
Fixed Point Theory, 21(2020), No. 2, 585-594

DOI: 10.24193/fpt-ro.2020.2.41

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.html

ON THE BURTON METHOD OF PROGRESSIVE

CONTRACTIONS FOR VOLTERRA INTEGRAL EQUATIONS

VERONICA ILEA∗ AND DIANA OTROCOL∗∗
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Abstract. In the paper [4] the author give a new method to study the existence and uniqueness of

a solution on [0,∞[ of a scalar integral equation

x(t) = g(t, x(t)) +

∫ t

0
A(t− s)f(t, s, x(s))ds,

where u, v ∈ R, t ∈ [0,∞[ imply that there exists 0 < l < 1 with

|g(t, u)− g(t, v)| ≤ l |u− v|

and for each b > 0 there exists Lb > 0 such that

|f(t, u)− f(t, v)| ≤ Lb |u− v| , ∀t ∈ [0, b], ∀u, v ∈ R.

In this paper we extend the Burton method to the case where instead of scalar equations we consider

an equation in a Banach space.
Key Words and Phrases: Progressive contractions, fixed points, existence, uniqueness, integro-

differential equations.
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1. Introduction

The purpose of this paper is to present an existence and uniqueness result for
integral equations with sum of two operators. The approach is based on proving the
existence of a solution on a short interval, then the equation is translated to a new
starting time so that the solution on another short interval is fitted onto the first
solution and so on.

Our result is connected to some recent papers of T.A. Burton [1]-[4] where it is
introduced the technique named progressive contraction. This technique is suited
to integral equations and shows that when the equation is defined by the sum of a
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contraction and a Lipschitz operator one can prove first existence on arbitrary interval
[0, b] and then one can parlay that into a solution on [0,∞). In our paper we combine
the above technique with the classical method of Banach fixed point theorem (see
[10]-[13]).

Regarding the integral equations that contain a sum of two operators, one can see
the following papers [6]-[7], [12], [13].

Let (B, |·|) be a Banach space and K ∈ C(R+ × R+ × B,B). We consider the
Volterra integral equation corresponding to K

x(t) =

∫ t

0

K(t, s, x(s))ds, t ∈ R+, x ∈ C(R+,B). (1.1)

For b > 0, let us consider the same equation defined on [0, b] as follows

x(t) =

∫ t

0

K(t, s, x(s))ds, t ∈ [0, b], x ∈ C([0, b],B). (1.2)

In what follows we consider the Bielecki norm ‖·‖τ , defined by

‖x‖τ = max |x(t)| e−τt, τ > 0,

the Chebyshev norm defined by

‖x‖∞ = sup
t∈[0,b]

{|x(t)|}.

We consider the equation (1.2) with the following conditions

(C1) K ∈ (C([0, b]× [0, b]× B,B)) ;
(C2) for each b > 0 there exists Lb > 0 such that

|K(t, s, u)−K(t, s, v)| ≤ Lb |u− v| , ∀t, s ∈ [0, b], u, v ∈ B.

The following result is well known.

Theorem 1.1. If the conditions (C1) and (C2) are satisfied, then the equation (1.2)
has a unique solution in C([0,∞[,B).

Since we have a Volterra integral equation is sufficient to prove the existence and
uniqueness of the solution in C([0, b],B) for any positive b. To prove this we consider
on C([0, b],B) the Bielecki norm, with respect to which the operator

S : C([0, b],B)→ C([0, b],B)

defined by

S(x)(t) =

∫ t

0

K(t, s, x(s))ds

is a Lb

τ -contraction, with τ chosen sufficiently large.
The problem is if we can obtain this result using Chebyshev norm.
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2. Burton method in the case of Volterra integral equation

Theorem 2.1. If the condition (C1) and (C2) are satisfied and bLb < 1, then the
equation (1.2) has a unique solution in C([0, b],B).

Proof. Following the idea of T.A. Burton [4], [1], [2] and using

[0, b] =

m−1⋃
k=0

[
kb

m
,

(k + 1)b

m

]
, m ∈ N∗,

we divide the interval [0, b] into m equal parts, denoting the end points by

0,
b

m
,

2b

m
, . . . , b.

Step 1. Let (M1, ‖·‖1) be the complete metric space of continuous functions

x : [0, bm ]→ R with the Chebyshev metric ‖·‖1 , where

‖x(t)‖i = max
t∈[0, ibm ]

|x(t)| , i = 1,m− 1.

We define the following mapping A1 : M1 →M1 with x ∈M1

A1(x)(t) =

∫ t

0

K(t, s, x(s))ds, t ∈ [0,
b

m
].

Then for x, y ∈M1 and 0 ≤ t ≤ b
m we have

|A1(x)(t)−A1(y)(t)| ≤
∫ t

0

|f(t, s, x(s))− f(t, s, y(s))| ds

≤ Lb,1b

m
max
t∈[0, b

m ]
|x(t)− y(t)|

≤ Lb,1b

m
‖x− y‖1 .

So,

max
t∈[0, b

m ]
|A1(x)(t)−A1(y)(t)| ≤ Lb,1b

m
‖x− y‖1 .

Thus

‖A1(x)−A1(y)‖1 ≤
Lb,1b

m
‖x− y‖1 .

The mapping A1 is a contraction with a unique fixed point x∗1 on [0, bm ] with

(A1x
∗
1)(t) = x∗1(t) =

∫ t

0

K(t, s, x∗1(s))ds, 0 ≤ t ≤ b

m
. (2.1)

Step 2. Let (M2, ‖·‖2) be the complete metric space of continuous functions

x : [0, 2bm ]→ R with the Chebyshev metric and

x(t) = x∗1(t) on

[
0,
b

m

]
.
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We define the mapping A2 : M2 →M2 with x ∈M2

A2(x)(t) =

∫ t

0

K(t, s, x(s))ds.

Notice that for 0 ≤ t ≤ b
m and x ∈ M2 then x = x∗1 which is a fixed point and from

(2.1) we have

(A2x)(t) =


x∗1(t), t ∈

[
0,
b

m

]
∫ t

0

K(t, s, x(s))ds, t ∈
[
b

m
,

2b

m

]

=


x∗1(t), t ∈

[
0,
b

m

]
∫ b

m

0

K(t, s, x∗1(s))ds+

∫ t

b
m

K(t, s, x(s))ds, t ∈
[
b

m
,

2b

m

]
For x, y ∈M2 we have

|A2(x)(t)−A2(y)(t)| ≤
∫ t

b
m

|K(t, s, x(s))−K(t, s, y(s))| ds

≤
∫ t

b
m

Lb,2 |x(s)− y(s)| ds

(and since x(t) = y(t) = x∗1(t) on [0,
b

m
])

≤
∫ t

b
m

Lb,2 |x(s)− y(s)| ds

≤ Lb,2
b

m
max

t∈[ b
m , 2bm ]

|x(t)− y(t)|

≤ Lb,2
b

m
max
t∈[0, 2bm ]

|x(t)− y(t)| .

So,

max
t∈[0, 2bm ]

|A2(x)(t)−A2(y)(t)| ≤ Lb,2
b

m
max
t∈[0, 2bm ]

|x(t)− y(t)| .

Thus

‖A2(x)−A2(y)‖2 ≤ Lb,2
b

m
‖x− y‖2 .

The mapping A2 is a contraction with a unique fixed point x∗2 on [0, 2bm ]. Clearly x∗2
is a unique continuous solution of (2.1) with x∗2(t) = x∗1(t) on [0, bm ].
Step 3. We define the complete metric space (M3, ‖·‖3) of continuous functions

x : [0, 3bm ] → R with x(t) = x∗2 on [0, 2bm ]. But x∗2 is a fixed point and so A3 is well

defined. Analogously we obtain a continuous solution x∗3 on [0, 3bm ].
As follows we get that Am is a contraction and thus we obtain a unique continuous

solution on [0, b], using the induction method.
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For 2 < i < m − 1 let x∗i−1 be the unique solution of (2.1) on [0, (i−1)bm ]. Let

(Mi, ‖·‖i) be the complete metric space of continuous functions x : [0, ibm ] → R with

the supremum metric and x(t) = x∗i−1(t) on [0, (i−1)bm ]. We define Ai : Mi → Mi by
x ∈Mi imply

(Aix)(t) =

∫ t

0

K(t, s, x(s))ds

=


x∗i−1(t), t ∈

[
0,

(i− 1)b

m

]
∫ t

0

K(t, s, x(s))ds, t ∈
[

(i− 1)b

m
,
ib

m

]

=


x∗i−1(t), t ∈

[
0,

(i− 1)b

m

]
∫ (i−1)b

m

0

K(t, s, x∗i−1(s))ds+

∫ t

(i−1)b
m

K(t, s, x(s))ds, t ∈
[

(i− 1)b

m
,
ib

m

]

To prove that Ai is a contraction, let x, y ∈Mi and 0 ≤ t ≤ ib
m so that

|Ai(x)(t)−Ai(y)(t)| ≤
∫ t

(i−1)b
m

|K(t, s, x(s))−K(t, s, y(s))| ds

≤
∫ t

(i−1)T
m

Lb,i |x(s)− y(s)| ds

(and since x(t) = y(t) = x∗i−1(t) on [0,
(i− 1)b

m
])

≤
∫ t

(i−1)b
m

Lb,i |x(s)− y(s)| ds

≤ Lb,i
b

m
max

t∈[ (i−1)b
m , ibm ]

|x(t)− y(t)|

≤ Lb,i
b

m
max
t∈[0, ibm ]

|x(t)− y(t)|

So,

max
t∈[0, ibm ]

|Ai(x)(t)−Ai(y)(t)| ≤ Lb,i
b

m
max
t∈[0, ibm ]

|x(t)− y(t)| .

Thus

‖Ai(x)−Ai(y)‖i ≤ Lb,i
b

m
‖x− y‖i .

We obtain that Ai is a contraction with the unique fixed point x∗i on [0, ibm ]. �
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3. Applications of Burton method to functional integral equations

We consider the following integral equation

x(t) = g(t, x(t)) +

∫ t

0

f(t, s, x(s))ds, t ∈ [0, b) (3.1)

where the functions g ∈ C([0, b) × R,R), f ∈ C([0, b) × [0, b) × R,R) are given. We
search the solution in the set C([0, b],R) for which we consider the Chebyshev norm.
We divide the interval [0, b] in m equal parts such that

[0, b] =

m−1⋃
k=0

[
kb

m
,

(k + 1)b

m

]
, m ∈ N∗. (3.2)

We consider following hypothesis:

(H1) there exists Lg ∈ (0, 1) such that

|g(t, u)− g(t, v)| ≤ Lg |u− v| , ∀u, v ∈ R, 0 ≤ t < b;

(H2) for each b > 0 there exists Lf,k > 0 such that

|f(t, s, u)− f(t, s, v)| ≤ Lf,k(b) |u− v| , ∀u, v ∈ R, 0 ≤ t ≤ b;

Theorem 3.1. In the conditions (H1) and (H2) the equation (3.1) has a unique
solution on C([0, b)× B,B).

Proof. Following the same steps as in the proof of Theorem 2 and using (3.2) we
divide the interval [0, b] into m equal parts, denoting the end points by 0, bm ,

2b
m , . . . , b.

Step 1. Let (M1, ‖·‖1) be the complete metric space of continuous functions

x : [0, bm ]→ R with the Chebyshev metric ‖·‖1 , where

‖x(t)‖i = max
t∈[0, ibm ]

|x(t)| , i = 1,m− 1.

We define the following mapping A1 : M1 →M1 with x ∈M1

A1(x)(t) = g(t, x(t)) +

∫ t

0

f(t, s, x(s))ds, t ∈ [0,
b

m
].

Then for x, y ∈M1 and 0 ≤ t ≤ b
m we have

|A1(x)(t)−A1(y)(t)| ≤ Lg |x(t)− y(t)|+
∫ t

0

|f(t, s, x(s))− f(t, s, y(s))| ds

≤ Lg ‖x− y‖1 +
Lf,1(b)b

m
‖x− y‖1 .

Thus

‖A1(x)−A1(y)‖1 ≤
(
Lg + Lf,1(b)

b

m

)
‖x− y‖1 .

The mapping A1 is a contraction with a unique fixed point x∗1 on [0, bm ] with

(A1x
∗
1)(t) = x∗1(t) = g(t, x∗1(t)) +

∫ t

0

f(t, s, x∗1(s))ds, 0 ≤ t ≤ b

m
. (3.3)
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Step 2. Let (M2, ‖·‖2) be the complete metric space of continuous functions

x : [0, 2bm ]→ R with the Chebyshev metric and

x(t) = x∗1(t) on

[
0,
b

m

]
.

We define the mapping A2 : M2 →M2 with x ∈M2

A2(x)(t) = g(t, x(t)) +

∫ t

0

f(t, s, x(s))ds.

Notice that for 0 ≤ t ≤ b
m and x ∈ M2 then x = x∗1 which is a fixed point and from

(3.3) we have

(A2x)(t) =


x∗1(t), t ∈

[
0,
b

m

]
g(t, x(t)) +

∫ t

0

f(t, s, x(s))ds, t ∈
[
b

m
,

2b

m

]

=


x∗1(t), t ∈

[
0,
b

m

]
g(t, x(t)) +

∫ T
m

0

f(t, s, x∗1(s))ds+

∫ t

T
m

f(t, s, x(s))ds, t ∈
[
b

m
,

2b

m

]
For x, y ∈M2 we have

|A2(x)(t)−A2(y)(t)| ≤ Lg |x(t)− y(t)|+
∫ t

b
m

|f(t, s, x(s))− f(t, s, y(s))| ds

≤
(
Lg + Lf,2(b)

b

m

)
max
t∈[0, 2bm ]

|x(t)− y(t)| .

Thus

‖A1(x)−A1(y)‖2 ≤
(
Lg + Lf,2(b)

b

m

)
‖x− y‖2 .

The mapping A2 is a contraction with a unique fixed point x∗2 on [0, 2bm ]. Clearly x∗2
is a unique continuous solution of (3.1) with x∗2(t) = x∗1(t) on [0, bm ].
Step 3. We define the complete metric space (M3, ‖·‖3) of continuous functions

x : [0, 3bm ] → R with x(t) = x∗2 on [0, 2bm ]. But x∗2 is a fixed point and so A3 is well

defined. Analogously we obtain a continuous solution x∗3 on [0, 3bm ].
By induction we get a unique continuous solution on [0, b]. We give below some induc-

tion details. For 2 < i < m− 1 let x∗i−1 be the unique solution of (3.1) on [0, (i−1)bm ].

Let (Mi, ‖·‖i) be the complete metric space of continuous functions x : [0, ibm ] → R
with the supremum metric and x(t) = x∗i−1(t) on [0, (i−1)bm ]. We define Ai : Mi →Mi
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by x ∈Mi imply

(Aix)(t) = g(t, x(t)) +

∫ t

0

f(t, s, x(s))ds

=


x∗i−1(t), t ∈

[
0,

(i− 1)b

m

]
g(t, x(t)) +

∫ t

0

f(t, s, x(s))ds, t ∈
[

(i− 1)b

m
,
ib

m

]

=



x∗i−1(t), t ∈
[
0,

(i− 1)b

m

]
g(t, x(t)) +

∫ (i−1)b
m

0

f(t, s, x∗i−1(s))ds+

∫ t

(i−1)b
m

f(t, s, x(s))ds,

t ∈
[

(i− 1)b

m
,
ib

m

]
.

To prove that Ai is a contraction, let x, y ∈Mi and 0 ≤ t ≤ ib
m so that

|Ai(x)(t)−Ai(y)(t)| ≤ Lg |x(t)− y(t)|+
∫ t

(i−1)b
m

|f(t, s, x(s))− f(t, s, y(s))| ds

≤
(
Lg,i + Lf,i(b)

b

m

)
max
t∈[0, ibm ]

|x(t)− y(t)| .

Thus

‖Ai(x)−Ai(y)‖i ≤
(
Lg + Lf,i(b)

b

m

)
‖x− y‖i .

We obtain that Ai is a contraction with the unique fixed point x∗i on [0, ibm ]. �

Remark. Since on each subinterval we apply the contraction principle, the unique
solution of the problem can be obtained on each subinterval using successive approx-
imation method, see [9, 11].
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