PSEUDOMONOTONE VARIATIONAL INEQUALITIES AND FIXED POINTS

L.C. CENG*, A. PETRUŞEL ${ }^{* *}$, X. QIN*** AND J.C. YAO ${ }^{* * * *}$
*Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
E-mail: zenglc@hotmail.com
** Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania
E-mail: petrusel@math.ubbcluj.ro
*** National Yunlin University of Science and Technology, Douliou 64002, Taiwan
E-mail: qinxl@yuntech.edu.tw
${ }^{* * * *}$ Research Center for Interneural Computing, China Medical University Hospital, Taichung, Taiwan
E-mail: yaojc@mail.cmu.edu.tw
(Corresponding author)

Abstract

We introduce two new iterative algorithms with line-search process for solving a variational inequality problem with pseudomonotone and Lipschitz continuous mapping and a common fixed-point problem of an asymptotically nonexpansive mapping and a strictly pseudocontractive mapping. The proposed algorithms are based on inertial subgradient extragradient method with line-search process, hybrid steepest-descent method, and viscosity approximation method. Under mild conditions, we prove strong convergence of the proposed algorithms in a real Hilbert space. Key Words and Phrases: Inertial subgradient extragradient method, pseudomonotone variational inequality, nonexpansive mapping, strictly pseudocontractive mapping. 2020 Mathematics Subject Classification: 47H05, 90C30, 47H10.

1. Introduction-Preliminaries

Monotone variational inequalities act as an efficient mathematical modelling to solve a number of real problems in various engineering, medicine, economics etc. Their solutions have been studied by many authors via iterative methods; see, [7, 4, 3, 14, 12] and the references therein. From now on, we always assume that C is a convex, closed nonempty set in a real Hilbert space H. For each point $x \in H$, we know that there exists a unique nearest point in C, denoted by $P_{C} x$, such that

$$
\left\|x-P_{C} x\right\| \leq\|x-y\|, \forall y \in C
$$

The mapping P_{C} is called the metric projection of H onto C. Let S be a mapping on C and denote by $\operatorname{Fix}(S)$ the set of fixed points of $S . S$ is called an asymptotically nonexpansive mapping if $\exists\left\{\theta_{n}\right\} \subset[0,+\infty)$ with $\lim _{n \rightarrow \infty} \theta_{n}=0$ such that

$$
\left\|T^{n} x-T^{n} y\right\| \leq\left(1+\theta_{n}\right)\|x-y\|, \forall n \geq 1, x, y \in C
$$

In particular, if $\theta_{n}=0$, then T is called a nonexpansive mapping. S is called a strictly pseudocontractive mapping if $\exists \zeta \in[0,1)$ such that

$$
\|T x-T y\|^{2} \leq\|x-y\|^{2}+\zeta\|(I-T) x-(I-T) y\|^{2}, \forall x, y \in C .
$$

Fixed points of (asymptotically) nonexpansive mappings and strictly pseudocontractive mappings were studied through iterative methods recently; see, $[5,6,11,13,17]$ and the references therein.

Let $A: H \rightarrow H$ be a mapping. Recall that A is said to be
(i) L-Lipschitz continuous (or L-Lipschitzian) if $\exists L>0$ such that

$$
\|T x-T y\| \leq L\|x-y\|, \forall x, y \in C
$$

(ii) monotone if $\langle T x-T y, x-y\rangle \geq 0, \forall x, y \in C$;
(iii) pseudomonotone if $\langle T x, y-x\rangle \geq 0 \Rightarrow\langle T y, y-x\rangle \geq 0, \forall x, y \in C$;
(iv) α-strongly monotone if $\exists \alpha>0$ such that

$$
\langle T x-T y, x-y\rangle \geq \alpha\|x-y\|^{2}, \forall x, y \in C
$$

(v) sequentially weakly continuous if $\forall\left\{x_{n}\right\} \subset C$, the relation holds:

$$
x_{n} \rightharpoonup x \Rightarrow T x_{n} \rightharpoonup T x
$$

The classical variational inequality problem (VIP) is to find $x^{*} \in C$ such that

$$
\begin{equation*}
\left\langle A x^{*}, x-x^{*}\right\rangle \geq 0, \quad \forall x \in C \tag{1.1}
\end{equation*}
$$

The solution set of the VIP is denoted by $\mathrm{VI}(C, A)$. At present, one of the most popular methods for solving the VIP is the extragradient method introduced by Korpelevich [9] in 1976, that is, for any initial $x_{0} \in C$, the sequence $\left\{x_{n}\right\}$ is generated by

$$
\left\{\begin{array}{l}
y_{n}=P_{C}\left(x_{n}-\tau A x_{n}\right) \tag{1.2}\\
x_{n+1}=P_{C}\left(x_{n}-\tau A y_{n}\right) \quad \forall n \geq 0
\end{array}\right.
$$

with $\tau \in\left(0, \frac{1}{L}\right)$. If $\operatorname{VI}(C, A) \neq \emptyset$, then the sequence $\left\{x_{n}\right\}$ generated by process (1.2) converges weakly to an element in $\mathrm{VI}(C, A)$. Recently, gradient-based methods have been considered by many authors in infinite dimensional spaces; see e.g., $[1,10,16,15]$ and references therein, to name but a few.

In the extragradient methods, one needs to compute two projections onto C for each iteration. It is known that the projection onto a closed convex set C is closely related to a minimum distance problem. If C is a general closed and convex set, this might require a prohibitive amount of computation time. In 2011, Censor et al. [1] modified Korpelevich's extragradient method and first introduced the subgradient extragradient method, in which the second projection onto C is replaced by a projection onto a half-space:

$$
\left\{\begin{array}{l}
y_{n}=P_{C}\left(x_{n}-\tau A x_{n}\right) \tag{1.3}\\
C_{n}=\left\{x \in H:\left\langle x_{n}-\tau A x_{n}-y_{n}, x-y_{n}\right\rangle \leq 0\right\} \\
x_{n+1}=P_{C_{n}}\left(x_{n}-\tau A y_{n}\right) \quad \forall n \geq 0
\end{array}\right.
$$

with $\tau \in\left(0, \frac{1}{L}\right)$. In 2014, Kraikaew and Saejung [10] introduced the Halpern subgradient extragradient method for solving the VIP (1.1), and proved strong convergence of
the proposed method to a solution of VIP (1.1). In 2018, by virtue of the inertial technique, Thong and Hieu [15] introduced the inertial subgradient extragradient method, and proved weak convergence of the proposed method to a solution of VIP (1.1). Very recently, Thong and Hieu [16] introduced two inertial subgradient extragradient algorithms with linear-search process for solving the VIP (1.1) with monotone and Lipschitz continuous mapping A and the fixed-point problem of a quasi-nonexpansive mapping T with a demiclosedness property in a real Hilbert space. Under mild conditions, Thong and Hieu [16] proved weak convergence of the proposed algorithms to an element of $\operatorname{Fix}(T) \cap \mathrm{VI}(C, A)$. Inspired by the research work by Thong and Hieu [16], we introduce two asymptotic inertial subgradient extragradient algorithms with line-search process for solving the VIP (1.1) with pseudomonotone and Lipschitz continuous mapping and common fixed point problems of an asymptotically nonexpansive mapping and a strictly pseudocontractive mapping in H. Convergence theorems are established in Hilbert spaces.

The following tools are essential for our main results.
Lemma 1.1. [8] Let $A: C \rightarrow H$ be pseudomonotone and continuous. Then $x^{*} \in C$ is a solution to the $\operatorname{VIP}\left\langle A x^{*}, x-x^{*}\right\rangle \geq 0 \forall x \in C$, if and only if

$$
\left\langle A x, x-x^{*}\right\rangle \geq 0, \forall x \in C
$$

Lemma 1.2. [18] Let $\left\{a_{n}\right\}$ be a sequence of nonnegative real numbers satisfying the conditions: $a_{n+1} \leq\left(1-\lambda_{n}\right) a_{n}+\lambda_{n} \gamma_{n} \forall n \geq 1$, where $\left\{\lambda_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ are sequences of real numbers such that
(i) $\left\{\lambda_{n}\right\} \subset[0,1]$ and $\sum_{n=1}^{\infty} \lambda_{n}=\infty$, and
(ii) $\lim \sup _{n \rightarrow \infty} \gamma_{n} \leq 0$ or $\sum_{n=1}^{\infty}\left|\lambda_{n} \gamma_{n}\right|<\infty$. Then $\lim _{n \rightarrow \infty} a_{n}=0$.

Lemma 1.3. [21] Let $T: C \rightarrow C$ be a ζ-strict pseudocontraction. Then $I-T$ is demiclosed at zero, i.e., if $\left\{x_{n}\right\}$ is a sequence in C such that $x_{n} \rightharpoonup x \in C$ and $(I-T) x_{n} \rightarrow 0$, then $(I-T) x=0$, where I is the identity mapping of H.
Lemma 1.4. [19] Let $\lambda \in(0,1], T: C \rightarrow H$ be a nonexpansive mapping, and the mapping $T^{\lambda}: C \rightarrow H$ be defined by $T^{\lambda} x:=T x-\lambda \mu F(T x) \forall x \in C$, where $F: H \rightarrow H$ is κ-Lipschitzian and η-strongly monotone. Then T^{λ} is a contraction provided $0<\mu<\frac{2 \eta}{\kappa^{2}}$, i.e.,

$$
\left\|T^{\lambda} x-T^{\lambda} y\right\| \leq(1-\lambda \tau)\|x-y\|, \forall x, y \in C
$$

where $\tau=1-\sqrt{1-\mu\left(2 \eta-\mu \kappa^{2}\right)} \in(0,1]$.
Lemma 1.5. [2] Let X be a Banach space which admits a weakly continuous duality mapping, C be a nonempty closed convex subset of X, and $T: C \rightarrow C$ be an asymptotically nonexpansive mapping with $\operatorname{Fix}(T) \neq \emptyset$. Then $I-T$ is demiclosed at zero, i.e., if $\left\{x_{n}\right\}$ is a sequence in C such that $x_{n} \rightharpoonup x \in C$ and $(I-T) x_{n} \rightarrow 0$, then $(I-T) x=0$, where I is the identity mapping of X.
Lemma 1.6. [20] Let $T: C \rightarrow C$ be a ζ-strictly pseudocontractive mapping. Let γ and δ be two nonnegative real numbers. Assume $(\gamma+\delta) \zeta \leq \gamma$. Then

$$
\|\gamma(x-y)+\delta(T x-T y)\| \leq(\gamma+\delta)\|x-y\| \forall x, y \in C
$$

2. Main Results

In this section, we assume the following.
$T: H \rightarrow H$ is an asymptotically nonexpansive mapping with $\left\{\theta_{n}\right\}$ and $S: H \rightarrow H$ is a ζ-strictly pseudocontractive mapping.
$A: H \rightarrow H$ is L-Lipschitz continuous, pseudomonotone on H, and sequentially weakly continuous on C, such that $\Omega=\operatorname{Fix}(T) \cap \operatorname{Fix}(S) \cap \mathrm{VI}(C, A) \neq \emptyset$.
$f: H \rightarrow H$ is a contraction with constant $\delta \in[0,1)$, and $F: H \rightarrow H$ is η-strongly monotone and κ-Lipschitzian such that $\delta<\tau:=1-\sqrt{1-\rho\left(2 \eta-\rho \kappa^{2}\right)}$ for $\rho \in\left(0, \frac{2 \eta}{\kappa^{2}}\right)$.
$\left\{\sigma_{n}\right\} \subset[0,1]$ and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\},\left\{\delta_{n}\right\} \subset(0,1)$ such that
(i) $\sup _{n \geq 1} \frac{\sigma_{n}}{\alpha_{n}}<\infty$ and $\beta_{n}+\gamma_{n}+\delta_{n}=1 \forall n \geq 1$;
(ii) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(iii) $\lim _{n \rightarrow \infty} \frac{\theta_{n}}{\alpha_{n}}=0$ and $\left(\gamma_{n}+\delta_{n}\right) \zeta \leq \gamma_{n} \forall n \geq 1$;
(iv) $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup \sup _{n \rightarrow \infty} \beta_{n}<1$ and $\liminf _{n \rightarrow \infty} \delta_{n}>0$.

Algorithm 2.1.

Initialization: Given $\gamma>0, l \in(0,1), \mu \in(0,1)$. Let $x_{0}, x_{1} \in H$ be arbitrary.
Iterative Steps: Calculate x_{n+1} as follows:
Step 1. Set $w_{n}=T^{n} x_{n}+\sigma_{n}\left(T^{n} x_{n}-T^{n} x_{n-1}\right)$ and compute $y_{n}=P_{C}\left(w_{n}-\tau_{n} A w_{n}\right)$, where τ_{n} is chosen to be the largest $\tau \in\left\{\gamma, \gamma l, \gamma l^{2}, \ldots\right\}$ satisfying

$$
\begin{equation*}
\tau\left\|A w_{n}-A y_{n}\right\| \leq \mu\left\|w_{n}-y_{n}\right\| \tag{2.1}
\end{equation*}
$$

Step 2. Compute $z_{n}=\alpha_{n} f\left(x_{n}\right)+\left(I-\alpha_{n} \rho F\right) T^{n} P_{C_{n}}\left(w_{n}-\tau_{n} A y_{n}\right)$ with

$$
C_{n}:=\left\{x \in H:\left\langle w_{n}-\tau_{n} A w_{n}-y_{n}, x-y_{n}\right\rangle \leq 0\right\}
$$

Step 3. Compute

$$
\begin{equation*}
x_{n+1}=\beta_{n} x_{n}+\gamma_{n} z_{n}+\delta_{n} S z_{n} \tag{2.2}
\end{equation*}
$$

Again set $n:=n+1$ and go to Step 1 .
Lemma 2.1. The Armijo-like search rule (2.1) is well defined, and the inequality holds: $\min \left\{\gamma, \frac{\mu l}{L}\right\} \leq \tau_{n} \leq \gamma$.
Proof. From the L-Lipschitz continuity of A, we get

$$
\frac{\mu}{L}\left\|A w_{n}-A P_{C}\left(w_{n}-\gamma l^{m} A w_{n}\right)\right\| \leq \mu\left\|w_{n}-P_{C}\left(w_{n}-\gamma l^{m} A w_{n}\right)\right\|
$$

Thus, (2.1) holds for all $\gamma l^{m} \leq \frac{\mu}{L}$. So τ_{n} is well defined. Obviously, $\tau_{n} \leq \gamma$. If $\tau_{n}=\gamma$, then the inequality is true. If $\tau_{n}<\gamma$, then we get from (2.1)

$$
\left\|A w_{n}-A P_{C}\left(w_{n}-\frac{\tau_{n}}{l} A w_{n}\right)\right\|>\frac{\mu}{\frac{\tau_{n}}{l}}\left\|w_{n}-P_{C}\left(w_{n}-\frac{\tau_{n}}{l} A w_{n}\right)\right\|
$$

From the L-Lipschitz continuity of A, we obtain $\tau_{n}>\frac{\mu l}{L}$. Hence the inequality is valid.
Lemma 2.2. Let $\left\{w_{n}\right\},\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ be the sequences generated by Algorithm 2.1. Then

$$
\begin{align*}
\left\|z_{n}-p\right\|^{2} & \leq \alpha_{n} \delta\left\|x_{n}-p\right\|^{2}+\left(1-\alpha_{n} \tau\right)\left(1+\theta_{n}\right)\left\|w_{n}-p\right\|^{2} \\
& -\left(1-\alpha_{n} \tau\right)\left(1+\theta_{n}\right)(1-\mu)\left[\left\|w_{n}-y_{n}\right\|^{2}+\left\|u_{n}-y_{n}\right\|^{2}\right] \tag{2.3}\\
& +2 \alpha_{n}\left\langle(f-\rho F) p, z_{n}-p\right\rangle \forall p \in \Omega, n \geq n_{0}
\end{align*}
$$

for some $n_{0} \geq 1$, where $u_{n}:=P_{C_{n}}\left(w_{n}-\tau_{n} A y_{n}\right)$.
Proof. By fixing $p \in \Omega \subset C \subset C_{n}$, we have

$$
\begin{aligned}
\left\|u_{n}-p\right\|^{2} & \leq\left\langle u_{n}-p, w_{n}-\tau_{n} A y_{n}-p\right\rangle \\
& =\frac{1}{2}\left\|u_{n}-p\right\|^{2}+\frac{1}{2}\left\|w_{n}-p\right\|^{2}-\frac{1}{2}\left\|u_{n}-w_{n}\right\|^{2}-\left\langle u_{n}-p, \tau_{n} A y_{n}\right\rangle .
\end{aligned}
$$

So, it follows that $\left\|u_{n}-p\right\|^{2} \leq\left\|w_{n}-p\right\|^{2}-\left\|u_{n}-w_{n}\right\|^{2}-2\left\langle u_{n}-p, \tau_{n} A y_{n}\right\rangle$, which together with (2.1) and the pseudomonotonicity of A, we deduce that $\left\langle A y_{n}, p-y_{n}\right\rangle \leq 0$ and

$$
\begin{align*}
\left\|u_{n}-p\right\|^{2} & \leq\left\|w_{n}-p\right\|^{2}-\left\|u_{n}-y_{n}\right\|^{2}-\left\|y_{n}-w_{n}\right\|^{2} \\
& +2\left\langle w_{n}-\tau_{n} A y_{n}-y_{n}, u_{n}-y_{n}\right\rangle \tag{2.4}
\end{align*}
$$

Since $u_{n}=P_{C_{n}}\left(w_{n}-\tau_{n} A y_{n}\right)$ with $C_{n}:=\left\{x \in H:\left\langle w_{n}-\tau_{n} A w_{n}-y_{n}, x-y_{n}\right\rangle \leq 0\right\}$, we have $\left\langle w_{n}-\tau_{n} A w_{n}-y_{n}, u_{n}-y_{n}\right\rangle \leq 0$, which together with (2.1), implies that

$$
\begin{equation*}
\left\|u_{n}-p\right\|^{2} \leq\left\|w_{n}-p\right\|^{2}-(1-\mu)\left\|w_{n}-y_{n}\right\|^{2}-(1-\mu)\left\|u_{n}-y_{n}\right\|^{2} \quad \forall p \in \Omega \tag{2.5}
\end{equation*}
$$

Taking into account $\lim _{n \rightarrow \infty} \frac{\theta_{n}\left(2+\theta_{n}\right)}{\alpha_{n}\left(1-\beta_{n}\right)}=0$, we know that

$$
\theta_{n}\left(2+\theta_{n}\right) \leq \frac{\alpha_{n}\left(1-\beta_{n}\right)(\tau-\delta)}{2}, \quad \forall n \geq n_{0}
$$

for some $n_{0} \geq 1$. Hence we have that for all $n \geq n_{0}$,

$$
\begin{aligned}
\alpha_{n} \delta+\left(1-\alpha_{n} \tau\right)\left(1+\theta_{n}\right) & =1-\alpha_{n}(\tau-\delta)+\left(1-\alpha_{n} \tau\right) \theta_{n} \\
& \leq 1-\alpha_{n}(\tau-\delta)+\theta_{n} \leq 1-\frac{\alpha_{n}(\tau-\delta)}{2} \leq 1
\end{aligned}
$$

Using Lemma 1.4, and the convexity of the function $h(t)=t^{2} \forall t \in \mathbf{R}$, we obtain that, for all $n \geq n_{0}$,

$$
\begin{aligned}
& \left\|z_{n}-p\right\|^{2} \\
\leq & {\left[\alpha_{n} \delta\left\|x_{n}-p\right\|+\left(1-\alpha_{n} \tau\right)\left(1+\theta_{n}\right)\left\|u_{n}-p\right\|\right]^{2}+2 \alpha_{n}\left\langle(f-\rho F) p, z_{n}-p\right\rangle } \\
\leq & \alpha_{n} \delta\left\|x_{n}-p\right\|^{2}+\left(1-\alpha_{n} \tau\right)\left(1+\theta_{n}\right)\left\|u_{n}-p\right\|^{2}+2 \alpha_{n}\left\langle(f-\rho F) p, z_{n}-p\right\rangle \\
= & \alpha_{n} \delta\left\|x_{n}-p\right\|^{2}+\left(1-\alpha_{n} \tau\right)\left(1+\theta_{n}\right)\left\|w_{n}-p\right\|^{2}-\left(1-\alpha_{n} \tau\right)\left(1+\theta_{n}\right)(1-\mu) \\
\times & {\left[\left\|w_{n}-y_{n}\right\|^{2}+\left\|u_{n}-y_{n}\right\|^{2}\right]+2 \alpha_{n}\left\langle(f-\rho F) p, z_{n}-p\right\rangle . }
\end{aligned}
$$

This completes the proof.
Lemma 2.3. Let $\left\{w_{n}\right\},\left\{x_{n}\right\},\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ be bounded sequences generated by Algorithm 2.1. If $T^{n} x_{n}-T^{n+1} x_{n} \rightarrow 0, x_{n}-x_{n+1} \rightarrow 0, w_{n}-x_{n} \rightarrow 0, w_{n}-z_{n} \rightarrow 0$ and $\exists\left\{w_{n_{k}}\right\} \subset\left\{w_{n}\right\}$ such that $w_{n_{k}} \rightharpoonup z \in H$, then $z \in \Omega$.

Proof. From Algorithm 2.1, we have $\left\|T^{n} x_{n}-x_{n}\right\| \leq\left\|w_{n}-x_{n}\right\|+\left(1+\theta_{n}\right)\left\|x_{n}-x_{n-1}\right\|$. Utilizing the assumptions $x_{n}-x_{n+1} \rightarrow 0$ and $w_{n}-x_{n} \rightarrow 0$, we have from $\theta_{n} \rightarrow 0$ that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-T^{n} x_{n}\right\|=0 \tag{2.6}
\end{equation*}
$$

Combining the assumptions $w_{n}-x_{n} \rightarrow 0$ and $w_{n}-z_{n} \rightarrow 0$ implies that, as $n \rightarrow \infty$,

$$
\left\|z_{n}-x_{n}\right\| \leq\left\|w_{n}-z_{n}\right\|+\left\|w_{n}-x_{n}\right\| \rightarrow 0
$$

Note that, for each $p \in \Omega$,

$$
\begin{aligned}
\left\|w_{n}-p\right\|^{2} & \leq\left(\left\|T^{n} x_{n}-p\right\|+\sigma_{n}\left\|T^{n} x_{n}-T^{n} x_{n-1}\right\|\right)^{2} \\
& \leq\left\|x_{n}-p\right\|^{2}+\Gamma_{n}+\theta_{n}\left(2+\theta_{n}\right)\left(\left\|x_{n}-p\right\|^{2}+\Gamma_{n}\right)
\end{aligned}
$$

where $\Gamma_{n}=\sigma_{n}\left\|x_{n}-x_{n-1}\right\|\left(2\left\|x_{n}-p\right\|+\sigma_{n}\left\|x_{n}-x_{n-1}\right\|\right)$. So it follows from (2.3) that for all $n \geq n_{0}$,

$$
\begin{aligned}
&\left(1-\alpha_{n} \tau\right)\left(1+\theta_{n}\right)(1-\mu)\left[\left\|w_{n}-y_{n}\right\|^{2}+\left\|u_{n}-y_{n}\right\|^{2}\right] \\
& \leq \alpha_{n} \delta\left\|x_{n}-p\right\|^{2}+\left(1-\alpha_{n} \tau\right)\left(1+\theta_{n}\right)\left[\left\|x_{n}-p\right\|^{2}+\Gamma_{n}\right. \\
&+\left.\theta_{n}\left(2+\theta_{n}\right)\left(\left\|x_{n}-p\right\|^{2}+\Gamma_{n}\right)\right]-\left\|z_{n}-p\right\|^{2}+2 \alpha_{n}\|(f-\rho F) p\|\left\|z_{n}-p\right\| \\
& \leq {\left[1-\frac{\alpha_{n}(\tau-\delta)}{2}\right]\left\|x_{n}-p\right\|^{2}-\left\|z_{n}-p\right\|^{2}+\left(1-\alpha_{n} \tau\right)\left(1+\theta_{n}\right)\left[\Gamma_{n}\right.} \\
&\left.+\theta_{n}\left(2+\theta_{n}\right)\left(\left\|x_{n}-p\right\|^{2}+\Gamma_{n}\right)\right]+2 \alpha_{n}\|(f-\rho F) p\|\left\|z_{n}-p\right\| \\
& \leq\left\|x_{n}-z_{n}\right\|\left(\left\|x_{n}-p\right\|+\left\|z_{n}-p\right\|\right)+\left(1+\theta_{n}\right)\left[\Gamma_{n}\right. \\
&+\left.\theta_{n}\left(2+\theta_{n}\right)\left(\left\|x_{n}-p\right\|^{2}+\Gamma_{n}\right)\right]+2 \alpha_{n}\|(f-\rho F) p\|\left\|z_{n}-p\right\| .
\end{aligned}
$$

Since $\alpha_{n} \rightarrow 0, \theta_{n} \rightarrow 0, \Gamma_{n} \rightarrow 0$ and $x_{n}-z_{n} \rightarrow 0$, we get

$$
\lim _{n \rightarrow \infty}\left\|w_{n}-y_{n}\right\|=0 \quad \text { and } \quad \lim _{n \rightarrow \infty}\left\|u_{n}-y_{n}\right\|=0
$$

It follows that as $n \rightarrow \infty$,
$\left\|w_{n}-u_{n}\right\| \leq\left\|w_{n}-y_{n}\right\|+\left\|y_{n}-u_{n}\right\| \rightarrow 0 \quad$ and $\quad\left\|x_{n}-u_{n}\right\| \leq\left\|x_{n}-w_{n}\right\|+\left\|w_{n}-u_{n}\right\| \rightarrow 0$.
By using Algorithm 2.1 we get

$$
\delta_{n}\left\|S z_{n}-z_{n}\right\|=\left\|x_{n+1}-x_{n}+\left(1-\beta_{n}\right)\left(x_{n}-z_{n}\right)\right\| \leq\left\|x_{n+1}-x_{n}\right\|+\left\|x_{n}-z_{n}\right\|
$$

Since $x_{n}-x_{n+1} \rightarrow 0, z_{n}-x_{n} \rightarrow 0$ and $\liminf _{n \rightarrow \infty} \delta_{n}>0$, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-S z_{n}\right\|=0 \tag{2.7}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\frac{1}{\tau_{n}}\left\langle w_{n}-y_{n}, x-y_{n}\right\rangle+\left\langle A w_{n}, y_{n}-w_{n}\right\rangle \leq\left\langle A w_{n}, x-w_{n}\right\rangle \quad \forall x \in C \tag{2.8}
\end{equation*}
$$

Since $\tau_{n} \geq \min \left\{\gamma, \frac{\mu l}{L}\right\}$, we get $\lim \inf _{k \rightarrow \infty}\left\langle A w_{n_{k}}, x-w_{n_{k}}\right\rangle \geq 0 \forall x \in C$.
Since $w_{n}-y_{n} \rightarrow 0$, we obtain from (2.8) that $\lim \inf _{k \rightarrow \infty}\left\langle A y_{n_{k}}, x-y_{n_{k}}\right\rangle \geq 0 \forall x \in C$. Next we show that $x_{n}-T x_{n} \rightarrow 0$. Indeed,

$$
\begin{aligned}
\left\|T x_{n}-x_{n}\right\| & \leq\left\|T x_{n}-T^{n+1} x_{n}\right\|+\left\|T^{n+1} x_{n}-T^{n} x_{n}\right\|+\left\|T^{n} x_{n}-x_{n}\right\| \\
& \leq\left(2+\theta_{1}\right)\left\|x_{n}-T^{n} x_{n}\right\|+\left\|T^{n+1} x_{n}-T^{n} x_{n}\right\|
\end{aligned}
$$

From (2.6) and the assumption $T^{n} x_{n}-T^{n+1} x_{n} \rightarrow 0$ we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0 \tag{2.9}
\end{equation*}
$$

We now take a sequence $\left\{\varepsilon_{k}\right\} \subset(0,1)$ satisfying $\varepsilon_{k} \downarrow 0$ as $k \rightarrow \infty$. For all $k \geq 1$, we denote by m_{k} the smallest positive integer such that

$$
\begin{equation*}
\left\langle A y_{n_{j}}, x-y_{n_{j}}\right\rangle+\varepsilon_{k} \geq 0 \quad \forall j \geq m_{k} \tag{2.10}
\end{equation*}
$$

Setting $\mu_{m_{k}}=\frac{A y_{m_{k}}}{\left\|A y_{m_{k}}\right\|^{2}}$, we get $\left\langle A y_{m_{k}}, \mu_{m_{k}}\right\rangle=1 \forall k \geq 1$. From (2.10), we get

$$
\left\langle A y_{m_{k}}, x+\varepsilon_{k} \mu_{m_{k}}-y_{m_{k}}\right\rangle \geq 0, \forall k \geq 1
$$

From the pseudomonotonicity of A, we have

$$
\begin{equation*}
\left\langle A x, x-y_{m_{k}}\right\rangle \geq\left\langle A x-A\left(x+\varepsilon_{k} \mu_{m_{k}}\right), x+\varepsilon_{k} \mu_{m_{k}}-y_{m_{k}}\right\rangle-\varepsilon_{k}\left\langle A x, \mu_{m_{k}}\right\rangle \quad \forall k \geq 1 \tag{2.11}
\end{equation*}
$$

We claim that $\lim _{k \rightarrow \infty} \varepsilon_{k} \mu_{m_{k}}=0$. Indeed, from $w_{n_{k}} \rightharpoonup z$ and $w_{n}-y_{n} \rightarrow 0$, we obtain $y_{n_{k}} \rightharpoonup z$. So, $\left\{y_{n}\right\} \subset C$ guarantees $z \in C$. Again from the sequentially weak continuity of A, we know that $A y_{n_{k}} \rightharpoonup A z$. Thus, $A z \neq 0$ (otherwise, z is a solution). Taking into account the sequentially weak lower semicontinuity of the norm $\|\cdot\|$, we get $0<\|A z\| \leq \liminf _{k \rightarrow \infty}\left\|A y_{n_{k}}\right\|$. Note that $\left\{y_{m_{k}}\right\} \subset\left\{y_{n_{k}}\right\}$ and $\varepsilon_{k} \downarrow 0$ as $k \rightarrow \infty$. So it follows that

$$
0 \leq \limsup _{k \rightarrow \infty}\left\|\varepsilon_{k} \mu_{m_{k}}\right\|=\limsup _{k \rightarrow \infty} \frac{\varepsilon_{k}}{\left\|A y_{m_{k}}\right\|} \leq \frac{\limsup _{k \rightarrow \infty} \varepsilon_{k}}{\liminf _{k \rightarrow \infty}\left\|A y_{n_{k}}\right\|}=0
$$

Hence we get $\varepsilon_{k} \mu_{m_{k}} \rightarrow 0$.
Next we show that $z \in \Omega$. Indeed, from $w_{n}-x_{n} \rightarrow 0$ and $w_{n_{k}} \rightharpoonup z$, we get $x_{n_{k}} \rightharpoonup z$. From (2.9) we have $x_{n_{k}}-T x_{n_{k}} \rightarrow 0$. Note that Lemma 1.5 guarantees the demiclosedness of $I-T$ at zero. Thus $z \in \operatorname{Fix}(T)$. Meantime, from $w_{n}-z_{n} \rightarrow 0$ and $w_{n_{k}} \rightharpoonup z$, we get $z_{n_{k}} \rightharpoonup z$. From (2.7) we have $z_{n_{k}}-S z_{n_{k}} \rightarrow 0$. From Lemma 1.3, it follows that $I-S$ is demiclosed at zero. Hence we get $(I-S) z=0$, i.e., $z \in \operatorname{Fix}(S)$. On the other hand, letting $k \rightarrow \infty$, we deduce that the right hand side of (2.11) tends to zero by the uniform continuity of A, the boundedness of $\left\{y_{m_{k}}\right\},\left\{\mu_{m_{k}}\right\}$ and the limit $\lim _{k \rightarrow \infty} \varepsilon_{k} \mu_{m_{k}}=0$. Thus, we get $\langle A x, x-z\rangle=\liminf _{k \rightarrow \infty}\left\langle A x, x-y_{m_{k}}\right\rangle \geq 0 \forall x \in C$. By Lemma 1.1, we have $z \in \operatorname{VI}(C, A)$. Therefore,

$$
z \in \operatorname{Fix}(T) \cap \operatorname{Fix}(S) \cap \operatorname{VI}(C, A)=\Omega
$$

This completes the proof.
Theorem 2.1. Let the sequence $\left\{x_{n}\right\}$ be generated by Algorithm 1.1. Assume that $T^{n} x_{n}-T^{n+1} x_{n} \rightarrow 0$. Then

$$
x_{n} \rightarrow x^{*} \in \Omega \Leftrightarrow\left\{\begin{array}{l}
x_{n}-x_{n+1} \rightarrow 0 \\
x_{n}-y_{n} \rightarrow 0
\end{array}\right.
$$

where $x^{*} \in \Omega$ is a unique solution to the VIP: $\left\langle(\rho F-f) x^{*}, p-x^{*}\right\rangle \geq 0 \forall p \in \Omega$.
Proof. From $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n}<1$, we may assume, without loss of generality, that $\left\{\beta_{n}\right\} \subset[a, b] \subset(0,1)$. We claim that $P_{\Omega}(f+I-\rho F)$ is a contraction. Indeed, by Lemma 1.4, we have that $P_{\Omega}(f+I-\rho F)$ is a contraction. Banach's Contraction Mapping Principle guarantees that $P_{\Omega}(f+I-\rho F)$ has a unique fixed point. Say $x^{*} \in H$, that is, $x^{*}=P_{\Omega}(f+I-\rho F) x^{*}$. Thus, there exists a unique solution $x^{*} \in \Omega=\operatorname{Fix}(T) \cap \operatorname{Fix}(S) \cap \operatorname{VI}(C, A)$ to the VIP

$$
\begin{equation*}
\left\langle(\rho F-f) x^{*}, p-x^{*}\right\rangle \geq 0 \quad \forall p \in \Omega \tag{2.12}
\end{equation*}
$$

It is now easy to see that the necessity of the theorem is valid. Indeed, if $x_{n} \rightarrow x^{*} \in \Omega=\operatorname{Fix}(T) \cap \operatorname{Fix}(S) \cap \mathrm{VI}(C, A)$, then $x^{*}=T x^{*}, x^{*}=S x^{*}$ and $x^{*}=P_{C}\left(x^{*}-\tau_{n} A x^{*}\right)$, which together with Algorithm 2.1, implies that

$$
\left\|w_{n}-x^{*}\right\| \leq\left(1+\theta_{n}\right)\left(\left\|x_{n}-x^{*}\right\|+\sigma_{n}\left\|x_{n}-x_{n-1}\right\|\right) \rightarrow 0(n \rightarrow \infty)
$$

and hence

$$
\begin{aligned}
\left\|y_{n}-x_{n}\right\| & \leq\left\|P_{C}\left(w_{n}-\tau_{n} A w_{n}\right)-P_{C}\left(x^{*}-\tau_{n} A x^{*}\right)\right\|+\left\|x_{n}-x^{*}\right\| \\
& \leq(1+\gamma L)\left\|w_{n}-x^{*}\right\|+\left\|x_{n}-x^{*}\right\| \rightarrow 0(n \rightarrow \infty)
\end{aligned}
$$

In addition, it is clear that

$$
\left\|x_{n}-x_{n+1}\right\| \leq\left\|x_{n}-x^{*}\right\|+\left\|x_{n+1}-x^{*}\right\| \rightarrow 0(n \rightarrow \infty)
$$

Next we show the sufficiency of the theorem. To the aim, we assume

$$
\lim _{n \rightarrow \infty}\left(\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n}-y_{n}\right\|\right)=0
$$

and divide the proof of the sufficiency into several steps.
Step 1. We show that $\left\{x_{n}\right\}$ is bounded. Fixing $p \in \Omega=\operatorname{Fix}(T) \cap \operatorname{Fix}(S) \cap \operatorname{VI}(C, A)$, we have that $T p=p, S p=p$, and (2.5) holds, i.e.,

$$
\begin{equation*}
\left\|u_{n}-p\right\|^{2} \leq\left\|w_{n}-p\right\|^{2}-(1-\mu)\left\|w_{n}-y_{n}\right\|^{2}-(1-\mu)\left\|u_{n}-y_{n}\right\|^{2} \tag{2.13}
\end{equation*}
$$

This immediately implies that

$$
\begin{equation*}
\left\|u_{n}-p\right\| \leq\left\|w_{n}-p\right\| \quad \forall n \geq 1 \tag{2.14}
\end{equation*}
$$

From the definition of w_{n}, we get

$$
\begin{align*}
\left\|w_{n}-p\right\| & \leq\left\|T^{n} x_{n}-p\right\|+\sigma_{n}\left\|T^{n} x_{n}-T^{n} x_{n-1}\right\| \\
& \leq\left(1+\theta_{n}\right)\left(\left\|x_{n}-p\right\|+\alpha_{n} \cdot \frac{\sigma_{n}}{\alpha_{n}}\left\|x_{n}-x_{n-1}\right\|\right) . \tag{2.15}
\end{align*}
$$

Since $\sup _{n \geq 1} \frac{\sigma_{n}}{\alpha_{n}}<\infty$ and $\sup _{n \geq 1}\left\|x_{n}-x_{n-1}\right\|<\infty$, we know that

$$
\sup _{n \geq 1} \frac{\sigma_{n}}{\alpha_{n}}\left\|x_{n}-x_{n-1}\right\|<\infty
$$

which hence implies that there exists a constant $M_{1}>0$ such that

$$
\begin{equation*}
\frac{\sigma_{n}}{\alpha_{n}}\left\|x_{n}-x_{n-1}\right\| \leq M_{1} \quad \forall n \geq 1 \tag{2.16}
\end{equation*}
$$

Combining (2.14), (2.15) and (2.16), we obtain

$$
\begin{equation*}
\left\|u_{n}-p\right\| \leq\left\|w_{n}-p\right\| \leq\left(1+\theta_{n}\right)\left(\left\|x_{n}-p\right\|+\alpha_{n} M_{1}\right) \quad \forall n \geq 1 \tag{2.17}
\end{equation*}
$$

From Algorithm 2.1, Lemma 1.4 and (2.17), it follows that for all $n \geq n_{0}$,

$$
\begin{aligned}
\left\|z_{n}-p\right\| & \leq \alpha_{n} \delta\left\|x_{n}-p\right\|+\left(1-\alpha_{n} \tau\right)\left(1+\theta_{n}\right)\left\|u_{n}-p\right\|+\alpha_{n}\|(f-\rho F) p\| \\
& \leq\left[\alpha_{n} \delta+1-\alpha_{n} \tau+\theta_{n}\left(2+\theta_{n}\right)\right]\left(\left\|x_{n}-p\right\|+\alpha_{n} M_{1}\right)+\alpha_{n}\|(f-\rho F) p\| \\
& \leq\left(1-\frac{\alpha_{n}(\tau-\delta)}{2}\right)\left\|x_{n}-p\right\|+\alpha_{n}\left(M_{1}+\|(f-\rho F) p\|\right)
\end{aligned}
$$

which together with Lemma 1.6 and $\left(\gamma_{n}+\delta_{n}\right) \zeta \leq \gamma_{n}$, implies that, for all $n \geq n_{0}$,

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| & \leq \beta_{n}\left\|x_{n}-p\right\|+\left(1-\beta_{n}\right)\left\|\frac{1}{1-\beta_{n}}\left[\gamma_{n}\left(z_{n}-p\right)+\delta_{n}\left(S z_{n}-p\right)\right]\right\| \\
& \leq\left[1-\frac{\alpha_{n}\left(1-\beta_{n}\right)(\tau-\delta)}{2}\right]\left\|x_{n}-p\right\|+\frac{\alpha_{n}\left(1-\beta_{n}\right)(\tau-\delta)}{2} \cdot \frac{2\left(M_{1}+\|(f-\rho F) p\|\right)}{\tau-\delta} \\
& \leq \max \left\{\left\|x_{n}-p\right\|, \frac{2\left(M_{1}+\|(f-\rho F) p\|\right)}{\tau-\delta}\right\} .
\end{aligned}
$$

By induction, we obtain

$$
\left\|x_{n}-p\right\| \leq \max \left\{\left\|x_{n_{0}}-p\right\|, \frac{2\left(M_{1}+\|(\rho F-f) p\|\right)}{\tau-\delta}\right\}, \forall n \geq n_{0}
$$

Thus, $\left\{x_{n}\right\}$ is bounded, and so are the sequences $\left\{u_{n}\right\},\left\{w_{n}\right\},\left\{y_{n}\right\},\left\{z_{n}\right\},\left\{f\left(x_{n}\right)\right\}$, $\left\{S z_{n}\right\},\left\{T^{n} u_{n}\right\}$ and $\left\{T^{n} x_{n}\right\}$.
Step 2. We show that for all $n \geq n_{0}$,

$$
\begin{aligned}
& \left(1-\alpha_{n} \tau\right)\left(1-\beta_{n}\right)\left(1+\theta_{n}\right)(1-\mu)\left[\left\|w_{n}-y_{n}\right\|^{2}+\left\|u_{n}-y_{n}\right\|^{2}\right] \\
\leq & \left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}+\alpha_{n} M_{4}
\end{aligned}
$$

with constant $M_{4}>0$. Indeed, utilizing Lemma 2.2 and the convexity of $\|\cdot\|^{2}$, from $\left(\gamma_{n}+\delta_{n}\right) \zeta \leq \gamma_{n}$ we obtain that for all $n \geq n_{0}$,

$$
\begin{align*}
& \left\|x_{n+1}-p\right\|^{2} \\
\leq & \beta_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\beta_{n}\right)\left\|\frac{1}{1-\beta_{n}}\left[\gamma_{n}\left(z_{n}-p\right)+\delta_{n}\left(T z_{n}-p\right)\right]\right\|^{2} \tag{3.18}\\
\leq & \beta_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\beta_{n}\right)\left\{\alpha_{n} \delta\left\|x_{n}-p\right\|^{2}+\left(1-\alpha_{n} \tau\right)\left(1+\theta_{n}\right)\left\|w_{n}-p\right\|^{2}\right. \\
& \left.-\left(1-\alpha_{n} \tau\right)\left(1+\theta_{n}\right)(1-\mu)\left[\left\|w_{n}-y_{n}\right\|^{2}+\left\|u_{n}-y_{n}\right\|^{2}\right]+\alpha_{n} M_{2}\right\},
\end{align*}
$$

where $\sup _{n \geq 1} 2\|(f-\rho F) p\|\left\|z_{n}-p\right\| \leq M_{2}$ for some $M_{2}>0$. Also, from (2.17) we have

$$
\begin{align*}
\left\|w_{n}-p\right\|^{2} & \leq\left[1+\theta_{n}\left(2+\theta_{n}\right)\right]\left[\left\|x_{n}-p\right\|^{2}+\alpha_{n}\left(2 M_{1}\left\|x_{n}-p\right\|+\alpha_{n} M_{1}^{2}\right)\right] \tag{2.19}\\
& \leq\left\|x_{n}-p\right\|^{2}+\alpha_{n} M_{3},
\end{align*}
$$

where

$$
\sup _{n \geq 1}\left\{2 M_{1}\left\|x_{n}-p\right\|+\alpha_{n} M_{1}^{2}+\frac{\theta_{n}}{\alpha_{n}}\left(2+\theta_{n}\right)\left[\left\|x_{n}-p\right\|^{2}+\alpha_{n}\left(2 M_{1}\left\|x_{n}-p\right\|+\alpha_{n} M_{1}^{2}\right)\right]\right\} \leq M_{3}
$$

for some $M_{3}>0$. Note that $\alpha_{n} \delta+\left(1-\alpha_{n} \tau\right)\left(1+\theta_{n}\right) \leq 1-\frac{\alpha_{n}(\tau-\delta)}{2}$ for all $n \geq n_{0}$. Substituting (2.19) for (2.18), we deduce that for all $n \geq n_{0}$,

$$
\begin{align*}
& \left\|x_{n+1}-p\right\|^{2} \\
\leq & \beta_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\beta_{n}\right)\left\{\left(1-\frac{\alpha_{n}(\tau-\delta)}{2}\right)\left\|x_{n}-p\right\|^{2}+\left(1-\alpha_{n} \tau\right)\left(1+\theta_{n}\right) \alpha_{n} M_{3}\right. \\
- & \left.\left(1-\alpha_{n} \tau\right)\left(1+\theta_{n}\right)(1-\mu)\left[\left\|w_{n}-y_{n}\right\|^{2}+\left\|u_{n}-y_{n}\right\|^{2}\right]+\alpha_{n} M_{2}\right\} \\
\leq & \left\|x_{n}-p\right\|^{2}-\left(1-\alpha_{n} \tau\right)\left(1-\beta_{n}\right)\left(1+\theta_{n}\right)(1-\mu)\left[\left\|w_{n}-y_{n}\right\|^{2}+\left\|u_{n}-y_{n}\right\|^{2}\right] \\
+ & \alpha_{n} M_{4}, \tag{2.20}
\end{align*}
$$

where $\sup _{n \geq 1}\left(M_{2}+\left(1+\theta_{n}\right) M_{3}\right) \leq M_{4}$ for some $M_{4}>0$. This immediately implies that for all $n \geq n_{0}$,

$$
\begin{align*}
& \left(1-\alpha_{n} \tau\right)\left(1-\beta_{n}\right)\left(1+\theta_{n}\right)(1-\mu)\left[\left\|w_{n}-y_{n}\right\|^{2}+\left\|u_{n}-y_{n}\right\|^{2}\right] \tag{2.21}\\
\leq & \left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}+\alpha_{n} M_{4} .
\end{align*}
$$

Step 3. We show that for all $n \geq n_{0}$,

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2} \quad & \leq\left[1-\frac{\alpha_{n}\left(1-\beta_{n}\right)(\tau-\delta)}{2}\right]\left\|x_{n}-p\right\|^{2} \\
& +\frac{\alpha_{n}\left(1-\beta_{n}\right)(\tau-\delta)}{2}\left[\frac{4}{\tau-\delta}\left\langle(f-\rho F) p, z_{n}-p\right\rangle\right. \\
& \left.+\frac{4 M}{\tau-\delta} \cdot \frac{\sigma_{n}}{\alpha_{n}} \cdot\left\|x_{n}-x_{n-1}\right\|+\frac{4 M^{2}}{\tau-\delta} \cdot \frac{\theta_{n}}{\alpha_{n}}\right],
\end{aligned}
$$

with constant $M>0$. Indeed, we have

$$
\begin{align*}
\left\|w_{n}-p\right\|^{2} \quad & \leq\left\|x_{n}-p\right\|^{2}+\sigma_{n}\left\|x_{n}-x_{n-1}\right\|\left(2\left\|x_{n}-p\right\|+\sigma_{n}\left\|x_{n}-x_{n-1}\right\|\right) \\
& +\theta_{n}\left(2+\theta_{n}\right)\left(\left\|x_{n}-p\right\|+\sigma_{n}\left\|x_{n}-x_{n-1}\right\|\right)^{2} \tag{2.22}\\
& \leq\left\|x_{n}-p\right\|^{2}+\sigma_{n}\left\|x_{n}-x_{n-1}\right\| M+\theta_{n} M^{2}
\end{align*}
$$

where $\sup _{n>1}\left(2+\theta_{n}\right)\left(\left\|x_{n}-p\right\|+\sigma_{n}\left\|x_{n}-x_{n-1}\right\|\right) \leq M$ for some $M>0$. Combining (2.18) and (2.22), we have that for all $n \geq n_{0}$,

$$
\begin{align*}
& \left\|x_{n+1}-p\right\|^{2} \\
\leq & \beta_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\beta_{n}\right)\left\{\alpha_{n} \delta\left\|x_{n}-p\right\|^{2}+\left(1-\alpha_{n} \tau\right)\left(1+\theta_{n}\right)\left[\left\|x_{n}-p\right\|^{2}\right.\right. \\
+ & \left.\left.\sigma_{n}\left\|x_{n}-x_{n-1}\right\| M+\theta_{n} M^{2}\right]+2 \alpha_{n}\left\langle(f-\rho F) p, z_{n}-p\right\rangle\right\} \tag{2.23}\\
\leq & {\left[1-\frac{\alpha_{n}\left(1-\beta_{n}\right)(\tau-\delta)}{2}\right]\left\|x_{n}-p\right\|^{2}+\left(1-\beta_{n}\right)\left[\sigma_{n}\left\|x_{n}-x_{n-1}\right\| 2 M+\theta_{n} 2 M^{2}\right] } \\
+ & 2 \alpha_{n}\left(1-\beta_{n}\right)\left\langle(f-\rho F) p, z_{n}-p\right\rangle \\
= & {\left[1-\frac{\alpha_{n}\left(1-\beta_{n}\right)(\tau-\delta)}{2}\right]\left\|x_{n}-p\right\|^{2}+\frac{\alpha_{n}\left(1-\beta_{n}\right)(\tau-\delta)}{2}\left[\frac{4}{\tau-\delta}\left\langle(f-\rho F) p, z_{n}-p\right\rangle\right.} \\
& \left.+\frac{4 M}{\tau-\delta} \cdot \frac{\sigma_{n}}{\alpha_{n}} \cdot\left\|x_{n}-x_{n-1}\right\|+\frac{4 M^{2}}{\tau-\delta} \cdot \frac{\theta_{n}}{\alpha_{n}}\right] .
\end{align*}
$$

Step 4. We show that $\left\{x_{n}\right\}$ converges strongly to a unique solution $x^{*} \in \Omega$ to the VIP (2.12). Indeed, putting $p=x^{*}$, we deduce from (2.23) that

$$
\begin{align*}
\left\|x_{n+1}-x^{*}\right\|^{2} \quad & \leq\left[1-\frac{\alpha_{n}\left(1-\beta_{n}\right)(\tau-\delta)}{2}\right]\left\|x_{n}-x^{*}\right\|^{2}+\frac{\alpha_{n}\left(1-\beta_{n}\right)(\tau-\delta)}{2} \\
& \times\left[\frac{4}{\tau-\delta}\left\langle(f-\rho F) x^{*}, z_{n}-x^{*}\right\rangle+\frac{4 M}{\tau-\delta} \cdot \frac{\sigma_{n}}{\alpha_{n}} \cdot\left\|x_{n}-x_{n-1}\right\|+\frac{4 M^{2}}{\tau-\delta} \cdot \frac{\theta_{n}}{\alpha_{n}}\right] . \tag{2.24}
\end{align*}
$$

By Lemma 1.2, it suffices to show that $\lim \sup _{n \rightarrow \infty}\left\langle(f-\rho F) x^{*}, z_{n}-x^{*}\right\rangle \leq 0$. From (2.21), $x_{n}-x_{n+1} \rightarrow 0, \alpha_{n} \rightarrow 0, \theta_{n} \rightarrow 0$ and $\left\{\beta_{n}\right\} \subset[a, b] \subset(0,1)$, we obtain

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty}\left(1-\alpha_{n} \tau\right)(1-b)\left(1+\theta_{n}\right)(1-\mu)\left[\left\|w_{n}-y_{n}\right\|^{2}+\left\|u_{n}-y_{n}\right\|^{2}\right] \\
\leq & \limsup _{n \rightarrow \infty}\left[\left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}+\alpha_{n} M_{4}\right] \\
\leq & \limsup _{n \rightarrow \infty}\left(\left\|x_{n}-p\right\|+\left\|x_{n+1}-p\right\|\right)\left\|x_{n}-x_{n+1}\right\|=0
\end{aligned}
$$

This immediately implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|w_{n}-y_{n}\right\|=0 \quad \text { and } \quad \lim _{n \rightarrow \infty}\left\|u_{n}-y_{n}\right\|=0 \tag{2.25}
\end{equation*}
$$

Obviously, the assumption $\left\|x_{n}-y_{n}\right\| \rightarrow 0$ together with (2.25), guarantees that $\left\|w_{n}-x_{n}\right\| \leq\left\|w_{n}-y_{n}\right\|+\left\|y_{n}-x_{n}\right\| \rightarrow 0(n \rightarrow \infty)$. It follows that

$$
\begin{align*}
\left\|T^{n} x_{n}-x_{n}\right\| & =\left\|w_{n}-x_{n}-\sigma_{n}\left(T^{n} x_{n}-T^{n} x_{n-1}\right)\right\| \\
& \leq\left\|w_{n}-x_{n}\right\|+\sigma_{n}\left(1+\theta_{n}\right)\left\|x_{n}-x_{n-1}\right\| \rightarrow 0 \quad(n \rightarrow \infty) \tag{2.26}
\end{align*}
$$

Since $z_{n}=\alpha_{n} f\left(x_{n}\right)+\left(I-\alpha_{n} \rho F\right) T^{n} u_{n}$ with $u_{n}:=P_{C_{n}}\left(w_{n}-\tau_{n} A y_{n}\right)$, from (2.25), (2.26) and the boundedness of $\left\{x_{n}\right\},\left\{T^{n} u_{n}\right\}$, we conclude that as $n \rightarrow \infty$,

$$
\begin{align*}
& \left\|z_{n}-x_{n}\right\|=\left\|\alpha_{n} f\left(x_{n}\right)-\alpha_{n} \rho F T^{n} u_{n}+T^{n} u_{n}-x_{n}\right\| \\
\leq & \alpha_{n}\left(\left\|f\left(x_{n}\right)\right\|+\left\|\rho F T^{n} u_{n}\right\|\right)+\left\|T^{n} u_{n}-x_{n}\right\| \\
\leq & \alpha_{n}\left(\left\|f\left(x_{n}\right)\right\|+\left\|\rho F T^{n} u_{n}\right\|\right)+\left(1+\theta_{n}\right)\left(\left\|u_{n}-y_{n}\right\|+\left\|y_{n}-x_{n}\right\|\right)+\left\|T^{n} x_{n}-x_{n}\right\| \\
\rightarrow & 0 \tag{2.27}
\end{align*}
$$

(due to the assumption $\left\|x_{n}-y_{n}\right\| \rightarrow 0$). Obviously, the limit $\lim _{n \rightarrow \infty}\left\|w_{n}-x_{n}\right\|=0$ together with (2.27), guarantees that $\left\|w_{n}-z_{n}\right\| \leq\left\|w_{n}-x_{n}\right\|+\left\|x_{n}-z_{n}\right\| \rightarrow 0(n \rightarrow \infty)$. From the boundedness of $\left\{z_{n}\right\}$, it follows that there exists a subsequence $\left\{z_{n_{k}}\right\}$ of $\left\{z_{n}\right\}$ such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle(f-\rho F) x^{*}, z_{n}-x^{*}\right\rangle=\lim _{k \rightarrow \infty}\left\langle(f-\rho F) x^{*}, z_{n_{k}}-x^{*}\right\rangle \tag{2.28}
\end{equation*}
$$

Since H is reflexive and $\left\{z_{n}\right\}$ is bounded, we may assume, without loss of generality, that $z_{n_{k}} \rightharpoonup \tilde{z}$. Hence from (2.28) we get

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle(f-\rho F) x^{*}, z_{n}-x^{*}\right\rangle=\lim _{k \rightarrow \infty}\left\langle(f-\rho F) x^{*}, z_{n_{k}}-x^{*}\right\rangle=\left\langle(f-\rho F) x^{*}, \tilde{z}-x^{*}\right\rangle \tag{2.29}
\end{equation*}
$$

It is easy to see from $w_{n}-z_{n} \rightarrow 0$ and $z_{n_{k}} \rightharpoonup \tilde{z}$ that $w_{n_{k}} \rightharpoonup \tilde{z}$.
Since $T^{n} x_{n}-T^{n+1} x_{n} \rightarrow 0, x_{n}-x_{n+1} \rightarrow 0, w_{n}-x_{n} \rightarrow 0, w_{n}-z_{n} \rightarrow 0$ and $w_{n_{k}} \rightharpoonup \tilde{z}$, by Lemma 2.3 we infer that $\tilde{z} \in \Omega$. Therefore, from (2.12) and (2.29) we conclude that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle(f-\rho F) x^{*}, z_{n}-x^{*}\right\rangle=\left\langle(f-\rho F) x^{*}, \tilde{z}-x^{*}\right\rangle \leq 0 \tag{2.30}
\end{equation*}
$$

Note that $\left\{\beta_{n}\right\} \subset[a, b] \subset(0,1),\left\{\frac{\alpha_{n}\left(1-\beta_{n}\right)(\tau-\delta)}{2}\right\} \subset[0,1], \sum_{n=1}^{\infty} \frac{\alpha_{n}\left(1-\beta_{n}\right)(\tau-\delta)}{2}=\infty$, and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left[\frac{4}{\tau-\delta}\left\langle(f-\rho F) x^{*}, z_{n}-x^{*}\right\rangle+\frac{4 M}{\tau-\delta} \cdot \frac{\sigma_{n}}{\alpha_{n}} \cdot\left\|x_{n}-x_{n-1}\right\|+\frac{4 M^{2}}{\tau-\delta} \cdot \frac{\theta_{n}}{\alpha_{n}}\right] \leq 0 \tag{2.31}
\end{equation*}
$$

Consequently, applying Lemma 1.2 to (2.24), we have $\lim _{n \rightarrow 0}\left\|x_{n}-x^{*}\right\|=0$. This completes the proof.

Next, we introduce another asymptotic inertial subgradient extragradient algorithm with line-search process.

Algorithm 2.2.

Initialization: Given $\gamma>0, l \in(0,1), \mu \in(0,1)$. Let $x_{0}, x_{1} \in H$ be arbitrary.
Iterative Steps: Calculate x_{n+1} as follows:
Step 1. Set $w_{n}=T^{n} x_{n}+\sigma_{n}\left(T^{n} x_{n}-T^{n} x_{n-1}\right)$ and compute $y_{n}=P_{C}\left(w_{n}-\tau_{n} A w_{n}\right)$, where τ_{n} is chosen to be the largest $\tau \in\left\{\gamma, \gamma l, \gamma l^{2}, \ldots\right\}$ satisfying

$$
\begin{equation*}
\tau\left\|A w_{n}-A y_{n}\right\| \leq \mu\left\|w_{n}-y_{n}\right\| \tag{2.32}
\end{equation*}
$$

Step 2. Compute $z_{n}=\alpha_{n} f\left(x_{n}\right)+\left(I-\alpha_{n} \rho F\right) T^{n} P_{C_{n}}\left(w_{n}-\tau_{n} A y_{n}\right)$ with

$$
C_{n}:=\left\{x \in H:\left\langle w_{n}-\tau_{n} A w_{n}-y_{n}, x-y_{n}\right\rangle \leq 0\right\}
$$

Step 3. Compute

$$
\begin{equation*}
x_{n+1}=\beta_{n} w_{n}+\gamma_{n} z_{n}+\delta_{n} S z_{n} \tag{2.33}
\end{equation*}
$$

Again set $n:=n+1$ and go to Step 1 .
It is worth pointing out that Lemmas 2.1, 2.2 and 2.3 are still valid for Algorithm 2.2.
Theorem 2.2. Let the sequence $\left\{x_{n}\right\}$ be generated by Algorithm 2.2. Assume that $T^{n} x_{n}-T^{n+1} x_{n} \rightarrow 0$. Then

$$
x_{n} \rightarrow x^{*} \in \Omega \Leftrightarrow\left\{\begin{array}{l}
x_{n}-x_{n+1} \rightarrow 0 \\
x_{n}-y_{n} \rightarrow 0
\end{array}\right.
$$

where $x^{*} \in \Omega$ is a unique solution to the VIP: $\left\langle(\rho F-f) x^{*}, p-x^{*}\right\rangle \geq 0 \forall p \in \Omega$.

Proof. Utilizing the same arguments as in the proof of Theorem 2.1, we deduce that there exists a unique solution $x^{*} \in \Omega=\operatorname{Fix}(T) \cap \operatorname{Fix}(S) \cap \operatorname{VI}(C, A)$ to the VIP (2.12), and that the necessity of the theorem is valid.
Next we show the sufficiency of the theorem. To the aim, we assume

$$
\lim _{n \rightarrow \infty}\left(\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n}-y_{n}\right\|\right)=0
$$

and divide the proof of the sufficiency into several steps.
Step 1. We show that $\left\{x_{n}\right\}$ is bounded. Indeed, utilizing the same arguments as in Step 1 of the proof of Theorem 2.1, we obtain that inequalities (2.13)-(2.17) hold. Taking into account $\lim _{n \rightarrow \infty} \frac{\theta_{n}\left(2+\theta_{n}\right)}{\alpha_{n}\left(1-\beta_{n}\right)}=0$, we know that

$$
\theta_{n}\left(2+\theta_{n}\right) \leq \frac{\alpha_{n}\left(1-\beta_{n}\right)(\tau-\delta)}{2}, \forall n \geq n_{0}
$$

for some $n_{0} \geq 1$. Hence we deduce that for all $n \geq n_{0}$,

$$
\begin{aligned}
& \alpha_{n}\left(1-\beta_{n}\right) \delta+\left[1-\alpha_{n}\left(1-\beta_{n}\right) \tau\right]\left(1+\theta_{n}\right)^{2} \\
= & 1-\alpha_{n}\left(1-\beta_{n}\right)(\tau-\delta)+\left[1-\alpha_{n}\left(1-\beta_{n}\right) \tau\right] \theta_{n}\left(2+\theta_{n}\right) \\
\leq & 1-\frac{\alpha_{n}\left(1-\beta_{n}\right)(\tau-\delta)}{2} .
\end{aligned}
$$

Also, from Algorithm 2.2, Lemma 1.4 and (2.17), it follows that

$$
\begin{aligned}
\left\|z_{n}-p\right\| & \leq \alpha_{n} \delta\left\|x_{n}-p\right\|+\left(1-\alpha_{n} \tau\right)\left(1+\theta_{n}\right)\left\|u_{n}-p\right\|+\alpha_{n}\|(f-\rho F) p\| \\
& \leq \alpha_{n} \delta\left\|x_{n}-p\right\|+\left(1-\alpha_{n} \tau\right)\left(1+\theta_{n}\right)\left\|w_{n}-p\right\|+\alpha_{n}\|(f-\rho F) p\|
\end{aligned}
$$

which together with Lemma 1.6 and $\left(\gamma_{n}+\delta_{n}\right) \zeta \leq \gamma_{n}$, implies that for all $n \geq n_{0}$,

$$
\begin{aligned}
& \left\|x_{n+1}-p\right\| \leq \beta_{n}\left\|w_{n}-p\right\|+\left(1-\beta_{n}\right)\left\|\frac{1}{1-\beta_{n}}\left[\gamma_{n}\left(z_{n}-p\right)+\delta_{n}\left(T z_{n}-p\right)\right]\right\| \\
\leq & \beta_{n}\left\|w_{n}-p\right\|+\left(1-\beta_{n}\right)\left\|z_{n}-p\right\| \\
\leq & {\left[\alpha_{n}\left(1-\beta_{n}\right) \delta+\left(1-\alpha_{n}\left(1-\beta_{n}\right) \tau\right)\left(1+\theta_{n}\right)^{2}\right]\left(\left\|x_{n}-p\right\|+\alpha_{n} M_{1}\right) } \\
& +\alpha_{n}\left(1-\beta_{n}\right)\|(f-\rho F) p\| \\
\leq & {\left[1-\frac{\alpha_{n}\left(1-\beta_{n}\right)(\tau-\delta)}{2}\right]\left\|x_{n}-p\right\|+\frac{\alpha_{n}\left(1-\beta_{n}\right)(\tau-\delta)}{2} \cdot \frac{2\left(\frac{M_{1}}{1-\beta_{n}}+\|(f-\rho F) p\|\right)}{\tau-\delta} } \\
\leq & \max \left\{\left\|x_{n}-p\right\|, \frac{2\left(\frac{M_{1}}{1-b}+\|(f-\rho F) p\|\right)}{\tau-\delta}\right\} .
\end{aligned}
$$

By induction, we obtain

$$
\left\|x_{n}-p\right\| \leq \max \left\{\left\|x_{n_{0}}-p\right\|, \frac{2\left(\frac{M_{1}}{1-b}+\|(f-\rho F) p\|\right)}{\tau-\delta}\right\}, \forall n \geq n_{0}
$$

Thus, $\left\{x_{n}\right\}$ is bounded, and so are the sequences $\left\{u_{n}\right\},\left\{w_{n}\right\},\left\{y_{n}\right\},\left\{z_{n}\right\},\left\{f\left(x_{n}\right)\right\}$, $\left\{S z_{n}\right\},\left\{T^{n} u_{n}\right\}$ and $\left\{T^{n} x_{n}\right\}$.
Step 2. We show that for all $n \geq n_{0}$,

$$
\begin{aligned}
& \left(1-\alpha_{n} \tau\right)\left(1-\beta_{n}\right)\left(1+\theta_{n}\right)(1-\mu)\left[\left\|w_{n}-y_{n}\right\|^{2}+\left\|u_{n}-y_{n}\right\|^{2}\right] \\
\leq & \left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}+\alpha_{n} M_{4}
\end{aligned}
$$

with constant $M_{4}>0$. Indeed, utilizing Lemma 1.6, Lemma 2.2 and the convexity of $\|\cdot\|^{2}$, from $\left(\gamma_{n}+\delta_{n}\right) \zeta \leq \gamma_{n}$ we get

$$
\begin{align*}
& \left\|x_{n+1}-p\right\|^{2} \\
\leq & \beta_{n}\left\|w_{n}-p\right\|^{2}+\left(1-\beta_{n}\right)\left\|\frac{1}{1-\beta_{n}}\left[\gamma_{n}\left(z_{n}-p\right)+\delta_{n}\left(S z_{n}-p\right)\right]\right\|^{2} \tag{2.34}\\
\leq & \beta_{n}\left\|w_{n}-p\right\|^{2}+\left(1-\beta_{n}\right)\left\{\alpha_{n} \delta\left\|x_{n}-p\right\|^{2}+\left(1-\alpha_{n} \tau\right)\left(1+\theta_{n}\right)\left\|w_{n}-p\right\|^{2}\right. \\
& \left.-\left(1-\alpha_{n} \tau\right)\left(1+\theta_{n}\right)(1-\mu)\left[\left\|w_{n}-y_{n}\right\|^{2}+\left\|u_{n}-y_{n}\right\|^{2}\right]+\alpha_{n} M_{2}\right\},
\end{align*}
$$

where $\sup _{n \geq 1} 2\|(f-\rho F) p\|\left\|z_{n}-p\right\| \leq M_{2}$ for some $M_{2}>0$. Also, from (2.17) we have

$$
\begin{align*}
\left\|w_{n}-p\right\|^{2} & \leq\left\|x_{n}-p\right\|^{2}+\alpha_{n}\left(2 M_{1}\left\|x_{n}-p\right\|+\alpha_{n} M_{1}^{2}\right) \\
& +\theta_{n}\left(2+\theta_{n}\right)\left[\left\|x_{n}-p\right\|^{2}+\alpha_{n}\left(2 M_{1}\left\|x_{n}-p\right\|+\alpha_{n} M_{1}^{2}\right)\right] \tag{2.35}\\
& \leq\left\|x_{n}-p\right\|^{2}+\alpha_{n} M_{3}
\end{align*}
$$

where
$\sup _{n \geq 1}\left\{2 M_{1}\left\|x_{n}-p\right\|+\alpha_{n} M_{1}^{2}+\frac{\theta_{n}}{\alpha_{n}}\left(2+\theta_{n}\right)\left[\left\|x_{n}-p\right\|^{2}+\alpha_{n}\left(2 M_{1}\left\|x_{n}-p\right\|+\alpha_{n} M_{1}^{2}\right)\right]\right\} \leq M_{3}$
for some $M_{3}>0$. Note that

$$
\alpha_{n} \delta+\left(1-\alpha_{n} \tau\right)\left(1+\theta_{n}\right) \leq 1-\frac{\alpha_{n}(\tau-\delta)}{2}
$$

for all $n \geq n_{0}$. From (2.34) and (2.35), we obtain that for all $n \geq n_{0}$,

$$
\begin{align*}
&\left\|x_{n+1}-p\right\|^{2} \\
& \leq \beta_{n}\left\|w_{n}-p\right\|^{2}+\left(1-\beta_{n}\right)\left\{\alpha_{n} \delta\left\|x_{n}-p\right\|^{2}+\left(1-\alpha_{n} \tau\right)\left(1+\theta_{n}\right)\left[\left\|x_{n}-p\right\|^{2}\right.\right. \\
&+\left.\left.\alpha_{n} M_{3}\right]-\left(1-\alpha_{n} \tau\right)\left(1+\theta_{n}\right)(1-\mu)\left[\left\|w_{n}-y_{n}\right\|^{2}+\left\|u_{n}-y_{n}\right\|^{2}\right]+\alpha_{n} M_{2}\right\} \\
& \leq {\left[1-\frac{\alpha_{n}\left(1-\beta_{n}\right)(\tau-\delta)}{2}\right]\left\|x_{n}-p\right\|^{2}+\beta_{n} \alpha_{n} M_{3}+\left(1-\beta_{n}\right)\left(1-\alpha_{n} \tau\right)\left(1+\theta_{n}\right) \alpha_{n} M_{3} } \\
&-\left(1-\alpha_{n} \tau\right)\left(1-\beta_{n}\right)\left(1+\theta_{n}\right)(1-\mu)\left[\left\|w_{n}-y_{n}\right\|^{2}+\left\|u_{n}-y_{n}\right\|^{2}\right]+\left(1-\beta_{n}\right) \alpha_{n} M_{2} \\
& \leq\left\|x_{n}-p\right\|^{2}-\left(1-\alpha_{n} \tau\right)\left(1-\beta_{n}\right)\left(1+\theta_{n}\right)(1-\mu)\left[\left\|w_{n}-y_{n}\right\|^{2}+\left\|u_{n}-y_{n}\right\|^{2}\right] \\
&+ \alpha_{n} M_{4}, \tag{2.36}
\end{align*}
$$

where $\sup _{n \geq 1}\left(M_{2}+\left(1+\theta_{n}\right) M_{3}\right) \leq M_{4}$ for some $M_{4}>0$. This immediately implies that for all $n \geq n_{0}$,

$$
\begin{align*}
& \left(1-\alpha_{n} \tau\right)\left(1-\beta_{n}\right)\left(1+\theta_{n}\right)(1-\mu)\left[\left\|w_{n}-y_{n}\right\|^{2}+\left\|u_{n}-y_{n}\right\|^{2}\right] \\
\leq & \left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}+\alpha_{n} M_{4} \tag{2.37}
\end{align*}
$$

Step 3. We show that for all $n \geq n_{0}$,

$$
\begin{aligned}
& \left\|x_{n+1}-p\right\|^{2} \\
\leq & {\left[1-\frac{\alpha_{n}\left(1-\beta_{n}\right)(\tau-\delta)}{2}\right]\left\|x_{n}-p\right\|^{2}+\frac{\alpha_{n}\left(1-\beta_{n}\right)(\tau-\delta)}{2}\left[\frac{4}{\tau-\delta}\left\langle(f-\rho F) p, z_{n}-p\right\rangle\right.} \\
& \left.+\frac{4 M}{(\tau-\delta)(1-b)} \cdot \frac{\sigma_{n}}{\alpha_{n}} \cdot\left\|x_{n}-x_{n-1}\right\|+\frac{4 M^{2}}{(\tau-\delta)(1-b)} \cdot \frac{\theta_{n}}{\alpha_{n}}\right],
\end{aligned}
$$

with constant $M>0$. Indeed, we have

$$
\begin{equation*}
\left\|w_{n}-p\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}+\sigma_{n}\left\|x_{n}-x_{n-1}\right\| M+\theta_{n} M^{2} \tag{2.38}
\end{equation*}
$$

where $\sup _{n \geq 1}\left(2+\theta_{n}\right)\left(\left\|x_{n}-p\right\|+\sigma_{n}\left\|x_{n}-x_{n-1}\right\|\right) \leq M$ for some $M>0$. Note that

$$
\alpha_{n} \delta+\left(1-\alpha_{n} \tau\right)\left(1+\theta_{n}\right) \leq 1-\frac{\alpha_{n}(\tau-\delta)}{2}
$$

for all $n \geq n_{0}$. Thus, combining (2.34) and (2.38), we have that for all $n \geq n_{0}$,

$$
\begin{align*}
& \left\|x_{n+1}-p\right\|^{2} \\
\leq & \beta_{n}\left\|w_{n}-p\right\|^{2}+\left(1-\beta_{n}\right)\left\{\alpha_{n} \delta\left\|x_{n}-p\right\|^{2}+\left(1-\alpha_{n} \tau\right)\left(1+\theta_{n}\right)\left[\left\|x_{n}-p\right\|^{2}\right.\right. \\
+ & \left.\left.\sigma_{n}\left\|x_{n}-x_{n-1}\right\| M+\theta_{n} M^{2}\right]+2 \alpha_{n}\left\langle(f-\rho F) p, z_{n}-p\right\rangle\right\} \\
\leq & {\left[1-\frac{\alpha_{n}\left(1-\beta_{n}\right)(\tau-\delta)}{2}\right]\left\|x_{n}-p\right\|^{2}+\left(1+\theta_{n}\right)\left[\sigma_{n}\left\|x_{n}-x_{n-1}\right\| M+\theta_{n} M^{2}\right] } \tag{2.39}\\
+ & 2 \alpha_{n}\left(1-\beta_{n}\right)\left\langle(f-\rho F) p, z_{n}-p\right\rangle \\
= & {\left[1-\frac{\alpha_{n}\left(1-\beta_{n}\right)(\tau-\delta)}{2}\right]\left\|x_{n}-p\right\|^{2}+\frac{\alpha_{n}\left(1-\beta_{n}\right)(\tau-\delta)}{2}\left[\frac{4}{\tau-\delta}\left\langle(f-\rho F) p, z_{n}-p\right\rangle\right.} \\
+ & \left.\frac{4 M}{(\tau-\delta)(1-b)} \cdot \frac{\sigma_{n}}{\alpha_{n}} \cdot\left\|x_{n}-x_{n-1}\right\|+\frac{4 M^{2}}{(\tau-\delta)(1-b)} \cdot \frac{\theta_{n}}{\alpha_{n}}\right] .
\end{align*}
$$

Step 4. We show that $\left\{x_{n}\right\}$ converges strongly to a unique solution $x^{*} \in \Omega$ to the VIP (2.12). Indeed, utilizing the same argument as in Step 4 of the proof of Theorem 2.1, we obtain the desired assertion. This completes the proof.

It is remarkable that our results improve and extend the results in Kraikaew and Saejung [10], Thong and Hieu [16, 15] and Yao et al. [20]. In what follows, our results are applied to solve the VIP and CFPP in an illustrated example. The initial point $x_{0}=x_{1}$ is randomly chosen in \mathbf{R}.
Take $f(x)=F(x)=\frac{1}{2} x, \gamma=l=\mu=\frac{1}{2}, \sigma_{n}=\alpha_{n}=\frac{1}{n+1}, \beta_{n}=\frac{1}{3}, \gamma_{n}=\frac{1}{2}, \delta_{n}=\frac{1}{6}$ and $\rho=2$. Then we know that $\delta=\kappa=\eta=\frac{1}{2}$, and

$$
\tau=1-\sqrt{1-\rho\left(2 \eta-\rho \kappa^{2}\right)}=1-\sqrt{1-2\left(2 \cdot \frac{1}{2}-2\left(\frac{1}{2}\right)^{2}\right)}=1 \in(0,1]
$$

We first provide an example of Lipschitz continuous and pseudomonotone mapping A, asymptotically nonexpansive mapping T and strictly pseudocontractive mapping S with $\Omega=\operatorname{Fix}(T) \cap \operatorname{Fix}(S) \cap \operatorname{VI}(C, A) \neq \emptyset$. Let $C=[-1,1]$ and $H=\mathbf{R}$ with the inner product $\langle a, b\rangle=a b$ and induced norm $\|\cdot\|=|\cdot|$. Let $A, T, S: H \rightarrow H$ be defined as $A x:=\frac{1}{1+|\sin x|}-\frac{1}{1+|x|}, T x:=\frac{2}{3} \sin x$ and $S x:=\frac{3}{8} x+\frac{1}{2} \sin x$ for all $x \in H$. Now, we first show that A is pseudomonotone and Lipschitz continuous with $L=2$. Indeed, for all $x, y \in H$ we have

$$
\begin{aligned}
\|A x-A y\| & =\left|\frac{1}{1+\|\sin x\|}-\frac{1}{1+\|x\|}-\frac{1}{1+\|\sin y\|}+\frac{1}{1+\|y\|}\right| \\
& \leq\left|\frac{1}{1+\|\sin x\|}-\frac{1}{1+\|\sin y\|}\right|+\left|\frac{1}{1+\|x\|}-\frac{1}{1+\|y\|}\right| \\
& =\left|\frac{1+\|\sin y\|-1-\|\sin x\|}{(1+\|\sin x\|)(1+\|\sin y\|)}\right|+\left|\frac{1+\|y\|-1-\|x\|}{(1+\|x\|)(1+\|y\|)}\right| \\
& =\left|\frac{\|\sin y\|-\|\sin x\|}{(1+\|\sin x\|)(1+\|\sin y\|)}\right|+\left|\frac{\|y-\| x \|}{(1+\|x\|)(1+\|y\|)}\right| \\
& \leq \frac{\|x-y\|}{(1+\|\sin x-\sin y\|)(1+\|\sin y\|)}+\frac{\|x-y\|}{(1+\|x\|)(1+\|y\|)} \\
& \leq\|\sin x-\sin y\|+\|x-y\| \\
& \leq 2\|x-y\| .
\end{aligned}
$$

This implies that A is Lipschitz continuous with $L=2$. Next, we show that A is pseudomonotone. For any given $x, y \in H$, it is clear that the relation holds:

$$
\begin{aligned}
\langle A x, y-x\rangle & =\left(\frac{1}{1+|\sin x|}-\frac{1}{1+|x|}\right)(y-x) \geq 0 \\
\Rightarrow\langle A y, y-x\rangle & =\left(\frac{1}{1+|\sin y|}-\frac{1}{1+|y|}\right)(y-x) \geq 0
\end{aligned}
$$

Furthermore, it is easy to see that T is asymptotically nonexpansive with

$$
\theta_{n}=\left(\frac{2}{3}\right)^{n}, \forall n \geq 1
$$

such that $\left\|T^{n+1} x_{n}-T^{n} x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Indeed, we observe that

$$
\left\|T^{n} x-T^{n} y\right\| \leq \frac{2}{3}\left\|T^{n-1} x-T^{n-1} y\right\| \leq \cdots \leq\left(\frac{2}{3}\right)^{n}\|x-y\| \leq\left(1+\theta_{n}\right)\|x-y\|
$$

and

$$
\begin{aligned}
\left\|T^{n+1} x_{n}-T^{n} x_{n}\right\| & \leq\left(\frac{2}{3}\right)^{n-1}\left\|T^{2} x_{n}-T x_{n}\right\|=\left(\frac{2}{3}\right)^{n-1}\left\|\frac{2}{3} \sin \left(T x_{n}\right)-\frac{2}{3} \sin x_{n}\right\| \\
& \leq 2\left(\frac{2}{3}\right)^{n} \rightarrow 0(n \rightarrow \infty)
\end{aligned}
$$

It is clear that $\operatorname{Fix}(T)=\{0\}$ and

$$
\lim _{n \rightarrow \infty} \frac{\theta_{n}}{\alpha_{n}}=\lim _{n \rightarrow \infty} \frac{(2 / 3)^{n}}{1 /(n+1)}=0
$$

In addition, it is clear that S is strictly pseudocontractive with constant $\zeta=\frac{3}{4}$. Indeed, we observe that for all $x, y \in H$,
$\|S x-S y\|^{2} \leq\left[\frac{3}{8}\|x-y\|+\frac{1}{2}\|\sin x-\sin y\|\right]^{2} \leq\|x-y\|^{2}+\frac{3}{4}\|(I-S) x-(I-S) y\|^{2}$.
It is clear that $\left(\gamma_{n}+\delta_{n}\right) \zeta=\left(\frac{1}{2}+\frac{1}{6}\right) \cdot \frac{3}{4} \leq \frac{1}{2}=\gamma_{n}$ for all $n \geq 1$. Therefore, $\Omega=\operatorname{Fix}(T) \cap \operatorname{Fix}(S) \cap \operatorname{VI}(C, A)=\{0\} \neq \emptyset$. In this case, Algorithm 2.1 can be rewritten as follows:

$$
\left\{\begin{array}{l}
w_{n}=T^{n} x_{n}+\frac{1}{n+1}\left(T^{n} x_{n}-T^{n} x_{n-1}\right) \tag{2.40}\\
y_{n}=P_{C}\left(w_{n}-\tau_{n} A w_{n}\right) \\
z_{n}=\frac{1}{n+1} \cdot \frac{1}{2} x_{n}+\frac{n}{n+1} T^{n} P_{C_{n}}\left(w_{n}-\tau_{n} A y_{n}\right) \\
x_{n+1}=\frac{1}{3} x_{n}+\frac{1}{2} z_{n}+\frac{1}{6} S z_{n} \quad \forall n \geq 1
\end{array}\right.
$$

where for each $n \geq 1, C_{n}$ and τ_{n} are chosen as in Algorithm 2.1. Then, by Theorem 2.1, we know that $\left\{x_{n}\right\}$ converges to $0 \in \Omega=\operatorname{Fix}(T) \cap \operatorname{Fix}(S) \cap \mathrm{VI}(C, A)$ if and only if $\left|x_{n}-x_{n+1}\right|+\left|x_{n}-y_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$.
On the other hand, Algorithm 2.2 can be rewritten as follows:

$$
\left\{\begin{array}{l}
w_{n}=T^{n} x_{n}+\frac{1}{n+1}\left(T^{n} x_{n}-T^{n} x_{n-1}\right) \tag{2.41}\\
y_{n}=P_{C}\left(w_{n}-\tau_{n} A w_{n}\right) \\
z_{n}=\frac{1}{n+1} \cdot \frac{1}{2} x_{n}+\frac{n}{n+1} T^{n} P_{C_{n}}\left(w_{n}-\tau_{n} A y_{n}\right) \\
x_{n+1}=\frac{1}{3} w_{n}+\frac{1}{2} z_{n}+\frac{1}{6} S z_{n} \quad \forall n \geq 1
\end{array}\right.
$$

where for each $n \geq 1, C_{n}$ and τ_{n} are chosen as in Algorithm 2.2. Then, by Theorem 2.2, we know that $\left\{x_{n}\right\}$ converges to $0 \in \Omega=\operatorname{Fix}(T) \cap \operatorname{Fix}(S) \cap \mathrm{VI}(C, A)$ if and only if $\left|x_{n}-x_{n+1}\right|+\left|x_{n}-y_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$.

References

[1] Y. Censor, A. Gibali, S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., 148(2011), 318-335.
[2] S.S. Chang, Y.J. Cho, H. Zhou, Demi-closed principle and weak convergence problems for asymptotically nonexpansive mappings, J. Korean Math. Soc., 38(2001), 1245-1260.
[3] C.E. Chidume, O.M. Romanus, U.V. Nnyaba, An iterative algorithm for solving split equilibrium problems and split equality variational inclusions for a class of nonexpansive-type maps, Optimization, 67(2018), 1949-1962.
[4] S.Y. Cho, Generalized mixed equilibrium and fixed point problems in a Banach space, J. Nonlinear Sci. Appl., 9(2016), 1083-1092.
[5] S.Y. Cho, Strong convergence analysis of a hybrid algorithm for nonlinear operators in a Banach space, J. Appl. Anal. Comput., 8(2018), 19-31.
[6] S.Y. Cho, S.M. Kang, Approximation of fixed points of pseudocontraction semigroups based on a viscosity iterative process, Appl. Math. Lett., 24(2011), 224-228.
[7] S.Y. Cho, W. Li, S.M. Kang, Convergence analysis of an iterative algorithm for monotone operators, J. Inequal. Appl., 2013(2013), 199.
[8] R.W. Cottle, J.C. Yao, Pseudo-monotone complementarity problems in Hilbert space, J. Optim. Theory Appl., 75(1992), 281-295.
[9] G.M. Korpelevich, The extragradient method for finding saddle points and other problems, Ekonomikai Matematicheskie Metody, 12(1976), 747-756.
[10] R. Kraikaew, S. Saejung, Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces, J. Optim. Theory Appl., 163(2014), 399412.
[11] L. Liu, A hybrid steepest descent method for solving split feasibility problems involving nonexpansive mappings, J. Nonlinear Convex Anal., 20(2019), 471-488.
[12] W. Takahashi, The split feasibility problem in Banach spaces, J. Nonlinear Convex Anal., 15 (2014), 1349-1335.
[13] S. Takahashi, W. Takahashi, The split common null point problem and the shrinking projection method in Banach spaces, Optimization, 65(2016), 281-287.
[14] B. Tan, S. Xu, S. Li, Inertial shrinking projection algorithms for solving hierarchical variational inequality problems, J. Nonlinear Convex Anal., 21(2020), 871-884.
[15] D.V. Thong, D.V. Hieu, Modified subgradient extragradient method for variational inequality problems, Numer. Algo., 79(2018), 597-610.
[16] D.V. Thong, D.V. Hieu, Inertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problems, Numer. Algo., 80(2019), 1283-1307.
[17] N.T.T. Thuy, P.T. Hieu, A hybrid method for solving variational inequalities over the common fixed point sets of infinite families of nonexpansive mappings in Banach spaces, Optimization, 69(2020), 2155-2176.
[18] H.K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66(2002), 240-256.
[19] Y. Yamada, The hybrid steepest-descent method for variational inequalities problems over the intersection of the fixed point sets of nonexpansive mappings, In: Butnariu, D., Censor, Y., Reich, S. (eds.), Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, pp. 473-504, North-Holland, Amsterdam, 2001.
[20] Y. Yao, Y.C. Liou, S.M. Kang, Approach to common elements of variational inequality problems and fixed point problems via a relaxed extragradient method, Comput. Math. Appl., 59(2010), 3472-3480.
[21] H. Zhou, Convergence theorems of common fixed points for a finite family of Lipschitz pseudocontractions in Banach spaces, Nonlinear Anal., 68(2008), 2977-2983.

Received: July 10, 2019; Accepted: MaY 16, 2020.

