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Abstract. We consider a nonempty set X endowed with a metric d an order relation � and an

operator f : X → X, which satisfies two main assumptions:

(1) f is generalized monotone with respect to �;
(2) f is a (generalized) contraction with respect to d on a certain subset Y of X ×X.

In the above terms, we will present conditions under which:

(i) f has a unique fixed point in X;
(ii) f is a Picard operator;

(iii) the fixed point problem for f is well-posed;
(iv) f has the Ostrowski property;

(v) f has the shadowing property;

(vi) f satisfies to some Gronwall type inequalities.
Then, we will apply these results to study some problems related to integral and differential equations.

Several open questions are discussed.
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1. Introduction

There are many fixed point theorems in lattices and in ordered sets: Zermelo
(1908), Knaster (1928), Zorn (1935), Kantorovitch (1939), Bourbaki (1949), Witt
(1951), Kleen (1952), Tarski (1955), Davis (1955), Abian-Brown (1961), Kolodner
(1968), Bakhtin (1972), Tartar (1974), Markowsky (1976), Amann (1977), ... See for
example [10], [65], [85], [75], [76], [3], [1], [2], [9], [17], [18], [21], [38], [41], [55], [94],
[56], [92], ...

The metric fixed point theory is a subject with an intensive development. For
basic results and problems of metric fixed point theory see [52], [85], [79], [84], [14],
[16], [20], [23], [26], [27], [29], [30], [34], [37], [48], [49], [66], [67], [68], [69], [71], [77],
[81], [83], ...
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602 ADRIAN PETRUŞEL AND IOAN A. RUS

One of the main problem, considered by many authors in the last years, is to build
a bridge between these two theories. See [53], [74], [70], [4], [5], [6], [7], [8], [11], [12],
[13], [19], [21], [22], [23], [25], [28], [31], [32], [33], [34], [36], [40], [42], [43], [45], [44],
[51], [57], [58], [59], [60], [61], [62], [64], [73], [87], [86], [93], [97], [98], [100], ...

The purpose of this paper is to shed more light on the bridge between these two
important theories, using the following framework: let X be nonempty set endowed
with a metric d, an order relation � and an operator f : X → X, which satisfies two
main assumptions:
(1) f is generalized monotone with respect to �;
(2) f is a (generalized) contraction with respect to d on a certain subset Y of X ×X.

Several conclusions emerge from these assumptions. Then, we will apply these
results to study various problems related to integral and differential equations. Some
open questions are also discussed.

2. Preliminaries

Let X be a nonempty set and f : X → X be an operator. Then, we will denote
by f0 := 1X , f

1 := f, . . . , fn+1 = f ◦ fn, n ∈ N the iterate operators of f . By
I(f) := {Y ⊂ X|f(Y ) ⊆ Y } we will denote the set of all nonempty invariant subsets
of f and by Ff := {x ∈ X| x = f(x)} we denote the fixed point set of f . Also, by
Graph(f) := {(x, y) ∈ X ×X|f(x) = y} we will denote the graph of f .

Let X be a nonempty set. Denote s(X) := {(xn)n∈N |xn ∈ X, n ∈ N}.
Let c(X) ⊂ s(X) a subset of s(X) and Lim : c(X)→ X an operator. By definition,

the triple (X, c(X), Lim) is called an L-space (Fréchet [39]) if the following conditions
are satisfied:

(i) If xn = x, ∀ n ∈ N , then (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x.
(ii) If (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x, then for all subsequences, (xni

)i∈N ,
of (xn)n∈N we have that (xni

)i∈N ∈ c(X) and Lim(xni
)i∈N = x.

By definition, an element of c(X) is a convergent sequence, x := Lim(xn)n∈N is
the limit of this sequence and we also write xn → x as n→ +∞.

In what follow we denote an L-space by (X,→). In particular, if (X, d) is a metric
space, then X together with the convergence generated by d is an L-space.

We recall now the following important concepts, see [80], [78], [79], [85], [15].

Definition 2.1. Let (X,→) be an L-space. An operator f : X → X is, by definition,
a Picard operator (briefly PO) if:

(i) Ff = {x∗};
(ii) (fn(x))n∈N → x∗ as n→∞, for all x ∈ X.

For example, any contraction f : X → X on a complete metric space (X, d) is a
PO.

Definition 2.2. Let (X,→) be an L-space. Then, f : X → X is called a weakly
Picard operator (briefly WPO) if, for all x ∈ X, the sequence (fn(x))n∈N converges
and the limit (which may depend on x) is a fixed point of f .

For example, any continuous graphic contraction f : X → X on a complete metric
space (X, d) is a WPO.
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Notice that, if f : X → X is a WPO, then we define the operator f∞ : X → Ff by

f∞(x) := lim
n→∞

fn(x).

A triple (X,→,�) is called an ordered L-space if (X,→) is an L-space and
� is a partially order relation on X, which is closed with respect to →, i.e., if
(xn)n∈N , (yn)n∈N are sequences in X such that xn � yn for every n ∈ N and xn → x,
yn → y as n→∞, then x � y.

As usual, if � is a partially order relation on X, then, for x, y ∈ X, we denote
x ≺ y if x � y and x 6= y.

The following abstract Gronwall type lemmas take place for POs and WPOs.

Lemma 2.1. Let (X,→,�) be an ordered L-space and f : X → X be an operator.
We suppose:

(a) f is a PO with respect to → (we denote by x∗f its unique fixed point);

(b) f is increasing with respect to �;
Then, we have:

(i) x ∈ X, x � f(x) implies x � x∗f ;

(ii) x ∈ X, x � f(x) implies x � x∗f .

Lemma 2.2. Let (X,→,�) be an ordered L-space and f : X → X be an operator.
We suppose:

(a) f is a WPO with respect to →;
(b) f is increasing with respect to �;

Then, we have:
(i) the operator f∞ is increasing;
(ii) x ∈ X, x � f(x) implies x � f∞(x);
(iii) x ∈ X, x � f(x) implies x � f∞(x).

In particular, the above results take place in ordered metric spaces (X, d,�), where
the convergence in X is generated by the metric d.

Remark 2.1. In many papers, some authors choose to define an ordered metric space
as a nonempty set endowed with a metric and a partial order. Here, we have chosen
to consider the notion in the Bourbaki’ spirit, i.e., with the additional assumption of
the compatibility between the two structures: the metric structure and the ordered
one.

Another important concept is given in the context of a metric space.

Definition 2.3. Let (X, d) be a metric space. Then, f : X → X is called a ψ-weakly
Picard operator (briefly ψ-WPO) if f is a WPO, ψ : R+ → R+ is an increasing,
continuous in 0 with ψ(0) = 0, such that the following relation holds:

d(x, f∞(x)) ≤ ψ(d(x, f(x))), for all x ∈ X.

In particular, if f is a PO and x∗ ∈ X denotes its unique fixed point, then f is said
to be a ψ-Picard operator (briefly ψ-PO) if

d(x, x∗) ≤ ψ(d(x, f(x))), for all x ∈ X.
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In both cases, if ψ(t) := ct, for every t ∈ R+ (for some c > 0), then f is called a
c-WPO, respectively c-PO.

Definition 2.4. Let (X, d) be a metric space and f : X → X be an operator. Then,
two elements x, y ∈ X are called asymptotically equivalent if d(fn(x), fn(y))→ 0 as
n→∞;

Recall that ϕ : R+ → R+ is said to be a comparison function (see [79]) if it is
increasing and ϕn(t)→ 0, as n→ +∞. As a consequence, we also have ϕ(t) < t, for
each t > 0, ϕ(0) = 0 and ϕ is continuous in 0. A function ϕ : R+ → R+ is said to

be a strong comparison function (see [79]) if it is increasing and
∑
n≥0

ϕn(t) < ∞, for

every t > 0. In this case, the function s(t) :=
∑
n≥0

ϕn(t) (t ∈ R+) is increasing and

continuous at 0.

Definition 2.5. Let (X, d) be a metric space. An operator f : X → X is called a
ϕ-contraction if ϕ : R+ → R+ is a comparison function and

d(f(x), f(y)) ≤ ϕ(d(x, y)), for all x, y ∈ X.

We present now some concepts from stability theory (see [72], [83], [82]).
Let (X, d) be a metric space and f : X → X be an operator. In this context we

have the following notions.

Definition 2.6. (a) The fixed point problem x = f(x) is well-posed if Ff = {x∗} and
for any sequence {un} in X with d(un, f(un))→ 0 we have that un → x∗ as n→∞;

(b) The operator f has the Ostrowski property if Ff = {x∗} and for any sequence
{yn} in X with d(yn+1, f(yn))→ 0 we have that yn → x∗ as n→∞;

(c) The operator f has the limit shadowing property if for any sequence {yn} in X
with d(yn+1, f(yn))→ 0, there exists x ∈ X such that d(yn, f

n(x))→ 0 as n→∞;
(d) The operator f has the shadowing property if for any ε > 0 there exists δ > 0

such that for each sequence {yn} in X with d(yn+1, f(yn)) < δ for every n ∈ N, there
exists x ∈ X such that d(yn, f

n(x)) < ε, for every n ∈ N.
(e) The fixed point equation x = f(x) is Ulam-Hyers stable if there exists c > 0

such that, for every ε > 0 and any z ∈ X with d(z, f(z)) ≤ ε, there exists x∗ ∈ Ff
with d(z, x∗) ≤ c · ε;

(f) The fixed point equation x = f(x) is generalized Ulam-Hyers stable if there
exists a function ψ : R+ → R+ increasing, continuous at 0 and ψ(0) = 0 such that
for every ε > 0 and any z ∈ X with d(z, f(z)) ≤ ε, there exists x∗ ∈ Ff with
d(z, x∗) ≤ ψ(ε).

For example, in the case of contraction mappings, we have the following result (see
[83], [63]).

Theorem 2.1. (Saturated principle of contraction) Let (X, d) be a complete metric
space and f : X → X be an L-contraction. Then the following conclusions hold:

(i) there exists x∗ ∈ X such that Ff = Ffn = {x∗};
(ii) f is a PO;
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(iii) f is a 1
1−L -PO;

(iv) the fixed point problem x = f(x) is well-posed;
(v) the operator f has the Ostrowski property;
(vi) the operator f has the limit shadowing property;
(vii) the operator f has the shadowing property;
(viii) the fixed point equation x = f(x) is Ulam-Hyers stable.

Finally, we notice that the aim of this paper is to present a similar result in the
case of a set endowed with a metric and an ordered relation.

3. Generalized monotone operators

We need some notions from ordered set theory (see, for example, [66]). Let
(X,�) be an ordered set and f : X → X be an operator.

By definition, f is called:
(1) increasing if (x, y ∈ X,x � y) imply f(x) � f(y);
(2) decreasing if (x, y ∈ X,x � y) imply f(x) � f(y);
(3) monotone if f is increasing or decreasing;
(4) progressive if x � f(x), for every x ∈ X;
(5) regressive if x � f(x), for every x ∈ X.
We introduce now some new classes of operators on an ordered set.
Let us consider the following sets:

X� := {(x, y) ∈ X ×X|x � y or y � x} and Xf := {x ∈ X|(x, f(x)) ∈ X�}.

We also define (f × f)(x, y) := (f(x), f(y)), for (x, y) ∈ X ×X.

Definition 3.1. Let (X,�) be an ordered set and f : X → X be an operator. Then,
f is called a generalized monotone operator if (f × f)(X�) ⊂ X�.

Remark 3.1. We observe that:
(a) Ff ⊂ Xf ;
(b) If f is a generalized monotone operator, then:

(i) f(Xf ) ⊂ Xf ;
(ii) for x ∈ Xf we have Of (x) := {fn(x)|n ∈ N} ⊂ Xf ;
(iii) if Ff = {x∗} and Xx∗ := {x ∈ X|(x, x∗) ∈ X�}, then f(Xx∗) ⊂ Xx∗ .

Remark 3.2. There are two classes of operators defined in terms of Xf :
• operators f such that Xf = X;
• operators f such that Xf = f(X).

First class includes progressive and regressive operators, while second class contains
operators f which are progressive or regressive on f(X).

We give now some examples of generalized monotone operators.

Example 3.1. (1) Let (X,�) be an ordered set and f : X → X be an operator. If
f is increasing with respect to �, then f is a generalized monotone operator.

(2) Let (X,�) be an ordered set and f : X → X be an operator. If f is decreasing
with respect to �, then f is a generalized monotone operator.
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(3) Let (X,�) be a totally ordered set. Then, any operator f : X → X is a
generalized monotone operator.

(4) Let (X,�) be an ordered set and suppose that X = Y1 ∪ Y2 is a partition of
X, such that Y1 × Y2 ⊂ X × X \ X�. Let f : X → X be an operator, such that
f : Y1 → X is increasing with respect to � and f : Y2 → X is decreasing with respect
to �. Then, f is a generalized monotone operator.

(5) Let (X,�X) and (Y,�Y ) be two ordered sets, f : X → X be an increasing
operators and g : Y → Y be a decreasing operators. Let Z := X ∪ Y be the disjoint
union of the sets X and Y . We consider on Z the following order relation: on X we
define �Z :=�X , on Y we define �Z :=�Y , while if z1 ∈ X and z2 ∈ Y , then z1, z2

are not comparable with respect to �Z .
In the above conditions, the operator h : Z → Z defined by

h(z) =

{
f(z), if z ∈ X
g(z), if z ∈ Y

is generalized monotone and Z�Z
= X�X

∪ Y�Y
, Zh = Xf ∪ Yg.

We recall some classes of ordered sets which appear in some fixed point results.

Definition 3.2. A nonempty ordered set (X,�) is said to be directed upward if for
each pair of elements x, y ∈ X there exists z ∈ X such that x � z and y � z.
Dually, (X,�) is said to be directed downward if for each pair of elements x, y ∈ X
there exists z ∈ X such that x � z and y � z.

We introduce now a new class of ordered sets, which generalizes the above concepts
and will we used in our main theorems.

Definition 3.3. A nonempty ordered set (X,�) is said to be a generalized directed
set if for each pair of elements x, y ∈ X there exists z ∈ X such that (x, z) and (y, z)
are in X�.

4. Generalized contractions and generalized monotone operators on a
set endowed with a metric and an order relation

The main idea of this section is given by the following result.

Lemma 4.1. Let X be a nonempty set, d be a metric on X and � be an order
relation on X. We consider an operator f : X → X having the generalized monotone
property. We suppose:

(i) (X,�) is a generalized directed set;
(ii) if (x, y) ∈ X�, then x and y are asymptotically equivalent;
(iii) Xf 6= ∅ and f : Xf → Xf is a WPO.
Then, f : X → X is a PO.

Proof. Let x ∈ X be arbitrarily chosen. Let y ∈ Xf . For the pair (x, y) ∈ X ×X, by
(i), there is z ∈ X such that (x, z), (y, z) ∈ X�. By (ii) it follows that

d(fn(x), fn(z))→ 0 and d(fn(y), fn(z))→ 0, and n→∞.
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By (iii) we have that fn(y) → f∞(y) ∈ Ff as n → ∞. Thus, fn(x) → f∞(y) as
n→∞.

Hence, if x∗ := f∞(y) ∈ Ff , then, for each x ∈ X, we have that fn(x) → x∗ as
n→∞. As a conclusion, f is a PO. �

Remark 4.1. If X is a ∨-semi-lattice or a ∧-semi-lattice, then the assumption (i) is
satisfied.

By the above result, the following question arises.
Problem 1. Which metric assumptions on f with respect to X� assure that the
following conditions are realized:

(i) (x, y) ∈ X� ⇒ x and y are asymptotically equivalent;
(ii) f : Xf → Xf is a WPO.

In the last part of this section some results related to the above problem are given.

Theorem 4.1. Let X be a nonempty set, d be a complete metric on X and � be
an order relation on X. We consider an operator f : X → X having the generalized
monotone property. We suppose:

(i) (X,�) is a generalized directed set;
(ii) there exists L ∈]0, 1[ such that

d(f(x), f(y)) ≤ Ld(x, y), for every x, y ∈ X with x � y;

(iii) Xf 6= ∅ and f : X → X is orbitally continuous.
Then, the following conclusions hold:

(1) f : X → X is a PO;

(2) f : Xf → Xf is a 1
1−L -PO;

(3) f : Xx∗ → Xx∗ is L-quasicontraction;

(4) f : Xx∗ → Xx∗ is a 1
1−L -PO;

(5) if (yn)n∈N ⊂ Xx∗ and d(yn, f(yn)) → 0 as n → ∞, then yn → x∗ as n → ∞,
i.e., the fixed point problem is well-posed for f |Xx∗ ;

(6) if (yn)n∈N ⊂ Xx∗ and d(yn+1, f(yn))→ 0 as n→∞, then yn → x∗ as n→∞,
i.e., f |Xx∗ has the Ostrowski property;

(7) for each ε > 0 there exists δ > 0 such that, if (yn)n∈N ⊂ Xx∗ and
d(yn+1, f(yn)) < δ for every n ∈ N, then there exists x ∈ Xx∗ such that d(yn, f

n(x)) <
ε, for every n ∈ N, i.e., f |Xx∗ has the shadowing property.

Proof. Notice first that, by the symmetry of the metric d, the condition (ii) is satisfied
for all (x, y) ∈ X�.
(1) By (ii) it follows that f : Xf → Xf is a graphic L-contraction. Then, fn(x) →
f∞(x) as n → ∞, for each x ∈ Xf . By the orbital continuity of f , we get that
f∞(x) ∈ Ff , i.e., f : Xf → Xf is a WPO. By (ii) we obtain that, for each (x, y) ∈ X�,
the elements x and y are asymptotically equivalent. The conclusion follows now by
Lemma 4.1.
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(2) By (1) we have that Ff = {x∗}. Let x ∈ Xf be arbitrary. Since f : Xf → Xf

is a graphic contraction, we have that

d(x, x∗) ≤ d(x, f(x)) + d(f(x), f2(x)) + · · ·+ d(fn(x), fn+1(x)) + d(fn+1(x), x∗)

≤ 1

1− L
d(x, f(x)) + d(fn+1(x), x∗), for all n ∈ N∗ and every x ∈ Xf .

Letting n→∞, we obtain that

d(x, x∗) ≤ 1

1− L
d(x, f(x)), for each x ∈ Xf ,

proving that f : Xf → Xf is a 1
1−L -PO.

(3) Let x ∈ Xx∗ . Then d(f(x), x∗) = d(f(x), f(x∗)) ≤ Ld(x, x∗). Thus, f : Xx∗ →
Xx∗ is an L-quasicontraction.

(4) By (1) we know that f : Xx∗ → Xx∗ is a PO. Then, for every x ∈ Xx∗ , we have
d(x, x∗) ≤ d(x, f(x)) + d(f(x), x∗) ≤ d(x, f(x)) + Ld(x, x∗). Thus

d(x, x∗) ≤ 1

1− L
d(x, f(x)), for all x ∈ Xx∗ .

(5) Let (yn)n∈N ⊂ Xx∗ such that d(yn, f(yn))→ 0 as n→∞. Then, we have

d(yn, x
∗) ≤ d(yn, f(yn)) + d(f(yn), x∗) ≤ d(yn, f(yn)) + Ld(yn, x

∗).

Thus, we get that d(yn, x
∗)→ 0 as n→∞.

(6) Let (yn)n∈N ⊂ Xx∗ such that d(yn+1, f(yn))→ 0 as n→∞. Then, we have

d(yn+1, x
∗) ≤ d(yn+1, f(yn)) + d(f(yn), x∗) ≤ d(yn+1, f(yn)) + Ld(yn, x

∗)

≤ d(yn+1, f(yn)) + Ld(yn, f(yn−1)) + L2d(yn−1, x
∗) ≤ · · ·

≤
n∑
k=0

Ln−kd(yk+1, f(yk)) + Ln+1d(y0, x
∗).

The conclusion follows by Cauchy-Toeplitz Lemma (see, for example, [85]). �

Remark 4.2. If in Theorem 4.1, instead of the assumption (i) we suppose that (X,�)
is a lattice, then, for all x ∈ X, we have

d(fn(x), fn(x ∨ x∗)) ≤ Lnd(x, x ∨ x∗)

and

d(fn(x ∨ x∗), x∗) ≤ Lnd(x ∨ x∗, x∗).
Hence, we get the following estimation:

d(fn(x), x∗) ≤ Ln [d(x, x ∨ x∗) + d(x ∨ x∗, x∗)] , for every x ∈ X and n ∈ N∗.

Similarly, we obtain

d(fn(x), x∗) ≤ Ln [d(x, x ∧ x∗) + d(x ∧ x∗, x∗)] , for every x ∈ X and n ∈ N∗.

Another fixed point result of this type uses the notion of ϕ-contraction.
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Theorem 4.2. Let X be a nonempty set, d be a complete metric on X and � be
an order relation on X. We consider an operator f : X → X having the generalized
monotone property. We suppose:

(i) (X,�) is a generalized directed set;
(ii) there exists a strong comparison function ϕ : R+ → R+ such that

d(f(x), f(y)) ≤ ϕ(d(x, y)), for every x, y ∈ X with x � y;

(iii) Xf 6= ∅ and f : X → X is orbitally continuous.
Then, the following conclusions hold:
(1) f : X → X is a PO;

(2) f : Xf → Xf is a s-PO, where s(t) :=
∑
n≥0

ϕn(t), for t ∈ R+;

(3) f : Xx∗ → Xx∗ is ϕ-quasicontraction;
(4) if, additionally, t − ϕ(t) → ∞ as t → ∞, then f : Xx∗ → Xx∗ is a ηϕ-PO,

where ηϕ(u) = sup{t ∈ R+|t− ϕ(t) ≤ u};
(5) if, additionally, t − ϕ(t) → ∞ as t → ∞ and (yn)n∈N ⊂ Xx∗ is such that

d(yn, f(yn))→ 0 as n→∞, then yn → x∗ as n→∞;
(6) if, additionally, ϕ is a subadditive function and (yn)n∈N ⊂ Xx∗ is such that

d(yn+1, f(yn))→ 0 as n→∞, then yn → x∗ as n→∞.

Proof. (1) By (ii) it follows that f : Xf → Xf is a graphic ϕ-contraction, i.e.,

d(f(x), f2(x)) ≤ ϕ(d(x, f(x))), for every x ∈ Xf .

Then, we obtain

d(fn(x), fn+1(x)) ≤ ϕn(d(x, f(x)))→ 0 as n→∞, for every x ∈ Xf .

By the strong comparison assumption on ϕ, we obtain that, for each x ∈ Xf , the
sequence (fn(x))n∈N is Cauchy. Thus, (fn(x))n∈N is convergent inX, for each x ∈ Xf .
Using the orbital continuity of f|Xf

, we have that fn(x) → f∞(x) ∈ Ff as n → ∞,

for each x ∈ Xf . Thus, f : Xf → Xf is a WPO. By (ii) we obtain that, for each
(x, y) ∈ X�, the elements x and y are asymptotically equivalent. The conclusion
follows now by Lemma 4.1.

(2) By (1) we have that Ff = {x∗}. Let x ∈ Xf be arbitrary. Since f : Xf → Xf

is a graphic ϕ-contraction, we have, for every x ∈ Xf , that

d(x, x∗) ≤ d(x, f(x)) + d(f(x), f2(x)) + · · ·+ d(fn(x), fn+1(x)) + d(fn+1(x), x∗)

≤ d(x, f(x)) + ϕ(d(x, f(x))) + · · ·+ ϕn(d(x, f(x))) + d(fn+1(x), x∗), for all n ∈ N∗.
Letting n→∞, we obtain that

d(x, x∗) ≤
∑
n≥0

ϕn(d(x, f(x))) = s(d(x, f(x))), for each x ∈ Xf ,

proving that f : Xf → Xf is a s-PO.
(3) Let x ∈ Xx∗ . Then d(f(x), x∗) = d(f(x), f(x∗)) ≤ ϕ(d(x, x∗)).

Thus, f : Xx∗ → Xx∗ is an ϕ-quasicontraction.
(4) By (1) we know that f : Xx∗ → Xx∗ is a PO. Then, for every x ∈ Xx∗ , we have

d(x, x∗) ≤ d(x, f(x)) + d(f(x), x∗) ≤ d(x, f(x)) + ϕ(d(x, x∗)).
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Thus
d(x, x∗) ≤ ηϕ(d(x, f(x))), for all x ∈ Xx∗ .

(5) Let (yn)n∈N ⊂ Xx∗ such that d(yn, f(yn))→ 0 as n→∞. Then, we have

d(yn, x
∗) ≤ d(yn, f(yn)) + d(f(yn), x∗) ≤ d(yn, f(yn)) + ϕ(d(yn, x

∗)).

Thus, we get that d(yn, x
∗) ≤ ηϕ(d(yn, f(yn)))→ 0 as n→∞.

(6) Let (yn)n∈N ⊂ Xx∗ such that d(yn+1, f(yn))→ 0 as n→∞. Then, we have

d(yn+1, x
∗) ≤ d(yn+1, f(yn)) + d(f(yn), x∗) ≤ d(yn+1, f(yn)) + ϕ(d(yn, x

∗))

≤ d(yn+1, f(yn)) + ϕ(d(yn, f(yn−1))) + ϕ2(d(yn−1, x
∗)) ≤ · · ·

≤
n∑
k=0

ϕn−k(d(yk+1, f(yk))) + ϕn+1(d(y0, x
∗)).

The conclusion follows by generalized Cauchy-Toeplitz Lemma (see, for example,
[65]). �

We have the following general remark.

Remark 4.3. Let (X,→) be an L-space and f : X → X be an operator. Then, the
following statements are equivalent:

(1) f is a PO;
(2) there exists p ∈ N∗ such that fp is a PO;
(3) for every p ∈ N∗ we have that fp is a PO.

By the above remark, we have the following theorem concerning the fixed points
of an operator having the contraction property for one of its iterates.

Theorem 4.3. Let X be a nonempty set, d be a complete metric on X and � be
an order relation on X. We consider an operator f : X → X having the generalized
monotone property. We suppose:

(i) (X,�) is a generalized directed set;
(ii) there exist p ∈ N∗ and k ∈]0, 1[ such that

d(fp(x), fp(y)) ≤ kd(x, y), for every x, y ∈ X with x � y;

as n→∞;
(iii) Xfp 6= ∅ and fp : X → X is orbitally continuous.

Then, f : X → X is a PO.

Proof. Notice first that fp satisfies all the assumptions of Theorem 4.1.
Thus, fp : X → X is a PO. Now, the conclusion follows by Remark 4.3. �

A fixed point result for the case of Kannan operators is the following.

Theorem 4.4. Let X be a nonempty set, d be a complete metric on X and � be
an order relation on X. We consider an operator f : X → X having the generalized
monotone property. We suppose:

(i) (X,�) is a generalized directed set;
(ii) there exists k ∈]0, 1

2 [ such that

d(f(x), f(y)) ≤ k (d(x, f(x)) + d(y, f(y))) , for every x, y ∈ X with x � y;
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(iii) Xf 6= ∅ and f : X → X is orbitally continuous.
Then, f : Xf → Xf is a WPO.

Proof. By the Kannan type condition (ii), we obtain that the operator f : Xf → Xf is

a graphic k
1−k -contraction. This (together with the orbital continuity of f|Xf

) implies

that f : Xf → Xf is a WPO and we have fn(x) → f∞(x) ∈ Ff as n → ∞, for each
x ∈ Xf . �

Remark 4.4. In [74], Ran and Reurings use the following relaxation of the contrac-
tion condition:

(A) there exists k ∈]0, 1[ such that

d(f(x), f(y)) ≤ kd(x, y), for every (x, y) ∈ X ×X with x � y.
On the other hand, in [70], the authors consider with the following assumption:

(B) there exists k ∈]0, 1[ such that

d(f(x), f(y)) ≤ kd(x, y), for every (x, y) ∈ X�.
It is easy to see that, because of the symmetry of the metric d and of the contraction
condition, we have that (A) ⇔ (B). This remark also applies for the ϕ-contraction

condition, for Kannan’s condition, for Chatterjea’s condition (see [24]) or for Ćirić’s
condition (see [27]). It is also worth to note that, in the absence of the symmetry
of d (for example, the case of quasi-metric spaces) or in the case of non-symmetrical
contraction type conditions, the above equivalence does not hold (for example, the
case of almost contractions in the sense of Berinde, see [14]). In this situations,
condition (B) is more restrictive.

5. Generalized contractions and increasing operators
on ordered metric spaces

By the above results we obtain some fixed point theorems for increasing operators
in complete metric spaces.

Theorem 5.1. Let (X, d,�) be a complete ordered metric space and f : X → X be
an increasing operator with respect to �. We suppose:

(i) (X,�) is a generalized directed set;
(ii) there exists L ∈]0, 1[ such that

d(f(x), f(y)) ≤ Ld(x, y), for every x, y ∈ X with x � y;

(iii) Xf 6= ∅ and f : X → X is orbitally continuous.
Then, the following conclusions hold:
(1) f : X → X is a PO (we denote by x∗ its unique fixed point);
(2) f : Xf → Xf is a 1

1−L -PO.

(3) (x, x∗) ∈ X�, for every x ∈ Xf ;
(4) if (yn)n∈N ⊂ Xx∗ and d(yn, f(yn))→ 0 as n→∞, then yn → x∗ as n→∞;
(5) if (yn)n∈N ⊂ Xx∗ and d(yn+1, f(yn))→ 0 as n→∞, then yn → x∗ as n→∞;
(6) for each ε > 0 there exists δ > 0 such that, if (yn)n∈N ⊂ Xx∗ and

d(yn+1, f(yn)) < δ, for every n ∈ N, then there exists x ∈ Xx∗ such that
d(yn, f

n(x)) < ε, for every n ∈ N;
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(7) if x ∈ X, then:
(a) x � f(x) implies x � x∗;
(b) x � f(x) implies x � x∗;

(8) if x, y ∈ X such that x ≺ y, x � f(x), y � f(y), then x � x∗ � y.

Proof. The first two conclusions and (5)-(6) follow by Theorem 4.1. Conclusions (3)
and (7) follow by Lemma 2.1, while conclusion (8) is a consequence of (7). �

6. Generalized contractions and decreasing operators
on ordered metric spaces

In some papers, after presenting fixed point results for increasing operators, some
authors (see, for example, [5], [92]) notice that similar results for decreasing operators.
It is clear that this is not the case here. In general, a decreasing operator from a
complete lattice to itself has no fixed points. A good remark is the following (see
Amann [10]): Let (X,�) be an ordered set and f : X → X be a decreasing operator.
Then, the operator f2 is increasing. Let us suppose that X has a minimum element
τ (i.e., τ � x, for all x ∈ X). Then τ � f(x) � f(τ). Thus, f(X) ⊂ [τ, f(τ)]. Hence
Ff ⊂ [τ, f(τ)]. If [τ, f(τ)] is a complete ordered set, then Ff2 6= ∅. If Ff2 = {x∗},
then Ff = {x∗}.

For the fixed point theory of decreasing operators, see [1], [2], [5], [10], .... By the
results given in Section 4, we also obtain some fixed point theorems for decreasing
operators in complete metric spaces.

Theorem 6.1. Let (X, d,�) be a complete ordered metric space and f : X → X be
an decreasing operator with respect to �. We suppose:

(i) (X,�) is a generalized directed set;
(ii) there exists L ∈]0, 1[ such that

d(f(x), f(y)) ≤ Ld(x, y), for every x, y ∈ X with x � y;

(iii) Xf2 6= ∅ and f2 : X → X is orbitally continuous.
Then, f : X → X is a PO.

Proof. Since f is decreasing, we get that f2 : X → X is an increasing operator with
respect to �. By (ii) we get that f2 is a L2-contraction on comparable elements, i.e.,

d(f2(x), f2(y)) ≤ L2d(x, y), for every x, y ∈ X with x � y.
By Theorem 5.1 we get that f2 is a PO. The conclusion follows by Remark 4.3. �

7. Applications in the theory of differential
and integral equations in Banach spaces

7.1. Banach lattices of continuous Banach lattice-valued functions. Let us
consider the Banach lattice (B,+,R, ‖ · ‖,�) (see [89], [35]) and denote

X := C([a, b],B) := {x : [a, b]→ B|x is continuous }.
We consider on X the following norms:

‖x‖∞ := max
t∈[a,b]

‖x(t)‖, ‖x‖τ := max
t∈[a,b]

(
‖x(t)‖e−τ(t−a)

)
(τ > 0)
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and the standard order relation

x ≤C y ⇔ x(t) � y(t), t ∈ [a, b].

We get the following Banach lattices (X,+,R, ‖ · ‖∞,≤C) and (X,+,R, ‖ · ‖τ ,≤C).
By Theorem 5.1, we have the following result.

Theorem 7.1. Let us consider the Banach lattice (X,+,R, ‖ · ‖∞,≤C) and T : X →
X be an operator. We suppose:

(i) T is increasing;
(ii) there exists L ∈ [0, 1[ such that

‖T (x)− T (y)‖∞ ≤ L‖x− y‖∞, for every x, y ∈ X with x ≤C y;

(iii) XT 6= ∅.
Then, the following conclusions hold:

(1) FT = FTn = {x∗}, for every n ≥ 2 and T is a PO;
(2) T : XT → XT is a 1

1−L -PO;

(3) (x, x∗) ∈ X≤C
, for every x ∈ XT , i.e., T : Xx∗ → Xx∗ is a quasicontraction;

(4) the fixed point problem x = T (x) (where T : Xx∗ → Xx∗) is well-posed;
(5) the operator T : Xx∗ → Xx∗ has the Ostrowski property;
(6) the fixed point equation x = T (x) (where T : Xx∗ → Xx∗) is Ulam-Hyers stable;
(7) for all x ∈ X the following implications hold:

(a) x ≤C T (x)⇒ x ≤ x∗;
(b) T (x) ≤C x⇒ x∗ ≤ x.

Remark 7.1. A similar result (with the assumption L > 0) holds for the Banach
lattice (X,+,R, ‖ · ‖τ ,≤C). We denote this result by Theorem 8’.

Remark 7.2. In Theorem 7.1 we can consider, instead of the Banach lattice B, the
following particular Banach lattices (Rm,+,R, ‖ · ‖∞,≤) and (m(R),+,R, ‖ · ‖∞,≤),
where we denote m(R) := {(xn)n∈N ⊂ R|(xn)n∈N is a bounded sequence }.

7.2. Volterra integral equations and Cauchy problems. We consider the fol-
lowing Volterra type integral equation in Banach spaces

x(t) =

∫ t

a

K(t, s, x(s))ds+ g(t), t ∈ [a, b], (7.1)

where K ∈ C([a, b]× [a, b]× B,B), g ∈ C([a, b],B) and B is a Banach lattice.
Then, by Theorem 8’, we have the following result.

Theorem 7.2. Let us consider the equation (7.1). We suppose:
(i) K ∈ C([a, b]× [a, b]× B,B), g ∈ C([a, b],B);
(ii) there exists L > 0 such that, for every t, s ∈ [a, b], we have

‖K(t, s, u)−K(t, s, v)‖ ≤ L‖u− v‖, for every u, v ∈ B with u � v;

(iii) K(t, s, ·) is increasing, for every t, s ∈ [a, b].
Then, the following conclusions hold:

(1) there exists a unique solution x∗ ∈ C([a, b],B) of equation (7.1);
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(2) the sequence {xn}n∈N from C([a, b],B) defined by

x0 ∈ C([a, b],B), xn+1(t) =

∫ t

a

K(t, s, xn(s))ds+ g(t), t ∈ [a, b]

converges, for each x0 ∈ C([a, b],B), to x∗;
(3) if x ∈ C([a, b],B) is a lower solution of (7.1), then x � x∗;
(4) if x ∈ C([a, b],B) is an upper solution of (7.1), then x∗ � x.

Proof. Let X := C([a, b],B) and the Banach lattice (X,+,R, ‖ · ‖τ ,≤C). Define

T : X → X by Tx(t) :=
∫ t
a
K(t, s, x(s))ds+ g(t), t ∈ [a, b]. The conclusion follows by

Theorem 8’ applied for T . �

By the above theorem, we can get an existence and uniqueness results for a Cauchy
problem in Banach spaces.

We consider the following Cauchy problem{
x′(t) = f(t, x(t)), t ∈ [a, b]

x(a) = x0,
(7.2)

where f ∈ C([a, b] × B,B), x0 ∈ B and B is a Banach lattice. We are looking for
solutions x ∈ C1([a, b],B) of this problem.

Notice first that problem (7.2) is equivalent to the following integral equation of
Volterra type

x(t) =

∫ t

a

f(s, x(s))ds+ x0, t ∈ [a, b]. (7.3)

Any solution x ∈ C([a, b],B) of (7.3) is a solution of (7.2) and vice-versa. Thus, by
Theorem 7.2, we get the following existence and uniqueness result.

Theorem 7.3. Let us consider the Cauchy problem (7.2). We suppose:
(i) f ∈ C([a, b]× B,B) and x0 ∈ B;
(ii) there exists L > 0 such that, for every s ∈ [a, b], we have

‖f(s, u)− f(s, v)‖ ≤ L‖u− v‖, for every u, v ∈ B with u � v;

(iii) f(s, ·) is increasing, for every s ∈ [a, b].
Then, the following conclusions hold:

(1) there exists a unique solution x∗ of the Cauchy problem (7.2);
(2) the sequence {xn}n∈N in C([a, b],B), defined by

x0 ∈ C([a, b],B), xn+1(t) =

∫ t

a

f(s, xn(s))ds+ x0, t ∈ [a, b]

converges, for each x0 ∈ C([a, b],B), to x∗;
(3) if x ∈ C([a, b],B) is a lower solution of (7.2), then x � x∗;
(4) if x ∈ C([a, b],B) is an upper solution of (7.2), then x∗ � x.
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7.3. Fredholm integral equations and bilocal problems. We consider the fol-
lowing Fredholm type integral equation in Banach spaces

x(t) =

∫ b

a

K(t, s, x(s))ds+ g(t), t ∈ [a, b], (7.4)

where K ∈ C([a, b]× [a, b]× B,B), g ∈ C([a, b],B) and B is a Banach lattice.
Then, by Theorem 7.1, we have the following result.

Theorem 7.4. Let us consider the equation (7.4). We suppose:
(i) K ∈ C([a, b]× [a, b]× B,B), g ∈ C([a, b],B);
(ii) there exists L ∈ [0, 1[ such that L(b−a) < 1 and, for every t, s ∈ [a, b], we have

‖K(t, s, u)−K(t, s, v)‖ ≤ L‖u− v‖, for every u, v ∈ B with u � v;

(iii) K(t, s, ·) is increasing, for every t, s ∈ [a, b].
Then, the following conclusions hold:

(1) there exists a unique solution x∗ ∈ C([a, b],B) of equation (7.4);
(2) the sequence {xn}n∈N from C([a, b],B), defined by

x0 ∈ C([a, b],B), xn+1(t) =

∫ b

a

K(t, s, xn(s))ds+ g(t), t ∈ [a, b]

converges, for each x0 ∈ C([a, b],B), to x∗;
(3) if x ∈ C([a, b],B) is a lower solution of (7.4), then x � x∗;
(4) if x ∈ C([a, b],B) is an upper solution of (7.4), then x∗ � x.

Proof. Let X := C([a, b],B) and the Banach lattice (X,+,R, ‖ · ‖∞,≤C). Define

T : X → X by Tx(t) :=
∫ b
a
K(t, s, x(s))ds+ g(t), t ∈ [a, b]. The conclusion follows by

Theorem 7.1 applied for the operator T . �

By the above theorem, we can get an existence and uniqueness results for a bilocal
problem in Banach spaces.

We consider the following bilocal problem{
−x′′(t) = f(t, x(t)), t ∈ [a, b]

x(a) = x(b) = Θ,
(7.5)

where f ∈ C([a, b]× B,B) and Θ ∈ B is the null element of the Banach lattice B. We
are looking for solutions x ∈ C2([a, b],B) of this problem.

Notice first that problem (7.5) is equivalent to the following Fredholm type integral
equation

x(t) =

∫ b

a

G(s, t)f(s, x(s))ds, t ∈ [a, b], (7.6)

where G is the Green function corresponding to the above problem. Notice that
any solution x ∈ C([a, b],B) of (7.6) is a solution of (7.5) and vice-versa. Hence, by
Theorem 7.4, we get the following existence and uniqueness result.

Theorem 7.5. Let us consider the bilocal problem (7.5). We suppose:
(i) f ∈ C([a, b]× B,B);
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(ii) there exists L ∈ [0, 1[ such that, for every s ∈ [a, b], we have

‖f(s, u)− f(s, v)‖ ≤ L‖u− v‖, for every u, v ∈ B with u � v;

(iii) L‖G(t, s)‖(b− a) < 1;
(iii) f(s, ·) is increasing, for every s ∈ [a, b].

Then, the following conclusions hold:
(1) there exists a unique solution x∗ of the bilocal problem (7.5);
(2) the sequence {xn}n∈N in C([a, b],B), defined by

x0 ∈ C([a, b],B), xn+1(t) =

∫ b

a

G(s, t)f(s, xn(s))ds, t ∈ [a, b]

converges, for each x0 ∈ C([a, b],B), to x∗;
(3) if x ∈ C([a, b],B) is a lower solution of (7.5), then x � x∗;
(4) if x ∈ C([a, b],B) is an upper solution of (7.5), then x∗ � x.

8. Open questions

The above considerations give rise to some open questions.

8.1. Fixed point theory for Y -contractions. Let (X, d) be a metric space, f :
X → X be an operator and Y ⊂ X ×X a nonempty set. By definition, f is called a
Y -contraction if there exists L ∈ [0, 1[ such that

d(f(x), f(y)) ≤ Ld(x, y), for every (x, y) ∈ Y.

The problem is to give conditions on X, Y and f , which imply similar conclusions to
those from the Saturated Principle of Contraction.

In this paper, we studied the problem for the case when X is endowed with a
metric d and an ordered relation �. In this case, Y := X�. Following [81] (see also
[85], page 282) we present other examples of Y -contractions.

(1) If (X, d) is a metric space and f : X → X is a graphic contraction, then f is a
Graph(f)-contraction;

(2) (Weingram (1969)) Contractions outside a compact set are Y -contractions.
For example, let us consider X := Rm endowed with one of the classical metric d,
Y := Rm × Rm \ (Z × Z), where Z ⊂ Rm is a nonempty compact set.

(3) (Kirk-Srivasan-Veeramani (2003)) Let (X, d) be a metric space, f : X → X
be an operator and Ai (for i ∈ {1, 2, · · · , p}) be nonempty subsets of X such that

X =

p⋃
i=1

Ai and f(Ai) ⊂ Ai+1, for each for i ∈ {1, 2, · · · , p}, where Ap+1 = A1.

Suppose that f is a cyclic L-contraction, i.e., L ∈ [0, 1[ and

d(f(x), f(y)) ≤ Ld(x, y), for every x ∈ Ai, and y ∈ Ai+1, where i ∈ {1, 2, · · · , p}.

Then, f is a

p⋃
i=1

(Ai ×Ai+1)-contraction.
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(4) (Suzuki (2008), see [91]) Let (X, d) be a metric space and f : X → X be an
operator for which there exists L ∈ [0, 1[ such that

x, y ∈ X, 1

2
d(x, f(x)) ≤ d(x, y)⇒ d(f(x), f(y)) ≤ Ld(x, y).

Then f is an Y -contraction with Y := {(x, y) ∈ X ×X| 12d(x, f(x)) ≤ d(x, y)}.
(5) (Jachymski (2008), see [50]) Let (X, d) be a metric space, G be a directed graph

such that the set of its vertiges V (G) coincides with X and the set of all edges E(G)
contains all loops. Let f : X → X be an operator such that f preserves the edges of
G and there exists L ∈ [0, 1[ such that

d(f(x), f(y)) ≤ Ld(x, y), for every (x, y) ∈ E(G).

Then, f is an Y -contraction with Y := {(x, y) ∈ X ×X|(x, y) ∈ E(G)}.
We notice that the results of this paper can be extended to Y -contractions provided

Y satisfies the following conditions:
(i) (x, x) ∈ Y , for every x ∈ X;
(ii) (x, y) ∈ Y ⇒ (y, x) ∈ Y ;
(iii) for each (x, y) ∈ Y there exists z ∈ X such that (x, z), (y, z) ∈ Y .

8.2. Y -contractions with the shadowing property. Notice that X�-
contractions do not have, in general, the shadowing property. The problem is in
which conditions an Y -contraction has the (limit) shadowing property.

8.3. The case of dislocated metric spaces. Another open question is to extend
the results of this paper to various generalized metric spaces (see [85], [16], [30], [37],
[39], [49], [52], [79], ...) For example, consider the case of dislocated metric spaces.
Let X be a nonempty set. By definition, a functional d : X×X → R+ is a dislocated
metric if the following axioms hold:

(a) d(x, y) = 0⇒ x = y;
(b) d(x, y) = d(y, x), for every x, y ∈ X;
(c) d(x, y) ≤ d(x, z) + d(z, y), for every x, y, z ∈ X.
The dislocated metrics and the stronger notion of partial metrics have applications

to logic programming and theoretical computer science, see, for example, [49] and the
references therein. See also [16], [30], [85].
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[68] A. Petruşel, G. Petruşel, Y.-B. Xiao, J.-C. Yao, Fixed point theorems for generalized contrac-

tions with applications to coupled fixed point theory, J. Nonlinear Convex Anal., 19 (2018),

71-88.
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