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Abstract. In the present paper general theorems on a common fixed point for four mappings in
dislocated metric space are proved. By the way, also results for three, two or one mapping are

obtained. The assumptions are unified and compact. Numerous basic and sophisticated theorems
can be derived from the facts presented in our paper.
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1. Introduction

In this paper the ideas presented in [10] are refined and general results are proved.
We get rid of a special function ϕ used in condition (9) of [10], a unified general
comparison mapping h is applied (see (1)), in addition, H presented in (2) can differ
from h.

The notion of a dislocated metric (briefly d-metric) is due to Hitzler and Seda [3],
and a d-metric p differs from metric, as p(x, y) = 0 implies x = y (no equivalence).
The topology of a d-metric space (X, p) is generated by balls. In this paper, (X, p) is
a d-metric space, and f, g, i, j are self mappings on X. The following two conditions
with mappings h,H : iX × jX × fX × gX → [0,∞) are applied:

p(fx, gy) > 0 yields p(fx, gy) < h(ix, jy, fx, gy), x, y ∈ X, (1)

for each α > 0 there is an ε > 0 for which

H(ix, jy, fx, gy) < α+ ε yields p(fx, gy) ≤ α, x, y ∈ X. (2)
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The subsequent properties are assumed to hold for each α > 0, and some of them are
used in our theorems.

[d = a or c = b] yields h(a, b, c, d) ≤ max{p(a, b), p(a, c), p(b, d)},
if max{. . . } > 0,

(3a)

h(a, b, a, b) ≤ p(a, b), if p(a, b) > 0, (3b)

[p(b, d) = α (b, d fixed) and p(a, b), p(a, c), p(b, c)→ 0] yields

lim suph(a, b, c, d) < p(b, d),
(3c)

[p(a, c) = α (a, c fixed) and p(a, b), p(a, d), p(b, d)→ 0] yields

lim suph(a, b, c, d) < p(a, c).
(3d)

[p(a, b), p(b, d)↘ α] yields lim supH(a, b, b, d) ≤ α, (4a)

[p(a, b), p(a, d), p(b, c), p(c, d)→ α and p(a, c), p(b, d)→ 0] yields

lim supH(a, b, c, d) ≤ α.
(4b)

In [10] the subsequent mapping was applied (let us call it F ):

max{p(a, b), p(c, a), p(d, b), h(a, b, c, d)}.
It is easily seen, that if h = H satisfies any of the conditions (3a), (3b), (4a), (4b),
then F has the same property. In turn [10] (3c), (3d) yield (3c), (3d) for ϕ(F ) (see
[10] (9) and [10], Corollary 2.2). Therefore, F is unnecessarily complicated, and only
h,H are considered in the present paper. Moreover, (1) and (9) from [10] yield our
new conditions (1) and (2) (see also Remark 2.2).

Example 1.1. Let us consider h1(a, b, c, d) = p(a, b). Then the system of conditions
(3) holds for h = h1, and (4) is satisfied for H = h1.

Example 1.2. Let us consider h2(a, b, c, d) = max{p(a, b), p(a, c), p(b, d)}. Then
for h = h2 condition (3a) clearly holds, and (3b) is satisfied if we assume that
max{p(a, a), p(b, b)} ≤ p(a, b). The system of conditions (4) obviously holds for
H = h2.

Example 1.3. Let us consider

h3(a, b, c, d) = max{p(a, b), p(a, c), p(b, d), [p(a, d) + p(b, c)]/2}.
Then for h = h3 condition (3a) holds if the following inequalities are satisfied:

(i) p(b, c) ≤ p(b, a) + p(a, c)− p(a, a),

(ii) p(a, d) ≤ p(a, b) + p(b, d)− p(b, b)
(e.g. if p is a partial metric in X {see [7], Definition 3.1, or [10] (4)}). Condition (3b)
is satisfied if max{p(a, a), p(b, b)} ≤ p(a, b) (true also for partial metric). In turn, for
H = h3 (4a) holds if (ii) is satisfied; (4b) clearly holds.

Remark 1.4. Let us consider a mapping ϕ : [0,∞)→ [0,∞) such that for each α > 0
we have ϕ(α) < α and ϕ(·) ≤ α on some interval (α, α + ε) (i.e. ϕ ∈ ΨP [9]). Then
for h = ϕ◦H condition (1) implies (2) (means that (2) can be disregarded); for our h,
whereH = hi, i = 1, 2, 3, conditions (3c), (3d) are satisfied, as p(a, d) ≤ p(a, b)+p(b, d)
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and p(b, c) ≤ p(b, a) + p(a, c), and consequently, if p is a partial metric, then (3), (4)
hold.

Example 1.5. Let us consider

h4(a, b, c, d) = p(a, b) + β(p(a, c), p(b, d))

for a mapping β : [0,∞) × [0,∞) → [0,∞). If β(p(a, a), p(b, b)) = 0 holds, then for
h = h4 (3b) is satisfied. If β is continuous at (0, 0) and β(0, 0) = 0, then for H = h4
we have (4b).

Example 1.6. Let us consider

h5(a, b, c, d) = hk(a, b, c, d) + β(p(a, c), p(b, d))

for k = 1, 2, 3, and β as in Example 1.5. Then for h = h5 and k > 1 (3b) holds if
p is such that max{p(a, a), p(b, b)} ≤ p(a, b) (no problem for k = 1); for H = h5 we
obtain (4b) (k for h and H can differ).

More sophisticated mappings based on Example 1.3 can be found e.g. in [6] (see
M1, M2 or M3).

2. Extended results

Let us recall ([9], Definition 2.3) that a d-metric space (X, p) is 0-complete if for
each sequence (xn)n∈N in X with limm,n→∞p(xn, xm) = 0, there exists an x ∈ X such
that limn→∞p(x, xn) = 0.

The next lemma is an extension of [10], Lemma 2.6.

Lemma 2.1. Let f, g, i, j be selfmappings on a d-metric space (X, p), fX ⊂ jX,
gX ⊂ iX, and let h,H : iX × jX × fX × gX → [0,∞) be mappings. If (1), (3a) are
satisfied then there exist sequences (xn)n∈N, (yn)n∈N such that

x2k = fy2k−1, x2k−1 = iy2k−1, x2k+1 = gy2k, x2k = jy2k, k ∈ N, (5a)

p(xn+2, xn+1) > 0 yields p(xn+2, xn+1) < p(xn+1, xn), n ∈ N. (5b)

If (5), (1), (2) and (4a) hold, then limn→∞p(xn+1, xn) = 0 (so the same conclusion
for (1), (2), (3a), (4a)). If limn→∞p(xn+1, xn) = 0 and (5a), (1), (2), (4b) hold,
then limm,n→∞p(xn, xm) = 0 (so the same conclusion for (1), (2), (3a), (4)); if, in
addition, at least one of the sets fX, gX, iX, jX is 0-complete, then there exists an
x ∈ X such that

limn→∞p(x, xn) = p(x, x) = 0.

Proof. From (1) and (3a) we obtain

for each x ∈ X there is a y ∈ X for which gx = iy, and p(fy, gx) > 0

yields p(fy, gx) < h(gx, jx, fy, gx) ≤ max{p(gx, jx), p(fy, gx)},
and

for each y ∈ X there is an x ∈ X for which fy = jx, and p(fy, gx) > 0

yields p(fy, gx) < h(iy, fy, fy, gx) ≤ max{p(iy, fy), p(fy, gx)}.
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If e.g. p(gx, jx) < p(fy, gx) holds, then we get a contradiction p(fy, gx) < p(fy, gx).
Therefore, p(fy, gx) > 0 yields p(fy, gx) < p(gx, jx). Now, it is clear that the
following conditions are satisfied:

for each x ∈ X there is a y ∈ X for which gx = iy, and

p(fy, gx) > 0 yields p(fy, gx) < h(gx, jx, fy, gx) ≤ p(gx, jx),
(6)

for each y ∈ X there is an x ∈ X for which fy = jx, and

p(gx, fy) > 0 yields p(gx, fy) < h(iy, fy, fy, gx) ≤ p(fy, iy).
(7)

For an x0 ∈ X let us take x1 = gx0 = iy1, x2 = fy1, for y1 such that p(x2, x1) ≤
p(x1, jx0) (see (6)). Now, we take x3 = gy2 for y2 such that x2 = fy1 = jy2 and
p(x3, x2) ≤ p(x2, x1) (see (7)). In turn x4 = fy3, where y3 is such that x3 = gy2 =
iy3 and p(x4, x3) ≤ p(x3, x2) (see (6)). By induction we obtain sequences (xn)n∈N,
(yn)n∈N satisfying (5).

Assume (5). If for some n we have p(xn+1, xn) = 0, then by (5b) p(xn+2, xn+1) = 0,
and xn+k = xn, k ∈ N, i.e. x = xn and our lemma is proved. Therefore, we may
assume p(xn+1, xn) > 0, n ∈ N, and then (see (5b))

0 < p(xn+2, xn+1) < p(xn+1, xn), n ∈ N

holds. Clearly, sequence (p(xn+1, xn))n∈N decreases to some α ≥ 0. Let us assume
(1), (2), (4a) and suppose α > 0. Then (5a), (1) yield

α < p(x2k+1, x2k) = p(gy2k, fy2k−1) = p(fy2k−1, gy2k) <

h(iy2k−1, jy2k, fy2k−1, gy2k) = h(x2k−1, x2k, x2k, x2k+1).
(8)

Now, from (4a) we obtain

H(iy2k−1, jy2k, fy2k−1, gy2k) = H(x2k−1, x2k, x2k, x2k+1) < α+ ε (9)

for large k, and (2) yields

α < p(x2k+1, x2k) = p(fy2k−1, gy2k) ≤ α,

a contradiction. Thus, limn→∞p(xn+1, xn) = 0 is proved.
Now, for limn→∞p(xn+1, xn) = 0 conditions (5a), (1), (2) and (4b) are applied to

prove that limm,n→∞p(xn, xm) = 0. Suppose, 0 < α < p(x2k, x2n+1+2k) holds for all
k ∈ K ⊂ N (K infinite) and the respective n ∈ N. Let n = n(k) be the first number
as to satisfy this inequality. From (5a), (1) we obtain

α < p(x2k, x2n+1+2k) = p(fy2k−1, gy2n+2k)

< h(iy2k−1, jy2n+2k, fy2k−1, gy2n+2k) = h(x2k−1, x2n+2k, x2k, x2n+1+2k).
(10)

Let us show that the assumptions of (4b) are satisfied. We have

α− p(x2k, x2k−1)− p(x2n+2k, x2n+1+2k)

< p(x2k, x2n+1+2k)− p(x2k, x2k−1)− p(x2n+2k, x2n+1+2k)

≤ p(x2k−1, x2n+2k)

≤ p(x2k−1, x2k) + p(x2k, x2n−1+2k) + p(x2n−1+2k, x2n+2k)

≤ p(x2k−1, x2k) + α+ p(x2n−1+2k, x2n+2k)
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which yields

limk∈Kp(x2k−1, x2n+2k) = α.

In addition, from

p(x2k−1, x2n+2k)− p(x2n+1+2k, x2n+2k) ≤ p(x2k−1, x2n+1+2k)

≤ p(x2k−1, x2n+2k) + p(x2n+2k, x2n+1+2k)

it follows that

limk∈Kp(x2k−1, x2n+1+2k) = α.

In a similar way we get

limk∈Kp(x2n+2k, x2k) = limk∈Kp(x2k, x2n+1+2k) = α.

Now (4b) applies, we get

H(iy2k−1, jy2n+2k, fy2k−1, gy2n+2k)

= H(x2k−1, x2n+2k, x2k, x2n+1+2k) < α+ ε
(11)

for large k, and then (10), (2) yield

α < p(x2k, x2n+1+2k) = p(fy2k−1, gy2n+2k) ≤ α,
a contradiction. Thus we have proved that

lim
k,n→∞

p(x2k, x2n+1+2k) = 0.

Now, limn→∞p(xn+1, xn) = 0 and the triangle inequality yield

limm,n→∞p(xn, xm) = 0.

Consequently, if the respective set is 0-complete, then there exists an x such that

limn→∞p(x, xn) = p(x, x) = 0. �

Remark 2.2. If h ≤ H (or α < H) holds for (a, b, b, d) = (x2k−1, x2k, x2k, x2k+1) as in
(4a), or for (a, b, c, d) = (x2k−1, x2n+2k, x2k, x2n+1+2k) as in (4b), then the respective
part of the proof of Lemma 2.1 works for (2) with “H(. . . ) < α + ε” replaced by
“α < H(. . . ) < α + ε” (see inequalities (8) and (9), (10) and (11)). This modified
condition (2) (or (13)) can be then applied in our Theorems (in Theorems 2.18, 2.20
condition (4a) is not used).

If selfmappings f, i on X commute at their coincidence points, i.e.

ix = fx yields ifx = fix, x ∈ X,
then the pair (f, i) is called weakly compatible (see [5]).

Now, [10], Theorem 2.7 can be extended as follows (conditions (3c), (3d) enable us
to disregard mapping ϕ used in [10]).

Theorem 2.3. Assume that (X, p) is a d-metric space and f, g, i, j are selfmappings
on X, (f, i), (g, j) are weakly compatible, fX ⊂ jX, gX ⊂ iX, and at least one of sets
fX, gX, iX, jX is 0-complete. Let (1), (2) hold for mappings h,H : iX × jX × fX ×
gX → [0,∞) satisfying (3), (4), respectively. Then f, g, i, j have a single common
fixed point x, p(x, x) = 0, and neither f, i nor g, j have another common fixed point.
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Proof. Assume e.g. that jX or fX is 0-complete, and let us consider (xn)n∈N,
(yn)n∈N, x ∈ jX as in Lemma 2.1.
For a v such that x = jv suppose that p(x, gv) = α > 0. Then (see (5a), (1)) from

p(x2k, gv) = p(fy2k−1, gv) < h(iy2k−1, jv, fy2k−1, gv) = h(x2k−1, x, x2k, gv),

we get (see (3c))

0 < p(x, gv) ≤ lim infk→∞[p(x, x2k) + h(x2k−1, x, x2k, gv)] < p(x, gv),

a contradiction. Therefore, p(x, gv) = 0 and x = gv = jv.
Now, for w such that x = iw (as gX ⊂ iX) suppose that p(fw, x) = α > 0. We have

p(fw, x2k+1) = p(fw, gy2k) < h(iw, jy2k, fw, gy2k) = h(x, x2k, fw, x2k+1),

and (3d) yields

0 < p(fw, x) ≤ lim infk→∞[h(x, x2k, fw, x2k+1) + p(x2k+1, x)] < p(fw, x),

a contradiction. Therefore, p(fw, x) = 0 and x = fw = iw.
The underlined equalities and the weak compatibility yield

ix = ifw = fiw = fx and jx = jgv = gjv = gx.

In the remaining part of our proof conditions (3c), (3d) are not applied.
Suppose p(fx, x) > 0. Then we obtain (see (1), (3b))

0 < p(fx, x) = p(fx, gv) < h(ix, jv, fx, gv) = h(fx, x, fx, x) ≤ p(fx, x),

a contradiction. Now, it is clear that ix = fx = x.
Similarly, for p(x, gx) > 0 we get

0 < p(x, gx) = p(fw, gx) < h(iw, jx, fw, gx) = h(x, gx, x, gx) ≤ p(x, gx),

a contradiction. We have proved that jx = gx = x = fx = ix.
Suppose e.g. that y is another common fixed point of i and f . Then we obtain (see
(1), (3b))

0 < p(y, x) = p(fy, gx) < h(iy, jx, fy, gx) = h(y, x, y, x) ≤ p(y, x),

a contradiction. Consequently, p(x, y) = 0 and x = y hold. �

The above theorem further extends [2], Theorem 2.8 (in part concerning a common
fixed point). More sophisticated theorems are also included in Theorem 2.3 (see
e.g. [6]). What is more, from Remark 1.4 it follows that Theorem 2.3 extends our
Theorems 2.7, 2.8 from [10].

For g = f Theorem 2.3 concerns three mappings and it can be reformulated as
follows:

Theorem 2.4. Assume that (X, p) is a d-metric space and f, i, j are selfmappings
on X, (f, i), (f, j) are weakly compatible, fX ⊂ iX ∩ jX, and at least one of sets
fX, iX, jX is 0-complete. For g = f let (1), (2) hold, and for mappings h,H : iX ×
jX × (fX)2 → [0,∞) let (3), (4) be satisfied, respectively. Then f, i, j have a single
common fixed point x, p(x, x) = 0, and neither f, i nor f, j have another common
fixed point.



FOUR TO ONE 721

Another three mappings consequence of Theorem 2.3 is the following one.

Theorem 2.5. Assume that (X, p) is a d-metric space and f, g, i are selfmappings
on X, (f, i), (g, i) are weakly compatible, fX ∪ gX ⊂ iX, and at least one of sets
fX, gX, iX is 0-complete. For j = i let (1), (2) hold, and for mappings h,H : (iX)2×
fX × gX → [0,∞) let (3), (4) be satisfied, respectively. Then f, g, i have a single
common fixed point x, p(x, x) = 0, and neither f, i nor g, i have another common
fixed point.

Let us consider the case i = j = id. Then conditions (1), (2) have the following
form, respectively

p(fx, gy) > 0 yields p(fx, gy) < h(x, y, fx, gy), x, y ∈ X, (12)

for each α > 0 there is an ε > 0 for which

H(x, y, fx, gy) < α+ ε yields p(fx, gy) ≤ α, x, y ∈ X. (13)

The next theorem is a consequence of Theorem 2.3 for two mappings

Theorem 2.6. Assume that (X, p) is a d-metric space, f, g are selfmappings on X,
and at least one of sets X, fX, gX is 0-complete. Let (12), (13) hold, and for mappings
h,H : X2× fX × gX → [0,∞) let (3), (4) be satisfied, respectively. Then there exists
an x ∈ X such that for any x0 ∈ X and x2k+1 = gx2k, x2k = fx2k−1, k ∈ N, ((5b)
holds for (xn)n∈N) we have limn→∞p(x, xn) = p(x, x) = 0 and x = fx = gx; in
addition, neither f nor g has another fixed point.

Proof. Our sequence (xn)n∈N is as in condition (5), because for i = j = id we have
xn = yn, n ∈ N (see Lemma 2.1 for (1), (3a)). �

For g = f Theorem 2.6 becomes a pretty general “usual” fixed point theorem.

Theorem 2.7. Assume that (X, p) is a 0-complete d-metric space and f is a self-
mapping on X. For g = f let (12), (13) hold, and for mappings h,H : X2× (fX)2 →
[0,∞) let (3), (4) be satisfied, respectively. Then there exists an x such that for any
x0 ∈ X and xn = fnx0, n ∈ N, ( (5b) holds for (xn)n∈N) we have

limn→∞p(x, xn) = p(x, x) = 0 and x = fx.

Proof. For g = f and i = j = id our sequence (xn)n∈N is as in condition (5). �

Example 2.8. Let us consider

H(a, b, c, d) = κp(a, b) + λp(a, c) + µp(b, d) + ν[p(a, d) + p(b, c)]

for some κ, λµ, ν ≥ 0 such that κ+ λ + µ+ 2ν = 1,

and h = ϕ ◦H for a nondecreasing mapping ϕ : [0,∞)→ [0,∞)

such that for each α > 0 we have ϕ(α) < α and

ϕ(·) ≤ α on some interval (α, α+ ε).

(14)

If condition (1) or (12) is satisfied, then (2) or (13) holds, respectively (see Remark
1.4).
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Now, let us check conditions (3) and (4). Assume p satisfies (i) from Example 1.3.
Then we have

h(a, b, c, a)

≤ ϕ(κp(a, b) + λp(a, c) + µp(b, a) + ν[p(a, a) + p(b, a) + p(a, c)− p(a, a)])

= ϕ((κ+ µ+ ν)p(a, b) + (λ+ ν)p(a, c)) ≤ ϕ((κ+ λ+ µ+ 2ν) max{p(a, b), p(a, c)})
= ϕ(max{p(a, b), p(a, c)}) ≤ max{p(a, b), p(a, c)}.

In a similar way, if (ii) from Example 1.3 is satisfied, then we obtain

h(a, b, b, d)

≤ ϕ(κp(a, b) + λp(a, b) + µp(b, d) + ν[p(a, b) + p(b, d)− p(b, b) + p(b, b)])

= ϕ((κ+ λ+ ν)p(a, b) + (µ+ ν)p(b, d)) ≤ ϕ((κ+ λ+ µ+ 2ν) max{p(a, b), p(b, d)})
= ϕ(max{p(a, b), p(b, d)}) ≤ max{p(a, b), p(b, d)}.

Consequently, if p satisfies (i), (ii) from Example 1.3, then (3a) holds.
Assume p(a, a), p(b, b) ≤ p(a, b). Then

h(a, b, a, b) = ϕ(κp(a, b) + λp(a, a) + µp(b, b) + 2νp(a, b))

≤ ϕ((κ+ λ+ µ+ 2ν)p(a, b)) = ϕ(p(a, b)) ≤ p(a, b)
means that (3b) is satisfied.
Now, let us adopt the assumptions of (3c). We have

h(a, b, c, d) = ϕ(κp(a, b) + λp(a, c) + µα+ ν[p(a, d) + p(b, c)])

≤ ϕ(κp(a, b) + λp(a, c) + µα+ ν[p(a, b) + p(b, d) + p(b, c)])

= ϕ((κ+ ν)p(a, b) + λp(a, c) + (µ+ ν)α+ νp(b, c))

≤ ϕ((κ+ λ+ µ+ 2ν)α) = ϕ(α) < α = p(b, d).

In a similar way we check condition (3d):

h(a, b, c, d) = ϕ(κp(a, b) + λα+ µp(b, d) + ν[p(a, d) + p(b, c)])

≤ ϕ(κp(a, b) + λα+ µp(b, d) + ν[p(a, d) + p(b, a) + p(a, c)])

= ϕ((κ+ ν)p(a, b) + (λ+ ν)α+ µp(b, d) + νp(a, d))

≤ ϕ((κ+ λ+ µ+ 2ν)α) = ϕ(α) < α = p(a, c).

Consequently, the system of conditions (3) is satisfied.
Assume that condition (ii) from Example 1.3 holds. Then for p(a, b), p(b, d) → α we
obtain

H(a, b, b, d) = κp(a, b) + λp(a, b) + µp(b, d) + ν[p(a, d) + p(b, b)]

≤ (κ+ λ)p(a, b) + µp(b, d) + ν[p(a, b) + p(b, d)− p(b, b) + p(b, b)]

= (κ+ λ+ ν)p(a, b) + (µ+ ν)p(b, d)→ (κ+ λ+ µ+ 2ν)α = α,

i.e. (4a) holds. If the assumptions of (4b) are satisfied, then we obtain

H(a, b, c, d)→ (κ+ 2ν)α ≤ α.

Corollary 2.9. If p is a partial metric, then for h,H as in (14) conditions (3), (4)
hold; in addition, (1) yields (2), and (12) implies (13).
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Now, the subsequent five theorems are immediate consequences of Corollary 2.9,
Remark 1.4, and of Theorems 2.3, . . . ,2.7.

Theorem 2.10. Assume that (X, p) is a partial metric space and f, g, i, j are self-
mappings on X, (f, i), (g, j) are weakly compatible, fX ⊂ jX, gX ⊂ iX, and
at least one of sets fX, gX, iX, jX is 0-complete. Let (1) hold for a mapping
h : iX × jX × fX × gX → [0,∞) as in (14) or as in Remark 1.4. Then f, g, i, j
have a single common fixed point x, p(x, x) = 0, and neither f, i nor g, j have an-
other common fixed point.

Theorem 2.11. Assume that (X, p) is a partial metric space and f, i, j are self-
mappings on X, (f, i), (f, j) are weakly compatible, fX ⊂ iX ∩ jX, and at least
one of sets fX, iX, jX is 0-complete. For g = f let (1) hold for a mapping
h : iX × jX × (fX)2 → [0,∞) as in (14) or as in Remark 1.4. Then f, i, j have
a single common fixed point x, p(x, x) = 0, and neither f, i nor f, j have another
common fixed point.

Theorem 2.12. Assume that (X, p) is a partial metric space and f, g, i are self-
mappings on X, (f, i), (g, i) are weakly compatible, fX ∪ gX ⊂ iX, and at least
one of sets fX, gX, iX is 0-complete. For j = i let (1) hold for a mapping
h : (iX)2 × fX × gX → [0,∞) as in (14) or as in Remark 1.4. Then f, g, i have
a single common fixed point x, p(x, x) = 0, and neither f, i nor g, i have another
common fixed point.

Theorem 2.13. Assume that (X, p) is a partial metric space, f, g are selfmappings
on X, and at least one of sets X, fX, gX is 0-complete. Let (12) hold for a mapping
h : X2 × fX × gX → [0,∞) as in (14) or as in Remark 1.4. Then there exists an
x ∈ X such that for any x0 ∈ X and x2k+1 = gx2k, x2k = fx2k−1, k ∈ N, ((5b) holds
for (xn)n∈N) we have limn→∞p(x, xn) = p(x, x) = 0 and x = fx = gx; in addition,
neither f nor g has another fixed point.

Theorem 2.14. Assume that (X, p) is a 0-complete partial metric space and f is a
selfmapping on X. For g = f let (12) hold for a mapping h : X2 × (fX)2 → [0,∞)
as in (14) or as in Remark 1.4. Then there exists an x such that for any x0 ∈ X and
xn = fnx0, n ∈ N, ( (5b) holds for (xn)n∈N) we have limn→∞p(x, xn) = p(x, x) = 0
and x = fx.

Remark 2.15. Ćirić in [1] considered the following condition for a metric p:

p(fx, fy) ≤ αp(x, y) + βp(x, fx) + γp(y, fy) + δ[p(x, fy) + p(y, fx)]},
for fixed α, β, γ, δ ≥ 0 such that α+ β + γ + 2δ < 1.

It is clear, that (12) for g = f and mapping ϕ(α) = kα with some k ∈ [0, 1) in (14) is

equivalent to the Ćirić’s condition. Consequently the Ćirić theorem follows from our
Theorem 2.14.

In our further theorems conditions (3c), (3d) are disregarded.
Let us recall (see [11], Definition 2.10) that a selfmapping f on a d-metric space

(X, p) is 0-continuous if for each sequence (xn)n∈N, x ∈ X from limn→∞p(x, xn) = 0
it follows that limn→∞p(fx, fxn) = 0.
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Remark 2.16. If limn→∞p(x, xn) = 0 holds for a sequence (xn)n∈N in a d-metric
space (X, p), then the triangle inequality yields x ∈ Ker p = {s ∈ X : p(s, s) = 0}.
Consequently, if f is a 0-continuous selfmapping on (X, p), then f(Ker p) ⊂ Ker p
(consider xn = x). In turn, Ker p (if nonempty) with the restricted p is a metric
subspace of (X, p). So, if we know that Ker p is nonempty, complete and f, g are 0-
continuous, then the global condition (3b) guarantees that the fixed point is unique;
the remaining part of (3) and conditions (1), (2) and (4) can be local (i.e. for X
replaced by Ker p).

Theorem 2.17. Assume that (X, p) is a d-metric space and f, g are 0-continuous
selfmappings on X, and at least one of sets X, fX, gX is 0-complete. Let (12), (13)
hold, and for mappings h,H : X2 × fX × gX → [0,∞) let (3a), (4) be satisfied,
respectively. Then for any x0 ∈ X and x2k+1 = gx2k, x2k = fx2k−1, k ∈ N, (5b)
holds, there exists an x such that limn→∞p(x, xn) = p(x, x) = 0 and x = fx = gx. If,
in addition, (3b) is satisfied, then x is unique and neither f nor g has another fixed
point.

Proof. For i = j = id from conditions (12), (13), (3a), (4) it follows that (xn)n∈N
satisfies (5b) and limn→∞p(x, xn) = 0 (see Lemma 2.1 for (1), (2), (3a), (4)). Now
(see (5a)),

p(x, gx) ≤ p(x, x2k+1) + p(x2k+1, gx) = p(x, x2k+1) + p(gx2k, gx),

and the 0-continuity of g at x imply

p(x, gx) ≤ limk→∞[p(x, x2k+1) + p(gx2k, gx)] = 0.

In a similar way, we obtain p(fx, x) = 0, as

p(fx, x) ≤ p(fx, x2k) + p(x2k, x) = p(fx, fx2k−1) + p(x2k, x).

The final part of the proof of Theorem 2.3 shows that neither f nor g have another
fixed point provided that (3b) holds. �

From Remark 2.2 and Lemma 2.1 (see also Examples 1.5, 1.6) it follows that the
next theorem is a far extension of a theorem of Proinov ([12], Theorem 4.2), and also
Theorem 3.7 from [11] is included in Theorem 2.18 (see [11] Corollary 2.6, Lemma
2.9). In addition, those two theorems were proved for g = f .

Theorem 2.18. Assume that (X, p) is a d-metric space, f, g are 0-continuous self-
mappings on X, and at least one of sets X, fX, gX is 0-complete. Assume that for an
x0 ∈ X, and x2k = fx2k−1, x2k+1 = gx2k, k ∈ N, we have limn→∞p(xn+1, xn) = 0.
Let (12), (13) hold, and for mappings h,H : X2×fX×gX → [0,∞) let H satisfy (4b).
Then there exists an x such that limn→∞p(x, xn) = p(x, x) = 0 and x = fx = gx. If,
in addition, (3b) is satisfied, then x is unique and neither f nor g has another fixed
point.

Proof. For i = j = id condition (5a) is satisfied. If limn→∞p(xn+1, xn) = 0, then (see
Lemma 2.1 for (5a), (1), (2), (4b)) from (5a), (12), (13), (4b) it follows that there
exists a point x ∈ X such that limn→∞p(x, xn) = p(x, x) = 0. Now, as in the proof
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of Theorem 2.17 we conclude that x = fx = gx and that f, g have no other fixed
points. �

It is worth noting that for g = f and h = h1 (see Example 1.1) condition (1)
implies 0-continuity of f . Now, let us present the versions of Theorems 2.17, 2.18 for
g = f .

Theorem 2.19. Assume that (X, p) is a 0-complete d-metric space and f is a 0-
continuous selfmapping on X. For g = f let (12), (13) hold, and for mappings
h,H : X2 × (fX)2 → [0,∞) let (3a), (4) be satisfied, respectively. Then for any
x0 ∈ X and xn = fnx0, n ∈ N, (5b) holds, there exists an x such that

limn→∞p(x, xn) = p(x, x) = 0 and x = fx.

If, in addition, (3b) is satisfied, then x is unique.

Theorem 2.20. Let f be a 0-continuous selfmapping on a 0-complete d-metric space
(X, p). Assume that there exists an x0 ∈ X, such that for xn = fnx0, n ∈ N we
have limn→∞p(xn+1, xn) = 0. For g = f let (12), (13) hold, and for mappings
h,H : X2 × (fX)2 → [0,∞) let H satisfy (4b). Then there exists an x such that

limn→∞p(x, xn) = p(x, x) = 0 and x = fx.

If, in addition, (3b) is satisfied, then x is unique.

From Example 1.3 and Remark 2.2 it follows that for h = H = h3 a theorem of
Jachymski ([4], Theorem 2) is included in Theorem 2.20.
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[14] I.A. Rus, A. Petruşel, M.A. Şerban, Weakly Picard operators: equivalent definitions, applica-

tions and open problems, Fixed Point Theory, 7(2006), no. 1, 3-22.

Received: June 21, 2018; Accepted: October 20, 2018.


