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Abstract. The existence of fixed points and, in particular, coupled fixed points is investigated for

multivalued contractions in complete metric spaces. Multivalued coupled fractals are furthermore
explored as coupled fixed points of certain induced operators in hyperspaces, i.e. as coupled compact

subsets of the original spaces. The structure of fixed point sets is considered in terms of absolute
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alternative based on the topological essentiality. Two illustrative examples about coupled multivalued

fractals are supplied.
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1. Introduction

As the title suggests, the present paper can be regarded as an advanced version of
our paper [2] from 2001, where the theoretical results were also applied to the existence
of multivalued metric fractals and to the existence of almost periodic solutions to
differential inclusions. Here some statements are recalled in a new context, or they are
new in the sense that they have not yet been published (i.e. not only to be contained
in [2]). The latter concerns the existence of coupled fixed points of multivalued maps
and, in particular, the existence of multivalued coupled fractals, which will be supplied
by two illustrative examples. Furthermore, a continuation method for contractions,
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initiated by Granas in [19] and followed by some further authors, is partly extended
for multivalued contractions.

Although the theorems for (multivalued) contractions belong exclusively to the
metric fixed point theory (see e.g. [8, 24, 26, 33, 34, 40]), we also decided to make a
short excursion into the topological fixed point theory (see e.g. [3, 14, 20], in order
to compare the power of the related results about (coupled) fixed points in the both
fields. Let us note that the topological essentiality, treated here too, lies between
these two theories.

Hence, our paper is organized as follows. Preliminaries concern, as usually, tech-
nicalities and basic definitions. Then the existence results for fixed points, including
coupled fixed points, are presented. The results for coupled multivalued fractals,
which are treated separately, are illustrated by two examples. The structure of fixed
point sets is discussed in terms of absolute retracts. A continuation method for mul-
tivalued contractions is formulated in the form of a nonlinear alternative. Finally,
some concluding remarks are supplied.

2. Preliminaries

In this paper, all topological spaces are assumed to be metric.
Let (X, d) be a metric space. For a standard distance between the set A ⊂ X and

the point x ∈ X, we have

dist(x,A) := inf {d(x, y); y ∈ A} .

Evidently, dist(x,A) = 0 if and only if x ∈ clA, where clA denotes the closure of A
in X.

We denote

CB(X) := {A ⊂ X;A is nonempty, closed and bounded} ,
K(X) := {A ⊂ X;A is nonempty and compact} .

For a given ε > 0 and A ∈ CB(X), we define the neighbourhood of A as

Oε(A) := {x ∈ X; dist(x,A) < ε} .

We shall consider the Hausdorff distance dH as a function

dH : CB(X)× CB(X)→ [0,+∞),

defined as follows:

dH(A,B) := inf {ε > 0;A ⊂ Oε(B) ∧B ⊂ Oε(A)} .

It is well known that (CB(X), dH) is a metric space which is complete, provided X is
complete.

Let E be a Banach space, A,B,C,D ∈ CB(E), and x, y ∈ E. It is easy to see that

(i) dH(A+B,C +D) ≤ dH(A,C) + dH(B,D),
(ii) dH(x+A, {y}) = dH({x} , y −A),

(iii) dH(tA, tB) = dH(A,B), for t ∈ [0, 1],
(iv) dH(x+A, x+B) = dH(A,B),
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where

A+B := {x+ y;x ∈ A, y ∈ B} and tA := {tx;x ∈ A} .
Furthermore,

(v) dH(A×B,C ×D) ≤ max {dH(A,B), dH(C,D)},
where dH(A×B,C ×D) is considered in CB(X ×X).

Let us note that, in the Cartesian product of metric spaces, we consider the max-
metric.

Let X,Y be two metric spaces. A map ϕ : X → CB(Y ) will be called a multivalued
map and

Γϕ := {(x, y) ∈ X × Y ; y ∈ ϕ(x)}
will be called the graph of ϕ.

If ϕ : X → CB(Y ) is a multivalued map, then

• ϕ is called upper semicontinuous (u.s.c.) if, for every open U ⊂ Y , the set

ϕ−1(U) := {x ∈ X;ϕ(x) ⊂ U} is open in X;

• ϕ is called lower semicontinuous (l.s.c.) if, for every open U ⊂ Y , the set

ϕ−1
+ (U) := {x ∈ X;ϕ(x) ∩ U 6= ∅} is open in X;

• ϕ is called continuous if it is both u.s.c. and l.s.c.;
• ϕ is called Hausdorff continuous (h.c.) if it is continuous with respect to the

metrics d in X and dH in CB(Y );
• ϕ is called a Lipschitz map if there exists a constant α ∈ [0,+∞) such that

dH(ϕ(x), ϕ(y)) ≤ αd(x, y), for every x, y ∈ X;

• ϕ is called a contraction if it is a Lipschitz map such that α ∈ [0, 1).

Let us recall some basic properties of multivalued mappings in the form of the
following proposition.

Proposition 2.1 Let X,Y be metric spaces and ϕ be a multivalued mapping from X
to Y .

• If ϕ : X → CB(Y ) is u.s.c., then Γϕ is a closed subset of X × Y .
• A map ϕ : X → K(Y ) is u.s.c. if and only if Γϕ is a closed subset of X × Y .
• A map ϕ : X → K(Y ) is h.c. if and only if ϕ is continuous.
• If ϕ : X → CB(Y ) is h.c., then it is l.s.c.
• Any Lipschitz (and, in particular, contractive) map is h.c.

For the proofs and more details, see e.g. [3, 14, 22].
It will be also convenient to recall some further properties of multivalued mappings.

Lemma 2.2 (cf. e.g. [3, 14]) If ϕ : X → K(Y ) is a u.s.c. map and A ⊂ X is a
compact set, then the set ϕ(A) =

⋃
x∈A ϕ(x) is compact, too.

Lemma 2.3 (cf. e.g. [2, Proposition 1.7]) If ϕ : X → CB(Y ) is u.s.c. with connected
values, then ϕ(X) =

⋃
x∈X ϕ(x) is connected, provided X is connected.

We shall also use the following notions.
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Definition 2.4 Let A ⊂ X be a subset of the space X. We say that A is a retract of
X if there exists a continuous map r : X → A (called a retraction) such that r(x) = x,
for every x ∈ A.

Definition 2.5 A space X is called an absolute retract (written:X ∈ AR) if, for every
space Y and for every embedding h : Y → X such that h(Y ) is a closed subset of X,
the set h(Y ) is a retract of X.

Let us note that X ∈ AR if and only if X has an extension property (X ∈ ES).
For more details, see e.g. [6].

Definition 2.6 A space X is called n-connected (written:X ∈ Cn) if any continuous
map f : Sk → X, k ≤ n, can be extended over Bk+1, where Bk+1 is the unit closed
ball in the Euclidean space Rn+1 and Sk denotes a unit sphere in Rn+1.

Definition 2.7 A space X is called to be infinitely connected (written:X ∈ C∞) if it
is n-connected, for every n = 1, 2, . . .

Evidently, if X ∈ AR, then X ∈ C∞.
For more details, see e.g. [6, 14, 22, 25].

3. Existence of fixed points

Let ϕ : X → CB(X) be a multivalued map and x0 ∈ X be a point.

Definition 3.1 The sequence {xn}n≥0, where x1 ∈ ϕ(x0), x2 ∈ ϕ(x1), . . . , xn+1 ∈
ϕ(xn), . . . , is called an orbit of ϕ, starting from the point x0. If it is convergent, then
it is called a strong orbit.

Lemma 3.2 If ϕ has a closed graph Γϕ or if it is a Lipschitz map, then the existence
of a strong orbit implies that there exists a point x̂ such that x̂ ∈ ϕ(x̂).
Proof. Assume that {xn}n≥0 is a strong orbit and Γϕ is a closed subset of X × X.
Then we have

{xn} → x̂ and xn ∈ ϕ(xn−1), for every n ≥ 1,

i.e., (xn−1, xn) ∈ Γϕ for every n ≥ 1. Consequently, (x̂, x̂) ∈ Γϕ, i.e. x̂ ∈ ϕ(x̂).
Now, assume that ϕ is a Lipschitz map. Then we have

dist(xn, ϕ(x̂)) ≤ dH(ϕ(xn), ϕ(x̂)) ≤ α · d(xn, x̂),

for every n ≥ 0. Thus,

dist(x̂, ϕ(x̂)) = lim
n→∞

d(xn, ϕ(x̂)) = 0, i.e. x̂ ∈ ϕ(x̂).

A point x ∈ X such that x ∈ ϕ(x) is called a fixed point of ϕ.
We let

Fix(ϕ) := {x ∈ X;x ∈ ϕ(x)} .
If Fix(ϕ) 6= ∅, then there obviously exists a strong orbit of ϕ.

Proposition 3.3 If X is a complete space and ϕ is a contraction, then there exists a
strong orbit of ϕ.
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Proof. Assume that α ∈ [0, 1) is a Lipschitz constant for ϕ. Let x0 ∈ X be an
arbitrary point. Moreover, let α1 ∈ (α, 1). We pick x1 ∈ ϕ(x0) with d(x0, x1) > 0. If
no such x1 exists, then x0 ∈ Fix(ϕ), and x0, x0, . . . , x0, . . . is a strong orbit.

Otherwise,

dist(x1, ϕ(x1)) ≤ dH(ϕ(x0), ϕ(x1)) ≤ α1d(x0, x1),

and we can find x2 ∈ ϕ(x1) such that

d(x1, x2) < α1d(x0, x1).

Inductively, we produce a sequence {xn} such that xn+1 ∈ ϕ(xn), for every n ≥ 0,
and d(xn, xn+1) < αn1d(x0, x1).

It follows, that {xn} is a Cauchy sequence. Since X is a complete space, we get
that {xn} is a strong orbit, as claimed.

Corollary 3.4 (cf. [8]) If ϕ is a contraction and X is a complete space, then

Fix(ϕ) 6= ∅.

Concerning Corollary 3.4, which is due to Covitz and Nadler [8] and its extensions,
see also e.g. [3, 14, 16, 20, 24, 26, 34, 40].

Let us note, that Corollary 3.4 is perhaps a mostly known multivalued general-
ization of the celebrated Banach Contraction Principle. It is not true that, for mul-
tivalued mappings, Fix(ϕ) is a singleton. For example, let ϕ(x) = A be a constant
multivalued map, where A ⊂ X is a set, then Fix(ϕ) = A.

Now, let us analyze the situation locally. Let A ⊂ X be an arbitrary set and let
ϕ : A → CB(X) be a contraction. It can be easily seen that the set Fix(ϕ) can be
empty.

Let B(x0, r) := {x ∈ X; d(x, x0) < r} be an open ball in X with center x0 and
radius r. The following proposition was already proved in [2, Proposition 2.2].

Proposition 3.5 (cf. [2, Proposition 2.2]) Let ϕ : B(x0, r)→ CB(X) be a contraction
such that

dH(x0, ϕ(x0)) < (1− α) · r,
where α ∈ [0, 1) is a Lipschitz constant for ϕ. Then Fix(ϕ) 6= ∅.

Now, assume that X = E is a Banach space and let U be an open subset of E.
With a contraction ϕ : U → CB(E), we associate a contractive field

Φ : U → CB(E),

defined by the formula

Φ(x) := x− ϕ(x), for every x ∈ U,

where x− ϕ(x) := {x− y; y ∈ ϕ(x)}.
The following Proposition 3.6, whose proof relies on the application of Proposi-

tion 3.5, was also already presented as a theorem, under the name of Invariance of a
domain for contractive fields, in [2, Theorem 2.3].
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Proposition 3.6 (cf. [2, Proposition 2.3]) Let U be an open subset of a Banach space
and let ϕ : U → CB(E) be a contraction. Then Φ : U → CB(E) is an open mapping,
i.e., for every open V ⊂ U , the set Φ(V ) :=

⋃
u∈V Φ(u) is an open subset of E.

In what follows, an open and connected subset of a Banach space will be called a
domain.

Corollary 3.7 If U ⊂ E is a domain and ϕ : U → CB(E) is a contraction with
connected values, then Φ(U) is a domain, too.

Corollary 3.7 is a direct consequence of Proposition 3.6 and Lemma 2.3.

Proposition 3.8 If ϕ : E → CB(E) is a contraction, then Φ(E) = E, where E is a
Banach space.
Proof. Let y ∈ E. For the proof, it is sufficient to show that there exists x ∈ E such
that y ∈ Φ(x).

For this goal, we define the map Ψ : E → E by letting

Ψ(x) := y + ϕ(x), for every x ∈ E.

It is obvious that Ψ is a contraction. Using Corollary 3.4, we get a point x ∈ Ψ(x). It
implies that there exists y1 ∈ ϕ(x) such that x = y+ y1. Hence, y = (x− y1) ∈ Φ(x),
and the proof is completed.

Now, we would like to deal briefly with the coupled fixed point theory (see e.g.
[21, 27, 28, 29, 30, 31, 37]).

Let ϕ : X ×X → CB(X) be a multivalued map.

Definition 3.9 (cf. e.g. [21]) A pair (x, y) ∈ X × X is called a coupled fixed point
for ϕ if x ∈ ϕ(x, y) and y ∈ ϕ(y, x).

For a given ϕ : X ×X → CB(X), we define ψ : X ×X → CB(X ×X) by putting

ψ(x, y) := ϕ(x, y)× ϕ(y, x).

The following property is self-evident.

Proposition 3.10 The map ϕ has a coupled fixed point if and only if Fix(ψ) 6= ∅.

Let us make a short excursion into the topological fixed point theory. It will be
suitable to recall the following properties for the Cartesian products:

• the Cartesian product of two (and, in fact, any countable collection) of AR–
spaces is an absolute retract (see e.g. [6]);
• the Cartesian product of two acyclic (i.e. homologically equivalent to a point)

sets is acyclic (see e.g. [14]);
• the Cartesian product of two (compact) u.s.c. maps is (compact) u.s.c. (see

e.g. [3, 14]).

The following theorem is then a direct consequence of Proposition 3.10 and
the Eilenberg–Montgomery type fixed point theorem (see e.g. [20, Corollary
VI.19.7.5(iv)]).
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Theorem 3.11 Let X be an AR–space and ϕ : X ×X → K(X) be a compact acyclic
mapping (i.e. a compact u.s.c. mapping with acyclic values). Then ϕ admits a coupled
fixed point.

Corollary 3.12 Let X be a compact AR–space and ϕ : X × X → CB(X) be an
acyclic mapping (i.e. a u.s.c. mapping with compact acyclic values). Then ϕ admits
a coupled fixed point.

Coming back to the metric fixed point theory, since the Cartesian product of two
complete metric spaces is complete and the Cartesian product of two contractions is
a contraction (see the property (v) in Section 2), the following theorem is a direct
consequence of Proposition 3.10 and Corollary 3.4.

Theorem 3.13 If X is a complete metric space and ϕ : X × X → CB(X) is a
contraction, then ϕ admits a coupled fixed point.

Remark 3.14 If the mapping ϕ in Theorem 3.11 is still a contraction, then the only
AR–space X need not be complete, when comparing the result with Theorem 3.13.
Under the same additional assumption, Corollary 3.12 does not bring any new infor-
mation. On the other hand, in the single–valued case, in Theorem 3.13 and, under
the additional assumptions about contractions, in Corollary 3.12 (de facto also in
Theorem 3.11) the coupled fixed point is obviously unique and attractive.

4. Coupled multivalued fractals

In this section, we will prove the existence of coupled fixed points of certain induced
maps in hyperspaces. The related pairs of compact subsets in the original spaces will
be called coupled multivalued fractals.

Theorem 4.1 Let X be an absolute retract (written: X ∈ AR) and ϕi : X × X →
K(X), i = 1, . . . , n, be a family of compact continuous maps. Then there exists a pair
(A∗, B∗) ∈ K(X)×K(X) such that

A∗ =

n⋃
i=1

ϕi(A
∗, B∗) =

n⋃
i=1

⋃
x ∈ A∗
y ∈ B∗

ϕi(x, y),

B∗ =

n⋃
i=1

ϕi(B
∗, A∗) =

n⋃
i=1

⋃
y ∈ B∗
x ∈ A∗

ϕi(y, x),

(4.1)

which we call a topological multivalued coupled fractal.
Proof. Like in Proposition 3.10, the existence of a pair (A∗, B∗) ∈ K(X) × K(X)
satisfying (4.1) is equivalent to the existence of a fixed point in the Cartesian product
of hyperspaces (K(X)×K(X), d∗H), where

d∗H((A1, B1), (A2, B2)) := max {dH(A1, A2), dH(B1, B2)} ,
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of the coupled Hutchinson–Barnsley operators F : K(X) × K(X) → K(X) × K(X),
where

F(A,B) :=

(
n⋃
i=1

ϕi(A,B),

n⋃
i=1

ϕi(B,A)

)
. (4.2)

Since X ∈ AR, it is well known (see e.g. [4], and the references therein) that K(X) ∈
AR, and subsequently (cf. [6]) that K(X) × K(X) ∈ AR. Furthermore, since ϕi,
i = 1, . . . , n, are assumed to be compact and continuous, the same must be true (see
e.g. [3, 14]) for their union

n⋃
i=1

ϕi : X ×X → K(X)

and the Cartesian product (in the second component, the variables (x, y) are reversed
into (y, x)) (

n⋃
i=1

ϕi,

n⋃
i=1

ϕi

)
: X ×X → K(X)×K(X),

as well as its induced hypermap (see [1], and cf. property (v) in Section 2) F :
K(X) × K(X) → K(X) × K(X), i.e. for the coupled Hutchinson–Barnsley operator
defined in (4.2).

Hence, applying the Granas version of the Lefschetz fixed point theorem (see
e.g. [20, Theorem V.15.4.3]), F admits a fixed point (A∗, B∗) ∈ K(X) × K(X),
i.e. (A∗, B∗) = F(A∗, B∗), which completes the proof.

In order to guarantee for coupled topological fractals a sort of a weak local sta-
bility, called a nonejectivity in the sense of Browder, let us recall the definition of a
nonejective fixed point.

Definition 4.2 Let (X, d) be a metric space and f : X → X be a continuous mapping.
We say that a fixed point x0 ∈ X of f is ejective if there exists an open neighbourhood
V of x0 such that, for every x ∈ V \ {x0}, there is an integer n = n(x0) ≥ 1 such that

fn(x) = f ◦ · · · ◦ f︸ ︷︷ ︸
n-times

(x) ∈ X \ V.

Otherwise (i.e. if x0 is not ejective), a fixed point x0 ∈ X of f is called nonejective.
It is well known (see e.g. [38]) that the Hilbert cube has the nonejectivity fixed

point property, i.e. that every continuous mapping on it admits a nonejective fixed
point. Moreover, every compact AR–space is, up to a homeomorphism, the retract
image of the Hilbert cube.

Theorem 4.3 Let X be a nondegenerated Peano’s continuum, i.e. a compact, con-
nected and locally connected metric space, and ϕi : X × X → K(X), i = 1, . . . , n,
be a family of continuous maps. Then there exists a pair (A∗, B∗) ∈ K(X) × K(X)
satisfying (4.1), which is nonejective with respect to F defined in (4.2).
Proof. Since K(X) is the Hilbert cube (see e.g. [39]) and, in particular, it is a compact
AR–space, for the existence part, it is enough to apply the arguments from the proof
of Theorem 4.1. The nonejective part follows directly from the nonejectivity fixed
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point property of the Hilbert cube, because the Cartesian product of two Hilbert
cubes is obviously the Hilbert cube.

Example 1 In order to apply Theorem 4.3, let us consider the following family of
(compact) continuous maps

ϕi : [−2, 2]2 × [−2, 2]2 → K
(
[−2, 2]2

)
, i = 1, 2, 3,

where

ϕ1(x, y) :=
(
[0.9995, 1.0005] cos

(
x2

1 − y2
1

)
, [0.9995, 1.0005] sin

(
x2

2 + y2
2

))
,

ϕ2(x, y) :=

(
1− cos

(
x2

1

2
+
y2

2

2

)
, 1 + sin

(
y2

1

2
− x2

2

2

))
,

ϕ3(x, y) :=

(
cos

(
x2

1

2
+
y2

2

2

)
, 1− sin

(
y2

1

2
− x2

2

2

))
,

x = (x1, x2), y = (y1, y2).

A nonejective, topological, multivalued, coupled fractal, guaranteed by Theorem 4.3,
is plotted in Figure 1.

-1

-1 -1

-1 0

0 0

0 1

1 1

1 2

2 2

2

y1

y2

x1

x2

Figure 1. Approximation of the coupled fractal from Example 1.

In order to guarantee the attractivity of coupled fractals, let us proceed to metric
coupled fractals.

Theorem 4.4 (metric multivalued coupled fractals) Let (X, d) be a complete metric
space and ϕi : X ×X → K(X), i = 1, . . . , n, be a family of contractions. Then there
exists a unique pair (A∗, B∗) ∈ K(X)×K(X) satisfying (4.1), which we call a metric
multivalued coupled fractal.
Proof. Like in Proposition 3.10, the existence of a pair (A∗, B∗) ∈ K(X)×K(X) sat-
isfying (4.1) is equivalent to the existence of a fixed point of the coupled Hutchinson–
Barnsley operator F , defined in (4.2). The same is obviously true for the uniqueness
property.
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Since the hyperspace (K(X), dH) is well known to be complete (see e.g. [1], and the
references therein), so must be (K(X)×K(X), d∗H), where the metric d∗H was defined
in the proof of Theorem 4.1. Furthermore, since ϕi, i = 1, . . . , n, are contractions,
the same must be true for their union

n⋃
i=1

ϕi : X ×X → K(X)

and the Cartesian product (in the second component, the variables (x, y) are reversed
into (y, x)) (

n⋃
i=1

ϕi,

n⋃
i=1

ϕi

)
: X ×X → K(X)×K(X),

as well as its induced hypermap (see [1], and cf. property (v) in Section 2) F :
K(X)×K(X)→ K(X)×K(X), defined in (4.2).

Hence, applying the celebrated Banach Contraction Principle, F admits a unique
fixed point (A∗, B∗) ∈ K(X)×K(X), i.e. (A∗, B∗) ∈ F(A∗, B∗), which completes the
proof.

Remark 4.5 Because of the application of the Banach Contraction Principle, the pair
(A∗, B∗) is an attractor of the coupled Hutchinson–Barnsley operator F in K(X) ×
K(X). In other words,

lim
m→∞

d∗H ((A∗, B∗),Fm(A0, B0)) = 0

holds, for any pair (A0, B0) ∈ K(X)×K(X).

Example 2 In order to apply Theorem 4.4, let us consider the following family of
contractions

ϕi : [0, 1]2 × [0, 1]2 → K
(
[0, 1]2

)
, i = 1, 2, 3, 4,

where

ϕ1(x, y) :=
(

[0.9995, 1.0005]
x1

2
, [0.9995, 1.0005]

x2

2

)
,

ϕ2(x, y) :=

(
1

2
+
x1y1

3
,
x2

3

)
,

ϕ3(x, y) :=

(
x1

3
,

1

2
+
x2y2

3

)
,

ϕ4(x, y) :=

(
1

2
+
x1

3
,

1

2
+
x2

3

)
,

x = (x1, x2), y = (y1, y2).
A unique, metric, multivalued, coupled fractal, guaranteed by Theorem 4.4, is

plotted in Figure 2.
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Figure 2. Approximation of the coupled fractal from Example 2.

Remark 4.6 If the maps ϕi, i = 1, . . . , n, in Theorem 4.1 are still contractions,
then the only AR–space X need not be complete, when comparing the result with
Theorem 4.4. Under the same additional assumption, Theorem 4.3 does not bring
any new information, because the notion of attractivity is stronger than the notion of
nonejectivity. For some further results concerning the metric “single–valued” coupled
fractals, see e.g. [28, 31].

5. Fixed point sets of contractions

In this section, we will briefly characterize the fixed point sets of contractions in
terms of absolute retracts.

In 1994, Saint Raymond proved the following theorem.

Theorem 5.1 (cf. [35, 36]) If X is a complete space and ϕ : X → K(X) is a
contraction, then the fixed point set Fix(ϕ) is nonempty and compact.

In 1987, Ricceri improved Saint Raymond’s Theorem 5.1 for Banach spaces as
follows.

Theorem 5.2 (cf. [32]) If E is a Banach space and ϕ : E → CB(E) is a contraction
with convex values, then Fix(ϕ) is an absolute retract. If, additionally, ϕ : E → K(E)
is a contraction with convex values, then Fix(ϕ) is a compact absolute retract.

In order to generalize Theorem 5.2, we need the notion of Michael’s family of sets.

Definition 5.3 (cf. [3, 16]) Let M(X) be a family of closed subsets of X satisfying
the following conditions:

(i) X ∈M(X) and {x} ∈M(X), for every x ∈ X;
(ii) for any subclass {Ai}i∈J ⊂M(X), we have

(⋂
i∈J Ai

)
∈M(X);

(iii) for every k = 1, 2, 3, . . . , and every x1, . . . , xk ∈ X, the set A(x1, . . . , xk) :=⋂
{A;A ∈M(X) and x1, . . . , xk ∈ A} is infinitely connected;

(iv) for each ε > 0, there exists δ > 0 such that, for every A ∈ M(X) and for
every x1, . . . , xk ∈ Oδ(A), we have A(x1, . . . , xk) ⊂ Oε(A);
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(v) the closure A ∩B(x, r) of A∩B(x, r) belongs to M(X), for every x ∈ X and
r > 0.

Then M(X) is called the Michael family of subsets of X.

There are several natural examples of Michael’s families.

Example 3 (convex sets) Let X be a convex subset of a normed space E, and let

M(X) := {A;A = ∅ or A ⊂ X is convex and closed} .

Then M(X) is the Michael family of sets.

Example 4 (simplicially convex sets, cf. [5]) Let (X, d) be a metric space and

M(X) := {A;A = ∅ or A is a closed and simplicially convex subset of X} .

Then M(X) is the Michael family of subsets of X.

Example 5 (α-convex sets, cf. [9]) Let (X, d) be a metric space and let

M(X) := {A;A = ∅ or A is a closed and α-convex subset of X} .

Then M(X) is the Michael family of sets.

Note that the concept of Michael’s family is strictly related to the existence of
continuous (single–valued) selections of certain suitable multivalued mappings.

Namely, we have the following theorem, which we state here in the form of propo-
sition.

Proposition 5.4 (cf. [2, 14, 16]) Let ϕ : X → 2Y be a multivalued map of metric
spaces, where the symbol 2Y denotes a power set of Y , i.e. the set of all subsets of
Y . Assume that ϕ is l.s.c. with nonempty values such that ϕ(x) ∈ M(Y ), for every
x ∈ X. Then there exists a continuous (single–valued) map f : X → Y such that
f(x) ∈ ϕ(x), for every x ∈ X.

We shall write that ϕ ∈ SP (X) if ϕ satisfies the assumptions of Proposition 5.4
for Y = X, where X is a complete space.

Following [15, 16], we can formulate the following generalization of the first part
of Ricceri’s Theorem 5.2.

Theorem 5.5 If X is a complete absolute retract and ϕ : X → 2X is a contraction
such that ϕ ∈ SP (X), then the set Fix(ϕ) is a complete absolute retract.

Remark 5.6 For some further results in this field, see e.g. [7, 33] The structure of
fixed point sets was also considered for contractions in terms of topological (covering)
dimensions in [10] and [3, Chapter II.3].
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6. Continuation method

In this section, we would like to generalize the Granas continuation method for
single–valued contractions in [19] into the multivalued setting. For some further
papers related to continuation methods, based on the notion of essentiality, see e.g.
[2, 9, 11, 12, 13, 17, 18, 23].

Let U be a domain contained in a complete metric space E. As usually, by U we
shall denote the closure of U in X and by ∂U the boundary of U in X.

We let

K (U) :=
{
ϕ : U → K(X);ϕ is a contraction

}
.

Let us assume that χ : [0, 1]× U → K(X) is a u.s.c. mapping. For every t ∈ [0, 1],
we define the map χt : U → K(X) by the formula

χt(x) = χ(t, x), for every x ∈ U.

We put

Fix(χ) :=
⋃

t∈[0,1]

Fix(χt) =
{
x ∈ U,∃t ∈ [0, 1];x ∈ χ(t, x)

}
.

In what follows, we shall assume that our map χ : [0, 1] × U → K(X) satisfies
additionally the following condition:

∃M > 0 ∀t1, t2 ∈ [0, 1] ∀x ∈ U : dH(χ(t1, x), χ(t2, x)) ≤M(t1 − t2). (6.1)

We let

K0(U) :=
{
ϕ : U → K(X); Fix(ϕ) ∩ ∂U = ∅

}
.

Definition 6.1 The above map χ : [0, 1]×U → K(X) is called a homotopy in K0(U)
if the following conditions are satisfied:

• Fix(χ) ∩ ∂U = ∅,
• there exists t ∈ [0, 1] such that χt is an α-contraction (i.e. a contraction with

the Lipschitz constant α ∈ [0, 1)), for every t ∈ [0, 1].

The two maps ϕ,ψ ∈ K0(U) are called homotopic (ϕ ∼ ψ) if there exists a homotopy
χ in K0(U) such that χ(0, x) = ϕ(x) and χ(1, x) = ψ(x), for every x ∈ U .

Definition 6.2 A map ϕ ∈ K0(U) is called essential if Fix(ϕ) 6= ∅.

Now, we are ready to formulate the following theorem.

Theorem 6.3 (transversality property) If χ : [0, 1] × U → K(X) is a homotopy in
K0(U) and χ0 is essential, then χt is essential, for every t ∈ [0, 1].
Proof. For the proof, we consider the following set

T := {t ∈ [0, 1]; Fix(χt) 6= ∅} .

By the hypothesis, T 6= ∅.
(i) Firstly, we prove that T is a closed subset of [0, 1]. Let {tn} be a sequence in

T such that limn→∞ tn = t0. We have to prove that t0 ∈ T ; i.e. Fix(χt0) 6= ∅.
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For every n = 1, 2, . . . , we choose a point xn ∈ Fix(χtn).
We have

d(xn, xm) ≤ dH(χ(tn, xn), χ(tm, xm))

≤ dH(χ(tn, xn), χ(tm, xn)) + dH(χ(tm, xn), χ(tm, xm)).

In view of condition (6.1) and our assumption that χtm is an α-contraction,
we get

d(xn, xm) ≤M |tn − tm|+ αd(xn, xm),

and so, we obtain

d(xn, xm) ≤ M

1− α
|tn − tm|.

Thus, {xn} is a Cauchy sequence, and therefore limn→∞ xn = x0, where
x0 ∈ U .
We have (tn, xn, xn) ∈ Γχ = {(t, x, y); y ∈ χ(t, x)} . Since the graph Γχ of χ is

a closed subset of [0, 1]× U ×X, we get (t0, x0, x0) ∈ Γχ, and x0 ∈ χ(t0, x0)
implies that T is closed.

(ii) Now, we show that T is open. Let t0 ∈ T . Then Fix(χt0) is a nonempty and
compact set such that Fix(χt0) ∩ ∂U = ∅. We choose a point x0 ∈ Fix(χt0)
and a real number r such that 0 < r < dist(x0, ∂U).

Fix ε > 0 such that ε < (1−α)r
M , where M satisfies condition (6.1).

Let t ∈ (t0 − ε, t0 + ε).
In view of the inequalities

dH(χ(t, {x0}) ≤ dH(χ(t, x), χ(t, x0)) + dH(χ(t, x0), χ(t0, x0))

≤ αd(x, x0) + (1− α)r,

we can conclude that if d(x, x0) ≤ r, then dH(χ(t, x), {x0}) ≤ r. It implies
that χt maps the closed ball clB(x0, r) ⊂ U into itself. Therefore, our claim
follows from Corollary 3.7, which completes the proof.

As a consequence of Theorem 6.3, we can formulate the following nonlinear alter-
native.

Theorem 6.4 (nonlinear alternative) Let U be a bounded domain in a Banach space
E such that 0 ∈ U .

If ϕ ∈ K (U), then at least one of the following possibilities occurs:

(1) Fix(ϕ) 6= ∅,
(2) there exists x0 ∈ ∂U and t ∈ (0, 1) such that x0 ∈ λϕ(x0).

Proof. For the proof, consider the homotopy χ : [0, 1] × U → K(E) defined by the
formula

χ(t, x) = tϕ(x).

Assume that χ is a homotopy in K0(U). Since χ0 is essential, we infer from Theo-
rem 6.3 that χ1 = ϕ is essential, and so Fix(ϕ) 6= ∅. If χ is not a homotopy in K0(U),
then there exists a fixed point x ∈ Fix(χt) ∩ ∂U , for some t ∈ (0, 1), and the proof is
complete.
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As an immediate consequence of Theorem 6.4, we obtain the following corollary.

Corollary 6.5 Let U be the same as in Theorem 6.4 and ϕ ∈ K0(U). Then:

(i) if µx 6∈ ϕ(x), for all x ∈ ∂U and µ > 1, then ϕ is essential;
(ii) if there is a point x ∈ E, x 6= 0, such that x 6∈ (ϕ(y) + µx), for all y ∈ ∂U

and µ > 0, then ϕ is inessential.

7. Concluding remarks

Our main ambition was to actualize the earlier results in [2] rather than to prepare a
complete survey in the current metric fixed point theory for multivalued contractions.

Besides other things, we applied in the proof of Theorem 4.1 the Granas version of
the Lefschetz fixed point theorem and, especially, we followed in Section 6 his seminal
idea to develop a continuation principle for (multivalued) contractions.

In our next paper, we would like to randomize and fuzzify the deterministic results,
jointly with some applications.
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[1] J. Andres, J. Fǐser, Metric and topological multivalued fractals, Int. J. Bifurc. Chaos, 14(2004),
no. 4, 1277-1289.
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