THE COMPLETION OF GENERALIZED B-METRIC SPACES AND FIXED POINTS

ŞTEFAN COBZAŞ* AND STEFAN CZERWIK**
*Babeş-Bolyai University, Department of Mathematics, Cluj-Napoca, Romania
E-mail: scobzas@math.ubbcluj.ro
**Silesian University of Technology, Institute of Mathematics, Gliwice, Poland E-mail: steczerw@gmail.com

Abstract

We introduce the notion of generalized b-metric, as a b-metric which can take infinite values, and prove the existence and uniqueness of the completion of some particular b-metric spaces (called generalized strong b-metric spaces). Some fixed point results in b-metric spaces and their counterparts in generalized b-metric spaces are proved. Key Words and Phrases: Metric space, metrizability, b-metric space, generalized b-metric space, completion of a generalized b-metric space, fixed point. 2010 Mathematics Subject Classification: 54E25, 54D35, 54E35, 54E50, 47H10.

1. Introduction

There are a lot of extensions of the notions of metric and metric space - see, for instance, the books [20], [34], [46], or the survey papers [12], [32]. In this paper we concentrate on b-metric and generalized b-metric spaces, their topological properties, the existence of the completion and some fixed point results.

A b-metric on a nonempty set X is a function $d: X \times X \rightarrow[0, \infty)$ satisfying the conditions
(i) $d(x, y)=0 \Longleftrightarrow x=y$;
(ii) $d(x, y)=d(y, x)$;
(iii) $d(x, y) \leq s[d(x, z)+d(z, y)]$,
for all $x, y, z \in X$, and for some fixed number $s \geq 1$. The pair (X, d) is called a b-metric space. Obviously, for $s=1$ one obtains a metric on X.

Along with the inequality (iii), called the s-relaxed triangle inequality, one considers also the s-relaxed polygonal inequality

$$
\begin{equation*}
d\left(x_{0}, x_{n}\right) \leq s\left[d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x_{2}\right)+\cdots+d\left(x_{n-1}, x_{n}\right)\right] \tag{iv}
\end{equation*}
$$

for all $x_{0}, x_{1}, \ldots, x_{n} \in X$ and all $n \in \mathbb{N}$.

The relaxed triangle inequality and the corresponding spaces were rediscovered several times under various names - quasi-metric, near-metric (in [20]), metric type, etc. We mention some of these authors.

- (1970) Coifman and de Guzman [13] in connection with some problems in harmonic analysis (a b-metric is called by them "distance" function);
- (1979) the results of Coifman and de Guzman were completed by Macias and Segovia [38, 39];
- (1989) Bakhtin [6] called them "quasi-metric spaces" and proved a contraction principle for such spaces;
- (1993) Czerwik introduced them under the name "b-metric space", first for $s=2$ in [14], and then for an arbitrary s in [15], with applications to fixed points;
- $(1998,2003)$ Fagin et al. $[25,26]$ considered distances satisfying the s-relaxed triangle and polygonal inequalities with applications to some problems in theoretical computer science;
- (2010) Khamsi and Hussain, [31], [33] introduced them under the name "metric type spaces" and remarked that if D is a cone metric on a set X with values in a Banach space ordered by a normal cone with normality constant K, then $d(x, y)=\|D(x, y)\|, x, y \in X$, is a b-metric on X satisfying the K-relaxed polygonal inequality.
Some topological properties of b-metric spaces (e.g. compactness) were studied in [33]. Xia [48] studied the properties of the space $C(T, X)$ of continuous functions from a compact metric space T to a b-metric space X, and geodesics and intrinsic metrics in b-metric spaces. The results were applied to show that the optimal transport paths between atomic probability measures are geodesics in the intrinsic metric. An, Tuyen and Dung [3] extended to b-metric spaces Stone's paracompactness theorem.

One can consider also an "ultrametric" version of (iii):

$$
\begin{equation*}
d(x, y) \leq \lambda \max \{d(x, z), d(y, z)\} \tag{iii'}
\end{equation*}
$$

for all $x, y, z \in X$. It is obvious that

$$
\begin{aligned}
\left(\text { iii' }^{\prime}\right) & \Longrightarrow(\text { iii }) \quad \text { with } s=\lambda \\
(\text { iii }) & (\text { iii }) \quad \text { with } \lambda=2 s
\end{aligned}
$$

The condition

$$
\begin{equation*}
\max \{d(x, z), d(y, z)\} \leq \varepsilon \Longrightarrow d(x, y) \leq 2 \varepsilon \tag{iii'}
\end{equation*}
$$

for all $\varepsilon>0$ and $x, y, z \in X$, is equivalent to (iii') with $\lambda=2$.
A typical example of b-normed space can be obtained from a metric space.
Example 1.1. If (X, d) is a metric space and $\beta>1$, then $d^{\beta}(x, y)$ is a b-metric, satisfying the inequality

$$
d^{\beta}(x, y) \leq 2^{\beta}\left[d^{\beta}(x, y)+d^{\beta}(x, y)\right]
$$

It is obvious that the relaxed polygonal inequality implies the relaxed triangle inequality. The following example shows that the converse is not true - there exist b-metrics that do not satisfy the relaxed polygonal inequality.

Example 1.2. ([34], Theorem 12.10) Let $X=[0,1]$ and $d(x, y)=(x-y)^{2}, x, y \in$ $[0,1]$. Then d is a 2 -relaxed metric on X which is not polygonally s-relaxed for any $s \geq 1$.

Indeed, it is easy to check that d satisfies the 2-relaxed triangle inequality. Suppose that d satisfies the s-relaxed polygonal inequality for some $s \geq 1$. Taking $x_{i}=\frac{i}{n}, 1 \leq$ $i \leq n-1$, we obtain

$$
\frac{1}{s}=\frac{1}{s} \cdot d(0,1) \leq d\left(0, x_{1}\right)+d\left(x_{1}, x_{2}\right)+\cdots+d\left(x_{n-1}, 1\right)=n \cdot\left(\frac{1}{n}\right)^{2}=\frac{1}{n}
$$

for all $n \in \mathbb{N}$, which is impossible.
We use standard notation:

$$
\mathbb{N}=\{1,2, \ldots\}, \mathbb{N}_{0}=\{0,1,2, \ldots\}, \mathbb{R}_{+}=[0, \infty)
$$

2. Topological properties of b-METRIC Spaces and metrizability

Let (X, d) be a b-metric space. One introduces a topology on a b-metric space (X, d) in the usual way. The "open" ball $B(x, r)$ of center $x \in X$ and radius $r>0$ is given by

$$
B(x, r)=\{y \in X: d(x, y)<r\}
$$

A subset Y of X is called open if for every $x \in Y$ there exists a number $r_{x}>0$ such that $B\left(x, r_{x}\right) \subseteq Y$. Denoting by τ_{d} the family of all open subsets of X it follows that τ_{d} satisfies the axioms of a topology. This topology is derived from a uniformity \mathcal{U}_{d} on X having as basis the sets

$$
U_{\varepsilon}=\{(x, y) \in X \times X: d(x, y)<\varepsilon\}, \quad \varepsilon>0
$$

The uniformity \mathcal{U}_{d} has a countable basis $\left\{U_{1 / n}: n \in \mathbb{N}\right\}$ so that, by Frink's metrization theorem $([27])$, the uniformity \mathcal{U}_{d} is derived from a metric ρ, hence the topology τ_{d} as well. This was remarked in the paper [38]. In [25] it is shown that the topology τ_{d} satisfies the hypotheses of the Nagata-Smirnov metrizability theorem.

Concerning the metrizability of uniform and topological spaces, see the treatise [24].

There exist also direct proofs of the metrizability of the topology of a b-metric space.

Let (X, d) be a b-metric space. Put

$$
\begin{equation*}
\rho(x, y)=\inf \left\{\sum_{k=1}^{n} d\left(x_{i-1}, x_{i}\right)\right\} \tag{2.1}
\end{equation*}
$$

where the infimum is taken over all $n \in \mathbb{N}$ and all chains $x=x_{0}, x_{1}, \ldots, x_{n}=y$ of elements in X connecting x and y.

As remarked Frink [27], if a b-metric d satisfies (iii') for $\lambda=2$, then formula (2.1) defines a metric equivalent to d. We present the result in the form given by Schroeder [47].
Theorem 2.1 (A.H. Frink [27] and V. Schroeder [47]). If $d: X \times X \rightarrow[0, \infty)$ satisfies the conditions (i), (ii) from (1.1) and (iii') for some $1 \leq \lambda \leq 2$, then the function ρ defined by (2.1) is a metric on X satisfying the inequalities $\frac{1}{2 \lambda} d \leq \rho \leq d$.
V. Schroeder [47] also showed that for every $\varepsilon>0$ there exists a b-metric d satisfying (1.1).(iii) with $s=1+\varepsilon$ such that the mapping ρ defined by (2.1) is not a metric. Other example showing the limits of Frink's metrization method was given by An and Dung [2].

General results of metrizability were obtained in [1] and [42] by a slight modification of Frink's technique.

Let (X, d) be a b-metric space. For $0<p \leq 1$ define

$$
\begin{equation*}
\rho(x, y)=\inf \left\{\sum_{k=1}^{n} d^{p}\left(x_{i-1}, x_{i}\right)\right\} \tag{2.2}
\end{equation*}
$$

where the infimum is taken over all $n \in \mathbb{N}$ and all chains $x=x_{0}, x_{1}, \ldots, x_{n}=y$ of elements in X.

The function ρ_{p} defined by (2.2) is a pseudometric satisfying the inequality

$$
\begin{equation*}
d^{p}(x, y) \geq \rho_{p}(x, y) \tag{2.3}
\end{equation*}
$$

for all $x, y, z \in X$.
Theorem 2.2. ([42]) Let d be a b-metric on a nonempty set X satisfying the s-relaxed triangle inequality (1.1).(iii), for some $s \geq 1$. If the number $p \in(0,1]$ is given by the equation $(2 s)^{p}=2$, then the mapping $\rho_{p}: X \times X \rightarrow[0, \infty)$ defined by (2.2) is a metric on X satisfying the inequalities

$$
\begin{equation*}
\rho_{p}(x, y) \leq d^{p}(x, y) \leq 2 \rho_{p}(x, y) \tag{2.4}
\end{equation*}
$$

for all $x, y \in X$.
The same conclusions hold if d satisfies the conditions (i), (ii) from (1.1) and (iii') for some $\lambda \geq 2$. In this case $0<p \leq 1$ is given by $\lambda^{p}=2$ and the metric ρ_{p} satisfies the inequalities

$$
\begin{equation*}
\rho_{p}(x, y) \leq d^{p}(x, y) \leq 4 \rho_{p}(x, y) \tag{2.5}
\end{equation*}
$$

for all $x, y \in X$.
The inequalities (2.4) have the following consequences.
Corollary 2.3. Under the hypotheses of Theorem 2.2, $\tau_{d}=\tau_{\rho}$, that is the topology of any b-metric space is metrizable, and the convergence of sequences with respect to τ_{d} is characterized in the following way:

$$
x_{n} \xrightarrow{\tau_{d}} x \Longleftrightarrow d\left(x, x_{n}\right) \longrightarrow 0,
$$

for any sequence $\left(x_{n}\right)$ in X and $x \in X$.
Proof. The equality of topologies follows from the inclusions

$$
B_{d}\left(x, r^{1 / p}\right) \subseteq B_{\rho}(x, r) \text { and } B_{\rho}\left(x, 4^{-1} r^{p}\right) \subseteq B_{d}(x, r)
$$

valid for all $x \in X$ and $r>0$.
The statement concerning sequences is a consequence of this equality and of the inequalities (2.4).

Remark 2.4. In [1] the proof is given for a $p>0$ satisfying the inequality $p \geq$ $\left(\log _{2}(3 s)\right)^{-2}$. A proof of Theorem 2.2 is also given in the book by Heinonen [29, Prop. 14.5], with the evaluation $p \geq\left(\log _{2} \lambda\right)^{-2}$, where λ is the constant from (iii').

We consider now two continuity notions for b-metrics. Let (X, d) be a b-metric space. The b-metric d is called:

- continuous if

$$
\begin{equation*}
d\left(x_{n}, x\right) \rightarrow 0 \text { and } d\left(y_{n}, y\right) \rightarrow 0 \Longrightarrow d\left(x_{n}, y_{n}\right) \rightarrow d(x, y) \tag{2.6}
\end{equation*}
$$

- separately continuous if the function $d(x, \cdot)$ is continuous on X for every $x \in$ X, i.e.,

$$
\begin{equation*}
d\left(y_{n}, y\right) \rightarrow 0 \Longrightarrow d\left(x, y_{n}\right) \rightarrow d(x, y) \tag{2.7}
\end{equation*}
$$

for all sequences $\left(x_{n}\right),\left(y_{n}\right)$ in X and all $x, y \in X$.
Remark 2.5. Let (X, d) be a b-metric space and $x \in X$. Then
$B(x, r)$ is τ_{d}-open for every $r>0 \Longleftrightarrow d(x, \cdot)$ is upper semicontinuous on X.
Consequently, the balls $B(x, r)$ are τ_{d}-open, provided the b-metric is separately continuous on X.

The equivalence follows from the equality

$$
B(x, r)=d(x, \cdot)^{-1}((-\infty, r))
$$

The topology τ_{d} generated by a b-metric d has some peculiarities - a ball $B(x, r)$ need not be τ_{d}-open and the b-metric d could not be continuous on $X \times X$. Examples can be found in [3] and [42].

In connection to the metrizability of b-metric spaces, we mention the following notions of equivalence for b-metrics.

Let d_{1}, d_{2} be two b-metrics on the same set X. Then d_{1}, d_{2} are called:

- topologically equivalent if $\tau_{d_{1}}=\tau_{d_{2}}$;
- uniformly equivalent if the identity mapping I_{X} on X is uniformly continuous both from $\left(X, d_{1}\right)$ to $\left(X, d_{2}\right)$ as well as from $\left(X, d_{2}\right)$ to $\left(X, d_{1}\right)$, i.e.

$$
\begin{aligned}
& \forall \varepsilon>0, \exists \delta(\varepsilon)>0 \text { such that } d_{1}(x, y) \leq \delta(\varepsilon) \Rightarrow d_{2}(x, y) \leq \varepsilon \\
& \forall \varepsilon>0, \exists \delta(\varepsilon)>0 \text { such that } d_{2}(x, y) \leq \delta(\varepsilon) \Rightarrow d_{1}(x, y) \leq \varepsilon
\end{aligned}
$$

- Lipschitz equivalent if there exist $c_{1}, c_{2}>0$ such that

$$
c_{1} d_{2}(x, y) \leq d_{1}(x, y) \leq c_{2} d_{2}(x, y)
$$

for all $x, y \in X$
Of course, the above definitions applies to metrics as well, as particular cases of b-metrics.

Remark 2.6. It is obvious that, in general,
Lipschitz equivalence \Rightarrow uniform equivalence \Rightarrow topological equivalence.

So the expression "the topology τ_{d} generated by a b-metric d on a set X is metrizable" means that there exists a metric ρ on X topologically equivalent to d.

The problem of the existence of a metric that is Lipschitz equivalent to a b-metric was solved in [25], where this property was called metric boundedness.

Theorem 2.7. ([25], see also [34], Theorem 12.9) Let (X, d) be a b-metric space. Then d is Lipschitz equivalent to a metric if and only if d satisfies the s-relaxed polygonal inequality (iv) for some $s \geq 1$.

Concerning the openness of balls in b-metric spaces we mention the following result.
Theorem 2.8. ([38]) Let (X, d) be a b-metric space. Then there exist a b-metric d^{\prime} on X, Lipschitz equivalent to d, and the constants $C>0$ and $0<\alpha<1$ such that

$$
\begin{equation*}
\left|d^{\prime}(x, z)-d^{\prime}(y, z)\right| \leq C r^{1-\alpha}\left(d^{\prime}(x, y)\right)^{\alpha} \tag{2.8}
\end{equation*}
$$

whenever $\max \left\{d^{\prime}(x, z), d^{\prime}(y, z)\right\}<r$.
Remark 2.9. The inequality (2.8) can be written in the equivalent form

$$
\begin{equation*}
\left|d^{\prime}(x, z)-d^{\prime}(y, z)\right| \leq C\left(d^{\prime}(x, y)\right)^{\alpha}\left(\max \left\{d^{\prime}(x, z), d^{\prime}(y, z)\right\}\right)^{1-\alpha} \tag{2.9}
\end{equation*}
$$

and it is easy to check that the balls corresponding to a b-metric d^{\prime} satisfying (2.9) are $\tau_{d^{\prime}}$-open.
2.1. Strong b-metric spaces and completion. Let (X, d) be a b-metric space. As we have seen, the topology τ_{d} generated by the b-metric d has some drawbacks in what concerns the continuity property of d and the topological openness of the "open" balls. To remedy these shortcomings Kirk and Shahzad [34, §12.4] introduced a special class of b-metrics. A mapping $d: X \times X \rightarrow[0, \infty)$ is called a strong b-metric if it satisfies the conditions (i) and (ii) from (1.1) and

$$
\begin{equation*}
d(x, y) \leq d(x, z)+s d(y, z) \tag{v}
\end{equation*}
$$

for some $s \geq 1$ and all $x, y, z \in X$. Taking into account the symmetry of d, the inequality (v) is equivalent to

$$
d(x, y) \leq \min \{s d(x, z)+d(y, z), d(x, z)+s d(y, z)\}
$$

for all $x, y, z \in X$. Also (v) implies the s-relaxed triangle inequality.
The topology generated by a strong b-metric has good properties as, for instance, the openness of the balls $B(x, r)$. Indeed, if $y \in B(x, r)$, then

$$
d(y, z) \leq d(x, y+s d(y, z)<\varepsilon
$$

provided $s d(y, z)<\varepsilon-d(x, y)$, that is $B\left(y, r^{\prime}\right) \subseteq B(x, r)$, where $r^{\prime}=(\varepsilon-d(x, y)) / s$.
Also the following inequality

$$
\begin{equation*}
\left|d(x, y)-d\left(x^{\prime}, y^{\prime}\right)\right| \leq s\left[d\left(x, x^{\prime}\right)+d\left(y, y^{\prime}\right)\right] \tag{2.10}
\end{equation*}
$$

holds for all $x, y, x^{\prime}, y^{\prime} \in X$, implying the continuity of the b-metric: if $d\left(x_{n}, x\right) \rightarrow 0$ and $d\left(y_{n}, y\right) \rightarrow 0$, then the relations

$$
\left|d\left(x_{n}, y_{n}\right)-d(x, y)\right| \leq s\left[d\left(x_{n}, x\right)+d\left(y_{n}, y\right)\right] \longrightarrow 0 \text { as } n \rightarrow \infty
$$

show that $d\left(x_{n}, y_{n}\right) \longrightarrow d(x, y)$ as $n \rightarrow \infty$.

It is easy to check that a strong b-metric satisfies the s-relaxed polygonal inequality.
A Cauchy sequence in a b-metric space (X, d) is a sequence $\left(x_{n}\right)$ in X such that $\lim _{m, n \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0$. The inequality

$$
d\left(x_{n}, x_{m}\right) \leq s\left[d\left(x_{n}, x\right)+d\left(x, x_{m}\right)\right], m, n \in \mathbb{N}
$$

shows that every convergent sequence is Cauchy. The b-metric space (X, d) is called complete if every Cauchy sequence converges to some $x \in X$. The completeness is preserved by the uniform equivalence of b-metrics, but not by the topological equivalence.

By a completion of a b-metric space (X, d) one understands a complete b-metric space (Y, ρ) such that there exists an isometric embedding $j: X \rightarrow Y$ with $j(X)$ dense in Y.

By an isometric embedding of a b-metric space (X_{1}, d_{1}) into a b-metric space $\left(X_{2}, d_{2}\right)$ one understands a mapping $f: X_{1} \rightarrow X_{2}$ such that

$$
d_{2}(f(x), f(y))=d_{1}(x, y)
$$

for all $x, y \in X_{1}$. Two b-metric spaces $\left(X_{1}, d_{1}\right),\left(X_{2}, d_{2}\right)$ are called isometric if there exists a surjective isometric embedding $f: X_{1} \rightarrow X_{2}$.

A question raised in [34, p. 128] is:
Does every strong b-metric space admit a completion?
This question was answered in the affirmative in [4].
Theorem 2.10. Let (X, d) be a strong b-metric space.

1. There exists a complete strong b-metric space (\tilde{X}, \tilde{d}) which is a completion of (X, d).
2. The completion is unique up to an isometry, in the sense that if $\left(X_{1}, d_{1}\right)$, $\left(X_{2}, d_{2}\right)$ are two strong b-metric spaces which are completions of (X, d), then $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$ are isometric.
Proof. The proof follows the ideas from the metric case. On the family $\mathcal{C}(X)$ of Cauchy sequences in X one considers the equivalence relation

$$
\left(x_{n}\right) \sim\left(y_{n}\right) \Longleftrightarrow \lim _{n} d\left(x_{n}, y_{n}\right)=0
$$

On the quotient space $\tilde{X}=\mathcal{C}(X) / \sim$ one defines \tilde{d} by $\tilde{d}(\xi, \eta)=\lim _{n} d\left(x_{n}, y_{n}\right)$, where $\left(x_{n}\right) \in \xi$ and $\left(y_{n}\right) \in \eta$. One shows that (\tilde{X}, \tilde{d}) is a complete strong b-metric space containing X isometrically as a dense subset.
Remark 2.11. As it is mentioned in [4], the existence of a completion of an arbitrary b-metric space is still an important open problem.

3. Generalized b-MEtric SPaces

The notion of generalized metric, meaning a mapping $d: X \times X \rightarrow[0, \infty]$ satisfying the axioms of a metric, and generalized metric space (X, d) were introduced by W. A. J. Luxemburg in [35]-[37] in connection with the method of successive approximation and fixed points. These results were completed by A. F. Monna [41] and M. Edelstein [23]. Further results were obtained by J. B. Diaz and B. Margolis [22, 40] and C. F.
K. Jung [30]. G. Dezső [21] considered generalized vector metrics, i.e. metrics with values in $\mathbb{R}_{+}^{m} \cup\left\{(+\infty)^{m}\right\}$, and extended to this setting Perov's fixed point theorem (see [43] - [45]) as well as other fixed point results (Luxemburg, Jung, Diaz-Margolis, Kannan). For some recent results on generalized metric spaces see [7] and [16].

Recently, G. Beer and J. Vanderwerf [8]-[10] considered vector spaces equipped with norms that can take infinite values, called by them "extended norms" (see also [18]).

Following these ideas, we consider here the notion of generalized b-metric on a nonempty set X as a mapping $d: X \times X \rightarrow[0, \infty]$ satisfying the conditions (i)-(iii) from (1.1). If d satisfies further the condition (v), then d is called a generalized strong b-metric and the pair (X, d) a generalized strong b-metric space.

Let (X, d) be a generalized b-metric space. As in Jung [30], it follows that

$$
\begin{equation*}
x \sim y \stackrel{d}{\Longleftrightarrow} d(x, y)<+\infty, \quad x, y \in X \tag{3.1}
\end{equation*}
$$

is an equivalence relation on X. Denoting by $X_{i}, i \in I$, the equivalence classes corresponding to \sim and putting $d_{i}=\left.d\right|_{X_{i} \times X_{i}}, i \in I$, it follows that $\left(X_{i}, d_{i}\right)$ is a bmetric space (a strong b-metric space if (X, d) is a generalized strong b-metric space), for every $i \in I$. Therefore, X can be uniquely decomposed into equivalence classes $X_{i}, i \in I$, called the canonical decomposition of X.

By analogy with [30] we have.
Theorem 3.1. Let (X, d) be a generalized b-metric space and $X_{i}, i \in I$, its canonical decomposition. Then the following hold.

1. The space (X, d) is complete if and only if $\left(X_{i}, d_{i}\right)$ is complete for every $i \in I$.
2. If $\left(Y_{i}, d_{i}\right), i \in I$, are b-metric spaces (with the same s) and $Y_{i} \cap Y_{j}=\emptyset$ for all $i \neq j$ in I, then

$$
d(x, y):= \begin{cases}d_{i}(x, y) & \text { if } x, y \in Y_{i}, \text { for some } i \in I \tag{3.2}\\ +\infty & \text { if } x \in Y_{i} \text { and } y \in Y_{j} \\ & \quad \text { for some } i, j \in I \text { with } i \neq j\end{cases}
$$

is a generalized b-metric on $Y=\bigcup_{i \in I} Y_{i}$, with $\left\{Y_{i}: i \in I\right\}$ the family of equivalence classes corresponding to the equivalence relation (3.1).
The same results are true for generalized strong b-metric spaces.
3.1. The completion of generalized \mathbf{b}-metric spaces. In this subsection we shall prove the existence of the completion of strong b-metric spaces. The existence of the completion of a generalized metric space was proved in [17].

We start with the following lemma.
Lemma 3.2. Let (X, d) be a generalized b-metric space, (Z, D) a complete generalized b-metric space, with continuous generalized b-metrics d, D and Y a dense subset of X. Then for every isometric embedding $f: Y \rightarrow Z$ there exists a unique isometric embedding $F: X \rightarrow Z$ such that $\left.F\right|_{Y}=f$. If, in addition, X is complete and $f(Y)$ is dense in Z, then F is bijective (i.e. F is an isometry of X onto Z).

Proof. For $x \in X$ let $\left(y_{n}\right)$ be a sequence in Y such that $d\left(y_{n}, x\right) \rightarrow 0$. Then $\left(y_{n}\right)$ is a Cauchy sequence in (X, d) and the equalities $D\left(f\left(y_{n}\right), f\left(y_{m}\right)\right)=d\left(y_{n}, y_{m}\right), m, n \in \mathbb{N}$, show that $\left(f\left(y_{n}\right)\right)$ is a Cauchy sequence in (Z, D). Since (Z, D) is complete, there exists $z \in Z$ such that $D\left(f\left(y_{n}\right), z\right) \rightarrow 0$. If $\left(y_{n}^{\prime}\right)$ is another sequence in Y converging to x, then $\left(f\left(y_{n}^{\prime}\right)\right)$ will converge to an element $z^{\prime} \in Z$. By the continuity of the generalized b-metrics d and D,

$$
D\left(z, z^{\prime}\right)=D\left(\lim _{n} f\left(y_{n}\right), \lim _{n} f\left(y_{n}^{\prime}\right)\right)=\lim _{n} D\left(f\left(y_{n}\right), f\left(y_{n}^{\prime}\right)\right)=\lim _{n} d\left(y_{n}, y_{n}^{\prime}\right)=0
$$

showing that $z=z^{\prime}$. So we can unambiguously define a mapping $F: X \rightarrow Z$ by $F(x)=\lim _{n} f\left(y_{n}\right)$, where $\left(y_{n}\right)$ is a sequence in Y converging to $x \in X$. For $y \in Y$ taking $y_{n}=y, n \in \mathbb{N}$, it follows $F(y)=y$.

For $x, x^{\prime} \in X$, let $\left(y_{n}\right),\left(y_{n}^{\prime}\right)$ be sequences in Y converging to x and x^{\prime}, respectively. Then

$$
D\left(F(x), F\left(x^{\prime}\right)\right)=\lim _{n} D\left(f\left(y_{n}\right), f\left(y_{n}^{\prime}\right)\right)=\lim _{n} d\left(y_{n}, y_{n}^{\prime}\right)=d\left(x, x^{\prime}\right)
$$

i.e. F is an isometric embedding.

If $f(Y)$ is dense in Z, then, for any $z \in Z$, there exists a sequence $\left(y_{n}\right)$ in Y such that $D\left(f\left(y_{n}\right), z\right) \rightarrow 0$. It follows that $\left(f\left(y_{n}\right)\right)$ is a Cauchy sequence in Z and so, as f is an isometry, $\left(y_{n}\right)$ will be a Cauchy sequence in X. As the space X is complete, $\left(y_{n}\right)$ is convergent to some $x \in X$. But then

$$
D(F(x), z)=\lim _{n} D\left(F(x), f\left(y_{n}\right)\right)=\lim _{n} d\left(x, y_{n}\right)=0
$$

showing that $F(x)=z$.
Remark 3.3. The proof can be adapted to show that, under the hypotheses of Lemma 3.2, every uniformly continuous mapping $f: Y \rightarrow Z$ has a unique uniformly continuous extension to X. The notion of uniform continuity for mappings between generalized b-metric spaces is defined as in the metric case.

Let (X, d) be a generalized strong b-metric space with $X_{i}, i \in I$, the family of equivalence classes corresponding to (3.1). For every $i \in I$, let $\left(Y_{i}, D_{i}\right)$ be a completion of the strong b-metric space $\left(X_{i}, d_{i}\right)$. Denote by $T_{i}:\left(X_{i}, d_{i}\right) \rightarrow\left(Y_{i}, D_{i}\right)$ the isometric embedding with $T_{i}\left(X_{i}\right) D_{i}$-dense in Y_{i} corresponding to this completion.

Replacing, if necessary, Y_{i} with $\overline{Y_{i}}=Y_{i} \times\{i\}, D_{i}$ with $\overline{D_{i}}((x, i),(y, i))=D_{i}(x, y)$, for $x, y \in Y_{i}$, and putting $\overline{T_{i}}(x, i)=\left(T_{i}(x), i\right), x \in Y_{i}$, we may suppose, without restricting the generality, that

$$
Y_{i} \cap Y_{j}=\emptyset \text { for all } i, j \in I \text { with } i \neq j
$$

Put $Y:=\bigcup_{i \in I} Y_{i}$, and define

$$
D: Y \times Y \rightarrow[0, \infty]
$$

according to (3.2) and $T: X \rightarrow Y$ by

$$
T(x):=T_{i}(x)
$$

where i is the unique element of I such that $x \in X_{i}$.
We have the following result.

Theorem 3.4. Let (X, d) be a generalized strong b-metric space and (Y, D) the generalized strong b-metric space defined above. Then
(i) (Y, D) is a complete generalized strong b-metric space;
(ii) $T:(X, d) \rightarrow(Y, D)$ is an isometric embedding with $T(X) D$-dense in Y;
(iii) any other complete generalized strong b-metric space (Z, ρ) that contains a ρ-dense isometric copy of (X, d), is isometric to (Y, D).

Proof. Since each strong b-metric space $\left(Y_{i}, D_{i}\right)$ is complete, Theorem 3.1 implies that the generalized strong b -metric space (Y, D) is complete.

Let $x, y \in X$. If $x, y \in X_{i}$, for some $i \in I$, then

$$
D(T(x), T(y))=D_{i}\left(T_{i}(x), T_{i}(y)\right)=d_{i}(x, y)=d(x, y) .
$$

If $x \in X_{i}, y \in X_{j}$ with $i \neq j$, then

$$
T(x)=T_{i}(x) \in Y_{i} \text { and } T(y)=T_{j}(x) \in Y_{j},
$$

so that

$$
D(T(x), T(y))=D\left(T_{i}(x), T_{j}(y)\right)=+\infty=d(x, y) .
$$

Now for $\xi \in Y$ there exists a unique $i \in I$ such that $\xi \in Y_{i}$. Since $T_{i}\left(X_{i}\right)$ is dense in $\left(Y_{i}, D_{i}\right)$, there exists a sequence $\left(x_{n}\right)$ in X_{i} such that

$$
0=\lim _{n \rightarrow \infty} D_{i}\left(T_{i}\left(x_{n}\right), \xi\right)=\lim _{n \rightarrow \infty} D\left(T\left(x_{n}\right), \xi\right)
$$

which means that $T(X)$ is D-dense in (Y, D).
Finally, to verify (iii), let $S:(X, d) \rightarrow(Z, \rho)$ be an isometric embedding with $S(X)$ dense in Z. Define $R: T(X) \rightarrow X$ by $R(T(x))=x, x \in X$. Then R is an isometry of $T(X)$ onto X and $S \circ R$ is an isometric embedding of $T(X)$ into Z. Since $T(X)$ is dense in Y and $S(R(T(X)))=S(X)$ is dense in Z, Lemma 3.2 yields the existence of an isometry U of Y onto Z, which ends the proof.

4. Fixed points in b-metric spaces

We shall prove some fixed point results in b-metric and in generalized b-metric spaces.
4.1. Fixed points in b-metric spaces. The first result is an extension to b-metric spaces of Theorem 4.1 from [28], with an appropriate modification in the definition of the comparison function φ.

Let (X, d) be a b-metric space with d satisfying the s-relaxed triangle inequality. We consider functions $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$satisfying the conditions
(a) φ is nondecreasing,
(b) $\lim _{n \rightarrow \infty} \varphi^{n}(t)=0$, and
(c) $\varphi(t)<\frac{t}{s}$,
for all $t>0$.

Remark 4.1. If $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$satisfies the conditions (a) and (b) from above, then

$$
\varphi(t)<t
$$

for all $t>0$.
Indeed, if $\varphi(t) \geq t$ for some $t>0$, then, by (a), $\varphi^{2}(t) \geq \varphi(t) \geq t$ and, in general $\varphi^{n}(t) \geq t>0$ for all n, in contradiction to (b).

Theorem 4.2. Let (X, d) be a complete b-metric space, where d satisfies the s-relaxed triangle inequality and let $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a function satisfying the conditions (a) (c) from (4.1). Then every mapping $f: X \rightarrow X$ satisfying the inequality

$$
\begin{equation*}
d(f(x), f(y)) \leq \varphi(d(x, y)) \tag{4.2}
\end{equation*}
$$

for all $x, y \in X$, has a unique fixed point z and the sequence $\left(f^{n}(x)\right)_{n \in \mathbb{N}_{0}}$ converges to z as $n \rightarrow \infty$, for every $x \in X$.

As in [28], the proof is based on the following lemma.
Lemma 4.3. Let (X, d) be a complete b-metric space and $f: X \rightarrow X$ a mapping. Suppose that, for every $\varepsilon>0$ there exists $\delta(\varepsilon)>0$ such that

$$
\begin{equation*}
d(z, f(z))<\delta(\varepsilon) \Longrightarrow f(B(z, \varepsilon)) \subseteq B(z, \varepsilon) \tag{4.3}
\end{equation*}
$$

If, for some $x \in X, \lim _{n \rightarrow \infty} d\left(f^{n}(x), f^{n+1}(x)\right)=0$, then the sequence $\left(f^{n}(x)\right)$ converges to a fixed point of f.

Proof. Let $x \in X$. Put $z_{n}=f^{n}(x)$ for $n \in \mathbb{N}_{0}$, and suppose that

$$
\lim _{n \rightarrow \infty} d\left(z_{n}, z_{n+1}\right)=0
$$

For $\varepsilon>0$ let $\delta(\varepsilon)>0$ be such that (4.3) holds.
Pick $m \in \mathbb{N}$ such that $d\left(z_{m}, f\left(z_{m}\right)\right)=d\left(z_{m}, z_{m+1}\right)<\delta(\varepsilon)$. Then

$$
z_{m+1}=f\left(z_{m}\right) \in B\left(z_{m}, \varepsilon\right), z_{m+2}=f\left(z_{m+1}\right) \in B\left(z_{m}, \varepsilon\right)
$$

and, by induction, $z_{m+k}=f\left(z_{m+k-1}\right) \in B\left(z_{m}, \varepsilon\right)$.
It follows that for all $n, n^{\prime} \geq m, d\left(z_{n}, z_{n^{\prime}}\right) \leq s\left(d\left(z_{n}, z_{m}\right)+d\left(z_{m}, z_{n^{\prime}}\right)\right)<2 s \varepsilon$.
Consequently, the sequence $\left(z_{n}\right)$ is Cauchy, so it converges to some $z \in X$. If $z \neq f(z)$, then $a:=d(z, f(z))>0$. Consider $\delta\left(\frac{a}{3 s}\right)$ given by the hypothesis of the lemma and let $m \in \mathbb{N}$ be such that

$$
d\left(z_{m}, z\right)<\frac{a}{3 s} \text { and } d\left(z_{m}, f\left(z_{m}\right)\right)=d\left(z_{m}, z_{m+1}\right)<\delta\left(\frac{a}{3 s}\right)
$$

Then

$$
f\left(B\left(z_{m}, \frac{a}{3 s}\right)\right) \subseteq B\left(z_{m}, \frac{a}{3 s}\right)
$$

Since $z \in B\left(z_{m}, \frac{a}{3 s}\right)$ it follows $f(z) \in B\left(z_{m}, \frac{a}{3 s}\right)$, leading to the contradiction

$$
a=d(z, f(z)) \leq s\left[d\left(z, z_{m}\right)+d\left(z_{m}, f(z)\right)\right]<\frac{2 a}{3}
$$

Proof of Theorem 4.2. We first show that, under the hypotheses of Theorem 4.2, the condition (4.3) is satisfied. For $\varepsilon>0$ choose $\delta(\varepsilon):=\frac{\varepsilon}{s}-\varphi(\varepsilon)>0$. Then, by condition (c) from (4.1), $\delta(\varepsilon)>0$ and the inequalities $d(z, f(z))<\delta(\varepsilon)$ and $d(z, y)<\varepsilon$ imply

$$
\begin{aligned}
d(z, f(y)) & \leq s d(z, f(z))+s d(f(z), f(y)) \\
& <s \delta(\varepsilon)+s \varphi(d(z, y)) \\
& \leq s \delta(\varepsilon)+s \varphi(\varepsilon)=\varepsilon,
\end{aligned}
$$

that is, $f(B(z, \varepsilon)) \subseteq B(z, \varepsilon)$.
For an arbitrary point $x \in X$,

$$
d\left(f^{n}(x), f^{n+1}(x)\right) \leq \varphi^{n}(d(x, f(x)) \longrightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

Therefore, the conclusions of the theorem follows from Lemma 4.3.
Let (X, d) be a b-metric space with d satisfying the s-relaxed triangle inequality for some $s \geq 1$. An important particular case of a function φ satisfying the conditions (a)-(c) from (4.1) is

$$
\varphi(t)=\alpha t, t \geq 0
$$

where $0<\alpha<1 / s$. Then

$$
\varphi(t)=(\alpha s) \cdot \frac{t}{s}<\frac{t}{s}
$$

for all $t>0$, and

$$
\varphi^{n}(t)=\alpha^{n} t \longrightarrow 0 \text { as } n \rightarrow \infty
$$

because $0<\alpha<1 / s \leq 1$. Since φ is strictly increasing, it satisfies the conditions (a)-(c) from (4.1).

The inequality (4.2) becomes in this case

$$
\begin{equation*}
d(f(x), f(y)) \leq \alpha d(x, y) \tag{4.4}
\end{equation*}
$$

for all $x, y \in X$.
So, Theorem 4.2 has the following corollary - the analog of Banach contraction principle for b-metric spaces. The corollary illustrates how various types of relaxed triangle inequalities influence the form this principle takes.

Corollary 4.4. ([6]) Let (X, d) be a complete b-metric space, where d satisfies the s-relaxed triangle inequality and $f: X \rightarrow X$ a mapping such that, for some $\alpha>0$,

$$
\begin{equation*}
d(f(x), f(y)) \leq \alpha d(x, y) \tag{4.5}
\end{equation*}
$$

for all $x, y \in X$.

1. ([6]) If $0<\alpha<1 / s$, then f has a unique fixed point z and, for every $x \in X$, the sequence $\left(f^{n}(x)\right)_{n \in \mathbb{N}}$ converges to z as $n \rightarrow \infty$.

Furthermore, the following evaluation of the order of convergence holds

$$
\begin{equation*}
d\left(x_{n}, z\right) \leq \frac{s d\left(x_{0}, x_{1}\right)}{1-\alpha s} \alpha^{n} \tag{4.6}
\end{equation*}
$$

for all $n \in \mathbb{N}$.
2. ([34], Theorem 12.4) If d satisfies the s-relaxed polygonal inequality, then the results from 1 hold for $0<\alpha<1$ with the following evaluation of the order of convergence

$$
\begin{equation*}
d\left(x_{n}, z\right) \leq \frac{s d\left(x_{0}, x_{1}\right)}{1-\alpha} \alpha^{n} \tag{4.7}
\end{equation*}
$$

for all $n \in \mathbb{N}$.
Proof. 1. We sketch the simple direct proof, similar to that from the metric case.
Observe first that, (4.5) implies

$$
\begin{equation*}
d\left(f^{n}(x), f^{n}(y)\right) \leq \alpha^{n} d(x, y) \tag{4.8}
\end{equation*}
$$

for all $n \in \mathbb{N}$ and $x, y \in X$.
For $x_{0} \in X$ consider the sequence of iterates

$$
x_{n}=f\left(x_{n-1}\right)=f^{n}\left(x_{0}\right), \quad n \in \mathbb{N} .
$$

Let us prove that $\left(x_{n}\right)$ is a Cauchy sequence. Successive applications of the s-relaxed triangle inequality yield

$$
\begin{equation*}
d\left(x_{0}, x_{n}\right) \leq s d\left(x_{0}, x_{1}\right)+s^{2} d\left(x_{1}, x_{2}\right)+\cdots+s^{n} d\left(x_{n-1}, x_{n}\right) \tag{4.9}
\end{equation*}
$$

for all $n \in \mathbb{N}$.
By (4.9) and (4.8),

$$
\begin{align*}
d\left(x_{n}, x_{n+k}\right) & \leq s d\left(x_{n}, x_{n+1}\right)+s^{2} d\left(x_{n+1}, x_{n+2}\right)+\cdots+s^{k} d\left(x_{n+k-1}, x_{n+k}\right) \\
& \leq\left(\alpha^{n} s+\alpha^{n+1} s^{2}+\cdots+\alpha^{n+k-1} s^{k}\right) d\left(x_{0}, x_{1}\right) \tag{4.10}\\
& =\alpha^{n} s \cdot \frac{1-(\alpha s)^{k}}{1-\alpha s} d\left(x_{0}, x_{1}\right)<\alpha^{n} \cdot \frac{s d\left(x_{0}, x_{1}\right)}{1-\alpha s}
\end{align*}
$$

for all $n, k \in \mathbb{N}$. Since $\lim _{n \rightarrow \infty} \alpha^{n+1}=0$, this shows that $\left(x_{n}\right)$ is a Cauchy sequence. By the completeness of (X, d) there exists $z \in X$ such that $\lim _{n \rightarrow \infty} d\left(x_{n}, z\right)=0$. Since, by (4.5), the mapping f is continuous, we can pass to limit in the equality $x_{n+1}=f\left(x_{n}\right), n \in \mathbb{N}_{0}$, to obtain $z=f(z)$
Suppose now that there exists two points $z, z^{\prime} \in X$ such that $f(z)=z$ and $f\left(z^{\prime}\right)=z^{\prime}$. Then the relations

$$
d\left(z, z^{\prime}\right)=d\left(f(z), f\left(z^{\prime}\right)\right) \leq \alpha d\left(z, z^{\prime}\right)
$$

show that $d\left(z, z^{\prime}\right)=0$, i.e. $z=z^{\prime}$.
Now, from (4.10),

$$
d\left(x_{n}, x_{n+k}\right)<\alpha^{n} s \cdot \frac{1-(\alpha s)^{k}}{1-\alpha s} d\left(x_{0}, x_{1}\right)
$$

which yields (4.6) for $k \rightarrow \infty$.
2. Let $x_{0} \in X$ and $x_{n}=f\left(x_{n-1}\right), n \in \mathbb{N}$. Taking into account the relaxed polygonal inequality and (4.8), we obtain

$$
\begin{aligned}
d\left(x_{n}, x_{n+k}\right) & \leq s \sum_{i=0}^{k-1} d\left(x_{n+i}, x_{n+i+1}\right) \leq s\left(\alpha^{n}+\alpha^{n+1}+\cdots+\alpha^{n+k}\right) d\left(x_{0}, x_{1}\right) \\
& =s \alpha^{n} \frac{1-\alpha^{k+1}}{1-\alpha} \cdot d\left(x_{0}, x_{1}\right)<\frac{s d\left(x_{0}, x_{1}\right)}{1-\alpha} \cdot \alpha^{n}
\end{aligned}
$$

Based on these relations the proof goes as in case 1.
Remark 4.5. The proof given here to statement 2 from Corollary 4.4 is simpler than that from [34].

Based on Theorem 2.2, one can show that Banach's fixed point theorem actually holds for arbitrary contractions on complete b-metric spaces.

Theorem 4.6. ([2]) Let (X, d) be a complete b-metric space and $0<\alpha<1$. If $f: X \rightarrow X$ satisfies the inequality

$$
\begin{equation*}
d(f(x), f(y)) \leq \alpha d(x, y) \tag{4.11}
\end{equation*}
$$

for all $x, y \in X$, then f has a unique fixed point z and the sequence $\left(f^{n}(x)\right)_{n \in \mathbb{N}}$ converges to z for every $x \in X$.

Proof. Suppose that d satisfies the s-relaxed triangle inequality, for some $s \geq 1$. If $0<p \leq 1$ is given by the equation $(2 s)^{p}=1$, then, by Theorem 2.2 , the functional ρ_{p} given by (2.2) is a metric on X satisfying the inequalities

$$
\begin{equation*}
\rho_{p} \leq d^{p} \leq 2 \rho_{p} \tag{4.12}
\end{equation*}
$$

For $x, y \in X$ let $x=x_{0}, x_{1}, \ldots, x_{n}=y$ be an arbitrary chain in X connecting x and y. Then $y_{i}=f\left(x_{i}\right), i=0,1, \ldots, n$, is a chain in X connecting $f(x)$ and $f(y)$. Consequently, by (2.2) and (4.11),

$$
\begin{equation*}
\rho_{p}(f(x), f(y)) \leq \sum_{i=0}^{n-1} d\left(y_{i}, y_{i+1}\right)^{p} \leq \alpha^{p} \sum_{i=0}^{n-1} d\left(x_{i}, x_{i+1}\right)^{p} . \tag{4.13}
\end{equation*}
$$

Since the inequality between the extreme terms in (4.13) holds for all chains $x=$ $x_{0}, x_{1}, \ldots, x_{n}=y, n \in \mathbb{N}$, connecting x and y, it follows

$$
\rho_{p}(f(x), f(y)) \leq \alpha^{p} \rho_{p}(x, y)
$$

for all $x, y \in X$, where $0<\alpha^{p}<1$. Consequently, f is a contraction with respect to ρ_{p}. The inequalities (4.12) and the completeness of (X, d) imply the completeness of $\left(X, \rho_{p}\right)$ and so, by Banach's contraction principle, f has a unique fixed point $z \in X$ and the sequence of iterates $\left(f^{n}(x)\right)_{n \in \mathbb{N}}$ is ρ_{p}-convergent to z, for every $x \in$ X. Appealing again to the inequalities (4.12), it follows that $\left(f^{n}(x)\right)_{n \in \mathbb{N}}$ is also d convergent to z for every $x \in X$.

Remark 4.7. In [14] and [34], Theorem 4.2 appears under the hypothesis that the function φ satisfies only the conditions (a) and (b) from (4.1). In both cases, the proof goes in the following way.

Let x be a fixed element of X and $\varepsilon>0$. By (4.1).(b) there exists $m=m_{\varepsilon} \in \mathbb{N}$ such that

$$
\begin{equation*}
\varphi^{m}(\varepsilon)<\frac{\varepsilon}{2 s} \tag{4.14}
\end{equation*}
$$

One considers the sequence $x_{k}=f^{k m}(x), k \in \mathbb{N}$, and one shows that there exists $k_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
d\left(x_{k}, x_{k^{\prime}}\right)<2 s \varepsilon \tag{4.15}
\end{equation*}
$$

for all $k, k^{\prime} \geq k_{0}$. One affirms that the inequality (4.15) shows that $\left(x_{k}\right)$ is a Cauchy sequence, which is not surely true, because the inequality is true only for this specific ε.

Taking another ε, say $0<\varepsilon^{\prime}<\varepsilon$, we find another number $m^{\prime}=m_{\varepsilon^{\prime}}$ (possibly different from m), such that

$$
\begin{equation*}
\varphi^{m^{\prime}}\left(\varepsilon^{\prime}\right)<\frac{\varepsilon^{\prime}}{2 s} \tag{4.16}
\end{equation*}
$$

The above procedure yields a sequence $x_{k}^{\prime}=f^{k m^{\prime}}(x), k \in \mathbb{N}$, satisfying, for some $k_{1} \in \mathbb{N}$,

$$
\begin{equation*}
d\left(x_{k}, x_{k^{\prime}}\right)<2 s \varepsilon^{\prime} \tag{4.17}
\end{equation*}
$$

for all $k, k^{\prime} \geq k_{1}$.
But the sequences $\left(x_{k}\right)$ and $\left(x_{k}^{\prime}\right)$ can be totally different, so we cannot infer that the sequence $\left(x_{k}\right)$ is Cauchy. ${ }^{1}$

It seems that, besides (a) and (b) from (4.1), some supplementary conditions on the comparison function φ are needed in order to obtain some fixed point results in b-metric spaces for mappings satisfying (4.2).

For instance, Berinde [11] considers comparison functions satisfying a condition stronger than (c) from (4.1), namely $\sum_{k=1}^{\infty} \varphi^{k}(t)<\infty$, allowing estimations of the order of convergence similar to (4.6). He also shows that the sequence $x_{n}=f^{n}\left(x_{0}\right), n \in \mathbb{N}_{0}$, is convergent to a fixed point of f if and only if it is bounded. For various kinds of comparison functions, the relations between them and applications to fixed points, see $[46, \S 3.0 .3]$.
4.2. Fixed points in generalized b-metric spaces. Theorem 4.2 admits the following extension to generalized b-metric spaces.

Theorem 4.8. Let (X, d) be a complete generalized b-metric space and suppose that the mapping $f: X \rightarrow X$ is such that

$$
\begin{equation*}
d(f(x), f(y)) \leq \varphi(d(x, y)) \tag{4.18}
\end{equation*}
$$

for all $x, y \in X$ with $d(x, y)<\infty$, where the function $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$satisfies the conditions (a)-(c) from (4.1).

Consider, for some $x \in X$, the sequence of successive approximations $\left(f^{n}(x)\right)_{n \in \mathbb{N}_{0}}$. Then either
(A) $\quad d\left(f^{k}(x), f^{k+1}(x)\right)=+\infty$ for all $k \in \mathbb{N}_{0}$,
or
(B) the sequence $\left(f^{n}(x)\right)_{n \in \mathbb{N}}$ is convergent to a fixed point of f.

Proof. Let $X=\bigcup_{i \in I} X_{i}$ be the canonical decomposition of X corresponding to the equivalence relation (3.1). Assume that (A) does not hold. Then

$$
d\left(f^{m}(x), f^{m+1}(x)\right)<+\infty
$$

[^0]for some $m \in \mathbb{N}_{0}$. If $i \in I$ is such that $f^{m}(x), f^{m+1}(x) \in X_{i}$, then
$$
d\left(f^{m+1}(x), f^{m+2}(x)\right) \leq \varphi\left(d\left(f^{m}(x), f^{m+1}(x)\right)\right)<\infty
$$
implies $f^{m+2}(x) \in X_{i}$, and so, by mathematical induction, $f^{m+k}(x) \in X_{i}$ for all $k \in \mathbb{N}_{0}$. Since
$$
z \in X_{i} \Longleftrightarrow d\left(z, f^{m}(x)\right)<\infty
$$
the inequality
$$
d\left(f(z), f^{m+1}(x)\right) \leq \varphi\left(d\left(z, f^{m}(x)\right)<\infty\right.
$$
shows that the restriction $f_{i}=\left.f\right|_{X_{i}}$ of f to X_{i} is a mapping from X_{i} to X_{i} satisfying
$$
d\left(f_{i}(y), f_{i}(z)\right) \leq \varphi(d(y, z))
$$
for all $y, z \in X_{i}$. By Theorem 3.1, X_{i} is complete, so that, by Theorem 4.2, the sequence $\left(f^{m+k}(x)\right)_{k \in \mathbb{N}_{0}}$ is convergent to a fixed point of f_{i}, which is a fixed point for f.

Remark 4.9. For $s=1$ and $\varphi(t)=\alpha t, t \geq 0$, where $0 \leq \alpha<1$, we get the Diaz and Margolis [22] fixed point theorem of the alternative. At the same time these extend Theorem 2 from [19] and give simpler proofs to Theorems 2.1 and 3.1 from [5].

Corollary 4.4 and Theorem 4.6 also admit extensions to this setting as results of the alternative. We formulate only one of these results.
Corollary 4.10. Let (X, d) be a complete generalized b-metric space, where d satisfies the s-relaxed triangle inequality and let

$$
\begin{equation*}
0<\alpha<\frac{1}{s} \tag{4.19}
\end{equation*}
$$

Then, for every mapping $f: X \rightarrow X$ satisfying the inequality

$$
\begin{equation*}
d(f(x), f(y)) \leq \alpha d(x, y) \tag{4.20}
\end{equation*}
$$

for all $x, y \in X$ with $d(x, y)<\infty$, either
$\left(\mathrm{A}^{\prime}\right) \quad d\left(f^{k}(x), f^{k+1}(x)\right)=+\infty$ for all $k \in \mathbb{N}_{0}$, or
$\left(\mathrm{B}^{\prime}\right) \quad$ the sequence $\left(f^{n}(x)\right)_{n \in \mathbb{N}}$ is convergent to a fixed point of f.
Acknowledgements. The authors express their thanks to the reviewer, whose pertinent remarks and suggestions lead to a substantial improvement of the presentation.

References

[1] H. Aimar, B. Iaffei, L. Nitti, On the Macías-Segovia metrization of quasi-metric spaces, Rev. Unión Mat. Argent., 41(1998), no. 2, 67-75.
[2] T.V. An, N.V. Dung, Remarks on Frink's metrization technique and applications, arXiv preprint, arXiv:1507.01724 (2015), 15 p .
[3] T.V. An, L.Q. Tuyen, N.V. Dung, Stone-type theorem on b-metric spaces and applications, Topology Appl., 185-186(2015), 50-64.
[4] T.V. An, L.Q. Tuyen, N.V. Dung, Answers to Kirk-Shahzad's questions on strong b-metric spaces, Taiwanese J. Math., 20(2016), no. 5, 1175-1184.
[5] H. Aydi, S. Czerwik, Fixed point theorems in generalized b-metric spaces, in: Modern Discrete Mathematics and Analysis. With Applications in Cryptography, Information Systems and Modeling, (N.J. Daras, Th.M. Rassias - Eds.) Cham: Springer, 2018, pp. 1-9.
[6] I.A. Bakhtin, The contraction mapping principle in quasimetric spaces, (Russian), Funktionalnyi Analyz, Ulianovskii Gos. Ped. Inst., 30(1989), 26-37.
[7] G. Beer, The structure of extended real-valued metric spaces, Set-Valued Var. Anal., 21(2013), no. 4, 591-602.
[8] G. Beer, Norms with infinite values, J. Convex Anal., 22(2015), no. 1, 37-60.
[9] G. Beer, J. Vanderwerff, Separation of convex sets in extended normed spaces, J. Aust. Math. Soc., 99(2015), no. 2, 145-165.
[10] G. Beer, J. Vanderwerff, Structural properties of extended normed spaces, Set-Valued Var. Anal., 23(2015), no. 4, 613-630.
[11] V. Berinde, Generalized contractions in quasimetric spaces, Semin. Fixed Point Theory ClujNapoca, 1993(1993), 3-9.
[12] V. Berinde, M. Choban, Generalized distances and their associate metrics. Impact on fixed point theory, Creat. Math. Inform., 22(2013), no. 1, 23-32.
[13] R.R. Coifman, M. de Guzman, Singular integrals and multipliers on homogeneous spaces, Rev. Unión Mat. Argent., 25(1970), 137-143.
[14] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav., 1(1993), 5-11.
[15] S. Czerwik, Nonlinear set-valued contraction mappings in B-metric spaces, Atti Semin. Mat. Fis. Univ. Modena, 46(1998), no. 2, 263-276.
[16] S. Czerwik, K. Król, Cantor, Banach and Baire theorems in generalized metric spaces, in: Mathematical Analysis, Approximation Theory and Their Applications, (Th.M. Rassias, V. Gupta - Eds.) Cham, Springer, 2016, 139-144.
[17] S. Czerwik, K. Król, Completion of generalized metric spaces, Indian J. Math., 58(2016), no. 2, 231-237.
[18] S. Czerwik, K. Król, Generalized Minkowski functionals, in: Contributions in Mathematics and Engineering. In Honor of Constantin Carathéodory, (P.M. Pardalos, Th.M. Rassias - Eds.) Cham, Springer, 2016, 69-79.
[19] S. Czerwik, K. Król, Fixed point theorems in generalized metric spaces, Asian-Eur. J. Math., $\mathbf{1 0}(2017)$, no. 2, 8 p.
[20] M.M. Deza, E. Deza, Encyclopedia of Distances, 3rd ed., Berlin, Springer, 2014.
[21] G. Dezső, Fixed point theorems in generalized metric spaces, Pure Math. Appl., 11(2000), no. 2, 183-186.
[22] J.B. Diaz, B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74(1968), 305-309.
[23] M. Edelstein, A remark on a theorem of A.F. Monna, Nederl. Akad. Wet., Proc., Ser. A, 67(1964), 88-89.
[24] R. Engelking, General Topology, Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989, (translated from the Polish by the author).
[25] R. Fagin, R. Kumar, D. Sivakumar, Comparing top k lists, SIAM J. Discrete Math., $\mathbf{1 7}(2003)$, no. 1, 134-160.
[26] R. Fagin, L. Stockmeyer, Relaxing the triangle inequality in pattern matching, International J. Computer Vision, 28(1998), no. 3, 134-160.
[27] A.H. Frink, Distance functions and the metrization problem, Bull. Amer. Math. Soc., 43(1937), 133-142.
[28] A. Granas, J. Dugundji, Fixed Point Theory, Springer, New York, NY, 2003.
[29] J. Heinonen, Lectures on Analysis on Metric Spaces, Springer, New York, 2001.
[30] C.F.K. Jung, On generalized complete metric spaces, Bull. Amer. Math. Soc., 75(1969), 113-116.
[31] M.A. Khamsi, Remarks on cone metric spaces and fixed point theorems of contractive mappings, Fixed Point Theory Appl., 2010(2010), 7 p.
[32] M.A. Khamsi, Generalized metric spaces: a survey, J. Fixed Point Theory Appl., 17(2015), no. 3, 455-475.
[33] M.A. Khamsi, N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal., 73(2010), no. 9, 3123-3129.
[34] W. Kirk, N. Shahzad, Fixed Point Theory in Distance Spaces, Cham, Springer, 2014.
[35] W.A.J. Luxemburg, On the convergence of successive approximations in the theory of ordinary differential equations, Canad. Math. Bull., 1(1958), 9-20.
[36] W.A.J. Luxemburg, On the convergence of successive approximations in the theory of ordinary differential equations. II, Nederl. Akad. Wet., Proc., Ser. A, 61(1958), 540-546.
[37] W.A.J. Luxemburg, On the convergence of successive approximations in the theory of ordinary differential equations. III, Nieuw Arch. Wiskd., III. Ser., 6(1958), 93-98.
[38] R.A. Mac'ıas, C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. Math., 33(1979), 257-270.
[39] R.A. Macías, C. Segovia, Singular integrals on generalized Lipschitz and Hardy spaces, Stud. Math., 65(1979), 55-75.
[40] B. Margolis, On some fixed points theorems in generalized complete metric spaces, Bull. Amer. Math. Soc., 74(1968), 275-282.
[41] A.F. Monna, Sur un théorème de M. Luxemburg concernant les points fixes d'une classe d'application d'un espace métrique dans lui-même, Nederl. Akad. Wet., Proc., Ser. A, 64(1961), 89-96.
[42] M. Paluszyński, K. Stempak, On quasi-metric and metric spaces, Proc. Amer. Math. Soc., 137 (2009), no. 12, 4307-4312.
[43] A.I. Perov, On the Cauchy problem for a system of ordinary differential equations, (Russian), Priblizhen. Metody Reshen. Differ. Uravn. Vyp. 2, (1964), 115-134.
[44] A.I. Perov, Generalized principle of contraction mappings, (Russian), Vestn. Voronezh. Gos. Univ., Ser. Fiz. Mat., 2005(2005), no. 1, 196-207.
[45] A.I. Perov, A.V. Kibenko, On a certain general method for investigation of boundary value problems, (Russian), Izv. Akad. Nauk SSSR, Ser. Mat., 30(1966), 249-264.
[46] I.A. Rus, A. Petruşel, G. Petruşel, Fixed Point Theory, Cluj University Press, Cluj-Napoca, 2008.
[47] V. Schroeder, Quasi-metric and metric spaces, Conform. Geom. Dyn., 10(2006), 355-360.
[48] Q. Xia, The geodesic problem in quasimetric spaces, J. Geom. Anal., 19(2009), no. 2, 452-479.
Received: January 9, 2018; Accepted: March 10, 2018.

[^0]: ${ }^{1}$ This flow was fixed by S. Kajántó and A. Lukács, A note on the paper "Contraction mappings in b-metric spaces" by Czerwik, Acta Univ. Sapientiae Math. 10 (2018), no. 1, 85-89.

