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1. INTRODUCTION AND PRELIMINARIES

The method of ”successive approximations” has been perfectly abstracted by Ba-
nach to express his significant fixed point theorem: Every contraction f on a complete
metric space (X, d) possesses a unique fixed point. Edelstein [8] refined the contraction
definition and proposed the notion of ” globally contractive” and ”locally contractive”.
In particular, we say that a self-mapping f, on a metric space (X, d), is called globally
contractive if

d(f(p),f(q) <Ad(p.q), (1.1)

for all p,q € X, where 0 < A < 1. In addition, f is locally contractive if, for every
x € X, there exist € > 0 and 0 < A < 1, which may depend on z, such that

p,q € S(x,e) ={y € X|d(x,y) < e} (1.2)

implies (1.1). Furthermore, f is (¢, \) — uniformly contractive if, it is locally contrac-
tive and both, € and A, are not depending on z.
The following notion is crucial for our own purposes:
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Definition 1.1. ([8]) A metric space X is called e-chainable if ¢ > 0 and for every
a,b € X, there exists an e—chain, i.e., a finite set of points a = zg,x1,....,2, = b
(n may depend on both @ and b) such that d (x;_1,2;) <e,(i =1,2,...,n).

In what follow we recall the main result of Edelstein [8].

Theorem 1.1. ([8]) Let f be a self-mapping on a complete e-chainable metric space.
If f is an (e, A) — wuniformly locally contractive mapping, then, it possesses a unique
fized point.

One of the basic goal of this paper is to obtain a characterization of Edelstein’s
result in the context of b—metric spaces.

We, first, recollect the definition of b—metric that was considered by several au-
thors, including Bakhtin [2] and Czerwik [7]. See also [17].

Definition 1.2. Let X be a nonempty set and let s > 1 be a given real number.
A functional d : X x X — [0, 00) is said to be a b—metric with constant s, if
(1) d is symmetric, that is, d(z,y) = d(y,z) for all z,y € X;
(2) d is self-distance, that is, d(x,y) = 0 if and only if x = y;
(3) d provides s-weighted triangle inequality, that is
d(z,z) < sld(x,y) + d(y, 2)], for all z,y,z € X.
In this case the triple (X,d, s) is called a b—metric space with constant s.

It is evident that the notions of b—metric and standard metric coincide in case
of s = 1. For more details on b—metric spaces see e.g. [1, 3, 4, 5, 10, 11, 12] and
corresponding references therein.

Example 1.1. Let X = [0,00) and d : X x X — [0, 00) such that
d(x,y) = ‘x_y|p, p> 1.
It is easy to see that d is a b—metric with s = 2P, but is not a metric.

Definition 1.3. A mapping ¢ : [0,00) — [0, 00) is called a comparison function if it
is increasing and ™ (t) — 0, as n — oo, for any ¢ € [0, 00).
Lemma 1.1. ([4]) If ¢ : [0,00) — [0,00) is a comparison function, then:

(1) each iterate o of v, k > 1, is also a comparison function;

(2) ¢ is continuous at 0;
(3) ¢(t) < t, for any t > 0.

Definition 1.4. ([4]) A function ¢ : [0,00) — [0, 00) is said to be a c—comparison
function if
(1) ¢ is increasing;

(2) there exists kg € N, a € (0,1) and a convergent series of nonnegative terms
(o]

3" vy, such that @*+1(¢) < ap®(t) + v, for k > ko and any ¢ € [0, 00).
k=1
For related results see [16].
In order to give some fixed point results to the class of b—metric spaces, the notion
of c—comparison function was extended to b—comparison function by V. Berinde [5].
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Definition 1.5. ([5]) Let s > 1 be a real number. A mapping ¢ : [0,00) — [0,00) is
called a b—comparison function if the following conditions are fulfilled:
(1) ¢ is monotone increasing;

(2) there exist kg € N, a € (0,1) and a convergent series of nonnegative terms
&)

vy, such that sFT1pF () < askk(t) + vy, for k > ko and any t € [0, o0).
k=1

The following lemma is very important in the proof of our results.

Lemma 1.2. ([5]) If ¢ : [0,00) — [0,00) is a b—comparison function, then we have
the following conclusions:

(&)
(1) the series Y. s¥pF(t) converges for any t € [0,00);

k=0
(2) the function Sy : [0,00) — [0,00) defined by Sy(t) = § skF(t), t €]0,00),
k=0

is increasing and continuous at 0.

Remark 1.1. Due to the Lemma 1.2., any b—comparison function is a comparison
function.

2. e—UNIFORMLY LOCAL « — @—CONTRACTIVE MAPPINGS

In this section, we will consider the a—admissible mapping on ec—chainable
b—metric spaces.

Definition 2.1. ([18]) Let X be a nonempty set, f : X — X be an operator and
a: X x X —[0,00). We say that f is a—admissible if

r,y € X,a(z,y) > 1=a(f(z),f(y)>1

Definition 2.2. Let (X,d) be a b—metric space with constant s > 1, ¢ : [0,00) —
[0,00) be a b—comparison function and a : X x X — [0,00) be an operator. A
mapping f : X — X is said to be locally o« — p—contractive if for every z € X, there
exists € > 0, which may depend on z, such that

p.q € S(xe)={y € X[d(z,y) <e} (2.1)
implies that

a(p,q)d(f (p), f(q) <¢(d(p,q)), forevery p,q € X.

Definition 2.3. In the above context, a mapping f : X — X is said to be
e—uniformly local o — p—contractive mapping if it is locally o — p—contractive map-
ping and ¢ do not depend on .

Remark 2.1. If f : X — X satisfies the Banach contraction principle, then f is a
locally a— p—contractive mapping, where « (z,y) = 1, for all z,y € X and ¢ (t) = kt,
for all ¢ > 0 and some k € [0,1).

Theorem 2.1. Let (X,d) be a complete e—chainable b—metric space with constant
s>1,¢:[0,00) = [0,00) be a b—comparison function and oo : X x X — [0,00).
Let f : X — X be an a—admissible mapping which has closed graph with respect to
d. Suppose that
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(i) there exists an element xg € X such that there exists an e—chain x1, - ,Tp_1
from zg to x, = f(xo) with a(x;, x41) > 1, fori e {0,...,n—1};

(i) f is e—uniformly local o — p— contractive mapping.
Then f has at least one fixed point.
Proof. Due to the statement (i) of the theorem, there exists an element zy € X for
which there exists an e—chain x1, -+, x,_1 from xg to x, = f(xg) with a(z;, x;41) >
1fori € {0,...,n—1}. Since f is a—admissible, we have that a(f (z;), f (zi41)) > 1
fori € {0,...,n—1}.

Regarding that the space is e—chainable, we observe that

d(zi—1,2;) <e forallie{1,2,--- n}.
Taking into account that ¢ is non-decreasing, we find that
o(d(zi—1,2:)) < p(e), foralli e {1,2,--- ,n}.
On the other hand, since f is a—admissible, we can easily derive that
a(f™(xs), f(xix1)) > 1, for all m € N, and for all 7 € {0,1,--- ,;n — 1}.

Furthermore, keeping in mind that f is a e—uniformly local o — ¢ —contractive map-
ping, for each i € {1,2,--- ,n}, we have

d(f (@i-1), f(z:)) a(zi—1,zi)d (f (zi-1), f (2:))

< i—1
< p(d(mim1,x) <¢@(e), forallie {0,1,--- ,n—1}.

Tteratively, we obtain

(f (@ica), f(xa))d ((F2(@io1)) 5 £2 (20)

d(f? (zi1), [ (x) <
<@ (d(f (wim1), f (7)) < 9*(e).

o
2
Consequently, we derive that

d(f™ (xi—1), ™ (x;)) < @™ (), for each m € N.

On account of the axiom of s—weighted triangle inequality, we have

d(f™ (xo), f"*" (0)) d(f™ (zo), [ (xn))
sd (f™ (zo), f™ (x1)) + o + 8" d ([ (wn—1), [ (¥n))

(s+ 82+ .. +5") "™ () < vs9™ (e),

VANVAN

where v, = (s + s + ... + 5").
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We shall prove that (f*(z0)),
positive integers. Then, we have:

d(f7 (zo), f*(x0)) < sd(f7 (xo), f7T (o)) + ..+ 8" Td (f* (o), f* (20))

is a Cauchy sequence. Let j and k, with j < k,

< (57597 (€) + 8290t (€) + oo + 55 TP L (€))
< ( 7 (e >+ $7P T (e) o+ 85T (e))
h—
- — (Sk—1 = 5j-1)
<
i=0
k . .
where S, = Y s"¢* (¢) . Hence, we have
i=0
d (f7 (o), f* (x0)) _%JIZS ) =0, as j — oc.

Finally, we conclude that ( I (xo))i oy IS a Cauchy sequence and by the completeness
of the space we have that there exists * (zg) € X such that z* (zo) = lim f?(z0).
71— 00

Since f has a closed graph, we have that z* (z¢) is a fixed point for f. O

Remark 2.2. If we suppose, in the above theorem, that for every a*, y* € Fiz (f)
we have that o (z*,y*) > 1, then z* = y*.

Proof. Suppose that there exists y* € X with z* # y*, such that f(y*) = y* and
a(z*,y*) > 1. Let us consider z* = zg, x1, ..., £ = y* an e-chain. We have
0 < d@%y") =d(f ("), f(y") =d(f™ @), [ "))
=d(f™ (x0), ™ (zr)) <759 (e) = 0, as m — 0.
Thus we have a contradiction and hence z* = y*. O
Example 2.1. Let X = [0,00] and d(z,y) = (z —y)°. Then (X,d) is a b—metric

space with the constant s = 4.
Let f: X — X be given by

7 1

24> xe[0,5) ¢

N X 5, t€0,1]
fl@)=9 357, z€[z1] . e)=1 ] o

5 1 2 >

1 T >

1, z€]0,1]

and a: X x X = [0,00),a(z,y) = { 0. otherwise.
We have that:

e It is obvious that f : X — X is an a—admissible mapping which has closed
graph with respect to d.
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e There exists an element g € X such that there exists an e—chain

X1, v ,Tp—1 from zp to x, = f(xg) with a(x;,zi41) > 1, for i €
{0,...,n—1}.

Case 1. x € [0, %)

Let g = %,zl = =Xy = %,xn = f(xo) = % and let € = %

It is obvious that d (2;,z;11) < 3 and a(z;, xi41) > 1, for i € {0,...,n —1}.
Case 2. x € [%, 1] .

Let zo=1,21 = ... =Tp_1 = %,xn = f(xg) = % and let € = %

It is obvious that d (2;,z;11) < 3 and a(z;,xi41) > 1, for i € {0,...,n —1}.
Case 3. x > 1.

Let zg = %,xl ==Xy = %,xn = f(xo) = % and let € = %

It is obvious that d (z;, z;41) < % and a(x;,x;41) > 1, fori € {0,...,n —1}.
e f is e—uniformly local a — p—contractive mapping.
Since « (z,y) =1, for all z € [0, 1], we have to prove that

d(f(z),f(y) <p(d(z,y)), forall z,y € [0,1].
Case 1. x € [O, %)
1
A (0) 7 (1) =0 < p(d (o) forall € 0.5).
Case 2. x € [%,1].
d(x, d(x,
AT 1) = s < T
Case 3. = > 1.
d(f(x),f(y)=0<p(d(z,y)), forall z,y > 1.

3. (¢,\) —UNIFORMLY LOCALLY CONTRACTIVE MAPPINGS

1
<@(d(z,y)), foralz,ye {2,1}

Definition 3.1. Let (X, d) be a b—metric space with constant s > 1 and f: X — X.
We say that f is globally contractive with constant A, if 0 < A\ < % and the condition

d(f (), f(q)) <Ad(p,q), (3.1)
holds for every p,q € X.
Definition 3.2. Let (X, d) be a b—metric space with constant s > 1 and f: X — X.

We say that f is locally contractive if for every z € X, there exist e > 0and 0 < \ < %,
which may depend on x, such that

p,q €S (x,e) ={y € X[d(z,y) <e} (3-2)
implies (3.1).
Definition 3.3. Let (X, d) be a b—metric space with constant s > 1 and f: X — X.

We say that f is (g, A) — uniformly locally contractive if it is locally contractive and
both € and X are not depending on =z.

Remark 3.1. If f : X — X is an (g, \) — uniformly locally contractive mapping,
then f is continuous.
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Theorem 3.1. Let X be a complete e-chainable b—metric space with constant s > 1
and f: X — X be a (g, \) —uniformly locally contractive mapping.

Then, the following conclusions hold:

(i) f is a Picard operator, i.e., there exists a unique fized point x* € X of f and,
for every x € X the sequence (f7(x))jen converges to x*, as j — oo;

(ii) for every x € X we have the following estimation

s3eN
(s=1)(1—s))
Proof. (i) According to Remark 3.1, f is continuous so, it is enough to consider in
Theorem 2.1. the particular expressions a(z,y) = 1, for all z,y € X and ¢ (t) = A,

t € [0,00). Thus f is a Picard operator.
(ii) Let z € X be arbitrary chosen and let us consider the e—chain

d(f’ (z),2") < , for each j € N.

T=T0 X1y, T = f ().
d(z, f(2)) <d(x0,2n) < sd (20, 21) + 5°d (21, 22) + ... +5"d(Tp_1,2,).

Now, for every pair of consecutive points in the e—chain, we have d (z;_1,z;) < € and
hence

d(z, f(z) < (s+8>+..+")e= e
Since f is (¢, \)-uniformly locally contractive, we have
d (f (.1'1;1) R f (l‘l)) < X\ (1‘1;17 .Z'z) < Je.
By induction, we obtain
d(f™ (zi1), [ (2;)) < A™e, for every m € N*.
We have
d(f™ (@), " (@) = d(f™ (o), [ (20)) < psA™e.
Let 5 and k with 5 < k be positive integers.
d (7 (z), ¥ (2)) < 7 Ne (1 A+t (s/\)k_j_1> .

If we take k = j + p, with p € N*, then, for every j € N and p € N*, we get that

(P @) P @) <nias <

Then
d(f (x),2") < s(d(f (@), (@) +d(f77 (2),27))
3el .
< om0
Letting p — oo we get
d(fi ) < s3I ; i e N -
(f (l‘),x)_m, or each) € N.

Concerning the data dependence problem for the fixed point problem with
(e, \) —uniformly locally contractive mappings, we can make the following remark.
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Remark 3.2. Consider g : X — X a mapping having at least one fixed point y* and
there exists n > 0 such that d (f (z),g(x)) <, for every € X. Then, by Theorem
3.1., we have

d(f (y*),z*) < 836—)\], for each j € N.
(s —1)(1—s))
Thus
stel
d(y*,z*) <s(d(g ("), f (")) +d(f(y"),2")) < sn+ RS e
We notice that, when 1\, 0 (i.e. g tends to f), then
4
) S Ty

which shows that we cannot get (at least by this method) data dependence for the
unique fixed point of an (e, A) —uniformly locally contractive mapping on a complete
e—chainable b—metric space.

4. e—UNIFORMLY ORDERED LOCALLY (p—CONTRACTIVE MAPPINGS
In this section, we will consider the case of ordered e-chainable b-metric spaces.

Definition 4.1. Let (X, d) be a b—metric space with constant s > 1 and ”=<” be a
partial order on X. A mapping f : X — X is said to be ordered locally p—contractive
if, for every z € X, there exists € > 0, which may depend on z, such that

p,q € S(z,e) ={y € X|d(z,y) < ¢} (4.1)
implies that
d(f(p),f(q)<¢(d(p,q)), for every p,q € X with p < qor ¢ <p.

Definition 4.2. In the above context, a mapping f : X — X is said to be
e—uniformly ordered locally ¢—contractive if it is ordered locally ¢-contractive and
€ does not depend on z.

In the case of a e—chainable b—metric space endowed with a partially order ” <",
we can prove the following Ran-Reurings type theorem.

Theorem 4.1. Let (X,d) be a complete e—chainable b—metric space with constant
s > 1. Suppose that X is endowed with a partial order "<X”. Let f : X — X be a
mapping which has closed graph with respect to d and it is increasing with respect to
7<7”. Suppose that there exist a b-comparison function ¢ : [0.00) — [0.00) and an
element xg € X such that:

(i) xo < f(xg) or flxg) = xo and there exists an e—chain x1,- - ,xy_1 from xg to
Zn = f(x0) such that every two consecutive elements of the chain are comparable with
respect to "=<”;

(ii) f is e—uniformly ordered locally p— contractive.

Then f has at least one fixed point.
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Proof. Define the mapping o : X x X — [0,00) by

o) = {
Clearly, f is a e—uniformly local e — ¢p—contractive mapping, that is,

a(p,q)d(f (p), f(q) <¢(d(p,q)), forevery p,q € X.

From condition (i), we have a(xzq, f (x0)) > 1. Moreover, for all z,y € X, from the
monotone property of f, we have

lifz<yory=<ux,
0 otherwise.

az,y) > 1=z yory3z= fax =X fyor fy <X fr= afzx, fy) > 1.
Thus f is a—admissible and we can apply Theorem 2.1. O

Remark 4.1. If, in the above theorem, additionally, we assume that for every ele-
ments x,y € X there exists an e—chain such that every two consecutive elements
are comparable, then the fixed point is unique. Indeed, suppose that there exists
y* € X with o* # y*, such that f (y*) = y*. Let us consider z* = xg, x1,...,2x = y*
be an e—chain, such that x;_; and z; are comparable, for ¢« € {1,2,--- ,k}.. Then,
d(z;—1,2;) < € and

d(fm(x1—1)7fm(xz)) < (pm(g)7 for every (&S {1723 T 7k} and m € N.
Hence, we have

0<d(@®y")=d(f ("), f(y") =d(f™ ), f" "))

=d(f™ (xo), [™ (z)) < (s + 5 +...—|—sk) ©" (e) = 0, as m — oo.

*

Thus, we have a contradiction. Hence z* = y*.

5. APPLICATIONS TO THE COUPLED FIXED POINT PROBLEM

In this section, we’ll give an application of Theorem 4.1. for coupled fixed points.
Our result extends some results given in [14, 13, 15]. In this respect we need several
auxiliary notions.

Definition 5.1. ([9] ) Let (X, <) be a partially ordered set and let T: X x X — X
be a mapping. We say that 7" has the mixed monotone property if 7' (-, y) is monotone
increasing for any y € X and T (z,-) is monotone decreasing for any x € X.

Definition 5.2. If (X, d) is a b—metric space and T : X x X — X is an operator,
then by definition, a coupled fixed point for T is a pair (z*,y*) € X x X satisfying

z* =T (z",y")
* * * 5.1
{ y =T (y" z") (5:1)

Let us define

d((z,y), (u,v)) = max{d (z,u),d(y,v)}. (5.2)
Remark 5.1. It is easy to see that if (X, d) is a b—metric space with constant s > 1,
then d is a b—metric on X x X, with the same constant s > 1 and (X x X, c?) is a

b—metric space.
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Lemma 5.1. If (X,d) is an e-chainable b—metric space, the (X X X,&) is an e-
chainable b—metric space, too.

Proof. From Remark 5.1 we have that (X x X, @ is a b—metric space.
Let (z,y), (u,v) € X x X. We must show that there exists an e—chain

(;z:,y) - (xoayO) ) (xlayl) IR (xnvyn) - (u,v)

such that d ((z;—1,yi-1), (zs,5:)) <&, for all i € {1,...,n}.

For x and u, since the space X is e-chainable, there exist x = xq, 1, ..., xn = u,
such that d (z;_1,2;) <e, foralli € {1,...,n}.

For y and v, since the space X is e-chainable, there exist y = yo,v1,...,Yn = v,
such that d (y;—1,y;) <e¢, for all i € {1,...,n}.

Suppose n > m. We have the following two cases:

Case 1. For i € {1,...,m}, we have

d((@i—1,Yi-1) + (T3, yi)) = max{d (v;—1,2:) ,d (yi—1,¥:)} <&
Case 2. For j € {m+1,...,n— 1} and ¥m+1 = Ym+42 = ... = Yn = v, we consider

d((z5,95) s (41, Y5+1)) = max{d (zj,zj41) ,d (y;,yj+1)} < max{e, 0} = e.
It follows that (X x X, &) is an e-chainable b—metric space. O

Definition 5.3. Let (X,d) be a b—metric space, ¢ : [0,00) — [0,00) be a a
b—comparison function and 7" : X x X — X be a given operator. We say that
T is globally @p—contractive, if f

d(T (z,y),T (u,0)) < ¢ (Ez“((x,y) : (um))) , for all (z,y),(u,v) € X x X.  (5.3)

Definition 5.4. Let (X,d) be a b—metric space, ¢ : [0,00) — [0,00) be a
b—comparison function and ” <" be a partial order on X. A mapping T : X x X — X
is said to be order locally p—contractive, if for every (z,y) € X x X, there exists
€ > 0, which may depend on x and y, such that

(5,6), (w.v) € S ((,9),2) = { (1) € X x X|d((z.9), (p.0) <2} (5.4)
implies that
d(T (s,t),T (u,v)) < ¢ (glv((s,t) ; (u,v))) , for every s < w and v < ¢. (5.5)

Definition 5.5. In the above context, a mapping T : X x X — X is said to be
e—uniformly ordered locally p—contractive if it is ordered locally pcontractive and e
does not depend on z and y.

Theorem 5.1. Let (X,d) be a complete e—chainable b—metric space with constant
s > 1. suppose that X is endowed with a partial order "=<”. Let T : X x X — X
be an operator with closed graph which has the mired monotone property on X x X.
Assume that the following conditions are satisfied:

(i) there exists (xo,y0) € X x X with xg < T (x0,y0) and T (yo,x0) =< yo such that
there exists an e—chain xg,z1,...,x, = T (20,Y0), such that every two consecutive
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elements of the chain are comparable with respect to <", and there exists an e—chain
Y0, Y1, - Yn = T (Yo, x0), such that every two consecutive elements of the chain are
comparable with respect to "<X7;

(i) T is e—uniformly ordered locally p— contractive.

Then, there exists (z* (zo,y0),y* (Z0,Y0)) € X X X a solution of the coupled fized
point problem (5.1) such that the sequences (Tn), ey > (Un)pen 1 X defined by

{ Tpt+1 = T(Zn,yn)
Yn+1 = T (yn7 $n)

have the property that x, — =* (zo,%0) ,Yn — ¥* (X0, Y0), as n — 0.
Moreover, for every pair (x,y) € X x X with x = xo,y0 =< y, we have that
™ (%y) — " (.’Eo,yo) and T" (y,x) — y* (x07y0); as n — o0.

, forn eN.

Proof. We denote Z = X x X and consider the functional d : Z x Z — [0, 00), defined
by
d((z,y), (u,v)) = max{d (z,u),d(y,v)}.
Let Fr: Z — Z be an operator given by
FT ((E,y) = (T (xay) ,T(yvx))a for all ((E,y) € Z.

We shall prove that F' verifies the conditions of Theorem 5.1.

By (i) and Lemma 5.1. we have that (x,%0) = (T (zo,¥%0),T (yo, o)) and there
exists an e—chain (2o,%0), (®1,91) s s (@ns¥n) = (T (20,%0),T (Yo, 20)) such that
ZTi—1 2 i,y =S yi—1 (or reversely).

We shall prove that Fr is e—uniformly ordered locally p—contractive

Let (z,y), (u,v) € Z with < u,v <y (or reversely).

J(FT(m7y)7FT(u7U)) = J((T(m,y),T(y,x)),(T(um), (Uvu)))
— ax {d(T (2,9), T (1,0)),d (T (3,2), T (v, )}

Since T is e—uniformly ordered locally p—contractive, we have

d(Pr (2,y), Pr (u,v)) < max {¢ (max {d (z,u) ,d (y,0)}) , (max {d (y,v) ,d (z,u)})}
— p (max {d (z,u),d (y,0)}) = @ (d(2,) , (w,v))

By Theorem 4.1 we obtain that there exists (x* (x, y0) , ¥* (x0,%0)) € Z such that

Fr (2" (z0,90) . y" (20, %0)) = (2" (0, %0) , y¥" (z0,%0)) »
and
Fr (z0,y0) = (2% (z0,%0) , ¥* (T0,%0)) , as n — o0.
We have
{ z* (w0, y0) =T (2" (0, %0) » ¥" (0, Y0))
y* (z0,90) = T (y* (z0,y0) , " (w0, Y0))
and because
Fr (zo,y0) = (T" (w0, 90) , T" (yo, Z0))

)
we obtain that T™ (zg, y0) — x* (20, y0) and T™ (yo, o) — ¥* (zo,¥0), asn — oco. O
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