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1. Introduction

Differential equations of fractional order occur more frequently on different research
areas and engineering, such as physics, chemistry, economics. control of dynamical,
etc. Naturally, such equations required to be solved. Analogues to the Cauchy and
Dirichlet problems for differential equations of fractional order often arose in applica-
tions. There are numerous books and articles focused in this direction, that is, con-
cerning the linear and nonlinear initial value problems for fractional differential equa-
tions involving different kinds of fractional derivatives, see for instance [2, 3, 4, 5, 6, 9].
Whereas there are less works for boundary value problems for fractional differential
equations [11].
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Fractional derivatives are generalizations for derivative of integral order. There
are several kinds of fractional derivatives, such as, Riemann–Liouville fractional de-
rivative, Marchaud fractional derivative, Caputo derivative, Grunwald–Letnikov frac-
tional derivative, generalized Hilfer derivative etc. (see [1, 12, 13, 22, 25]). There
have appeared a number of works, especially in the theory of viscoelasticity and in
hereditary solid mechanics, where fractional derivatives are used for a better descrip-
tion of material properties. Mathematical modelling based on enhanced rheological
models naturally leads to differential equations of fractional order and to the necessity
of the formulation of initial conditions to such equations. In [24] the authors provide
some properties of Caputo-type modification of the Erdélyi-Kober fractional deriva-
tive. More details on the Erdélyi-Kober fractional integral and fractional derivative
are given in [8, 10, 14, 21, 22, 23].

In this paper, we establish existence and uniqueness results to the boundary value
problem of the following generalized Hilfer type fractional differential equation:(

ρDα,β
a+ y

)
(t) = f

(
t, y(t),

(
ρDα,β

a+ y
)

(t)
)
, for each , t ∈ (a, b], 0 < a < b < +∞,

(1.1)

u
(
ρI1−γa+ y

)
(a+) + v

(
ρI1−γa+ y

)
(b) = w, (1.2)

where ρDα,β
a+ ,ρ I1−γa+ are the generalized Hilfer fractional derivative of order α ∈ (0, 1)

and type β ∈ [0, 1] and generalized fractional integral of order 1−γ, (γ = α+β−αβ)
respectively, f : (a, b] × R × R → R is a given function and u, v, w are real with
u+ v 6= 0.
The present paper is organized as follows. In Section 2, some notations are introduced
and we recall some concepts of preliminaries about generalized Hilfer type fractional
derivative and auxiliary results. In Section 3, two results for the problem (1.1)-(1.2)
are presented: the first one is based on the Banach contraction principle, the second
one on Krasnoselskii’s fixed point theorem. Finally, in the last section, we give an
example to illustrate the applicability of our main results.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which
are used throughout this paper. Let 0 < a < b, J = [a, b]. By C(J,R) we denote the
Banach space of all continuous functions from J into R with the norm

‖y‖∞ = sup{|y(t)| : t ∈ J}.

We consider the weighted spaces of continuous functions

Cγ,ρ(J) =

{
y : (a, b]→ R :

(
tρ − aρ

ρ

)γ
y(t) ∈ C(J,R)

}
, 0 ≤ γ < 1,

and

Cnγ,ρ(J) =
{
y ∈ Cn−1(J) : y(n) ∈ Cγ,ρ(J)

}
, n ∈ N,

C0
γ,ρ(J) = Cγ,ρ(J),
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with the norms

‖y‖Cγ,ρ = sup
t∈J

∣∣∣∣( tρ − aρρ

)γ
y(t)

∣∣∣∣
and

‖y‖Cnγ,ρ =

n−1∑
k=0

‖y(k)‖∞ + ‖y(n)‖Cγ,ρ .

Consider the space Xp
c (a, b), (c ∈ R, 1 ≤ p ≤ ∞) of those complex-valued Lebesgue

measurable functions f on [a, b] for which ‖f‖Xpc <∞, where the norm is defined by

‖f‖Xpc =

(∫ b

a

|tcf(t)|p dt
t

) 1
p

, (1 ≤ p <∞, c ∈ R).

In particular, when c = 1
p , the space Xp

c (a, b) coincides with the Lp(a, b) space:

Xp
1
p

(a, b) = Lp(a, b).

Definition 2.1. ([15, 20, 21]) (Generalized fractional integral).
Let α ∈ R+, c ∈ R and g ∈ Xp

c (a, b). The generalized fractional integral of order α is
defined by

(ρIαa+g) (t) =

∫ t

a

sρ−1
(
tρ − sρ

ρ

)α−1
g(s)

Γ(α)
ds, t > a, ρ > 0,

where Γ(·) is the Euler gamma function defined by Γ(α) =

∫ ∞
0

tα−1e−tdt, α > 0.

Definition 2.2. ([15, 20, 21]) (Generalized fractional derivative).
Let α ∈ R+ \ N and ρ > 0. The generalized fractional derivative ρDα

a+ of order α is
defined by

(ρDα
a+g) (t) = δnρ (ρIn−αa+ g)(t)

=

(
t1−ρ

d

dt

)n ∫ t

a

sρ−1
(
tρ − sρ

ρ

)n−α−1
g(s)

Γ(n− α)
ds, t > a, ρ > 0,

where n = [α] + 1 and δnρ =

(
t1−ρ

d

dt

)n
.

Theorem 2.3. [21] Let α > 0, β > 0, 1 ≤ p ≤ ∞, 0 < a < b <∞ and ρ, c ∈ R, ρ ≥ c.
Then, for g ∈ Xp

c (a, b) the semigroup property is valid, i.e.(
ρIαa+

ρIβa+g
)

(t) =
(
ρIα+βa+ g

)
(t).

Lemma 2.4. [20, 21, 26] Let α > 0, and 0 ≤ γ < 1. Then, ρIαa+ is bounded from
Cγ,ρ(J) into Cγ,ρ(J).

Lemma 2.5. [26] Let 0 < a < b < ∞, α > 0, 0 ≤ γ < 1 and y ∈ Cγ,ρ(J). If α > γ,
then ρIαa+y is continuous on J and

(ρIαa+y) (a) = lim
t→a+

(ρIαa+y) (t) = 0
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Lemma 2.6. [7] Let x > a. Then, for α ≥ 0 and β > 0, we have[
ρIαa+

(
sρ − aρ

ρ

)β−1]
(t) =

Γ(β)

Γ(α+ β)

(
tρ − aρ

ρ

)α+β−1
[
ρDα

a+

(
sρ − aρ

ρ

)α−1]
(t) = 0, 0 < α < 1.

Lemma 2.7. [26] Let α > 0, 0 ≤ γ < 1 and g ∈ Cγ [a, b]. Then,

(ρDα
a+

ρIαa+g) (t) = g(t), for all t ∈ (a, b].

Lemma 2.8. [26] Let 0 < α < 1, 0 ≤ γ < 1. If g ∈ Cγ,ρ[a, b] and ρI1−αa+ g ∈ C1
γ,ρ[a, b],

then

(ρIαa+
ρDα

a+g) (t) = g(t)−
(
ρI1−αa+ g

)
(a)

Γ(α)

(
tρ − aρ

ρ

)α−1
, for all t ∈ (a, b].

Definition 2.9. ([26]) Let order α and type β satisfy n− 1 < α < n and 0 ≤ β ≤ 1,
with n ∈ N. The generalized Hilfer type fractional derivative to t, with ρ > 0 of a
function g ∈ C1−γ,ρ[a, b], is defined by(

ρDα,β
a+ g

)
(t) =

(
ρI
β(n−α)
a+

(
tρ−1

d

dt

)n
ρI

(1−β)(n−α)
a+ g

)
(t)

=
(
ρI
β(n−α)
a+ δnρ

ρI
(1−β)(n−α)
a+ g

)
(t).

In this paper we consider the case n = 1 only, because 0 < α < 1.

Property 2.10. ([26]) The operator ρDα,β
a+ can be written as

ρDα,β
a+ = ρI

β(1−α)
a+ δρ

ρI1−γa+ = ρI
β(1−α)
a+

ρDγ
a+ , γ = α+ β − αβ.

Property 2.11. The fractional derivative ρDα,β
α+ is an interpolator of the following

fractional derivatives: Hilfer (ρ → 1) [18], Hilfer–Hadamard (ρ → 0+) [20], Caputo–
type (β = 1) [26], Riemann–Liouville (β = 0, ρ→ 1) [21], Hadamard (β = 0, ρ→ 0+)
[21], Caputo (β = 1, ρ → 1) [21], Caputo–Hadamard (β = 1, ρ → 0+) [16], Liouville
(β = 0, ρ→ 1, a = 0) [21] and Weyl (β = 0, ρ→ 1, a = −∞)[19].

Consider the following parameters α, β, γ satisfying

γ = α+ β − αβ, 0 < α, β, γ < 1.

Thus, we define the spaces

Cα,β1−γ,ρ(J) =
{
y ∈ C1−γ,ρ(J), ρDα,β

a+ y ∈ C1−γ,ρ(J)
}

and

Cγ1−γ,ρ(J) =
{
y ∈ C1−γ,ρ(J), ρDγ

a+y ∈ C1−γ,ρ(J)
}
.

Since ρDα,β
a+ y = ρI

γ(1−α)
a+

ρDγ
a+y, it follows from Lemma 2.4 that

Cγ1−γ,ρ(J) ⊂ Cα,β1−γ,ρ(J) ⊂ C1−γ,ρ(J).
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Lemma 2.12. [26] Let 0 < α < 1, 0 ≤ β ≤ 1 and γ = α+ β − αβ. If y ∈ Cγ1−γ,ρ(J),
then

ρIγa+
ρDγ

a+y =ρ Iαa+
ρDα,β

a+ y

and
ρDγ

a+
ρIαa+y = ρD

β(1−α)
a+ y.

Lemma 2.13. (Theorem 4.1, [26]). Let f : J × R → R be a function such that
f(·, y(·)) ∈ C1−γ,ρ(J), for any y ∈ C1−γ,ρ(J). Then y ∈ Cγ1−γ,ρ(J) is a solution of the
differential equation:(

ρDα,β
a+ y

)
(t) = f(t, y(t)), for each , t ∈ (a, b], 0 < α < 1, 0 ≤ β ≤ 1,

if and only if y satisfies the following Volterra integral equation:

y(t) =

(
ρI1−γa+ y

)
(a+)

Γ(γ)

(
tρ − aρ

ρ

)γ−1
+

1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1f(s, y(s))ds,

where γ = α+ β − αβ.

Theorem 2.14. [27](C1−γ type Arzela–Ascoli Theorem) Let A ⊂ C1−γ(J,R). A is

relatively compact (i.e A is compact) if:
1) A is uniformly bounded i.e, there exists M > 0 such that

|f(x)| < M for every f ∈ A and x ∈ J.

2) A is equicontinuous i.e, for every ε > 0, there exists δ > 0 such that for each
x, x ∈ J, |x− x| ≤ δ implies |f(x)− f(x)| ≤ ε, for every f ∈ A.

Theorem 2.15. ([17]) (Banach’s fixed point theorem). Let C be a non-empty closed
subset of a Banach space E, then any contraction mapping T of C into itself has a
unique fixed point.

Theorem 2.16. ([17]) (Krasnoselskii’s fixed point theorem). Let M be a closed,
convex, and nonempty subset of a Banach space X, and A,B the operators such that
1) Ax+By ∈M for all x, y ∈M ;
2) A is compact and continuous;
3) B is a contraction mapping.
Then there exists z ∈M such that z = Az +Bz.

3. Main results

We consider the following linear fractional differential equation(
ρDα,β

a+ y
)

(t) = ϕ(t), t ∈ (a, b], (3.1)

where 0 < α < 1, 0 ≤ β ≤ 1, ρ > 0, with the boundary condition

u
(
ρI1−γa+ y

)
(a+) + v

(
ρI1−γa+ y

)
(b) = w, (3.2)
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where γ = α+ β − αβ, and u, v, w ∈ R with u+ v 6= 0. The following theorem shows
that the problem (3.1)–(3.2) has a unique solution given by

y(t) =
1

(u+ v)Γ(γ)

(
tρ − aρ

ρ

)γ−1 [
w − v

Γ(1− γ + α)

∫ b

a

(
bρ − sρ

ρ

)α−γ
sρ−1ϕ(s)ds

]

+
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1ϕ(s)ds. (3.3)

Theorem 3.1. Let γ = α+β−αβ, where 0 < α < 1 and 0 ≤ β ≤ 1. If ϕ : (a, b]→ R
is a function such that ϕ(·) ∈ C1−γ,ρ(J), then y ∈ Cγ1−γ,ρ(J) satisfies the problem

(3.1)–(3.2) if and only if it satisfies (3.3).

Proof. (⇒) By Lemma 2.13, we have the solution of (3.1) can be written as

y(t) =

(
ρI1−γa+ y

)
(a+)

Γ(γ)

(
tρ − aρ

ρ

)γ−1
+

1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1ϕ(s)ds. (3.4)

Applying ρI1−γa+ on both sides of (3.4), using Lemma 2.6 and taking t = b, we obtain(
ρI1−γa+ y

)
(b) =

(
ρI1−γa+ y

)
(a+) +

1

Γ(1− γ + α)

∫ b

a

(
bρ − sρ

ρ

)α−γ
sρ−1ϕ(s)ds, (3.5)

multiplying both sides of (3.5) by v, we get

v
(
ρI1−γa+ y

)
(b) = v

(
ρI1−γa+ y

)
(a+) +

v

Γ(1− γ + α)

∫ b

a

(
bρ − sρ

ρ

)α−γ
sρ−1ϕ(s)ds.

Using condition (3.2), we obtain

v
(
ρI1−γa+ y

)
(b) = w − u

(
ρI1−γa+ y

)
(a+).

Thus

w−u
(
ρI1−γa+ y

)
(a+) = v

(
ρI1−γa+ y

)
(a+)+

v

Γ(1− γ + α)

∫ b

a

(
bρ − sρ

ρ

)α−γ
sρ−1ϕ(s)ds,

which implies that(
ρI1−γa+ y

)
(a+) =

w

u+ v
− v

(u+ v)Γ(1− γ + α)

∫ b

a

(
bρ − sρ

ρ

)α−γ
sρ−1ϕ(s)ds, (3.6)

Substituting (3.6) into (3.4), we obtain (3.3).

(⇐) Applying ρI1−γa+ on both sides of (3.3) and using Lemma 2.6 and Theorem 2.3,
we get(

ρI1−γa+ y
)

(t) =
w

u+ v
− v

(u+ v)

(
ρI1−γ+αa+ ϕ

)
(b) +

(
ρI1−γ+αa+ ϕ

)
(t). (3.7)

Next, taking the limit t→ a+ of (3.7) and using Lemma 2.5, with 1− γ < 1− γ + α,
we obtain (

ρI1−γa+ y
)

(a+) =
w

u+ v
− v

(u+ v)

(
ρI1−γ+αa+ ϕ

)
(b). (3.8)
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Now, taking t = b in (3.7), we get(
ρI1−γa+ y

)
(b) =

w

u+ v
− v

(u+ v)

(
ρI1−γ+αa+ ϕ

)
(b) +

(
ρI1−γ+αa+ ϕ

)
(b). (3.9)

From (3.8) and (3.9), we find that

u
(
ρI1−γa+ y

)
(a+) + v

(
ρI1−γa+ y

)
(b)

=
uw

u+ v
− uv

u+ v

(
ρI1−γ+αa+ ϕ

)
(b) +

vw

u+ v

− v2

u+ v

(
ρI1−γ+αa+ ϕ

)
(b) + v

(
ρI1−γ+αa+ ϕ

)
(b)

= w +

(
v − uv

u+ v
− v2

u+ v

)(
ρI1−γ+αa+ ϕ

)
(b) = w,

which shows that the boundary condition u
(
ρI1−γ+αa+ ϕ

)
(a+)+v

(
ρI1−γ+αa+ ϕ

)
(b) = w,

is satisfied. Next, apply operator ρDγ
a+ on both sides of (3.3). Then, from Lemma 2.6

and Lemma 2.12 we obtain

(ρDγ
a+y)(t) =

(
ρD

β(1−α)
a+ ϕ

)
(t). (3.10)

Since y ∈ Cγ1−γ,ρ(J) and by definition of Cγ1−γ,ρ(J), we have ρDγ
a+y ∈ C1−γ,ρ(J),

then, (3.10) implies that

(ρDγ
a+y)(t) =

(
δρ

ρI
1−β(1−α)
a+ ϕ

)
(t) =

(
ρD

β(1−α)
a+ ϕ

)
(t) ∈ C1−γ,ρ(J). (3.11)

As ϕ(·) ∈ C1−γ,ρ(J) and from Lemma 2.4, follows(
ρI

1−β(1−α)
a+ ϕ

)
∈ C1−γ,ρ(J). (3.12)

From (3.11), (3.12) and by the Definition of the space Cn1−γ,ρ(J), we obtain(
ρI

1−β(1−α)
a+ ϕ

)
∈ C1

1−γ,ρ(J).

Applying operator ρI
β(1−α)
a+ on both sides of (3.10) and using Lemma 2.8, Lemma 2.5

and Property 2.10, we have(
ρDα,β

a+ y
)

(t) = ρI
β(1−α)
a+

(
ρDγ

a+y
)

(t)

= ϕ(t) +

(
ρI

1−β(1−α)
a+ ϕ(t)

)
(a)

Γ(β(1− α))

(
tρ − aρ

ρ

)β(1−α)−1
= ϕ(t),

that is, (3.1) holds. This completes the proof.
As a consequence of Theorem 3.1, we have the following result

Theorem 3.2. Let γ = α+β−αβ where 0 < α < 1 and 0 ≤ β ≤ 1, let f : (a, b]×R×
R→ R be a function such that f(·, y(·), z(·)) ∈ C1−γ,ρ(J) for any y, z ∈ C1−γ,ρ(J).
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If y ∈ Cγ1−γ,ρ(J), then y satisfies the problem (1.1)− (1.2) if and only if y is the fixed

point of the operator N : C1−γ,ρ(J)→ C1−γ,ρ(J) defined by

Ny(t) =
1

(u+ v)Γ(γ)

(
tρ − aρ

ρ

)γ−1[
w − v

Γ(1− γ + α)

∫ b

a

(
bρ−sρ

ρ

)α−γ
sρ−1g(s)ds

]

+
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1g(s)ds, t ∈ (a, b], (3.13)

where g : (0, b]→ R be a function satisfying the functional equation

g(t) = f(t, y(t), g(t)).

Clearly, g ∈ C1−γ,ρ(J). Also, by Lemma 2.4, Ny ∈ C1−γ,ρ(J).

Assume that the function f : (a, b] × R × R → R is continuous and satisfies the
conditions:

(H1 ) The function f : (a, b]× R× R→ R be such that

f(·, y(·), z(·)) ∈ Cβ(1−α)1−γ,ρ for any y, z ∈ C1−γ,ρ(J).

(H2) There exist constants K > 0 and 0 < L < 1 such that

|f(t, y, z)− f(t, ȳ, z̄)| ≤ K|y − ȳ|+ L|z − z̄|

for any y, z, ȳ, z̄ ∈ R and t ∈ (a, b].

We are now in a position to state and prove our existence result for the problem
(1.1)−(1.2) based on Banach’s fixed point.

Theorem 3.3. Assume (H1) and (H2) hold. If

K

1− L

(
bρ − aρ

ρ

)α [ |v|
|u+ v|Γ(α+ 1)

+
Γ(γ)

Γ(α+ γ)

]
< 1, (3.14)

then the problem (1.1)−(1.2) has unique solution in Cγ1−γ,ρ(J) ⊂ Cα,β1−γ,ρ(J).

Proof. The proof will be given in two steps.

Step 1: We show that the operator N defined in (3.13) has a unique fixed point y∗

in C1−γ,ρ(J). Let y, z ∈ C1−γ,ρ(J) and t ∈ (a, b], then, we have

|Ny(t)−Nz(t)|

≤ |v|
|u+ v|Γ(γ)Γ(1− γ + α)

(
tρ − aρ

ρ

)γ−1 ∫ b

a

(
bρ − sρ

ρ

)α−γ
sρ−1|g(s)− h(s)|ds

+
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1|g(s)− h(s)|ds,

where g, h ∈ C1−γ,ρ(J) such that

g(t) = f(t, y(t), g(t)),

h(t) = f(t, z(t), h(t)).
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By (H2), we have

|g(t)− h(t)| = |f(t, y(t), g(t))− f(t, z(t), h(t))|
≤ K|y(t)− z(t)|+ L|g(t)− h(t)|.

Then,

|g(t)− h(t)| ≤ K

1− L
|y(t)− z(t)|.

Therefore, for each t ∈ (a, b]

|Ny(t)−Nz(t)|

≤ K|v|
(1− L)|u+ v|Γ(γ)Γ(1− γ + α)

(
tρ−aρ

ρ

)γ−1∫ b

a

(
bρ−sρ

ρ

)α−γ
sρ−1|y(s)− z(s)|ds

+
K

(1− L)Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1|y(s)− z(s)|ds,

≤ K|v|
(1− L)|u+ v|Γ(γ)

(
tρ − aρ

ρ

)γ−1
‖y − z‖C1−γ,ρ

(
ρI1−γ+αa+

(
sρ − aρ

ρ

)γ−1)
(b)

+
K

(1− L)

(
Iαa+

(
sρ − aρ

ρ

)γ−1)
(t)‖y − z‖C1−γ,ρ .

By Lemma 2.6, we have

|Ny(t)−Nz(t)| ≤

[
K|v|

(1− L)|u+ v|Γ(α+ 1)

(
bρ − aρ

ρ

)α(
tρ − aρ

ρ

)γ−1
+

KΓ(γ)

Γ(α+ γ)(1− L)

(
tρ − aρ

ρ

)α+γ−1]
‖y − z‖C1−γ,ρ ,

hence∣∣∣∣∣
(
tρ − aρ

ρ

)1−γ

(Ny(t)−Nz(t))

∣∣∣∣∣ ≤
[

K|v|
(1− L)|u+ v|Γ(α+ 1)

(
bρ − aρ

ρ

)α
+

KΓ(γ)

Γ(α+ γ)(1− L)

(
tρ − aρ

ρ

)α]
‖y − z‖C1−γ,ρ

≤ K

1− L

(
bρ − aρ

ρ

)α [ |v|
|u+ v|Γ(α+ 1)

+
Γ(γ)

Γ(α+ γ)

]
‖y − z‖C1−γ,ρ ,

which implies that

‖Ny −Nu‖C1−γ,ρ ≤
K

1− L

(
bρ − aρ

ρ

)α [ |v|
|u+ v|Γ(α+ 1)

+
Γ(γ)

Γ(α+ γ)

]
‖y − z‖C1−γ,ρ .

By (3.14), the operator N is a contraction. Hence, by Banach’s contraction principle,
N has a unique fixed point y∗ ∈ C1−γ,ρ(J).
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Step 2: We show that such a fixed point y∗ ∈ C1−γ,ρ(J) is actually in Cγ1−γ,ρ(J).

Since y∗ is the unique fixed point of operator N in C1−γ,ρ(J), then, for each t ∈ (a, b],
we have

y∗(t) =
1

(u+ v)Γ(γ)

(
tρ − aρ

ρ

)γ−1 [
w − v

(
ρI1−γ+αa+ f(s, y∗(s), g(s))

)
(b)
]

+ (ρIαa+f(s, y∗(s), g(s))) (t).

Applying ρDγ
a+ to both sides and by Lemma 2.6, and Lemma 2.12, we have

ρDγ
a+y
∗(t) =

(
ρDγ

a+
ρIαa+f(s, y∗(s), g(s))

)
(t)

=
(
ρD

β(1−α)
a+ f(s, y∗(s), g(s))

)
(t).

Since γ ≥ α, by (H1), the right hand side is in C1−γ,ρ(J) and thus ρDγ
a+y
∗ ∈ C1−γ,ρ(J)

which implies that y∗ ∈ Cγ1−γ,ρ(J). As a consequence of Steps 1 and 2 together with

Theorem 3.2, we can conclude that the problem (1.1)− (1.2) has a unique solution in
Cγ1−γ,ρ(J).
Our second result is based on Krasnoselskii fixed point theorem.

Theorem 3.4. Assume (H1) and (H2) hold. If

max

{
KΓ(γ)

(1− L)Γ(α+ γ)

(
bρ − aρ

ρ

)α
,

K|v|
(1− L)|u+ v|Γ(α+ 1)

(
bρ − aρ

ρ

)α}
< 1.

(3.15)

Then the problem (1.1)-(1.2) has at least one solution in Cγ1−γ,ρ(J) ⊂ Cα,β1−γ,ρ(J).

Proof. Consider the set

Bη∗ = {y ∈ C1−γ,ρ(J) : ||y||C1−γ,ρ ≤ η∗},
where

η∗≥

|w|
|u+v|Γ(γ)

+
|v|MΓ(γ)

|u+v|Γ(α+1)Γ(γ)

(
bρ−aρ

ρ

)α
+

f∗Γ(γ)

(1−L)Γ(α+ γ)

(
bρ−aρ

ρ

)1−γ+α

1− KΓ(γ)

(1− L)Γ(α+ γ)

(
bρ − aρ

ρ

)α ,

and f∗ = sup
t∈J
|f(t, 0, 0)|.

We define the operators P and Q on Bη∗ by

Py(t)=
1

(u+ v)Γ(γ)

(
tρ − aρ

ρ

)γ−1[
w− v

Γ(1− γ + α)

∫ b

a

(
bρ−sρ

ρ

)α−γ
sρ−1g(s)ds

]
,

(3.16)

Qy(t) =
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1g(s)ds. (3.17)

Then the fractional integral equation (3.13) can be written as operator equation

Ny(t) = Py(t) +Qy(t), y ∈ C1−γ,ρ(J)

The proof will be given in several steps.
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Step 1: We prove that Py+Qz ∈ Bη∗ for any y, z ∈ Bη∗ . For operator P, multiplying

both sides of (3.16) by

(
tρ − aρ

ρ

)1−γ

, we have

(
tρ−aρ

ρ

)1−γ

Py(t) =
1

(u+ v)Γ(γ)

[
w − v

Γ(1− γ + α)

∫ b

a

(
bρ−sρ

ρ

)α−γ
sρ−1g(s)ds

]
,

then∣∣∣∣∣
(
tρ − aρ

ρ

)1−γ

Py(t)

∣∣∣∣∣≤ 1

|u+v|Γ(γ)

[
|w|+ |v|

Γ(1−γ+α)

∫ b

a

(
bρ−sρ

ρ

)α−γ
sρ−1|g(s)|ds

]
.

(3.18)
By (H3), we have for each t ∈ (a, b],

|g(t)| = |f(t, y(t), g(t))− f(t, 0, 0) + f(t, 0, 0)|
≤ |f(t, y(t), g(t))− f(t, 0, 0)|+ |f(t, 0, 0)|
≤ K|y(t)|+ L|g(t)|+ f∗.

Multiplying both sides of the above inequality by

(
tρ − aρ

ρ

)1−γ

, we get∣∣∣∣∣
(
tρ − aρ

ρ

)1−γ

g(t)

∣∣∣∣∣ ≤
(
tρ − aρ

ρ

)1−γ

f∗ +K

∣∣∣∣∣
(
tρ − aρ

ρ

)1−γ

y(t)

∣∣∣∣∣
+ L

∣∣∣∣∣
(
tρ − aρ

ρ

)1−γ

g(t)

∣∣∣∣∣
≤

(
bρ − aρ

ρ

)1−γ

f∗ +Kη∗ + L

∣∣∣∣∣
(
tρ − aρ

ρ

)1−γ

g(t)

∣∣∣∣∣ .
Then, for each t ∈ (a, b], we have

∣∣∣∣∣
(
tρ − aρ

ρ

)1−γ

g(t)

∣∣∣∣∣ ≤
(
bρ − aρ

ρ

)1−γ

f∗ +Kη∗

1− L
:= M. (3.19)

Thus, (3.18) and Lemma 2.6, imply∣∣∣∣∣
(
tρ − aρ

ρ

)1−γ

Py(t)

∣∣∣∣∣ ≤ 1

|u+ v|Γ(γ)

[
|w|+ |v|MΓ(γ)

Γ(α+ 1)

(
tρ − aρ

ρ

)α]
.

This gives

||Py||C1−γ,ρ ≤
1

|u+ v|Γ(γ)

[
|w|+ |v|MΓ(γ)

Γ(α+ 1)

(
bρ − aρ

ρ

)α]
. (3.20)

Using (3.19) and Lemma 2.6, we have

|Q(z)(t)| ≤

[
Γ(γ)f∗

(1− L)Γ(α+ γ)

(
bρ − aρ

ρ

)1−γ

+
KΓ(γ)η∗

(1− L)Γ(α+ γ)

](
tρ − aρ

ρ

)α+γ−1
.
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Therefore∣∣∣∣∣
(
tρ − aρ

ρ

)1−γ

Qz(t)

∣∣∣∣∣ ≤
[

Γ(γ)f∗

(1− L)Γ(α+ γ)

(
bρ − aρ

ρ

)1−γ

+
KΓ(γ)η∗

(1− L)Γ(α+ γ)

](
tρ − aρ

ρ

)α
,

≤ Γ(γ)f∗

(1− L)Γ(α+ γ)

(
bρ − aρ

ρ

)1−γ+α

+
KΓ(γ)η∗

(1− L)Γ(α+ γ)

(
bρ − aρ

ρ

)α
.

Thus

‖Qz‖C1−γ,ρ ≤
Γ(γ)f∗

(1− L)Γ(α+ γ)

(
bρ − aρ

ρ

)1−γ+α

+
KΓ(γ)η∗

(1− L)Γ(α+ γ)

(
bρ − aρ

ρ

)α
.

(3.21)
Linking (3.20) and (3.21) for every y, z ∈ Bη∗ we obtain

‖Py +Qz‖C1−γ,ρ ≤ ‖Py‖C1−γ,ρ + ‖Qz‖C1−γ,ρ

≤ |w|
|u+ v|Γ(γ)

+
|v|MΓ(γ)

|u+ v|Γ(α+ 1)Γ(γ)

(
bρ − aρ

ρ

)α
+

[
f∗
(
bρ − aρ

ρ

)1−γ

+Kη∗

]
Γ(γ)

(1− L)Γ(α+ β)

(
bρ − aρ

ρ

)α
.

Since

η∗≥

|w|
|u+v|Γ(γ)

+
|v|MΓ(γ)

|u+v|Γ(α+1)Γ(γ)

(
bρ−aρ

ρ

)α
+

f∗Γ(γ)

(1−L)Γ(α+ γ)

(
bρ−aρ

ρ

)1−γ+α

1− KΓ(γ)

(1− L)Γ(α+ γ)

(
bρ − aρ

ρ

)α ,

we have

‖Py +Qz‖PC1−γ,ρ ≤ η∗.
which infers that Py +Qz ∈ Bη∗ .

Step 2: P is a contraction.
Let y, z ∈ C1−γ,ρ(J) and t ∈ (a, b], then, we have

|Py(t)− Pz(t)|

≤ |v|
|u+ v|Γ(γ)Γ(1− γ + α)

(
tρ − aρ

ρ

)γ−1 ∫ b

a

(
bρ − sρ

ρ

)α−γ
sρ−1|g(s)− h(s)|ds,

where g, h ∈ C1−γ,ρ(J) such that

g(t) = f(t, y(t), g(t)),

h(t) = f(t, z(t), h(t)).
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By (H2), we have

|g(t)− h(t)| = |f(t, y(t), g(t))− f(t, z(t), h(t))|
≤ K|y(t)− u(t)|+ L|g(t)− h(t)|.

Then,

|g(t)− h(t)| ≤ K

1− L
|y(t)− z(t)|.

Therefore, for each t ∈ (a, b]

|Py(t)− Pz(t)|

≤ K|v|
(1−L)|u+v|Γ(γ)Γ(1−γ+α)

(
tρ − aρ

ρ

)γ−1 ∫ b

a

(
bρ − sρ

ρ

)α−γ
sρ−1|y(s)− z(s)|ds

≤ K|v|
(1− L)|u+ v|Γ(γ)

(
tρ − aρ

ρ

)γ−1
‖y − z‖C1−γ,ρ

(
ρI1−γ+αa+

(
sρ − aρ

ρ

)γ−1)
(b).

By Lemma 2.6, we have

|Py(t)− Pz(t)| ≤ K|v|
(1− L)|u+ v|Γ(α+ 1)

(
bρ − aρ

ρ

)α(
tρ − aρ

ρ

)γ−1
‖y − z‖C1−γ,ρ ,

hence∣∣∣∣∣
(
tρ − aρ

ρ

)1−γ

(Py(t)− Pz(t))

∣∣∣∣∣ ≤ K|v|
(1− L)|u+ v|Γ(α+ 1)

(
bρ − aρ

ρ

)α
‖y−z‖C1−γ,ρ ,

which implies that

‖Py − Pz‖C1−γ,ρ ≤
K|v|

(1− L)|u+ v|Γ(α+ 1)

(
bρ − aρ

ρ

)α
‖y − z‖C1−γ,ρ .

By (3.15), the operator P is a contraction.

Step 3: Q is compact and continuous.
The continuity of Q follows from the continuity of f. Next we prove that Q is uniformly
bounded on Bη∗ . Let any z ∈ Bη∗ . Then by (3.21) we have

‖Qz‖C1−γ,ρ ≤
Γ(γ)f∗

(1− L)Γ(α+ γ)

(
bρ − aρ

ρ

)1−γ+α

+
KΓ(γ)η∗

(1− L)Γ(α+ γ)

(
bρ − aρ

ρ

)α
.



540 MOUFFAK BENCHOHRA, SOUFYANE BOURIAH AND JUAN J. NIETO

This means that Q is uniformly bounded on Bη∗ . Next, we show that QBη∗ is equicon-
tinuous. Let any y ∈ Bη∗ and 0 < a < τ1 < τ2 ≤ b. Then∣∣∣∣∣

(
τρ2 − aρ

ρ

)1−γ

Q(y)(τ2)−
(
τρ1 − aρ

ρ

)1−γ

Q(y)(τ1)

∣∣∣∣∣
≤

(
τρ2 − aρ

ρ

)1−γ

Γ(α)

∫ τ2

τ1

(
τρ2 − sρ

ρ

)α−1
sρ−1|g(s)|ds

+
1

Γ(α)

∫ τ1

a

∣∣∣∣∣
[(

τρ2 − aρ

ρ

)1−γ (
τρ2 − sρ

ρ

)α−1
sρ−1

−
(
τρ1 − aρ

ρ

)1−γ (
τρ1 − sρ

ρ

)α−1
sρ−1

]∣∣∣∣∣ |g(s)|ds

≤
MΓ(γ)

(
τρ2 − aρ

ρ

)1−γ

Γ(α+ γ)

(
τρ2 − τ

ρ
1

ρ

)α+γ−1
+

M

Γ(α)

∫ τ1

a

∣∣∣∣∣
[(

τρ2 − aρ

ρ

)1−γ (
τρ2 − sρ

ρ

)α−1
sρ−1

−
(
τρ1 − aρ

ρ

)1−γ (
τρ1 − sρ

ρ

)α−1
sρ−1

]∣∣∣∣∣
(
sρ − aρ

ρ

)γ−1
ds.

Note that∣∣∣∣∣
(
τρ2 − aρ

ρ

)1−γ

Q(y)(τ2)−
(
τρ1 − aρ

ρ

)1−γ

Q(y)(τ1)

∣∣∣∣∣→ 0 as τ2 → τ1.

This shows that Q is equicontinuous on J. Therefore Q is relatively compact on Bη∗ .
By C1−γ type Arzela-Ascoli Theorem Q is compact on Bη∗ .
As a consequence of Krasnoselskii’s fixed point theorem, we deduce that N has at
least a fixed point y∗ ∈ C1−γ,ρ(J) and by the same way of the proof of Theorem
3.3, we can easily show that y∗ ∈ Cγ1−γ,ρ(J). Using Lemma 3.2, we conclude that the

problem (1.1)− (1.2) has at least one solution in the space Cγ1−γ,ρ(J).

4. An example

Consider the following boundary value problem

1
2D

1
2 ,0

1+ y(t) =
2 + |y(t)|+

∣∣∣ 12D 1
2 ,0

0+ y(t)
∣∣∣

108e−t+3
(

1 + |y(t)|+
∣∣∣ 12D 1

2 ,0

0+ y(t)
∣∣∣) +

ln(
√
t+ 1)

3
√√

t− 1
, t ∈ (1, 2] (4.1)

(
1
2 I

1
2 ,0

1+ y
)

(1) +
(

1
2 I

1
2 ,0

1+ y
)

(2) = 0. (4.2)
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Set

f(t, y, z) =
2 + y + z

108e−t+3(1 + y + z)
+

ln(
√
t+ 1)

3
√
t

, t ∈ (1, 2], y, z ∈ [0,+∞).

We have

C
β(1−α)
1−γ,ρ ([1, 2]) = C0

1
2 ,

1
2
([1, 2]) =

{
h : (1, 2]→ R :

√
2
(√

t− 1
) 1

2

h ∈ C([1, 2])

}
,

with γ = α = ρ = 1
2 and β = 0. Clearly, the function f ∈ C 1

2 ,
1
2
([1, 2]).

Hence condition (H1) is satisfied.
For each y, ȳ, z, z̄ ∈ R and t ∈ (1, 2] :

|f(t, y, z)− f(t, ȳ, z̄)| ≤ 1

108e−t+3
(|y − ȳ|+ |z − z̄|)

≤ 1

108e
(|y − ȳ|+ |z − z̄|) .

Hence condition (H2) is satisfied with K = L =
1

108e
.

The condition

K

1− L

(
bρ − aρ

ρ

)α [ |v|
|u+ v|Γ(α+ 1)

+
Γ(γ)

Γ(α+ γ)

]
≈ 0.0072 < 1,

is satisfied with with b = 2, a = 1, u = v = 1 and w = 0. It follows from Theorem 3.3

that the problem (4.1)-(4.2) has a unique solution in the space C
1
2
1
2 ,

1
2

([1, 2]).
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Kober fractional integral operators, Open Math., 14(2016), 89-99.

[11] M. Benchohra, S. Bouriah, M.A. Darwish, Nonlinear boundary value problem for implicit dif-
ferential equations of fractional order in Banach spaces, Fixed Point Theory, 18(2017), no. 2,

457-470.

[12] M. Benchohra, S. Bouriah, J.R. Graef, Boundary value problems for nonlinear implicit Caputo-
Hadamard-type fractional differential equations with impulses, Mediterr. J. Math., (2017),

14:206.

[13] M. Benchohra, S. Bouriah, J.R. Graef, Nonlinear implicit differential equations of fractional
order at resonance, Electron. J. Differential Equations, 2016(2016), no. 324, 1-10.

[14] F.Z. Berrabah, B. Hedia, J. Henderson, A fully Hadamard and Erdélyi-Kober-type integral
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