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Abstract. The aim of this paper is to present and investigate the asymptotic behavior of a novel

splitting algorithm for solving a class of null-point problems governed by three maximal monotone
operators. Two of which are assumed to be proximable and one verified a cocoercive property.

The proposed algorithm is based on a duality principle and the convergence proofs rely on classical

arguments of nonlinear analysis and properties of the resolvent mappings of maximal monotone
operators. The convex optimization case is also addressed with its related algorithm and convergence

result.
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1. Introduction and preliminaries

Throughout, H is a real Hilbert space with inner product 〈·, ·〉 and induced norm
‖ · ‖. Notations not explicitly defined here are standard.

Recall that the graph, gphA, of a set-valued operator A : H → 2H is given by
gphA = {(x, y) ∈ H ×H; y ∈ A(x)}, that the mapping A is monotone if

∀(x, y) ∈ gphA ∀(x′, y′) ∈ gphA 〈x− x′, y − y′〉 ≥ 0,

and maximal monotone if it cannot be properly extended without destroying mono-
tonicity. A is µ-strongly monotone if there exists µ > 0 such that

∀(x, y) ∈ gphA ∀(x′, y′) ∈ gphA 〈x− x′, y − y′〉 ≥ µ‖x− x′‖2.

The inverse of A is defined via its graph by gphA−1 = {(y, x) ∈ H ×H; y ∈ A(x)}.
The resolvent of A with parameter γ > 0 is JAγ = (I + γA)−1, it is firmly monotone
(and thus Lipschitz continuous), namely

∀x, y ∈ H 〈JAγ (x)− JAγ (y), x− y〉 ≥ ‖JAγ (x)− JAγ (y)‖2.

Moreover, the resolvent has full domain H precisely when A is maximal monotone.
Remember also that the Yosida approximate of the operator A is defined by

Aγ = (γI +A−1)−1.
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Finally, remember that an operator A is τ -cocoercive if there exists τ > 0 such that

∀x, y ∈ H 〈A(x)−A(y), x− y〉 ≥ τ‖A(x)−A(y)‖2.

We will assume that the inverse of one of the three operators is cocoercive, which is
the case, for example, when A = ∂f , the subdifferential of a proper closed strongly
convex function f .
It is then well-known, see [2, Theorem 18.5], that we have A−1 = ∇f∗, the function
f∗(y) = supx(〈x, y〉 − f(x)) being the conjugate of f . It is worth mentioning that
there are several works suggesting that the notion of strong convexity is a fundamental
tool in designing and analyzing (the regret or generalization ability of) a wide class
of learning algorithms, see [4], [6] or [7] and references therein.
Splitting algorithms have been successfully used in computational sciences to reduce
complex problems into a series of simpler ones. Recently, these algorithms have been
widely used to solve problems in machine learning, signal processing, and imaging, see
[4], [3], [5] and have created a resurgence of interest due of its often simple descriptions
and (nearly) state-of-the-art performance for large-scale optimization problems. In
the spirit of these works, we will focus our attention on the problem

find x∗ ∈ H such that 0 ∈ (A+B + C)(x∗), (1.1)

where A, B and C are three maximal monotone operators with one of which, say A,
is such that A−1 is τ -cooercive.

Note that the inclusion problem (1.1) subsumes a wide spectrum of problems in
applied nonlinear analysis and it has recently enjoyed a surge in popularity thanks to
its ability to nicely model many optimization problems that arise in machine learning,
signal processing and statistics. The most straightforward example of (1.1) arises from
the optimization problem, namely

min
x

(
f(x) + g(x) + h(x)

)
, (1.2)

where f, g and h are proper closed and convex functions. The first-order optimality
condition of this problem, under certain qualification assumptions see for example [2,
Corollary 16.39], reduces to (1.1) with A = ∂f , B = ∂g and C = ∂h, the subdifferen-
tials of f, g and h.

In this paper, based on a key observation in [1, Remark 3.4], we develop a novel
algorithmic approach relying on the following nice dual formulation of (1.1). Setting
ξ∗ ∈ Bx∗ and η∗ ∈ Cx∗, (1.1) is nothing but Ax∗ + ξ∗ + η∗ 3 0 which is equivalent
to the following dual system{

−A−1(−ξ∗ − η∗) +B−1(ξ∗) 3 0;

−A−1(−ξ∗ − η∗) + C−1(η∗) 3 0.
(1.3)

To obtain a fixed-point formulation from (1.3) which will amounts us to design a
splitting algorithm and go on to establish its convergence to a primal an a dual
solutions, we state the following key facts that will be needed in the sequel.
Fact 1. The Yosida approximate Aγ is γ-cocoercive, which is equivalent to

∀x, y ∈ H γ2‖Aγx−Aγy‖2 ≤ ‖x− y‖2 − ‖JAγ x− JAγ y‖2.
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Fact 2. The Yosida approximate is related to the resolvent by the formula

∀x ∈ H JAγ (x) + γAγ(x) = x.

Fact 3. Using the Yosida approximate, we can write down system (1.3) as a fixed
point system, namely {

ξ∗ = Bα(αξ∗ +A−1(−ξ∗ − η∗));
η∗ = Cα(αη∗ +A−1(−ξ∗ − η∗)).

(1.4)

Indeed,

−A−1(−ξ∗ − η∗) +B−1(ξ∗) 3 0 ⇔ αξ∗ +A−1(−ξ∗ − η∗) ∈ αξ∗ +B−1(ξ∗)

⇔ ξ∗ = Bα(αξ∗ +A−1(−ξ∗ − η∗)).
Likewise, we obtain

η∗ = Cα(αη∗ +A−1(−ξ∗ − η∗)), for all α > 0.

The algorithm is then to solve this fixed point system via the iteration{
ξk+1 = Bαk(αkξk +A−1(−ξk − ηk));

ηk+1 = Cαk(αkηk +A−1(−ξk − ηk)),
(1.5)

where for all k ∈ IN, αk > 0 is a stepsize.
Using Fact 2, we can rewrite algorithm (1.5) by means of the resolvent operators of
B and C, namely  ξk+1 =

(I−JBαk )
αk

(αkξk +A−1(−ξk − ηk));

ηk+1 =
(I−JCαk )
αk

(αkηk +A−1(−ξk − ηk)),

(1.6)

which is efficient when the resolvent operators (proximal mappings) of B and C (g
and h) are available in closed form or at least fast to compute as well as the inverse
of A (the conjugate function of f or at least its gradient operator).

2. Main convergence results

Now, we are in a position to state and prove our main convergence results. To
begin with, let us establish the following key property.
Proposition 2.1. Let αk ∈]0, 1τ [, A,B and C be three maximal monotone operators

with A−1 a τ -cocoercive operator and assume that (1.1) possesses at least one solution,
say x∗. Let (ξk, ηk)k∈N be the sequence defined by (1.5). Then, we have the following
estimate

Γk+1 ≤ Γk −
2

αk
(τ − 1

αk
)‖υk − x∗‖2 −

Θk

α2
k

, (2.1)

where

Γk := ‖(ξk − ξ∗)‖2 + ‖ηk − η∗‖2 = ‖(ξk, ηk)− (ξ∗, η∗))‖2 (norm of H ×H)

and
Θk := ‖αk(ξk − ξk+1) + υk − x∗‖2 + ‖αk(ηk − ηk+1) + υk − x∗‖2

with υk := A−1(−ξk − ηk), and remember that x∗ = A−1(−ξ∗ − η∗).
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Proof. Let x∗ be a solution of (1.1), ξ∗ ∈ Bx∗ and η∗ ∈ Cx∗. In view of relations
(1.4) and (1.5) and according to the αk-cocoercive property of the Yosida approximate
Bαk , we can successively write

‖ξk+1 − ξ∗‖2 ≤ 1

α2
k

‖αk(ξk − ξ∗) +A−1(−ξk − ηk)−A−1(−ξ∗ − η∗)‖2

− 1

α2
k

‖αk(ξk − ξk+1) +A−1(−ξk − ηk)−A−1(−ξ∗ − η∗)‖2

≤ ‖(ξk − ξ∗)‖2 +
2

αk
〈A−1(−ξk − ηk)−A−1(−ξ∗ − η∗), ξk − ξ∗〉

+
1

α2
k

‖A−1(−ξk − ηk)−A−1(−ξ∗ − η∗)‖2

− 1

α2
k

‖αk(ξk − ξk+1) +A−1(−ξk − ηk)−A−1(−ξ∗ − η∗)‖2.

Likewise, using the αk-cocoercivenes property of the Yosida approximate Cαk , we
obtain

‖ηk+1 − η∗‖2 ≤ ‖ηk − η∗‖2 +
2

αk
〈A−1(−ξk − ηk)−A−1(−ξ∗ − η∗), ηk − η∗〉

+
1

α2
k

‖A−1(−ξk − ηk)−A−1(−ξ∗ − η∗)‖2

− 1

α2
k

‖αk(ηk − ηk+1) +A−1(−ξk − ηk)−A−1(−ξ∗ − η∗)‖2.

Summing the two last inequality, using the τ -cocoerciveness of the operator −A−1(−·)
which shares this property with the operator A−1 and the fact that

υk := A−1(−ξk − ηk) and x∗ = A−1(−ξ∗ − η∗),
we get

‖(ξk+1, ηk+1)− (ξ∗, η∗)‖2 ≤ ‖(ξk, ηk)− (ξ∗, η∗)‖2

+
2

αk
〈υk − x∗, (ξk + ηk)− (ξ∗ + η∗)〉+

2

α2
k

‖υk − x∗‖2

− 1

α2
k

‖αk(ξk − ξk+1) + υk − x∗‖2

− 1

α2
k

‖αk(ηk − ηk+1) + υk − x∗‖2

≤ ‖(ξk, ηk)− (ξ∗, η∗)‖2 − 2

αk
(τ − 1

αk
)‖υk − x∗‖2 −

Θk

α2
k

.

This completes the proof.
Theorem 2.2. If in addition to the assumptions of Proposition 2.1, we assume that
αk ∈]ε, 1τ − ε[ for some given ε > 0 small enough, then the sequence (ξk, ηk)k∈N is
Fejer monotone with respect to the solution set of (1.3) and the sequence (υk)k∈N norm
converges to x∗ solution of (1.1). Moreover, (ξk)k∈N and (ηk)k∈N are asymptotically
regular and the sequence (ξk, ηk)k∈N weakly converges to a solution of (1.3).
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Proof. Relation (2.1) implies that the sequence (Γk)k∈N is no increasing and thus it
converges, which implies in turn the boundedness of the sequence (ξk, ηk)k∈N. Taking
into account conditions on the sequence of parameters (αk), we also directly obtain
that

lim
k
‖A−1(−ξk − ηk)−A−1(−ξ∗ − η∗)‖ = 0 and lim

k
Θk = 0. (2.2)

These in turn ensure that

lim
k→+∞

‖ξk − ξk+1‖ = lim
k→+∞

‖ηk − ηk+1‖ = 0, (2.3)

in other words, (ξk)k∈N and (ηk)k∈N are asymptotically regular. On the other hand,
(1.5) can be rewritten as{

αk(ξk − ξk+1) +A−1(−ξk − ηk) ∈ B−1(ξk+1);

αk(ηk − ηk+1) +A−1(−ξk − ηk) ∈ C−1(ηk+1).
(2.4)

By passing to the limit on a subsequence of (ξk, ηk)k∈N converging to a weak-cluster

point (ξ̃, η̃) in (2.4), in the light of both (2.2) and (2.3) and by taking also into account
the fact that the graphs of B and C are strongly-weakly closed, we obtain{

A−1(−ξ̃ − η̃)−B−1(ξ̃) 3 0;

A−1(−ξ̃ − η̃)− C−1(η̃) 3 0.
(2.5)

Thus (ξ̃, η̃) solves (1.3) and the weak convergence of the whole sequence (ξk, ηk)k∈N
follows then by the celebrate Opial’s Lemma.

3. Convex minimization

To begin with, let us recall that the partial differential of a convex function h is
defined as ∂h(x) := {z ∈ H; h(y) ≥ h(x) + 〈z, y − x〉 ∀y ∈ H} and focus on the
minimization problem (1.3), namely

min
x

(f + g + h)(x), (3.1)

which is equivalent, under a qualification condition see for instance [2, Corollary
16.39], to

0 ∈ ∂f(x∗) + ∂g(x∗) + ∂h(x∗). (3.2)

This is equivalent in turn to the following dual system{
−∇f∗(−ξ∗ − η∗) + ∂g∗(ξ∗) 3 0;

−∇f∗(−ξ∗ − η∗) + ∂h∗(η∗) 3 0,
(3.3)

which amounts to {
ξ∗ = argminξ

(
f∗(−ξ − η∗) + g∗(ξ)

)
;

η∗ = argminη
(
f∗(−ξ∗ − η) + h∗(η)

)
.

Observe that both

min
ξ

(
f∗(−ξ − η∗) + g∗(ξ)

)
= (f + g)∗(−η)
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and

min
η

(
f∗(−ξ − η∗) + h∗(η)

)
= (f + h)∗(−ξ)

are infimal convolutions (i.e., epigraphical sums).
In this context, the dual minimization algorithm reduces to{

ξk+1 = proxα−1
k g∗(ξk + α−1k ∇f∗(−ξk − ηk));

ηk+1 = proxα−1
k h∗(ηk + α−1k ∇f∗(−ξk − ηk)),

(3.4)

which can be rewritten as ξk+1 =
(I−proxαkg)

αk
(αkξk +∇f∗(−ξk − ηk));

ηk+1 =
(I−proxαkh)

αk
(αkηk +∇f∗(−ξk − ηk)).

(3.5)

The corresponding convergence result can then be summarized as follows.
Theorem 3.1. Let αk ∈]ε, τ − ε[ for some given ε > 0 small enough, f, g and h be
three proper closed convex functions with ∇f∗ τ -Lipschitz continuous and assume that
(3.1) possesses at least one solution, say x∗. Then, the sequence (ξk, ηk)k∈N generated
by (3.5) weakly converges to some solution of (3.3) and the sequence(

υk := ∇f∗(−ξk − ηk)
)
k∈N

norm converges to x∗ solution of (3.1).
Proof. Follows by applying Theorem 2.2 with A = ∂f,B = ∂g and C = ∂h and using
the fact that, for any closed proper convex function h, we have

(∂h)−1 = ∂h∗ and proxγh(x) = argminy

(
h(y) +

1

2γ
‖y − x‖2

)
= J∂hγ (x),

and that τ -Lipschitz continuity of ∇f∗ is equivalent to its 1
τ -cocovercivity, see for

example [2, Theorem 18.15].

A straightforward example is the Elastic net regularization which combines both the
l1 and l2 penalties. The optimization problem is

min
x∈IRn

(
µ2‖x‖22 + µ1‖x‖1 + l(Ax, b)

)
,

where A ∈ IRm×n, b ∈ IRm and l is the loss function, which may be nondifferentiable.
The conjugate function of the l2 regularization term, equal to 1

4µ2
‖x‖22, is differen-

tiable and has a Lipschitz continuous gradient. The algorithm has the remarkable
property that the operators involved are evaluated separately in each iteration, either
by the forward step using here the gradient of f∗, or by the backward steps for the
nonsmooth terms, by using the corresponding proximal mappings, here proxµ1‖·‖ a
simple operation called soft thresholding as well as proxl, the matrices A and A∗

with a loss function l that is proximable.
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4. Concluding remarks

To conclude, it worth mentioning that, in the multi-valued case of all inverse op-
erators, the dual key system (1.3) can be solved sequentially, for example, by the
Douglas-Rachford splitting algorithm. Moreover, using a partial regularization by
replacing in (1.3) the inverse of the operator A by its Yosida approximate or else the
inverses of B and C by their Yosida approximates, it is then easy to see that we obtain
simultaneous Primal, dual or primal-dual Passty’s type algorithms. More precisely,
we obtain in the first case{

ξk+1 = JB
−1

αk
(−ηk − JA

−1

αk
(−ξk − ηk));

ηk+1 = JC
−1

αk
(−ξk − JA

−1

αk
(−ξk − ηk)),

(4.1)

which is equivalent to{
ξk+1 = JB

−1

αk
(ξk + αk(A−1)αk(−ξk − ηk));

ηk+1 = JC
−1

αk
(ηk + αk(A−1)αk(−ξk − ηk)),

(4.2)

and can be rewritten with A,B and C using the fact that Mλ(x) = JM
−1

1
λ

(xλ ) for all

x ∈ H and λ > 0. This will be detailed in a forthcoming paper. The convergence
results in the case of partial regularization may be of ergodic type.
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