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Abstract. In this paper we prove the following general theorem. Let (E, ‖ · ‖E) be a uniformly

convex Banach space, and let C be a bounded, closed and convex subset of E. Assume that C has

nonempty interior and is locally uniformly rotund. Let F be a commutative nonexpansive semigroup
acting on C. If F has no fixed point in the interior of C, then there exists a unique point x̃ on the

boundary of C such that each orbit of F converges in norm to x̃. We also establish analogous results

for semigroups and mappings which are asymptotically nonexpansive in the intermediate sense.
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1. Introduction

Let (E, ‖ · ‖E) be a Banach space, C a nonempty closed subset of E and let F be a
nonexpansive semigroup on C with a fixed point. The convergence in norm of orbits
of the semigroup F is an important problem in metric fixed point theory because this
allows us to approximate a fixed point of F in the simplest way ([1], [15], [17], [18],
[19], [23], [24] and [25]).

The authors of the present paper have recently established the following result
([10]).

Theorem 1.1. Let (E, ‖ · ‖E) be a uniformly convex Banach space, and let C be a
bounded, closed and convex subset of E. Assume that C has nonempty interior and
is locally uniformly rotund. Let F be a strongly measurable nonexpansive semigroup
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acting on C. If F has no common fixed point in the interior of C, then there exists a
unique point x̃ on the boundary ∂C of C such that each orbit {F (t)x : t ≥ 0} converges
strongly to x̃.

In the present paper we prove similar theorems in a more general setting, namely for
commutative nonexpansive semigroups and for semigroups which are asymptotically
nonexpansive in the intermediate sense. Since Theorem 1.1 has a counterpart for
nonexpansive mappings, we also state and prove the analogous result for mappings
which are asymptotically nonexpansive in the intermediate sense. In our proofs much
more sophisticated ergodic theorems, than those used in [10], are applied. Therefore,
for the convenience of the reader, we recall suitable ergodic theorems at the beginning
of each of the last three sections of this paper.

2. Basic notions and facts

Throughout this paper all Banach spaces are real and all topologies are Hausdorff.
We denote the closed convex hull of a subset C of a Banach space (E, ‖ · ‖E) by
conv C.

First we recall the notions of a strictly convex Banach space, a locally uniformly
rotund set and a uniformly convex Banach space.

Definition 2.1. ([8], [9]) A Banach space (E, ‖ · ‖E) is said to be strictly convex if
‖x+y

2 ‖E < 1 whenever x, y ∈ E, ‖x‖E ≤ 1, ‖y‖E ≤ 1 and x 6= y.

Definition 2.2. ([27]; see also [22]) Let (E, ‖ · ‖E) be a Banach space, C be a
nonempty, bounded, closed and convex subset of E, and let C have nonempty interior.
We say that C is locally uniformly rotund if for each x ∈ ∂C and for each ε ∈ (0, dx),
where dx := sup{‖x− x′‖E : x′ ∈ C}, there exists a number δ(x, ε) > 0 such that for
each y ∈ C with ‖x− y‖E ≥ ε, we have

dist

(
x+ y

2
, ∂C

)
:= inf

{∥∥∥∥x+ y

2
− x′

∥∥∥∥
E

: x′ ∈ ∂C
}
≥ δ(x, ε).

Definition 2.3. ([4]) Let (E, ‖ · ‖E) be a Banach space and let

BE(0, 1) = {x ∈ E : ‖x‖E ≤ 1}
denote its closed unit ball. If for each ε ∈ (0, 2], there exists δ(ε) > 0 such that for

each x, x′ ∈ BE(0, 1) with ‖x− x′‖E ≥ ε, we have∥∥∥∥x+ x′

2

∥∥∥∥
E

≤ 1− δ(ε),

then we say that the space (E, ‖ · ‖E) is uniformly convex.

If S is a nonempty set, then the Banach space of all bounded real-valued functions
on S with the supremum norm ‖ · ‖∞ is denoted by l∞(S).

Finally, we recall a lemma which is one of the basic tools in our subsequent con-
siderations.
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Lemma 2.4. ([10]) Let (E, ‖ · ‖) be a Banach space and let C be a bounded, closed
and convex subset of E. Assume that int(C) is nonempty, 0 ∈ int(C) and C is locally
uniformly rotund. Let x̃ ∈ ∂C, x∗ ∈ E∗, ‖x∗‖ = 1, k ∈ (0,+∞) and the hyperplane
Vk,x̃ := {x ∈ E : x∗(x) = k} that supports C at the point x̃ be given. If r ∈ (0,+∞)
and the set

Cr := C ∩ {x ∈ E : ‖x− x̃‖ ≥ r}
is nonempty, then there exists 0 < k1 < k such that

Cr ⊂ {x ∈ E : x∗(x) ≤ k1}.

3. Means and convergence of orbits of nonexpansive semigroups

First we recall a few facts from the fixed point theory of nonexpansive mappings.

Definition 3.1. ([8], [9]) Let (E, ‖ · ‖E) be a Banach space and let C be a noempty
subset of X. If T : C → C and ‖Tx− Tx′‖E ≤ ‖x− x′‖E for every x, x′ ∈ C), then
we say that T is nonexpansive.

Theorem 3.2. ([2]) If (E, ‖ · ‖E) is a uniformly convex Banach space, C is a non-
empty, bounded, closed and convex subset of E, and T : C → C is nonexpansive, then
the mapping T has a fixed point.

Given a mapping T and a family of mappings G, we denote by Fix(T ) and by
Fix(G) the fixed point set and the common fixed point set of T and G, respectively.

Theorem 3.3. ([2]) If C is a nonempty, closed and convex subset of a strictly
convex Banach space (E, ‖ · ‖E), and if T : C → C is a nonexpansive mapping with
Fix(T ) 6= ∅, then the set Fix(T ) is closed and convex.

Theorem 3.4. ([2]) Let C be a nonempty, bounded, closed and convex subset of
a uniformly convex Banach space (E, ‖ · ‖E). Then for any commuting family G of
nonexpansive self-mappings of C, the set Fix(G) is nonempty.

Remark 3.5. Observe that by Theorems 3.2, 3.3 and 3.4, in every uniformly convex
Banach space, for any nonempty, bounded, closed and convex set C ⊂ E, and any
commuting family G of nonexpansive self-mappings of C, the common fixed point set
Fix (G) is nonempty, closed and convex.

Now we consider the case of semigroups. We begin with the following definitions
([5], [6], [26]). Let S be a semigroup. For a ∈ S, we define mappings la : `∞(S) →
`∞(S) and ra : `∞(S) → `∞(S) as follows: (laf)(s) := f(as) and (raf)(s) := f(sa)
for f ∈ `∞(S) and s ∈ S. Let X be a subspace of `∞(S) containing constants.
We say that X is left (respectively, right) translation invariant if for all a ∈ S we
have la(X) ⊂ X (ra(X) ⊂ X). The subspace X is translation invariant if X is
simultaneously both left and right translation invariant.
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Let X be a left translation invariant (respectively, right translation invariant,
translation invariant) subspace of `∞(S) containing constants. If µ ∈ X∗ and
‖µ‖X∗ = µ(1) = 1, then the linear functional µ is called a mean on X. It is ob-
vious that µ ∈ X∗ is a mean if and only if

inf
s∈S

f(s) ≤ µ(f) ≤ sup
s∈S

f(s)

for each f ∈ X. We also denote the value of a mean µ on X at f by µt(f(t)). A mean
µ on X is left invariant (respectively, right invariant) if µ(laf) = µ(f) (µ(raf) = µ(f))
for each a ∈ S and f ∈ X. An invariant mean µ is, by definition, a mean which is
both left and right invariant.

A semigroup S is called amenable if there is a mean µ on `∞(S) which is both left
and right invariant. In the case where only a left (respectively, right) invariant mean
exists, the semigroup S is called left-(respectively, right-)amenable.

At this point we quote the following classical theorem.

Theorem 3.6. ([6]) If a semigroup S is both left- and right-amenable, then it is
amenable.

The next theorem is very important in our subsequent considerations.

Theorem 3.7. ([5]; see also [26]) Every commutative semigroup S is amenable.

Let S be a semitopological semigroup, that is, S is a semigroup with a Hausdorff
topology T and for each a ∈ S, both the mappings S 3 s 7→ as ∈ S and S 3 s 7→
sa ∈ S are continuous. The semigroup S is called left (respectively, right) reversible
if each two closed right (respectively, left) ideals of S have a nonempty intersection.
If S is left (respectively, right) reversible, then S becomes a directed set by declaring
s ≤ t to mean {s} ∪ sS ⊃ {t} ∪ tS (respectively, {s} ∪ Ss ⊃ {t} ∪ St) for s, t ∈ S,
where A denotes the closure of A in the topology T .

The following fact is generally known. If S is a semitopological commutative semi-
group, then S is reversible, that is, S is both left- and right-reversible.

If (E, ‖ · ‖E) is a Banach space, then we denote the value of x∗ ∈ E∗ at x ∈ E by
x∗(x) or 〈x, x∗〉.

Let S be a semitopological semigroup and let C(S) ⊂ `∞(S) be the Banach algebra
of all bounded and continuous real-valued functions on S with the supremum norm
‖ · ‖∞. Let f be a bounded and continuous function on S with values in a reflexive
Banach space (E, ‖ · ‖E), and let ν be an element of C(S)∗. Then the real-valued
function ψ on E∗ given by

ψ(x∗) := ν(〈f, x∗〉) := νs〈f(s), x∗〉
for each x∗ ∈ E∗ is linear and continuous. Since (E, ‖ · ‖E) is reflexive, there exists a
unique element f(ν) ∈ E such that

〈f(ν), x∗〉 = νs〈f(s), x∗〉
for each x∗ ∈ E∗. If F = {F (s) : s ∈ S} is a nonexpansive semigroup on a closed
and convex subset C of E (that is, every mapping F (s) : C → C is nonexpansive),
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{F (s)x}s∈S is bounded for some x ∈ C and f(s) := F (s)x for each s ∈ S, then we
denote f(ν) by F (ν)x.

If S is a semitopological semigroup, then Λ(S) denotes the algebraic center of S,
that is, all s ∈ S such that st = ts for all t ∈ S.

In [14] O. Kada, A. T. Lau and W. Takahashi proved the following theorem.

Theorem 3.8. Let S be a right reversible semitopological semigroups, C be a non-
empty, closed and convex subset of a uniformly convex Banach space (E, ‖ · ‖E, and
let F = {F (s) : s ∈ S} be a nonexpansive semigroup on C. Let µ be a right invariant
mean on C(S). Then

(1) F (µ) is nonexpansive on C,
(2) if F (µ)x ∈ Fix(F) for each x ∈ C, then F (µ)2 = F (µ), that is, F (µ) is a

retraction on C,
(3) F (µ)F (s) = F (µ) for each s ∈ S,
(4) F (s)F (µ) = F (µ) for each s ∈ Λ(S),
(5) F (µ)x ∈

⋂
s∈S conv {F (t)x : t ≥ s} for each x ∈ C.

Directly from this theorem they obtain the following corollary.

Corollary 3.9. ([11]) Let S be a commutative semitopological semigroup, C be a
nonempty, bounded and closed convex subset of a uniformly convex Banach space, and
let F = {F (s) : s ∈ S} be a nonexpansive semigroup on C. Then for each invariant
mean µ on C(S), the mapping F (µ) is a nonexpansive retraction from C onto Fix(F)
and F (µ)x ∈

⋂
s∈S conv {F (t)x : t ≥ s} for each x ∈ C.

Now we are able to prove the following theorem.

Theorem 3.10. Let (E, ‖ · ‖E) be a uniformly convex Banach space, and let C be a
bounded, closed and convex subset of E. Assume that C has nonempty interior and
is locally uniformly rotund. Let S be a commutative semitopological semigroup and
let F = {F (s) : s ∈ S} be a commutative nonexpansive semigroup on C. If F has no
common fixed point in the interior of C, then there exists a unique point x̃ on the
boundary ∂C of C such that each orbit {F (s)x : s ∈ S} converges strongly to x̃.
Proof. Without any loss of generality we may assume that 0 ∈ int(C). By Theorems
3.3 and 3.4, and Remark 3.5, the semigroup F has exactly one common fixed point
x̃ and this point lies on the boundary ∂C of C. We claim that each orbit {F (s)x :
s ∈ S} converges strongly to x̃. To see this, we first observe that for each point
x ∈ C, the function {‖F (s)x − x̃‖E}, s ∈ S, is decreasing and therefore there exists
lims∈S ‖F (s)x − x̃‖E . Suppose to the contrary that there exists a point y ∈ C such
that r := lims∈S ‖F (s)y − x̃‖E > 0. Then we have

F (s)y ∈ Cr = C ∩ {x ∈ E : ‖x− x̃‖E ≥ r}
for all s ∈ S. Now let x∗ ∈ E∗, ‖x∗‖E∗ = 1, and 0 < k ∈ R be such that the
hyperplane Vk,x̃ = {x ∈ E : x∗(x) = k} supports C at x̃. By Lemma 2.4, there exists
a number 0 < k1 < k such that

Cr ⊂ {x ∈ E : x∗(x) ≤ k1}.
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This implies that

conv Cr ⊂ {x ∈ E : x∗(x) ≤ k1}.
Now we take an invariant mean µ on C(S). Then by Corollary 3.9, the mapping F (µ)
is a nonexpansive retraction from C onto Fix(F) = {x̃} and

F (µ)y ∈
⋂
s∈S

conv {F (t)y : t ≥ s}.

Hence we get

x̃ ∈
⋂
s∈S

conv {F (t)y : t ≥ s} ⊂ conv {F (s)y : s ∈ S} ⊂ conv Cr

but this is impossible because then we have

x∗(x̃) ≤ k1 < k = x∗(x̃).

The contradiction we have reached completes the proof.

Remark 3.11. Theorem 3.10 is a generalization of Theorem 5.1 in [10].

4. Convergence of orbits of semigroups which are asymptotically
nonexpansive in the intermediate sense

In this section we show that a result analogous to that in Section 3 is also valid
for orbits of semigroups which are asymptotically nonexpansive in the intermediate
sense. We first recall several definitions and facts which we need in our subsequent
considerations.
Let C be a nonempty, bounded, closed and convex subset of a Banach space (E, ‖·‖E).
If T : C → C is continuous and

lim sup
k→∞

sup
x,y∈C

(∥∥T kx− T ky
∥∥
E
− ‖x− y‖E

)
≤ 0,

then T is called asymptotically nonexpansive in the intermediate sense ([3]).
Recall that if T is a self-mapping of C, then Fix (T) always denotes the set of fixed

points of T .
Next we recall the notion of a semigroup which is asymptotically nonexpansive in

the intermediate sense ([12]).
Once more, let (E, ‖ · ‖E) be a Banach space and C a nonempty subset of E.

Let F = {F (t)}t≥0 be a family of self-mappings of C. Recall that F is said to be
a semigroup which is asymptotically nonexpansive in the intermediate sense if the
following five conditions are satisfied:

(1) F (t) : C → C is continuous for each t ∈ [0,∞);
(2) F (s+ t)x = F (s)F (t)x for all s, t ∈ [0,∞) and x ∈ C;
(3) F (0) = I, where I is the identity mapping;
(4) lim sup

t→∞
sup

x,y∈C
(‖F (t)x− F (t) y‖E − ‖x− y‖E) ≤ 0;

(5) the orbit {F (t)x}t≥0 is continuous in t ∈ [0,∞) for each x ∈ C.



MEANS AND CONVERGENCE OF SEMIGROUP ORBITS 501

We continue to denote the set of common fixed points of a semigroup F by Fix (F).

Remark 4.1. It is generally known that using the asymptotic center method ([16];
see also [7], [8] and [9]), we get that if (E, ‖ · ‖E) is a uniformly convex Banach space,
C is a nonempty, bounded, closed and convex subset of E, and T is a self-mapping
of C which is asymptotically nonexpansive in the intermediate sense, then the fixed
point set of T is nonempty, closed and convex. Hence we can conclude that if G is
a commuting family of self-mappings of C which are asymptotically nonexpansive in
the intermediate sense, then the common fixed point set of G is nonempty, closed and
convex (see the proof of Theorem 2 in [2]).

Next we prove the following auxiliary lemma.

Lemma 4.2. Let (E, ‖·‖E) be a Banach space and C be a nonempty subset of E. Let
F = {F (t)}t≥0 be a semigroup which acts on C and is asymptotically nonexpansive

in the intermediate sense, and let x̃ ∈ C be a fixed point of F . If the orbit {F (t)x}t≥0
of a point x ∈ C \ {x̃} does not tend to x̃, then inft≥0 ‖F (t)x− x̃‖E > 0.
Proof. Suppose to the contrary that inft≥0 ‖F (t)x − x̃‖E = 0. Then there exists a
sequence {tn}n in (0,∞) such that limn ‖F (tn)x − x̃‖E = 0. Given an ε > 0, there
exists n0 ∈ N such that

‖F (tn0
)x− x̃‖E <

ε

2
.

Since x̃ is a common fixed point of F and F is a semigroup of mappings which are
asymptotically nonexpansive in the itermediate sense, there is a number tε ∈ (0,∞)
such that

‖F (t) (F (tn0
)x)− x̃‖E < ‖F (tn0

)x− x̃‖E +
ε

2
for each t ≥ tε. Hence for t ≥ tn0

+ tε, we obtain

‖F (t)x− x̃‖E < ε.

This in its turn means that the orbit {F (t)x}t≥0 does tend to x̃, contrary to our
assumption that the orbit {F (t)x}t≥0 does not converge to x̃. Thus the assertion of
the theorem holds.

We also recall the following fact.

Theorem 4.3. ([12]) Let (E, ‖ · ‖E) be a uniformly convex Banach space and let C
be a nonempty, bounded, closed and convex subset of E. Let F = {F (t)}t≥0 be a
semigroup which acts on C and is asymptotically nonexpansive in the intermediate
sense. Let x ∈ C. Then for any ε > 0 and t > 0, there exists a number Rε,t > 0 such
that for all h ≥ Rε,t, r ≥ Rε,t and t > 0, we have∥∥∥∥F (h)

(
1

t

∫ t

0

F (r + τ)x dτ

)
− 1

t

∫ t

0

F (h+ r + τ)x dτ

∥∥∥∥
E

< ε.

In particular, for each t > 0, there exists rt > 0 such that∥∥∥∥F (h)

(
1

t

∫ t

0

F (r + τ)x dτ

)
− 1

t

∫ t

0

F (h+ r + τ)x dτ

∥∥∥∥
E

<
1

t
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for all h, r ≥ rt.

Remark 4.4. Without loss of generality (see the proof of Theorem 3.2 in [12]) we
may assume in the sequel that

lim
t→∞

rt =∞.

The next theorem, which actually follows from a part of the proof of Theorem 4.1
in [12], is crucial in the proof of the main theorem of this section.

Theorem 4.5. Let (E, ‖ · ‖E) be a uniformly convex Banach space and let C be a
nonempty, bounded, closed and convex subset of E. Let F = {F (t)}t≥0 be a semigroup
which acts on C and is asymptotically nonexpansive in the intermediate sense. Let

x ∈ C. Then each subsequential weak limit of
{

1
t

∫ t

0
F (rt + τ)x dτ

}
t>0

is a fixed

point of F , that is, if 0 < tj → ∞ and x = w − limj
1
tj

∫ tj
0
F
(
rtj + τ

)
x dτ , then

x ∈ Fix (F).

Now we can state and prove the main theorem of this section.

Theorem 4.6. Let (E, ‖ · ‖E) be a uniformly convex Banach space and let C be a
nonempty, bounded, closed and convex subset of E. Assume that C has nonempty
interior and is locally uniformly rotund. Let F = {F (t)}t≥0 be a semigroup which
acts on C and is asymptotically nonexpansive in the intermediate sense. If F has no
common fixed point in the interior of C, then there exists a unique point x̃ on the
boundary ∂C of C such that each orbit {F (t)x}t≥0 converges strongly to x̃.
Proof. There is no loss of generality in assuming that 0 ∈ int(C). By Remark 4.1,
the semigroup F has exactly one common fixed point x̃ which, in addition, lies on
the boundary ∂C of C. We claim that each orbit {F (t)x}t≥0 of F converges strongly
to x̃. Indeed, suppose to the contrary that there exists a point y ∈ C such that
its orbit {F (t)y}t≥0 does not converge strongly to x̃. Then by Lemma 4.2, we have
r := inft≥0 ‖F (t) y − x̃‖E > 0. Hence we get

F (t)y ∈ Cr = C ∩ {x ∈ E : ‖x− x̃‖E ≥ r}
for all t ∈ [0,∞). Now let x∗ ∈ E∗, ‖x∗‖E∗ = 1, and 0 < k ∈ R be such that the
hyperplane Vk,x̃ = {x ∈ E : x∗(x) = k} supports C at the point x̃. By Lemma 2.4,
there is a number 0 < k1 < k such that

Cr ⊂ {x ∈ E : x∗(x) ≤ k1}.
This implies, in its turn, that

conv Cr ⊂ {x ∈ E : x∗(x) ≤ k1}.

Now consider a weakly convergent sequence
{

1
tj

∫ tj
0
F
(
rtj + τ

)
y dτ

}
j
, where tj →∞.

Observe that by Theorem 4.5, this sequence tends to the fixed point of F , that is, to
x̃. But this is impossible because then we get

x∗(x̃) ≤ k1 < k = x∗(x̃).
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The contradiction we have reached completes the proof of the theorem.

5. Convergence of iterates of mappings which are asymptotically
nonexpansive in the intermediate sense

In this section we are concerned with a result for iterates of mappings which are
asymptotically nonexpansive in the intermediate sense. This result is analogous to
Theorem 4.6. It is a consequence of the following theorems, which are analogous to
Theorems 4.3 and 4.5.

Theorem 5.1. ([13]) Let (E, ‖ · ‖E) be a uniformly convex Banach space and let T
be a self-mapping of a nonempty, bounded, closed and convex subset C of E, which is
asymptotically nonexpansive in the intermediate sense. If x ∈ C, then for each ε > 0
and n ≥ 1, there exists a number Mε,n ≥ 1 such that for all k ≥Mε,n and m ≥Mε,n,
we have ∥∥∥∥∥T k

(
1

n

n−1∑
i=0

T i+m+1x

)
− 1

n

n−1∑
i=0

T k+i+m+1x

∥∥∥∥∥
E

< ε.

In particular, for each n ≥ 1, there exists a natural number mn ≥ 1 such that∥∥∥∥∥T k

(
1

n

n−1∑
i=0

T i+m+1x

)
− 1

n

n−1∑
i=0

T k+i+m+1x

∥∥∥∥∥
E

<
1

n

for all k,m ≥ mn.

Remark 5.2. Without loss of generality (see the proof of Theorem 5.2 in [13]) we
may assume in the sequel that

lim
n→∞

mn =∞.

Theorem 5.3. Let (E, ‖ · ‖E) be a uniformly convex Banach space, C a nonempty,
bounded, closed and convex subset of E, T a self-mapping of C which is asymptotically
nonexpansive in the intermediate sense, x ∈ C, and let {mn}n≥1 be the sequence of
positive real numbers appearing in Theorem 5.1. Then each weak subsequential limit

of
{

1
n

∑n−1
i=0 T

mn+i+1x
}
n

is a fixed point of T .

We also need the following auxiliary lemma which is analogous to Lemma 4.2.

Lemma 5.4. Let (E, ‖·‖E) be a Banach space, C a nonempty subset of E, T : C → C
a mapping which is an asymptotically nonexpansive in the itermediate sense and let
x̃ ∈ C be a fixed point of T . If for a point x ∈ C \{x̃}, its sequence of iterates {Tnx}n
does not tend to x̃, then infn ‖Tnx− x̃‖E > 0.
Proof. Suppose to the contrary that infn ‖Tnx − x̃‖E = 0. Then there exists a
subsequence {Tnlx}l of the sequence of iterates {Tnx}n such that

lim
l
‖Tnlx− x̃‖E = 0.

Given an ε > 0, there exists lε ∈ N such that

‖Tnlεx− x̃‖E <
ε

2
.
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By assumption, x̃ is a fixed point of T and therefore directly from the definition of
a mapping which is asymptotically nonexpansive in the itermediate sense, we obtain
k0 ∈ N such that

‖T k(Tnlεx)− x̃‖E < ‖Tnl0x− x̃‖E +
ε

2
for each k ≥ k0. Hence for n ≥ nlε + k0, we have

‖Tnx− x̃‖E < ε.

This, in its turn, means that the sequence of iterates {Tnx}n does tend to x̃, contrary
to the assumption of the theorem. The contradiction we have reached completes the
proof.

Now it is evident that slight changes (see below) in the proof of Theorem 4.6 yield
a proof of the following theorem.

Theorem 5.5. Let (E, ‖ · ‖E) be a uniformly convex Banach space, and let C be a
bounded, closed and convex subset of E. Assume that C has nonempty interior and
is locally uniformly rotund. Let T : C → C be a mapping which is asymptotically
nonexpansive in the itermediate sense. If T has no fixed point in the interior of C,
then there exists a unique point x̃ on the boundary ∂C of C such that each sequence
of iterates {Tnx}n converges strongly to x̃.
Proof. Without any loss of generality we may assume that 0 ∈ int(C). By Remark 4.1,
the mapping T has exactly one fixed point x̃ which, in addition, lies on the boundary
∂C of C. We claim that each orbit {Tnx}n converges strongly to x̃. Suppose to the
contrary that there exists a point y ∈ C such that {Tny}t≥0 does not converge in
norm to x̃. Then by Lemma 5.4, we have r := infn ‖Tny − x̃‖E > 0. Hence we get

Tny ∈ Cr = C ∩ {x ∈ E : ‖x− x̃‖E ≥ r}

for all n ∈ N. Now let x∗ ∈ E∗, ‖x∗‖E∗ = 1, and 0 < k ∈ R be such that the
hyperplane Vk,x̃ = {x ∈ E : x∗(x) = k} supports C at x̃. By Lemma 2.4, there is a
number 0 < k1 < k such that

Cr ⊂ {x ∈ X : x∗(x) ≤ k1}.

This implies that

conv Cr ⊂ {x ∈ E : x∗(x) ≤ k1}.

Now consider a weakly convergent subsequence
{

1
nj

∑n−1
i=0 T

mnj
+i+1y

}
j
, where

mnj
→ ∞. Note that by Theorem 5.3, this subsequence tends to the fixed point

of T , that is, to x̃. But this is impossible because then we have

x∗(x̃) ≤ k1 < k = x∗(x̃).

The contradiction we have reached completes the proof of the theorem.

Acknowledgments. The fourth author was partially supported by the Israel Science
Foundation (Grants No. 389/12 and 820/17), the Fund for the Promotion of Research
at the Technion and by the Technion General Research Fund.



MEANS AND CONVERGENCE OF SEMIGROUP ORBITS 505

References
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