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Abstract. We introduce two new iterative algorithms with line-search process for solving a varia-
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1. Introduction-Preliminaries

Monotone variational inequalities act as an efficient mathematical modelling to
solve a number of real problems in various engineering, medicine, economics etc. Their
solutions have been studied by many authors via iterative methods; see, [7, 4, 3, 14, 12]
and the references therein. From now on, we always assume that C is a convex, closed
nonempty set in a real Hilbert space H. For each point x ∈ H, we know that there
exists a unique nearest point in C, denoted by PCx, such that

‖x− PCx‖ ≤ ‖x− y‖, ∀y ∈ C.
The mapping PC is called the metric projection of H onto C. Let S be a mapping
on C and denote by Fix(S) the set of fixed points of S. S is called an asymptotically
nonexpansive mapping if ∃{θn} ⊂ [0,+∞) with limn→∞ θn = 0 such that

‖Tnx− Tny‖ ≤ (1 + θn)‖x− y‖, ∀n ≥ 1, x, y ∈ C.
543
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In particular, if θn = 0, then T is called a nonexpansive mapping. S is called a strictly
pseudocontractive mapping if ∃ζ ∈ [0, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + ζ‖(I − T )x− (I − T )y‖2, ∀x, y ∈ C.

Fixed points of (asymptotically) nonexpansive mappings and strictly pseudocontrac-
tive mappings were studied through iterative methods recently; see, [5, 6, 11, 13, 17]
and the references therein.

Let A : H → H be a mapping. Recall that A is said to be
(i) L-Lipschitz continuous (or L-Lipschitzian) if ∃L > 0 such that

‖Tx− Ty‖ ≤ L‖x− y‖, ∀x, y ∈ C;

(ii) monotone if 〈Tx− Ty, x− y〉 ≥ 0, ∀x, y ∈ C;
(iii) pseudomonotone if 〈Tx, y − x〉 ≥ 0⇒ 〈Ty, y − x〉 ≥ 0, ∀x, y ∈ C;
(iv) α-strongly monotone if ∃α > 0 such that

〈Tx− Ty, x− y〉 ≥ α‖x− y‖2, ∀x, y ∈ C;

(v) sequentially weakly continuous if ∀{xn} ⊂ C, the relation holds:

xn ⇀ x⇒ Txn ⇀ Tx.

The classical variational inequality problem (VIP) is to find x∗ ∈ C such that

〈Ax∗, x− x∗〉 ≥ 0, ∀x ∈ C. (1.1)

The solution set of the VIP is denoted by VI(C,A). At present, one of the most
popular methods for solving the VIP is the extragradient method introduced by Ko-
rpelevich [9] in 1976, that is, for any initial x0 ∈ C, the sequence {xn} is generated
by {

yn = PC(xn − τAxn),
xn+1 = PC(xn − τAyn) ∀n ≥ 0,

(1.2)

with τ ∈ (0, 1
L ). If VI(C,A) 6= ∅, then the sequence {xn} generated by process (1.2)

converges weakly to an element in VI(C,A). Recently, gradient-based methods have
been considered by many authors in infinite dimensional spaces; see e.g., [1, 10, 16, 15]
and references therein, to name but a few.

In the extragradient methods, one needs to compute two projections onto C for
each iteration. It is known that the projection onto a closed convex set C is closely
related to a minimum distance problem. If C is a general closed and convex set, this
might require a prohibitive amount of computation time. In 2011, Censor et al. [1]
modified Korpelevich’s extragradient method and first introduced the subgradient ex-
tragradient method, in which the second projection onto C is replaced by a projection
onto a half-space: yn = PC(xn − τAxn),

Cn = {x ∈ H : 〈xn − τAxn − yn, x− yn〉 ≤ 0},
xn+1 = PCn(xn − τAyn) ∀n ≥ 0,

(1.3)

with τ ∈ (0, 1
L ). In 2014, Kraikaew and Saejung [10] introduced the Halpern subgradi-

ent extragradient method for solving the VIP (1.1), and proved strong convergence of
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the proposed method to a solution of VIP (1.1). In 2018, by virtue of the inertial tech-
nique, Thong and Hieu [15] introduced the inertial subgradient extragradient method,
and proved weak convergence of the proposed method to a solution of VIP (1.1). Very
recently, Thong and Hieu [16] introduced two inertial subgradient extragradient al-
gorithms with linear-search process for solving the VIP (1.1) with monotone and
Lipschitz continuous mapping A and the fixed-point problem of a quasi-nonexpansive
mapping T with a demiclosedness property in a real Hilbert space. Under mild con-
ditions, Thong and Hieu [16] proved weak convergence of the proposed algorithms
to an element of Fix(T ) ∩ VI(C,A). Inspired by the research work by Thong and
Hieu [16], we introduce two asymptotic inertial subgradient extragradient algorithms
with line-search process for solving the VIP (1.1) with pseudomonotone and Lips-
chitz continuous mapping and common fixed point problems of an asymptotically
nonexpansive mapping and a strictly pseudocontractive mapping in H. Convergence
theorems are established in Hilbert spaces.

The following tools are essential for our main results.
Lemma 1.1. [8] Let A : C → H be pseudomonotone and continuous. Then x∗ ∈ C
is a solution to the VIP 〈Ax∗, x− x∗〉 ≥ 0 ∀x ∈ C, if and only if

〈Ax, x− x∗〉 ≥ 0, ∀x ∈ C.

Lemma 1.2. [18] Let {an} be a sequence of nonnegative real numbers satisfying the
conditions: an+1 ≤ (1−λn)an +λnγn ∀n ≥ 1, where {λn} and {γn} are sequences of
real numbers such that

(i) {λn} ⊂ [0, 1] and

∞∑
n=1

λn =∞, and

(ii) lim supn→∞ γn ≤ 0 or

∞∑
n=1

|λnγn| <∞. Then limn→∞ an = 0.

Lemma 1.3. [21] Let T : C → C be a ζ-strict pseudocontraction. Then I − T
is demiclosed at zero, i.e., if {xn} is a sequence in C such that xn ⇀ x ∈ C and
(I − T )xn → 0, then (I − T )x = 0, where I is the identity mapping of H.
Lemma 1.4. [19] Let λ ∈ (0, 1], T : C → H be a nonexpansive mapping, and
the mapping Tλ : C → H be defined by Tλx := Tx − λµF (Tx) ∀x ∈ C, where
F : H → H is κ-Lipschitzian and η-strongly monotone. Then Tλ is a contraction
provided 0 < µ < 2η

κ2 , i.e.,

‖Tλx− Tλy‖ ≤ (1− λτ)‖x− y‖, ∀x, y ∈ C,

where τ = 1−
√

1− µ(2η − µκ2) ∈ (0, 1].
Lemma 1.5. [2] Let X be a Banach space which admits a weakly continuous duality
mapping, C be a nonempty closed convex subset of X, and T : C → C be an asymp-
totically nonexpansive mapping with Fix(T ) 6= ∅. Then I − T is demiclosed at zero,
i.e., if {xn} is a sequence in C such that xn ⇀ x ∈ C and (I − T )xn → 0, then
(I − T )x = 0, where I is the identity mapping of X.
Lemma 1.6. [20] Let T : C → C be a ζ-strictly pseudocontractive mapping. Let γ
and δ be two nonnegative real numbers. Assume (γ + δ)ζ ≤ γ. Then

‖γ(x− y) + δ(Tx− Ty)‖ ≤ (γ + δ)‖x− y‖ ∀x, y ∈ C.
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2. Main results

In this section, we assume the following.
T : H → H is an asymptotically nonexpansive mapping with {θn} and S : H → H

is a ζ-strictly pseudocontractive mapping.
A : H → H is L-Lipschitz continuous, pseudomonotone on H, and sequentially

weakly continuous on C, such that Ω = Fix(T ) ∩ Fix(S) ∩VI(C,A) 6= ∅.
f : H → H is a contraction with constant δ ∈ [0, 1), and F : H → H is η-strongly

monotone and κ-Lipschitzian such that δ < τ := 1−
√

1− ρ(2η − ρκ2) for ρ ∈ (0, 2η
κ2 ).

{σn} ⊂ [0, 1] and {αn}, {βn}, {γn}, {δn} ⊂ (0, 1) such that
(i) supn≥1

σn
αn

<∞ and βn + γn + δn = 1 ∀n ≥ 1;

(ii) limn→∞ αn = 0 and
∑∞
n=1 αn =∞;

(iii) limn→∞
θn
αn

= 0 and (γn + δn)ζ ≤ γn ∀n ≥ 1;

(iv) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1 and lim infn→∞ δn > 0.

Algorithm 2.1.
Initialization: Given γ > 0, l ∈ (0, 1), µ ∈ (0, 1). Let x0, x1 ∈ H be arbitrary.
Iterative Steps: Calculate xn+1 as follows:
Step 1. Set wn = Tnxn + σn(Tnxn− Tnxn−1) and compute yn = PC(wn− τnAwn),
where τn is chosen to be the largest τ ∈ {γ, γl, γl2, ...} satisfying

τ‖Awn −Ayn‖ ≤ µ‖wn − yn‖. (2.1)

Step 2. Compute zn = αnf(xn) + (I − αnρF )TnPCn(wn − τnAyn) with

Cn := {x ∈ H : 〈wn − τnAwn − yn, x− yn〉 ≤ 0}.
Step 3. Compute

xn+1 = βnxn + γnzn + δnSzn. (2.2)

Again set n := n+ 1 and go to Step 1.
Lemma 2.1. The Armijo-like search rule (2.1) is well defined, and the inequality

holds: min{γ, µlL } ≤ τn ≤ γ.
Proof. From the L-Lipschitz continuity of A, we get

µ

L
‖Awn −APC(wn − γlmAwn)‖ ≤ µ‖wn − PC(wn − γlmAwn)‖.

Thus, (2.1) holds for all γlm ≤ µ
L . So τn is well defined. Obviously, τn ≤ γ. If τn = γ,

then the inequality is true. If τn < γ, then we get from (2.1)

‖Awn −APC(wn −
τn
l
Awn)‖ > µ

τn
l

‖wn − PC(wn −
τn
l
Awn)‖.

From the L-Lipschitz continuity of A, we obtain τn > µl
L . Hence the inequality is

valid.
Lemma 2.2. Let {wn}, {yn} and {zn} be the sequences generated by Algorithm 2.1.
Then

‖zn − p‖2 ≤ αnδ‖xn − p‖2 + (1− αnτ)(1 + θn)‖wn − p‖2

− (1− αnτ)(1 + θn)(1− µ)[‖wn − yn‖2 + ‖un − yn‖2]

+ 2αn〈(f − ρF )p, zn − p〉 ∀p ∈ Ω , n ≥ n0,

(2.3)
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for some n0 ≥ 1, where un := PCn(wn − τnAyn).

Proof. By fixing p ∈ Ω ⊂ C ⊂ Cn, we have

‖un − p‖2 ≤ 〈un − p, wn − τnAyn − p〉
= 1

2‖un − p‖
2 + 1

2‖wn − p‖
2 − 1

2‖un − wn‖
2 − 〈un − p, τnAyn〉.

So, it follows that ‖un − p‖2 ≤ ‖wn − p‖2 − ‖un − wn‖2 − 2〈un − p, τnAyn〉, which
together with (2.1) and the pseudomonotonicity of A, we deduce that 〈Ayn, p−yn〉 ≤ 0
and

‖un − p‖2 ≤ ‖wn − p‖2 − ‖un − yn‖2 − ‖yn − wn‖2

+ 2〈wn − τnAyn − yn, un − yn〉.
(2.4)

Since un = PCn(wn − τnAyn) with Cn := {x ∈ H : 〈wn − τnAwn − yn, x− yn〉 ≤ 0},
we have 〈wn − τnAwn − yn, un − yn〉 ≤ 0, which together with (2.1), implies that

‖un − p‖2 ≤ ‖wn − p‖2 − (1− µ)‖wn − yn‖2 − (1− µ)‖un − yn‖2 ∀p ∈ Ω . (2.5)

Taking into account limn→∞
θn(2+θn)
αn(1−βn) = 0, we know that

θn(2 + θn) ≤ αn(1− βn)(τ − δ)
2

, ∀n ≥ n0

for some n0 ≥ 1. Hence we have that for all n ≥ n0,

αnδ + (1− αnτ)(1 + θn) = 1− αn(τ − δ) + (1− αnτ)θn
≤ 1− αn(τ − δ) + θn ≤ 1− αn(τ−δ)

2 ≤ 1.

Using Lemma 1.4, and the convexity of the function h(t) = t2 ∀t ∈ R, we obtain that,
for all n ≥ n0,

‖zn − p‖2
≤ [αnδ‖xn − p‖+ (1− αnτ)(1 + θn)‖un − p‖]2 + 2αn〈(f − ρF )p, zn − p〉
≤ αnδ‖xn − p‖2 + (1− αnτ)(1 + θn)‖un − p‖2 + 2αn〈(f − ρF )p, zn − p〉
= αnδ‖xn − p‖2 + (1− αnτ)(1 + θn)‖wn − p‖2 − (1− αnτ)(1 + θn)(1− µ)
×[‖wn − yn‖2 + ‖un − yn‖2] + 2αn〈(f − ρF )p, zn − p〉.

This completes the proof.
Lemma 2.3. Let {wn}, {xn}, {yn} and {zn} be bounded sequences generated by Al-
gorithm 2.1. If Tnxn − Tn+1xn → 0, xn − xn+1 → 0, wn − xn → 0, wn − zn → 0
and ∃{wnk} ⊂ {wn} such that wnk ⇀ z ∈ H, then z ∈ Ω.

Proof. From Algorithm 2.1, we have ‖Tnxn−xn‖ ≤ ‖wn−xn‖+(1+θn)‖xn−xn−1‖.
Utilizing the assumptions xn − xn+1 → 0 and wn − xn → 0, we have from θn → 0
that

lim
n→∞

‖xn − Tnxn‖ = 0. (2.6)

Combining the assumptions wn − xn → 0 and wn − zn → 0 implies that, as n→∞,

‖zn − xn‖ ≤ ‖wn − zn‖+ ‖wn − xn‖ → 0.
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Note that, for each p ∈ Ω ,

‖wn − p‖2 ≤ (‖Tnxn − p‖+ σn‖Tnxn − Tnxn−1‖)2

≤ ‖xn − p‖2 + Γn + θn(2 + θn)(‖xn − p‖2 + Γn),

where Γn = σn‖xn−xn−1‖(2‖xn−p‖+σn‖xn−xn−1‖). So it follows from (2.3) that
for all n ≥ n0,

(1− αnτ)(1 + θn)(1− µ)[‖wn − yn‖2 + ‖un − yn‖2]
≤ αnδ‖xn − p‖2 + (1− αnτ)(1 + θn)[‖xn − p‖2 + Γn
+θn(2 + θn)(‖xn − p‖2 + Γn)]− ‖zn − p‖2 + 2αn‖(f − ρF )p‖‖zn − p‖
≤ [1− αn(τ−δ)

2 ]‖xn − p‖2 − ‖zn − p‖2 + (1− αnτ)(1 + θn)[Γn
+θn(2 + θn)(‖xn − p‖2 + Γn)] + 2αn‖(f − ρF )p‖‖zn − p‖
≤ ‖xn − zn‖(‖xn − p‖+ ‖zn − p‖) + (1 + θn)[Γn
+θn(2 + θn)(‖xn − p‖2 + Γn)] + 2αn‖(f − ρF )p‖‖zn − p‖.

Since αn → 0, θn → 0, Γn → 0 and xn − zn → 0, we get

lim
n→∞

‖wn − yn‖ = 0 and lim
n→∞

‖un − yn‖ = 0.

It follows that as n→∞,

‖wn−un‖ ≤ ‖wn−yn‖+‖yn−un‖ → 0 and ‖xn−un‖ ≤ ‖xn−wn‖+‖wn−un‖ → 0.

By using Algorithm 2.1 we get

δn‖Szn − zn‖ = ‖xn+1 − xn + (1− βn)(xn − zn)‖ ≤ ‖xn+1 − xn‖+ ‖xn − zn‖.

Since xn − xn+1 → 0, zn − xn → 0 and lim infn→∞ δn > 0, we obtain

lim
n→∞

‖zn − Szn‖ = 0. (2.7)

Note that

1

τn
〈wn − yn, x− yn〉+ 〈Awn, yn − wn〉 ≤ 〈Awn, x− wn〉 ∀x ∈ C. (2.8)

Since τn ≥ min{γ, µlL }, we get lim infk→∞〈Awnk , x− wnk〉 ≥ 0 ∀x ∈ C.
Since wn− yn → 0, we obtain from (2.8) that lim infk→∞〈Aynk , x− ynk〉 ≥ 0 ∀x ∈ C.
Next we show that xn − Txn → 0. Indeed,

‖Txn − xn‖ ≤ ‖Txn − Tn+1xn‖+ ‖Tn+1xn − Tnxn‖+ ‖Tnxn − xn‖
≤ (2 + θ1)‖xn − Tnxn‖+ ‖Tn+1xn − Tnxn‖.

From (2.6) and the assumption Tnxn − Tn+1xn → 0 we get

lim
n→∞

‖xn − Txn‖ = 0. (2.9)

We now take a sequence {εk} ⊂ (0, 1) satisfying εk ↓ 0 as k → ∞. For all k ≥ 1, we
denote by mk the smallest positive integer such that

〈Aynj , x− ynj 〉+ εk ≥ 0 ∀j ≥ mk. (2.10)

Setting µmk =
Aymk
‖Aymk‖2

, we get 〈Aymk , µmk〉 = 1 ∀k ≥ 1. From (2.10), we get

〈Aymk , x+ εkµmk − ymk〉 ≥ 0, ∀k ≥ 1.
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From the pseudomonotonicity of A, we have

〈Ax, x−ymk〉 ≥ 〈Ax−A(x+εkµmk), x+εkµmk−ymk〉−εk〈Ax, µmk〉 ∀k ≥ 1. (2.11)

We claim that limk→∞ εkµmk = 0. Indeed, from wnk ⇀ z and wn − yn → 0, we
obtain ynk ⇀ z. So, {yn} ⊂ C guarantees z ∈ C. Again from the sequentially weak
continuity of A, we know that Aynk ⇀ Az. Thus, Az 6= 0 (otherwise, z is a solution).
Taking into account the sequentially weak lower semicontinuity of the norm ‖ · ‖, we
get 0 < ‖Az‖ ≤ lim infk→∞ ‖Aynk‖. Note that {ymk} ⊂ {ynk} and εk ↓ 0 as k →∞.
So it follows that

0 ≤ lim sup
k→∞

‖εkµmk‖ = lim sup
k→∞

εk
‖Aymk‖

≤ lim supk→∞ εk
lim infk→∞ ‖Aynk‖

= 0.

Hence we get εkµmk → 0.
Next we show that z ∈ Ω . Indeed, from wn − xn → 0 and wnk ⇀ z, we get

xnk ⇀ z. From (2.9) we have xnk − Txnk → 0. Note that Lemma 1.5 guarantees the
demiclosedness of I − T at zero. Thus z ∈ Fix(T ). Meantime, from wn − zn → 0 and
wnk ⇀ z, we get znk ⇀ z. From (2.7) we have znk − Sznk → 0. From Lemma 1.3, it
follows that I − S is demiclosed at zero. Hence we get (I − S)z = 0, i.e., z ∈ Fix(S).
On the other hand, letting k →∞, we deduce that the right hand side of (2.11) tends
to zero by the uniform continuity of A, the boundedness of {ymk}, {µmk} and the limit
limk→∞ εkµmk = 0. Thus, we get 〈Ax, x−z〉 = lim infk→∞〈Ax, x−ymk〉 ≥ 0 ∀x ∈ C.
By Lemma 1.1, we have z ∈ VI(C,A). Therefore,

z ∈ Fix(T ) ∩ Fix(S) ∩VI(C,A) = Ω .

This completes the proof.

Theorem 2.1. Let the sequence {xn} be generated by Algorithm 1.1. Assume that
Tnxn − Tn+1xn → 0. Then

xn → x∗ ∈ Ω ⇔
{

xn − xn+1 → 0,
xn − yn → 0

where x∗ ∈ Ω is a unique solution to the VIP: 〈(ρF − f)x∗, p− x∗〉 ≥ 0 ∀p ∈ Ω.

Proof. From 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1, we may assume, without
loss of generality, that {βn} ⊂ [a, b] ⊂ (0, 1). We claim that PΩ (f + I − ρF ) is a
contraction. Indeed, by Lemma 1.4, we have that PΩ (f + I − ρF ) is a contraction.
Banach’s Contraction Mapping Principle guarantees that PΩ (f+I−ρF ) has a unique
fixed point. Say x∗ ∈ H, that is, x∗ = PΩ (f + I − ρF )x∗. Thus, there exists a unique
solution x∗ ∈ Ω = Fix(T ) ∩ Fix(S) ∩VI(C,A) to the VIP

〈(ρF − f)x∗, p− x∗〉 ≥ 0 ∀p ∈ Ω . (2.12)

It is now easy to see that the necessity of the theorem is valid.
Indeed, if xn → x∗ ∈ Ω = Fix(T )∩Fix(S)∩VI(C,A), then x∗ = Tx∗, x∗ = Sx∗ and
x∗ = PC(x∗ − τnAx∗), which together with Algorithm 2.1, implies that

‖wn − x∗‖ ≤ (1 + θn)(‖xn − x∗‖+ σn‖xn − xn−1‖)→ 0 (n→∞),
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and hence

‖yn − xn‖ ≤ ‖PC(wn − τnAwn)− PC(x∗ − τnAx∗)‖+ ‖xn − x∗‖
≤ (1 + γL)‖wn − x∗‖+ ‖xn − x∗‖ → 0 (n→∞).

In addition, it is clear that

‖xn − xn+1‖ ≤ ‖xn − x∗‖+ ‖xn+1 − x∗‖ → 0 (n→∞).

Next we show the sufficiency of the theorem. To the aim, we assume

lim
n→∞

(‖xn − xn+1‖+ ‖xn − yn‖) = 0

and divide the proof of the sufficiency into several steps.

Step 1. We show that {xn} is bounded. Fixing p ∈ Ω = Fix(T )∩Fix(S)∩VI(C,A),
we have that Tp = p, Sp = p, and (2.5) holds, i.e.,

‖un − p‖2 ≤ ‖wn − p‖2 − (1− µ)‖wn − yn‖2 − (1− µ)‖un − yn‖2. (2.13)

This immediately implies that

‖un − p‖ ≤ ‖wn − p‖ ∀n ≥ 1. (2.14)

From the definition of wn, we get

‖wn − p‖ ≤ ‖Tnxn − p‖+ σn‖Tnxn − Tnxn−1‖
≤ (1 + θn)(‖xn − p‖+ αn · σnαn ‖xn − xn−1‖).

(2.15)

Since supn≥1
σn
αn

<∞ and supn≥1 ‖xn − xn−1‖ <∞, we know that

sup
n≥1

σn
αn
‖xn − xn−1‖ <∞,

which hence implies that there exists a constant M1 > 0 such that
σn
αn
‖xn − xn−1‖ ≤M1 ∀n ≥ 1. (2.16)

Combining (2.14), (2.15) and (2.16), we obtain

‖un − p‖ ≤ ‖wn − p‖ ≤ (1 + θn)(‖xn − p‖+ αnM1) ∀n ≥ 1. (2.17)

From Algorithm 2.1, Lemma 1.4 and (2.17), it follows that for all n ≥ n0,

‖zn − p‖ ≤ αnδ‖xn − p‖+ (1− αnτ)(1 + θn)‖un − p‖+ αn‖(f − ρF )p‖
≤ [αnδ + 1− αnτ + θn(2 + θn)](‖xn − p‖+ αnM1) + αn‖(f − ρF )p‖
≤ (1− αn(τ−δ)

2 )‖xn − p‖+ αn(M1 + ‖(f − ρF )p‖),
which together with Lemma 1.6 and (γn + δn)ζ ≤ γn, implies that, for all n ≥ n0,

‖xn+1 − p‖ ≤ βn‖xn − p‖+ (1− βn)‖ 1
1−βn [γn(zn − p) + δn(Szn − p)]‖

≤ [1− αn(1−βn)(τ−δ)
2 ]‖xn − p‖+ αn(1−βn)(τ−δ)

2 · 2(M1+‖(f−ρF )p‖)
τ−δ

≤ max
{
‖xn − p‖, 2(M1+‖(f−ρF )p‖)

τ−δ

}
.

By induction, we obtain

‖xn − p‖ ≤ max

{
‖xn0

− p‖, 2(M1 + ‖(ρF − f)p‖)
τ − δ

}
, ∀n ≥ n0.
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Thus, {xn} is bounded, and so are the sequences {un}, {wn}, {yn}, {zn}, {f(xn)},
{Szn}, {Tnun} and {Tnxn}.
Step 2. We show that for all n ≥ n0,

(1− αnτ)(1− βn)(1 + θn)(1− µ)[‖wn − yn‖2 + ‖un − yn‖2]

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αnM4,

with constant M4 > 0. Indeed, utilizing Lemma 2.2 and the convexity of ‖ · ‖2, from
(γn + δn)ζ ≤ γn we obtain that for all n ≥ n0,

‖xn+1 − p‖2
≤ βn‖xn − p‖2 + (1− βn)‖ 1

1−βn [γn(zn − p) + δn(Tzn − p)]‖2
≤ βn‖xn − p‖2 + (1− βn){αnδ‖xn − p‖2 + (1− αnτ)(1 + θn)‖wn − p‖2
−(1− αnτ)(1 + θn)(1− µ)[‖wn − yn‖2 + ‖un − yn‖2] + αnM2},

(3.18)

where supn≥1 2‖(f − ρF )p‖‖zn − p‖ ≤ M2 for some M2 > 0. Also, from (2.17) we
have

‖wn − p‖2 ≤ [1 + θn(2 + θn)][‖xn − p‖2 + αn(2M1‖xn − p‖+ αnM
2
1 )]

≤ ‖xn − p‖2 + αnM3,
(2.19)

where

sup
n≥1
{2M1‖xn−p‖+αnM

2
1 +

θn
αn

(2+θn)[‖xn−p‖2 +αn(2M1‖xn−p‖+αnM
2
1 )]} ≤M3

for some M3 > 0. Note that αnδ + (1 − αnτ)(1 + θn) ≤ 1 − αn(τ−δ)
2 for all n ≥ n0.

Substituting (2.19) for (2.18), we deduce that for all n ≥ n0,

‖xn+1 − p‖2

≤ βn‖xn − p‖2 + (1− βn){(1− αn(τ−δ)
2 )‖xn − p‖2 + (1− αnτ)(1 + θn)αnM3

−(1− αnτ)(1 + θn)(1− µ)[‖wn − yn‖2 + ‖un − yn‖2] + αnM2}
≤ ‖xn − p‖2 − (1− αnτ)(1− βn)(1 + θn)(1− µ)[‖wn − yn‖2 + ‖un − yn‖2]
+αnM4,

(2.20)
where supn≥1(M2 + (1 + θn)M3) ≤ M4 for some M4 > 0. This immediately implies
that for all n ≥ n0,

(1− αnτ)(1− βn)(1 + θn)(1− µ)[‖wn − yn‖2 + ‖un − yn‖2]

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αnM4.
(2.21)

Step 3. We show that for all n ≥ n0,

‖xn+1 − p‖2 ≤ [1− αn(1−βn)(τ−δ)
2 ]‖xn − p‖2

+αn(1−βn)(τ−δ)
2 [ 4

τ−δ 〈(f − ρF )p, zn − p〉
+ 4M
τ−δ ·

σn
αn
· ‖xn − xn−1‖+ 4M2

τ−δ ·
θn
αn

],

with constant M > 0. Indeed, we have

‖wn − p‖2 ≤ ‖xn − p‖2 + σn‖xn − xn−1‖(2‖xn − p‖+ σn‖xn − xn−1‖)
+θn(2 + θn)(‖xn − p‖+ σn‖xn − xn−1‖)2

≤ ‖xn − p‖2 + σn‖xn − xn−1‖M + θnM
2,

(2.22)
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where supn≥1(2 + θn)(‖xn − p‖+ σn‖xn − xn−1‖) ≤M for some M > 0. Combining
(2.18) and (2.22), we have that for all n ≥ n0,

‖xn+1 − p‖2
≤ βn‖xn − p‖2 + (1− βn){αnδ‖xn − p‖2 + (1− αnτ)(1 + θn)[‖xn − p‖2
+σn‖xn − xn−1‖M + θnM

2] + 2αn〈(f − ρF )p, zn − p〉}
≤ [1− αn(1−βn)(τ−δ)

2 ]‖xn − p‖2 + (1− βn)[σn‖xn − xn−1‖2M + θn2M2]
+2αn(1− βn)〈(f − ρF )p, zn − p〉

= [1− αn(1−βn)(τ−δ)
2 ]‖xn − p‖2 + αn(1−βn)(τ−δ)

2 [ 4
τ−δ 〈(f − ρF )p, zn − p〉

+ 4M
τ−δ ·

σn
αn
· ‖xn − xn−1‖+ 4M2

τ−δ ·
θn
αn

].

(2.23)

Step 4. We show that {xn} converges strongly to a unique solution x∗ ∈ Ω to the
VIP (2.12). Indeed, putting p = x∗, we deduce from (2.23) that

‖xn+1 − x∗‖2 ≤ [1− αn(1−βn)(τ−δ)
2 ]‖xn − x∗‖2 + αn(1−βn)(τ−δ)

2

×[ 4
τ−δ 〈(f − ρF )x∗, zn − x∗〉+ 4M

τ−δ ·
σn
αn
· ‖xn − xn−1‖+ 4M2

τ−δ ·
θn
αn

].

(2.24)
By Lemma 1.2, it suffices to show that lim supn→∞〈(f − ρF )x∗, zn − x∗〉 ≤ 0. From
(2.21), xn − xn+1 → 0, αn → 0, θn → 0 and {βn} ⊂ [a, b] ⊂ (0, 1), we obtain

lim sup
n→∞

(1− αnτ)(1− b)(1 + θn)(1− µ)[‖wn − yn‖2 + ‖un − yn‖2]

≤ lim sup
n→∞

[‖xn − p‖2 − ‖xn+1 − p‖2 + αnM4]

≤ lim sup
n→∞

(‖xn − p‖+ ‖xn+1 − p‖)‖xn − xn+1‖ = 0.

This immediately implies that

lim
n→∞

‖wn − yn‖ = 0 and lim
n→∞

‖un − yn‖ = 0. (2.25)

Obviously, the assumption ‖xn − yn‖ → 0 together with (2.25), guarantees that
‖wn − xn‖ ≤ ‖wn − yn‖+ ‖yn − xn‖ → 0 (n→∞). It follows that

‖Tnxn − xn‖ = ‖wn − xn − σn(Tnxn − Tnxn−1)‖
≤ ‖wn − xn‖+ σn(1 + θn)‖xn − xn−1‖ → 0 (n→∞).

(2.26)

Since zn = αnf(xn) + (I − αnρF )Tnun with un := PCn(wn − τnAyn), from (2.25),
(2.26) and the boundedness of {xn}, {Tnun}, we conclude that as n→∞,

‖zn − xn‖ = ‖αnf(xn)− αnρFTnun + Tnun − xn‖
≤ αn(‖f(xn)‖+ ‖ρFTnun‖) + ‖Tnun − xn‖
≤ αn(‖f(xn)‖+ ‖ρFTnun‖) + (1 + θn)(‖un − yn‖+ ‖yn − xn‖) + ‖Tnxn − xn‖
→ 0

(2.27)
(due to the assumption ‖xn − yn‖ → 0). Obviously, the limit limn→∞ ‖wn − xn‖ = 0
together with (2.27), guarantees that ‖wn−zn‖ ≤ ‖wn−xn‖+‖xn−zn‖ → 0 (n→∞).
From the boundedness of {zn}, it follows that there exists a subsequence {znk} of {zn}
such that

lim sup
n→∞

〈(f − ρF )x∗, zn − x∗〉 = lim
k→∞

〈(f − ρF )x∗, znk − x∗〉. (2.28)
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Since H is reflexive and {zn} is bounded, we may assume, without loss of generality,
that znk ⇀ z̃. Hence from (2.28) we get

lim sup
n→∞

〈(f − ρF )x∗, zn − x∗〉 = lim
k→∞

〈(f − ρF )x∗, znk − x∗〉 = 〈(f − ρF )x∗, z̃ − x∗〉.

(2.29)
It is easy to see from wn − zn → 0 and znk ⇀ z̃ that wnk ⇀ z̃.
Since Tnxn−Tn+1xn → 0, xn−xn+1 → 0, wn−xn → 0, wn−zn → 0 and wnk ⇀ z̃,
by Lemma 2.3 we infer that z̃ ∈ Ω . Therefore, from (2.12) and (2.29) we conclude
that

lim sup
n→∞

〈(f − ρF )x∗, zn − x∗〉 = 〈(f − ρF )x∗, z̃ − x∗〉 ≤ 0. (2.30)

Note that {βn} ⊂ [a, b] ⊂ (0, 1), {αn(1−βn)(τ−δ)
2 } ⊂ [0, 1],

∑∞
n=1

αn(1−βn)(τ−δ)
2 = ∞,

and

lim sup
n→∞

[
4

τ − δ
〈(f − ρF )x∗, zn − x∗〉+

4M

τ − δ
· σn
αn
· ‖xn − xn−1‖+

4M2

τ − δ
· θn
αn

]
≤ 0.

(2.31)
Consequently, applying Lemma 1.2 to (2.24), we have limn→0 ‖xn − x∗‖ = 0. This
completes the proof.

Next, we introduce another asymptotic inertial subgradient extragradient algorithm
with line-search process.

Algorithm 2.2.
Initialization: Given γ > 0, l ∈ (0, 1), µ ∈ (0, 1). Let x0, x1 ∈ H be arbitrary.
Iterative Steps: Calculate xn+1 as follows:
Step 1. Set wn = Tnxn + σn(Tnxn− Tnxn−1) and compute yn = PC(wn− τnAwn),
where τn is chosen to be the largest τ ∈ {γ, γl, γl2, ...} satisfying

τ‖Awn −Ayn‖ ≤ µ‖wn − yn‖. (2.32)

Step 2. Compute zn = αnf(xn) + (I − αnρF )TnPCn(wn − τnAyn) with

Cn := {x ∈ H : 〈wn − τnAwn − yn, x− yn〉 ≤ 0}.

Step 3. Compute

xn+1 = βnwn + γnzn + δnSzn. (2.33)

Again set n := n+ 1 and go to Step 1.

It is worth pointing out that Lemmas 2.1, 2.2 and 2.3 are still valid for Algorithm 2.2.

Theorem 2.2. Let the sequence {xn} be generated by Algorithm 2.2. Assume that
Tnxn − Tn+1xn → 0. Then

xn → x∗ ∈ Ω ⇔
{

xn − xn+1 → 0,
xn − yn → 0

where x∗ ∈ Ω is a unique solution to the VIP: 〈(ρF − f)x∗, p− x∗〉 ≥ 0 ∀p ∈ Ω.
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Proof. Utilizing the same arguments as in the proof of Theorem 2.1, we deduce that
there exists a unique solution x∗ ∈ Ω = Fix(T )∩Fix(S)∩VI(C,A) to the VIP (2.12),
and that the necessity of the theorem is valid.
Next we show the sufficiency of the theorem. To the aim, we assume

lim
n→∞

(‖xn − xn+1‖+ ‖xn − yn‖) = 0

and divide the proof of the sufficiency into several steps.
Step 1. We show that {xn} is bounded. Indeed, utilizing the same arguments as
in Step 1 of the proof of Theorem 2.1, we obtain that inequalities (2.13)-(2.17) hold.

Taking into account limn→∞
θn(2+θn)
αn(1−βn) = 0, we know that

θn(2 + θn) ≤ αn(1− βn)(τ − δ)
2

, ∀n ≥ n0

for some n0 ≥ 1. Hence we deduce that for all n ≥ n0,

αn(1− βn)δ + [1− αn(1− βn)τ ](1 + θn)2

= 1− αn(1− βn)(τ − δ) + [1− αn(1− βn)τ ]θn(2 + θn)

≤ 1− αn(1−βn)(τ−δ)
2 .

Also, from Algorithm 2.2, Lemma 1.4 and (2.17), it follows that

‖zn − p‖ ≤ αnδ‖xn − p‖+ (1− αnτ)(1 + θn)‖un − p‖+ αn‖(f − ρF )p‖
≤ αnδ‖xn − p‖+ (1− αnτ)(1 + θn)‖wn − p‖+ αn‖(f − ρF )p‖,

which together with Lemma 1.6 and (γn + δn)ζ ≤ γn, implies that for all n ≥ n0,

‖xn+1 − p‖ ≤ βn‖wn − p‖+ (1− βn)‖ 1
1−βn [γn(zn − p) + δn(Tzn − p)]‖

≤ βn‖wn − p‖+ (1− βn)‖zn − p‖
≤ [αn(1− βn)δ + (1− αn(1− βn)τ)(1 + θn)2](‖xn − p‖+ αnM1)
+αn(1− βn)‖(f − ρF )p‖

≤ [1− αn(1−βn)(τ−δ)
2 ]‖xn − p‖+ αn(1−βn)(τ−δ)

2 · 2(
M1

1−βn+‖(f−ρF )p‖)
τ−δ

≤ max

{
‖xn − p‖,

2(
M1
1−b+‖(f−ρF )p‖)

τ−δ

}
.

By induction, we obtain

‖xn − p‖ ≤ max

{
‖xn0

− p‖,
2( M1

1−b + ‖(f − ρF )p‖)
τ − δ

}
, ∀n ≥ n0.

Thus, {xn} is bounded, and so are the sequences {un}, {wn}, {yn}, {zn}, {f(xn)},
{Szn}, {Tnun} and {Tnxn}.
Step 2. We show that for all n ≥ n0,

(1− αnτ)(1− βn)(1 + θn)(1− µ)[‖wn − yn‖2 + ‖un − yn‖2]

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αnM4,
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with constant M4 > 0. Indeed, utilizing Lemma 1.6, Lemma 2.2 and the convexity of
‖ · ‖2, from (γn + δn)ζ ≤ γn we get

‖xn+1 − p‖2
≤ βn‖wn − p‖2 + (1− βn)‖ 1

1−βn [γn(zn − p) + δn(Szn − p)]‖2
≤ βn‖wn − p‖2 + (1− βn){αnδ‖xn − p‖2 + (1− αnτ)(1 + θn)‖wn − p‖2
−(1− αnτ)(1 + θn)(1− µ)[‖wn − yn‖2 + ‖un − yn‖2] + αnM2},

(2.34)

where supn≥1 2‖(f − ρF )p‖‖zn − p‖ ≤ M2 for some M2 > 0. Also, from (2.17) we
have

‖wn − p‖2 ≤ ‖xn − p‖2 + αn(2M1‖xn − p‖+ αnM
2
1 )

+θn(2 + θn)[‖xn − p‖2 + αn(2M1‖xn − p‖+ αnM
2
1 )]

≤ ‖xn − p‖2 + αnM3,
(2.35)

where

sup
n≥1
{2M1‖xn−p‖+αnM

2
1 +

θn
αn

(2+θn)[‖xn−p‖2 +αn(2M1‖xn−p‖+αnM
2
1 )]} ≤M3

for some M3 > 0. Note that

αnδ + (1− αnτ)(1 + θn) ≤ 1− αn(τ − δ)
2

for all n ≥ n0. From (2.34) and (2.35), we obtain that for all n ≥ n0,

‖xn+1 − p‖2
≤ βn‖wn − p‖2 + (1− βn){αnδ‖xn − p‖2 + (1− αnτ)(1 + θn)[‖xn − p‖2
+αnM3]− (1− αnτ)(1 + θn)(1− µ)[‖wn − yn‖2 + ‖un − yn‖2] + αnM2}
≤ [1− αn(1−βn)(τ−δ)

2 ]‖xn − p‖2 + βnαnM3 + (1− βn)(1− αnτ)(1 + θn)αnM3

−(1− αnτ)(1− βn)(1 + θn)(1− µ)[‖wn − yn‖2 + ‖un − yn‖2] + (1− βn)αnM2

≤ ‖xn − p‖2 − (1− αnτ)(1− βn)(1 + θn)(1− µ)[‖wn − yn‖2 + ‖un − yn‖2]
+αnM4,

(2.36)
where supn≥1(M2 + (1 + θn)M3) ≤ M4 for some M4 > 0. This immediately implies
that for all n ≥ n0,

(1− αnτ)(1− βn)(1 + θn)(1− µ)[‖wn − yn‖2 + ‖un − yn‖2]

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αnM4.
(2.37)

Step 3. We show that for all n ≥ n0,

‖xn+1 − p‖2

≤ [1− αn(1−βn)(τ−δ)
2 ]‖xn − p‖2 + αn(1−βn)(τ−δ)

2 [ 4
τ−δ 〈(f − ρF )p, zn − p〉

+ 4M
(τ−δ)(1−b) ·

σn
αn
· ‖xn − xn−1‖+ 4M2

(τ−δ)(1−b) ·
θn
αn

],

with constant M > 0. Indeed, we have

‖wn − p‖2 ≤ ‖xn − p‖2 + σn‖xn − xn−1‖M + θnM
2, (2.38)

where supn≥1(2 + θn)(‖xn − p‖+ σn‖xn − xn−1‖) ≤M for some M > 0. Note that

αnδ + (1− αnτ)(1 + θn) ≤ 1− αn(τ − δ)
2
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for all n ≥ n0. Thus, combining (2.34) and (2.38), we have that for all n ≥ n0,

‖xn+1 − p‖2
≤ βn‖wn − p‖2 + (1− βn){αnδ‖xn − p‖2 + (1− αnτ)(1 + θn)[‖xn − p‖2
+σn‖xn − xn−1‖M + θnM

2] + 2αn〈(f − ρF )p, zn − p〉}
≤ [1− αn(1−βn)(τ−δ)

2 ]‖xn − p‖2 + (1 + θn)[σn‖xn − xn−1‖M + θnM
2]

+2αn(1− βn)〈(f − ρF )p, zn − p〉
= [1− αn(1−βn)(τ−δ)

2 ]‖xn − p‖2 + αn(1−βn)(τ−δ)
2 [ 4

τ−δ 〈(f − ρF )p, zn − p〉
+ 4M

(τ−δ)(1−b) ·
σn
αn
· ‖xn − xn−1‖+ 4M2

(τ−δ)(1−b) ·
θn
αn

].

(2.39)

Step 4. We show that {xn} converges strongly to a unique solution x∗ ∈ Ω to the
VIP (2.12). Indeed, utilizing the same argument as in Step 4 of the proof of Theorem
2.1, we obtain the desired assertion. This completes the proof.

It is remarkable that our results improve and extend the results in Kraikaew and
Saejung [10], Thong and Hieu [16, 15] and Yao et al. [20]. In what follows, our results
are applied to solve the VIP and CFPP in an illustrated example. The initial point
x0 = x1 is randomly chosen in R.
Take f(x) = F (x) = 1

2x, γ = l = µ = 1
2 , σn = αn = 1

n+1 , βn = 1
3 , γn = 1

2 , δn = 1
6

and ρ = 2. Then we know that δ = κ = η = 1
2 , and

τ = 1−
√

1− ρ(2η − ρκ2) = 1−
√

1− 2(2 · 1

2
− 2(

1

2
)2) = 1 ∈ (0, 1].

We first provide an example of Lipschitz continuous and pseudomonotone mapping
A, asymptotically nonexpansive mapping T and strictly pseudocontractive mapping
S with Ω = Fix(T ) ∩ Fix(S) ∩ VI(C,A) 6= ∅. Let C = [−1, 1] and H = R with the
inner product 〈a, b〉 = ab and induced norm ‖ · ‖ = | · |. Let A, T, S : H → H be
defined as Ax := 1

1+| sin x| −
1

1+|x| , Tx := 2
3 sinx and Sx := 3

8x+ 1
2 sinx for all x ∈ H.

Now, we first show that A is pseudomonotone and Lipschitz continuous with L = 2.
Indeed, for all x, y ∈ H we have

‖Ax−Ay‖ = | 1
1+‖ sin x‖ −

1
1+‖x‖ −

1
1+‖ sin y‖ + 1

1+‖y‖ |
≤ | 1

1+‖ sin x‖ −
1

1+‖ sin y‖ |+ |
1

1+‖x‖ −
1

1+‖y‖ |
= | 1+‖ sin y‖−1−‖ sin x‖

(1+‖ sin x‖)(1+‖ sin y‖) |+ |
1+‖y‖−1−‖x‖

(1+‖x‖)(1+‖y‖) |
= | ‖ sin y‖−‖ sin x‖

(1+‖ sin x‖)(1+‖ sin y‖) |+ |
‖y‖−‖x‖

(1+‖x‖)(1+‖y‖) |
≤ ‖ sin x−sin y‖

(1+‖ sin x‖)(1+‖ sin y‖) + ‖x−y‖
(1+‖x‖)(1+‖y‖)

≤ ‖ sinx− sin y‖+ ‖x− y‖
≤ 2‖x− y‖.

This implies that A is Lipschitz continuous with L = 2. Next, we show that A is
pseudomonotone. For any given x, y ∈ H, it is clear that the relation holds:

〈Ax, y − x〉 =

(
1

1 + | sinx|
− 1

1 + |x|

)
(y − x) ≥ 0

⇒ 〈Ay, y − x〉 =

(
1

1 + | sin y|
− 1

1 + |y|

)
(y − x) ≥ 0.
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Furthermore, it is easy to see that T is asymptotically nonexpansive with

θn =

(
2

3

)n
, ∀n ≥ 1,

such that ‖Tn+1xn − Tnxn‖ → 0 as n→∞. Indeed, we observe that

‖Tnx− Tny‖ ≤ 2

3
‖Tn−1x− Tn−1y‖ ≤ · · · ≤

(
2

3

)n
‖x− y‖ ≤ (1 + θn)‖x− y‖,

and

‖Tn+1xn − Tnxn‖ ≤
(

2

3

)n−1

‖T 2xn − Txn‖ =

(
2

3

)n−1 ∥∥∥∥2

3
sin(Txn)− 2

3
sinxn

∥∥∥∥
≤ 2

(
2

3

)n
→ 0 (n→∞).

It is clear that Fix(T ) = {0} and

lim
n→∞

θn
αn

= lim
n→∞

(2/3)n

1/(n+ 1)
= 0.

In addition, it is clear that S is strictly pseudocontractive with constant ζ = 3
4 .

Indeed, we observe that for all x, y ∈ H,

‖Sx− Sy‖2 ≤ [
3

8
‖x− y‖+

1

2
‖ sinx− sin y‖]2 ≤ ‖x− y‖2 +

3

4
‖(I − S)x− (I − S)y‖2.

It is clear that (γn + δn)ζ = ( 1
2 + 1

6 ) · 3
4 ≤

1
2 = γn for all n ≥ 1. Therefore,

Ω = Fix(T ) ∩ Fix(S) ∩ VI(C,A) = {0} 6= ∅. In this case, Algorithm 2.1 can be
rewritten as follows:

wn = Tnxn + 1
n+1 (Tnxn − Tnxn−1),

yn = PC(wn − τnAwn),
zn = 1

n+1 ·
1
2xn + n

n+1T
nPCn(wn − τnAyn),

xn+1 = 1
3xn + 1

2zn + 1
6Szn ∀n ≥ 1,

(2.40)

where for each n ≥ 1, Cn and τn are chosen as in Algorithm 2.1. Then, by Theorem
2.1, we know that {xn} converges to 0 ∈ Ω = Fix(T ) ∩ Fix(S) ∩VI(C,A) if and only
if |xn − xn+1|+ |xn − yn| → 0 as n→∞.
On the other hand, Algorithm 2.2 can be rewritten as follows:

wn = Tnxn + 1
n+1 (Tnxn − Tnxn−1),

yn = PC(wn − τnAwn),
zn = 1

n+1 ·
1
2xn + n

n+1T
nPCn(wn − τnAyn),

xn+1 = 1
3wn + 1

2zn + 1
6Szn ∀n ≥ 1,

(2.41)

where for each n ≥ 1, Cn and τn are chosen as in Algorithm 2.2. Then, by Theorem
2.2, we know that {xn} converges to 0 ∈ Ω = Fix(T ) ∩ Fix(S) ∩VI(C,A) if and only
if |xn − xn+1|+ |xn − yn| → 0 as n→∞.
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