Szn _p)Hl

< Bullwn = plI? + (1 - ﬁn){an5||$n pl? + (1 = ant)(1+ 0,)|lwy — p|?

—(1 = anm)(1+60,)(1 = p)[lwn = yull® + [lun — ynll?] + anMa},
where sup,,~, 2|[(f — pF)pll||zn — pll < My for some My > 0. Also, from (2.17) we
have

(2.34)

lwn = plI* <z = pl? + an (M|, — pll + on M)
+0n (2 + 0n)[l[2n — pII* + on (2M]|2n — pll + anM7)] (2.35)
< llen = plI* + on Ms,

where

On
sup{2M|zn = pl| o MY 4 = (24 0)[[|2n = pII* + an 2V [l |+ n M)} < My

for some M3 > 0. Note that

and+ (1 —a,7)(1+6,) <1- (7 =9)

for all n > ng. From (2.34) and (2.35), we obtain that for all n > ny,

[z — pl*
< Bullwn = pl* + (1 = Bu){andllzn — plI* + (1 — an7) (1 + 03[l — plI®
tanMs] — (1 — ) (14 00)(1 = ) [[wn — ynll* + [[un — yall?] + an Mo}
< [1 - 2228 g — pl|? + B Ms + (1= ) (1 = ) (1 + ) orn Ms
(1= ant)({ = Bu)(L+ 0)(1 — 1)l — gl + [t — ]+ (1 = o) Mo
< lan = pl* = (1 = 0n7)(1 = Ba) (X + 0n) (L = p){llwn = ynll + [lun — ]
+a, My,
(2.36)
where sup,,~, (Mz + (1 + 0,)M3) < My for some My > 0. This immediately implies
that for all n > no,

(1= anT)(1 = Ba) (1 +0n) (1 = w)l[lwn = yull* + llun — ynl?]

< e 2l ~ s — 1P + Mo 20
Step 3. We show that for all n > ng,
l2nt1 = pl?
< [1 - el =g, — p|2 4 L=BE=D A ((f — pF)p, 20 — 1)
+Emsn e~z + HL ml
with constant M > 0. Indeed, we have
lwn = plI* < lan = plI* + onllzn — wn_1]M + 0, M7, (2.38)
where sup,,~1(2 + 0,) (|7 — pl| + oz — 2n—1]]) < M for some M > 0. Note that

B an (T — 0)

and+ (1 —a,7)(1+6,) <1 5



556 L.C. CENG, A. PETRUSEL, X. QIN AND J.C. YAO

for all n > ng. Thus, combining (2.34) and (2.38), we have that for all n > ny,

[Znr1 = pl?

< Bullwn = pl? + (1 = Bu){andllzn — pl? + (1 = an7) (1 + 0n)[lzn — p]?

+onllzn — 2n1[|M + 0, M?] + 200, ((f — pF)p, 20 — p)}

< 1 - 2202 g, — pl? 4 (14 6) [0l — waea|M + 6,07 (2.39)

200 (1 = Ba)((f — pF)p, 20 —p)

= [L - S2Eg e, — 4 OB (f = pF)p 20— )

2

+ i - 2 N2 — waall + Ry - 2]
Step 4. We show that {z,,} converges strongly to a unique solution z* € 2 to the
VIP (2.12). Indeed, utilizing the same argument as in Step 4 of the proof of Theorem
2.1, we obtain the desired assertion. This completes the proof.

It is remarkable that our results improve and extend the results in Kraikaew and
Saejung [10], Thong and Hieu [16, 15] and Yao et al. [20]. In what follows, our results
are applied to solve the VIP and CFPP in an illustrated example. The initial point
xo = x1 is randomly chosen in R.

Take f(z) = F(z) = 4z, y=l=p=3,0 :anzﬁﬂ,ﬁn:%,vn:%,én:%
and p = 2. Thenweknowthat&—ﬁ—n—% and

T:l—\/l—p(Zn—p,%Q):l—\/1—2(2~;—2(;)2):1€(0,1].

We first provide an example of Lipschitz continuous and pseudomonotone mapping
A, asymptotically nonexpansive mapping 7' and strictly pseudocontractive mapping
S with 2 = Fix(T) N Fix(S) N VI(C, A) # 0. Let C = [-1,1] and H = R with the
inner product (a,b) = ab and induced norm || - || = |-|. Let A,7,S : H — H be
defined as Az := m — ﬁ, Tr:= 5sinx and Sz := %x—l—%sinx forallz € H.
Now, we first show that A is pseudomonotone and Lipschitz continuous with L = 2.
Indeed, for all x,y € H we have

Az — Ay]| |1+Hsma:n - 1+nz|| 1+\|smyu + 1+uy|\|
=< |1+nsmxn sy | |1+|zu ==l
siny||—1—|| sin z|| 1+ 1

ull-1-l)z]
=¥ wnﬂ)(wnmynﬂ + e )(Wy”)'
— |(1 sy b]nfl: — ||

Yy
|+l renrmn |

sinz )1+ sin gl
< sincsiny| . |lo—y]
S [FTsimaD(+H sy T D0+
<|[sinz —siny| + ||z — y||
<2z —yll.

This implies that A is Lipschitz continuous with L = 2. Next, we show that A is
pseudomonotone. For any given z,y € H, it is clear that the relation holds:

1 1
Az, —2) = _ — 1) >
(Az,y —2) (1+|sinm| 1—|—m|)(y )20

1 1
= (A _ = — — > 0.
Ay = 2) (1 - [siny| 1+|y|>(y %) 20
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Furthermore, it is easy to see that T is asymptotically nonexpansive with

2\ ™
Hn:(?)) ,\V/TLZl,

such that || T" 'z, — T"z,| — 0 as n — oo. Indeed, we observe that
n n 2 n—1 n—1 2 "
1T =Tyl < SIT" 2 =T" "yl << {5 ) lle—yll < A+ 0n)le -yl

and

2 n—1 9 n—1
T e, — T e, < | 5 T2, — Tz, = | =
3 3
2 n
2 (3) — 0 (n — 00).

It is clear that Fix(T) = {0} and

2
—sin(Tz,) — 3 sin z,

3

n

2 n
lim — = lim (/3)

——— =0.
n—00 Qup, n—00 ]_/(n + ]_)

In addition, it is clear that S is strictly pseudocontractive with constant ( = %.
Indeed, we observe that for all z,y € H,

3 1. : 3
IS0 = Syl < [l — gl + g llsine — sinyl]? < o I+ 207~ Sy — (1 — Sy
It is clear that (v, + d,)C

= (
2 = Fix(T) N Fix(S) N VI(C, A
rewritten as follows:

< % = v, for all n > 1. Therefore,
(. In this case, Algorithm 2.1 can be

1
w, =T x, + R—H(T”In —T"x, 1),
Yn = Pf(w? — T Awy,),
Zn = "T'% . 5xn1+ nL—&-llTnPCn (wn, — ThAyYn),
Tpt1l = 3%n + 520 + gSZn Vn > 1,

(2.40)

where for each n > 1, C), and 7, are chosen as in Algorithm 2.1. Then, by Theorem
2.1, we know that {z,} converges to 0 € 2 = Fix(T) NFix(S) N VI(C, A) if and only
if |xn — Tpt1] + |2n — yn| = 0 as n — 0.

On the other hand, Algorithm 2.2 can be rewritten as follows:

wy, =T 2, + %H(T"xn —T"z,_1),

Yn = PC(wn - TnAwn)7

Zn = %ﬂ : %xn + nLHT"PC" (wn - TnAyn>7
Tni1 = 3Wn + 520 + $52, Yn > 1,

(2.41)

where for each n > 1, C), and 7, are chosen as in Algorithm 2.2. Then, by Theorem
2.2, we know that {x,} converges to 0 € 2 = Fix(T) N Fix(S) N VI(C, A) if and only
if |2 — Tpt1] + |2n — yn| = 0 as n — oc.
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