
Fixed Point Theory, 20(2019), No. 2, 483-506

DOI: 10.24193/fpt-ro.2019.2.31

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.html

NIELSEN THEORY ON INFRA-NILMANIFOLDS

MODELED ON THE GROUP OF UNI-TRIANGULAR

MATRICES

YOUNGGI CHOI∗,1, JONG BUM LEE∗∗,2 AND KYUNG BAI LEE∗∗∗

∗Department of Mathematics Education, Seoul National University

Seoul 08826, Korea
E-mail: yochoi@snu.ac.kr

∗∗Department of Mathematics, Sogang University

Seoul 04107, Korea

E-mail: jlee@sogang.ac.kr

∗∗∗Department of Mathematics, University of Oklahoma

Norman, OK 73019, USA

E-mail: kblee@math.ou.edu
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1. Introduction

Let Nilm be the group of uni-triangular (upper-triangular unipotent) matrices of
size m, i.e, Nilm consists of all m × m upper triangular real matrices with all the
diagonal entries 1. Then it is an (m − 1)-step nilpotent Lie group, diffeomorphic to

R 1
2m(m−1). We note that Nil2 is the abelian group R, and Nil3 is the Heisenberg

group. We will suppress m whenever no confusion is likely.
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Let Γm ⊂ Nilm be the subgroup consisting of all matrices with integer entries.
Then Γm is a lattice of Nilm. It is known that the group of automorphisms of Nilm is

Aut(Nilm) =


GL(2,R) if m = 2

Nil3/Z(Nil3) o GL(2,R) if m = 3

I o ((R∗)m−1 o Z2) if m ≥ 4,

where I is a connected and simply connected nilpotent Lie group. Hence a maximal
compact subgroup K of Aut(Γm) and of Aut(Nilm) is ([3])

K =

{
O(2) if m = 2, 3

(Z2)m−1 o Z2 if m ≥ 4

where (Z2)m−1 o Z2 ⊂ (R∗)m−1 o Z2 ⊂ GL(m− 1,Z).
The quotient Γm\Nilm is a nilmanifold, and a finite quotient of Γm\Nilm is an

infra-nilmanifold.
It is the purpose of this work to study the Nielsen (coincidence) theory for all

continuous maps of infra-nilmanifolds M that are covered essentially by the nilman-
ifold Γm\Nilm for every m ≥ 3. We will determine the spectra of the fundamental
invariants L(f), N(f) and R(f) of the Nielsen theory where L(f), N(f) and R(f) are
the Lefschetz, the Nielsen and the Reidemeister numbers of f using the averaging
formulas. We will also determine the spectra of the Lefschetz, the Nielsen and the
Reidemeister coincidence invariants. That is, we will determine

L(M) = {L(f) | f is a self-map of M},
Lh(M) = {L(f) | f is a self-homeomorphism of M},
LC(M) = {L(f, g) | f, g are self-maps of M}.

Similarly, we will also determine

N(M), Nh(M), NC(M),

and

R(M), Rh(M), RC(M).

2. Infra-nilmanifolds modeled on Nilm

Let m ≥ 3 and let M be an infra-nilmanifold that is covered essentially by the
nilmanifold Γm\Nilm. Then M = Π\Nilm where Π is a Bieberbach group of Nilm
having Γm as its nil-radical. This means that Π is a torsion-free group which fits in
the following commutative diagram

1 −−−−→ Nilm −−−−→ Nilm oK −−−−→ K −−−−→ 1x∪ x∪ x∪
1 −−−−→ Γm −−−−→ Π −−−−→ Φ −−−−→ 1

where K is a maximal compact subgroup of Aut(Nilm) and Φ is a finite group, called
the holonomy group of Π. Recall that if m = 3, then we can choose K = O(2); if
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m ≥ 4 then we can choose

K = Z2
m−1 o Z2 ⊂ GL(m− 1,Z).

We have a complete classification of all Bieberbach groups Π of Nilm (m ≥ 3) with
Γm as the discrete nil-radical.

Theorem 2.1 ([4]). Let Π = 〈Γ, α〉 where

α = (a,A) =

 1 0 7
24

0 1 1
2

0 0 1

 ,

(
0 −1
1 −1

) ∈ Nil3 o GL(2,Z).

Then Π is the only Bieberbach group of Nil3 with nontrivial holonomy group and with
Γ3 as the discrete nil-radical.

Theorem 2.2 ([3, Theorem 5.1]). For odd m ≥ 4, there is no infra-nilmanifold which
is essentially covered by Γm\Nilm.

For m = 2n ≥ 4, there is a unique infra-nilmanifold which is essentially covered
by the nilmanifold Γm\Nilm. This manifold has the covering group Z2 generated by
α = (a, J) ∈ Nil oK, where a = Z[ 1

2 ] and

J =


0 0 · · · 0 1
0 0 · · · 1 0
...

... . . . ...
...

0 1 · · · 0 0
1 0 · · · 0 0

 ∈ GL(m− 1,Z).

The Nielsen theory concerns with the following basic invariants: the Lefschetz
(coincidence) numbers, the Nielsen (coincidence) numbers and the Reidemeister (co-
incidence) numbers. In the following sections, we shall compute those basis invariants
for all maps on the infra-nilmanifolds Π\Nilm where Π is a Bieberbach group of
Nilm (m ≥ 3) with Γm as the discrete nil-radical.

Let f : Π\G→ Π\G be a continuous self-map of an infra-nilmanifold Π\G. Then
f induces a homomorphism φ : Π → Π. Due to [9, Theorem 1.1], there exists an
affine map (d,D) ∈ Aff(G) of G such that

φ(α) ◦ (d,D) = (d,D) ◦ α, ∀α ∈ Π ⊂ Aff(G). (2.1)

Consequently, the affine map (d,D) : G→ G restricts to a self-map of Π\G which is
homotopic to f . We say that the affine map (d,D) is an affine homotopy lift of f .

For the computation of the basic invariants of the Nielsen theory, we will use the
following averaging formulas:

Theorem 2.3. [Averaging formulas: ([10], [8], [7], [6], [5])] Let f and g be
continuous maps on an (orientable) infra-nilmanifold Π\G with holonomy group Φ.
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Let f and g have affine homotopy lifts (d,D) and (e, E) respectively. Then we have:

L(f, g) =
1

#Φ

∑
A∈Φ

det(E∗ −A∗D∗),

N(f, g) =
1

#Φ

∑
A∈Φ

|det(E∗ −A∗D∗)|,

and

R(f, g) =
1

#Φ

∑
A∈Φ

σ (det(E∗ −A∗D∗)) ,

where D∗, E∗ and A∗ are the matrices of the differentials of the Lie group endomor-
phisms D,E and A with respect to the same linear basis of the Lie algebra of G, and
where σ : R→ R ∪ {∞} is defined by

σ(0) =∞ and σ(x) = |x| for x 6= 0.

3. The theoretical idea behind the computation

In order to use the averaging formulas for the computation of all possible Lefschetz,
Nielsen and Reidemeister numbers of self-maps on infra-nilmanifolds Π\Nilm, we have
to know what the possibilities are for such self-maps. By [9, Theorem 1.1], we know
that every such a map is homotopic to a map that is induced by an affine map on the
Lie group. Because the Lefschetz numbers, the Nielsen numbers and the Reidemeister
numbers are homotopy type invariants, we know that it suffices to find all possible
affine maps that induce a self-map on the infra-nilmanifold.

For the practical approach, let (d,D) be any affine map of Nilm. Then the map
(d,D) induces a self-map on the infra-nilmanifold Π\Nilm if and only if there exists
an endomorphism φ : Π → Π satisfying the equation (2.1):

φ(α) ◦ (d,D) = (d,D) ◦ α, ∀α ∈ Π ⊂ Aff(Nilm).

When Π = Γm, the case is much simpler. In this case, (2.1) yields

φ(α) = (µ(d) ◦D)(α) ∀α ∈ Γm

where µ(d) is the conjugation by d, x 7→ dxd−1. Thus we obtain the following
commutative diagram

Nilm
µ(d)◦D−−−−−→ Nilmx∪ x∪

Γm
φ−−−−→ Γm

That is, µ(d) ◦ D is the extension of the endomorphism φ of the lattice Γm to the
Lie group Nilm. Furthermore, (d,D) and µ(d) ◦ D induce self-maps on Γm\Nilm,
homotopic to each other. Therefore, when Π = Γm it suffices to understand the set
of all endomorphisms of the lattice Γm, Endo(Γm).

Now we will consider the case where Π 6= Γm. Let Φ be the nontrivial holonomy
group of Π generated by an element A ∈ GL(m− 1,Z). By Theorems 2.1 and 2.2, A
is of order 3 or 2 depending on m = 3 or m > 3 respectively.
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Let m = 3. Consider the equation (2.1) with specific α = (a,A). Since φ(α) ∈ Π
and A is of order 3, φ(α) is of the form

γ, γα = (γa,A), γα2 = (γaA(a), A2),

where γ ∈ Γm. By substitution into (2.1), we have one of the following

DA = D,DA = AD or DA = A−1D. (3.1)

Here, A ∈ GL(2,Z) and A ∈ GL(2,Z) can be regarded as an element of A ∈ Aut(Nil3)
and of A∗ ∈ Aut(nil3)

Let m > 3. Since φ(α) ∈ Π, φ(α) is of the form

γ, γα = (γa,A)

where γ ∈ Γm. By (2.1),

(d,D)(a,A) = (γ, I)(d,D) or (d,D)(a,A) = (γ, I)(a,A)(d,D).

This implies that either

DA = D or DA = AD. (3.2)

Since m > 3, A is diagonal or anti-diagonal in GL(m− 1,Z) (see [2, Lemma 3.9]) and
it can be regarded as an element of A ∈ Aut(Nilm) and of A∗ ∈ Aut(nilm).

If Γm(⊂ Π) is φ-invariant, then the equation (2.1) induces that

φ(γ) = µ(d) ◦D(γ), ∀γ ∈ Γm.

Hence we need to find all endomorphisms D of Λm satisfying (3.1) when m = 3 and
(3.2) when m > 3. This is the case when φ is an automorphism because Γm is a
characteristic subgroup of Π.

However, Γm is not necessarily a fully invariant subgroup of Π. By [10, Lemma 3.1],
there exists a fully invariant subgroup Λm ⊂ Γm of Π which is of finite index. For all
λ ∈ Λm, the equation (2.1) gives

φ(λ) = (µ(d) ◦D)(λ).

Thus we obtain the following commutative diagram

Nilm
µ(d)◦D−−−−−→ Nilmx∪ x∪

Λm
φ|Λ−−−−→ Λm

The Lie group endomorphism µ(d) ◦D is our linearization of f .
Consequently, when Π 6= Γm we need to find a fully invariant subgroup Λm ⊂ Γm

of Nilm and then find all endomorphisms D of Λm, D ∈ Endo(Λm), satisfying (3.1)
when m = 3 and (3.2) when m > 3 by regarding A as an element of A ∈ Aut(Λm).
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4. Endomorphisms of Γ3

Let φ be an endomorphism of Γm. Then it can be regarded as a Lie group en-
domorphism of Nilm. That is, Endo(Γm) ⊂ Endo(Nilm). Because of the following
commutative diagram

Nilm
φ−−−−→ Nilmylog

xexp

nilm
dφ−−−−→ nilm

we can identify φ with its differential dφ, so we have

Endo(Γm) ⊂ Endo(Nilm) = Endo(nilm).

First we consider the case m = 3. The Lie algebra nil3 of Nil3 is

nil3 =


0 x1 x3

0 0 x2

0 0 0

 | x1, x2, x3 ∈ R

 .

This algebra is linearly generated by

e
1,2

=

0 1 0
0 0 0
0 0 0

 , e
2,3

=

0 0 0
0 0 1
0 0 0

 , e
1,3

=

0 0 1
0 0 0
0 0 0

 .

They satisfy the only nontrivial Lie bracket

[e
1,2
, e

2,3
] = e

1,3
.

A Lie algebra endomorphism of nil3 is a linear transformation of the linear space nil3
preserving all Lie brackets among the linear basis {e

1,2
, e

2,3
, e

1,3
}, and vice versa. It

is easy to see that the set of all Lie algebra endomorphisms of nil3 is the following set
of 3× 3 matrices

Endo(nil3) =


 a b 0
c d 0
u v ad− bc

 | a, b, c, d, u, v ∈ R

 .

Let φ ∈ Endo(Γ3) with

φ = dφ =

 a b 0
c d 0
u v ad− bc

 .

Write

E
1,2

= exp e
1,2
, E

2,3
= exp e

2,3
, E

1,3
= exp e

1,3
.
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Then

φ(E
1,2

) = exp ◦φ ◦ log(E
1,2

)

= exp(ae1,2 + ce2,3 + ue1,3)

= exp

0 a u
0 0 c
0 0 0

 =

1 a u+ ac
2

0 1 c
0 0 1


= Ea

1,2
Ec

2,3
Eu−

ac
2

1,3
.

Similarly, we have

φ(E
2,3

) = Eb
1,2
Ed

2,3
Ev−

bd
2

1,3
, φ(E

1,3
) = Ead−bc

1,3
.

Since Γ3 is generated by E
1,2
, E

2,3
and E

1,3
, we have

Endo(Γ3) =


 a b 0
c d 0
u v ad− bc

 | a, b, c, d ∈ Z, u, v ∈ 1

2
Z

 .

5. Nielsen theory on infra-nilmanifolds modeled on Nil3

Let M = Γ3\Nil3 be the standard nilmanifold. Then by Theorem 2.3

L(f, g) = det(ψ − φ),

N(f, g) = |det(ψ − φ)|,
R(f, g) = σ(det(ψ − φ)).

Here, φ and ψ ∈ Endo(Γ3) ⊂ Aut(Nil3) = Aut(nil3) induce maps on M which are
homotopic to f and g, respectively.

Example 5.1. Let φ ∈ Aut(nil3) be given by

φ =

 −1 1 0
−1 2 0

− 1
2 0 −1

 .

Then it can be seen that φ ∈ Aut(Γ3) and hence φ induces a homeomorphism f of
Γ3\Nil3 whose linearization is φ. Therefore the Lefschetz number, the Nielsen number
and the Reidemeister number of f are

L(f) = det(I3 − φ) = −2,

N(f) = |det(I3 − φ)| = | − 2| = 2,

R(f) = σ(det(I3 − φ)) = σ(−2) = | − 2| = 2.

In the following we will determine the possible values of the Lefschetz numbers,
the Nielsen numbers and the Reidemeister numbers for all homeomorphisms f of the
standard nilmanifold Γ3\Nil3.
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Theorem 5.2. We have

Lh(Γ3\Nil3) = 2Z,
Nh(Γ3\Nil3) = 2N ∪ {0},
Rh(Γ3\Nil3) = 2N ∪ {∞}.

Proof. Let f be a homeomorphism of the nilmanifold Γ3\Nil3. Then our linearization
F ∈ Aut(Γ3) of f is of the form

F =

(
F̄ 0

∗ det(F̄ )

)
with F̄ ∈ GL(2,Z) and det(F̄ ) = ±1.

Remark that

det(I3 − F ) = det(I2 − F̄ ) · (1− det(F̄ ))

=
(
1− tr (F̄ ) + det(F̄ )

) (
1− det(F̄ )

)
.

Consider any F̄ ∈ GL(2,Z) with det(F̄ ) = 1, for example we can choose F̄ = I2. Then
it is obvious that det(I3 − F ) = 0, hence L(f) = 0. Next we consider F̄ ∈ GL(2,Z)
so that det(F̄ ) = −1. Then det(I3 − F ) = −2 tr (F̄ ). If we choose F̄ to be

F̄ =

(
1 + n −n

1 −1

)
then L(f) = det(I3 − F ) = −2n. This finishes the proof. �

When f is a homotopically periodic map of Γ3\Nil3, we can show that f always
has the Nielsen number N(f) = 0.

Theorem 5.3. For any homotopically periodic map f of Γ3\Nil3, the Lefschetz num-
ber, the Nielsen number and the Reidemeister number are

L(f) = 0, N(f) = 0, R(f) =∞.

Proof. Just like before, we may assume that a linearization of f is

F =

(
F̄ 0

∗ det(F̄ )

)
∈ Aut(Γ3)

so that

L(f) = det(I3 − F ) =
(
1− tr (F̄ ) + det(F̄ )

) (
1− det(F̄ )

)
.

It suffices to show that if F is of finite order then det(I3−F ) = 0. If det(F̄ ) = 1 then
it is clear that det(I3 − F ) = 0. On the other hand, consider det(F̄ ) = −1. Then the
trace of F̄ is 0. For, first recall from [11, p. 180] that every element of finite order in
GL(2,Z) is conjugate to one of the following matrices

±I2,
(

0 1
1 0

)
,

(
1 0
0 −1

)
,

(
0 −1
1 −1

)
,

(
0 1
−1 0

)
,

(
0 1
−1 1

)
.
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Since det(F̄ ) = −1, F̄ is conjugate to

(
0 1
1 0

)
or

(
1 0
0 −1

)
, each of which has trace

0. Thus, we still have det(I3 − F ) = −2 tr (F̄ ) = 0. �

Now we consider arbitrary self-maps of the standard nilmanifold Γ3\Nil3.

Theorem 5.4. We have

L(Γ3\Nil3) = Z,
N(Γ3\Nil3) = N ∪ {0},
R(Γ3\Nil3) = N ∪ {∞}.

Proof. Note that

F =

 1 − 1 0
1 k − 1 0

0 0 k

 ∈ Endo(Γ3).

Let f be a self-map of Γ3\Nil3 whose linearization is F . Then

L(f) = det(I3 − F ) = 1− k.

This finishes the proof. �

Because L(Γ3\Nil3) ⊂ LC(Γ3\Nil3), immediately we have

Corollary 5.5. We have

LC(Γ3\Nil3) = Z,
NC(Γ3\Nil3) = N ∪ {0},
RC(Γ3\Nil3) = N ∪ {∞}.

By Theorem 2.1, there are only two infra-nilmanifolds M which are essentially
covered by Γ3\Nil3, one the nilmanifold Γ3\Nil3 itself and the other Π\Nil3 whose
fundamental group is Π = 〈Γ3, α〉 where

α = (a,A) =

 1 0 7
24

0 1 1
2

0 0 1

 ,

(
0 −1
1 −1

) ∈ Nil3 o GL(2,Z).

In the remaining of this section we shall consider the infra-nilmanifoldM = Π\Nil3.

It is known that Aut(Nil3) = Nil3/Z(Nil3) o GL(2,R) and every element

(
a b
c d

)
∈

GL(2,R) acts on Nil3 as a Lie group automorphism as follows:(
a b
c d

)
:

1 x1 x3

0 1 x2

0 0 1

 7→
1 ax1 + bx2 x′3

0 1 cx1 + dx2

0 0 1


where

x′3 =
1

2
(ax1(cx1 + 2dx2) + x2(bdx2 − 2x1)) + (ad− bc)x3.



492 YOUNGGI CHOI, JONG BUM LEE AND KYUNG BAI LEE

Consequently, GL(2,R) can be regarded as a subgroup of Aut(nil3) = GL(3,R) by(
a b
c d

)
∈ GL(2,R) ↪→

 a b 0
c d 0
0 0 ad− bc

 ∈ GL(3,R).

In particular,

A =

(
0 −1
1 −1

)
∈ GL(2,Z) ↪→ A∗ =

 0 −1 0
1 −1 0
0 0 1

 ∈ GL(3,R)

Theorem 5.6. Let M = Π\Nil3. Then

Lh(Π\Nil3) = {0}, Nh(Π\Nil3) = {0}, Rh(Π\Nil3) = {∞}.

Proof. Let f be a homeomorphism of M = Π\Nil3 with linearization

F =

(
F̄ 0

∗ det(F̄ )

)
∈ Aut(Γ3).

By (3.1) together with the fact that F is invertible, F̄ ∈ GL(2,Z) satisfies that

F̄A = AF̄ or F̄A = A−1F̄ .

If det(F̄ ) = 1, then det(I − F ) = det(I − F̄ ) · (1− det(F̄ )) = 0; hence

L(f) =
1

3

(
det(I − F ) + det(I −AF ) + det(I −A2F )

)
=

1

3
(0 + 0 + 0) = 0.

If det(F̄ ) = −1, there is no solution for F̄A = AF̄ . If det(F̄ ) = −1 and F̄A = A−1F̄ ,
then F̄ is one of the following:

F̄ = ±
(

0 1
1 0

)
, ±

(
1 −1
0 −1

)
, ±

(
1 0
1 −1

)
.

Therefore, the possible linearizations of f are

F =

 0 ±1 0
±1 0 0
0 0 −1

 ,

 ±1 ∓1 0
0 ∓1 0
0 0 −1

 ,

 ±1 0 0
±1 ∓1 0
0 0 −1

 .

Clearly, for each of these F , we have det(I − F ) = 0. Consequently,

L(f) = 0 + 0 + 0 = 0, N(f) = 0 + 0 + 0 = 0 and R(f) =∞. �

Recalling that Π = 〈Γ3, α〉 with

α = (a,A) =

 1 0 7
24

0 1 1
2

0 0 1

 ,

(
0 −1
1 −1

) ,
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it is easy to see that

α(E
1,2
, I)α−1 = (E

2,3
, I),

α(E2,3 , I)α−1 = (E1,2 , I)−1(E2,3 , I)−1,

α(E
1,3
, I)α−1 = (E

1,3
, I).

We will find a fully invariant subgroup Λ3 ⊂ Γ3 of Π which is of finite index. Every
element β of Π is one of the following forms

(E1,2 , I)n1(E2,3 , I)n2(E1,3 , I)n3 = (En1

1,2
En2

2,3
En3

1,3
, I),

(E1,2 , I)n1(E2,3 , I)n2(E1,3 , I)n3α = (En1

1,2
En2

2,3
En3

1,3
, I)α,

(E
1,2
, I)n1(E

2,3
, I)n2(E

1,3
, I)n3α−1 = (En1

1,2
En2

2,3
En3

1,3
, I)α−1.

Hence β3 is of the form

(En1

1,2
En2

2,3
En3

1,3
, I)3 = (E3n1

1,2
E3n2

2,3
E3(n3−n1n2)

1,3
, I),

((En1

1,2
En2

2,3
En3

1,3
, I)α)3 = (E

1
2 (2+n1+n2

1+n2+2n1n2+n2
2+6n3)

1,3
, I),

((En1

1,2
En2

2,3
En3

1,3
, I)α−1)3 = (E

1
2 (−2+n1−n2

1+n+4n1n2−n2
2+6n3)

2,3
, I).

By the proof of [10, Lemma 3.1], we can choose Λ3 as the subgroup of Π generated
by the set of all elements β3 where β ∈ Π. Then we see that

Λ3 = 〈E3
1,2
, E3

2,3
, E

1,3
〉.

Now we compute

Endo(Λ3) =


 a b 0
c d 0
u v ad− bc

 | a, b, c, d ∈ Z, u, v ∈ 1

2
Z

 ⊂ Endo(nil3).

with respect to the linear basis {3e
1,2
, 3e

2,3
, e

1,3
} of nil3. It is also easy to compute

that

A =

(
0 −1
1 −1

)
∈ GL(2,Z) ↪→ A∗ =

 0 −1 0
1 −1 0
0 0 1

 ∈ Aut(nil3)

with respect to the linear basis {3e
1,2
, 3e

2,3
, e

1,3
} of nil3. (See the last paragraph of

Section 3.)

Theorem 5.7. Let M = Π\Nil3. Then

L(Π\Nil3) =
{

1− (a2 + ab+ b2)2 | a, b ∈ Z
}
,

N(Π\Nil3) =
{
|1− (a2 + ab+ b2)2| | a, b ∈ Z

}
,

R(Π\Nil3) =

|1− (a2 + ab+ b2)2| |
a, b ∈ Z,
(a, b) 6= ±(1, 0),±(0, 1),

±(1, 1),±(1,−1)

 ∪ {∞}.
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Proof. Let f be a self-map of M = Π\Nil3 with linearization

F =

(
F̄ 0

∗ det(F̄ )

)
=

 a b 0
c d 0
u v ad− bc

 ∈ Endo(Λ3).

Then F must satisfy (3.1):

FA = F, FA = AF or FA = A−1F.

Thus F̄ satisfies

F̄A = F̄ , F̄A = AF̄ or F̄A = A−1F̄ .

If F̄A = F̄ then F̄ = 0, hence L(f) = 1
3 (0 + 0 + 0) = 0. If F̄A = AF̄ or F̄A = A−2F̄

then F̄ is respectively of the form

F̄ =

(
a b
−b a+ b

)
or

(
b a

a+ b −b

)
∈ M(2,Z).

In the first case, we have

L(f) =
1

3

(
−(a2 + ab+ b2 − 1)((a− 1)2 + (a− 1)b+ b2)

− (a2 + ab+ b2 − 1)((a+ 1)2 + ab− b+ b2)

−(a2 + ab+ b2 − 1)(a2 + a(b+ 1) + (b+ 1)2)
)

= −(a2 + ab+ b2)2 + 1.

In the second case, we have

L(f) =
1

3

(
−((a2 + ab+ b2)2 − 1)− ((a2 + ab+ b2)2 − 1)

−((a2 + ab+ b2)2 − 1)
)

= −(a2 + ab+ b2)2 + 1.

Hence

L(Π\Nil3) = {0}
⋃{

1− (a2 + ab+ b2)2 | a, b ∈ Z
}

=
{

1− (a2 + ab+ b2)2 | a, b ∈ Z
}
.

Remark that a2+ab+b2 = (a+ b
2 )2+ 3

4b
2 ≥ 0. If a2+ab+b2 = 0 then b = 0 and a = 0.

In this case, N(f) = R(f) = 1. Consequently, we may assume that a2 + ab+ b2 ≥ 1.
Similarly, (a− 1)2 + (a− 1)b+ b2 ≥ 0 and a2 + a(b+ 1) + (b+ 1)2 ≥ 0. Furthermore,
(a+ 1)2 + ab− b+ b2 = ((a+ 1) + b−1

2 )2 + 3
4 (b− 1)2 ≥ 0. These imply that each term

in the above expressions for L(f) are nonnegative. Consequently, in either case of F̄ ,
we have

N(f) =

{
1− (a2 + ab+ b2)2 = 1 if a = b = 0

(a2 + ab+ b2)2 − 1 otherwise,

which proves the remaining assertions for N(Π\Nil3) and R(Π\Nil3). �
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Note that the infra-nilmanifold M = Π\Nil3 is orientable because the holonomy
group Φ = 〈A〉 preserves the orientation of the standard nilmanifold Γ3\Nil3, or
equivalently because det(A) = 1 > 0. Hence the coincidence invariants for the Nielsen
theory are defined.

Theorem 5.8. Let M = Π\Nil3. Then

LC(Π\Nil3) =
{
m2 − n2 | m,n are of the form a2 + ab+ b2

}
,

NC(Π\Nil3) =
{
|m2 − n2| | m,n are of the form a2 + ab+ b2

}
,

RC(Π\Nil3) =
{
|m2 − n2| 6= 0 | m,n are of the form a2 + ab+ b2

}⋃
{∞}.

Proof. Let f and g be self-maps of M = Π\Nil3 with respective linearizations

D =

(
D̄ 0

∗ det(D̄)

)
=

 a b 0
c d 0
u v ad− bc

 ∈ Endo(Λ3),

and

E =

(
Ē 0

∗ det(Ē)

)
=

 k ` 0
m n 0

u′ v′ kn− `m

 ∈ Endo(Λ3).

By the proof of Theorem 5.7, D̄ and Ē are respectively one of the following:

D̄ =

(
0 0
0 0

)
,

(
a b
−b a+ b

)
or

(
b a

a+ b −b

)
∈ M(2,Z),

Ē =

(
0 0
0 0

)
,

(
k `
−` k + `

)
or

(
` k

k + ` −`

)
∈ M(2,Z).

For each pair of (D̄, Ē), we compute the Lefschetz coincidence number

L(f, g) =
1

3

(
det(E −D) + det(E −AD) + det(E −A2D)

)
.

• For (D̄, Ē) = (0, 0), we have

L(f, g) = N(f, g) = 0, R(f, g) =∞.

• For (D̄, Ē) =

((
a b
−b a+ b

)
, 0

)
, we have

L(f, g) =
1

3

(
det(0−D) + det(0−AD) + det(0−A2D)

)
=

1

3

(
−(a2 + ab+ b2)2 − (a2 + ab+ b2)2 − (a2 + ab+ b2)2

)
= −(a2 + ab+ b2)2,

N(f, g) = (a2 + ab+ b2)2.
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• For (D̄, Ē) =

((
b a

a+ b −b

)
, 0

)
, we have

L(f, g) =
1

3

(
(a2 + ab+ b2)2 + (a2 + ab+ b2)2 + (a2 + ab+ b2)2

)
= (a2 + ab+ b2)2 = N(f, g).

• For

(D̄, Ē) =

((
a b
−b a+ b

)
,

(
k `
−` k + `

))
or

(D̄, Ē) =

((
b a

a+ b −b

)
,

(
` k

k + ` −`

))
,

we have

L(f, g) =
(k2 + k`+ `2)− (a2 + ab+ b2)

3

×
{(

(a− k)2 + (a− k)(b− `) + (b− `)2
)

+

((
(a+ `) +

b+ k

2

)2

+
3

4
(b− k)2

)

+

(
3

4
(a− `)2 +

(
a+ `

2
+ (b+ k)

)2
)}

= (k2 + k`+ `2)2 − (a2 + ab+ b2)2.

• For (D̄, Ē) =

((
a b
−b a+ b

)
,

(
` k

k + ` −`

))
, we have

L(f, g) =
1

3

((
(k2 + k`+ `2)2 − (a2 + ab+ b2)2

)
+
(
(k2 + k`+ `2)2 − (a2 + ab+ b2)2

)
+
(
(k2 + k`+ `2)2 − (a2 + ab+ b2)2

))
= (k2 + k`+ `2)2 − (a2 + ab+ b2)2.

This completes the proof. �

6. Homeomorphisms of infra-nilmanifolds modeled on Nilm

Let m ≥ 4. The Lie algebra nilm of Nilm is generated by ([3, Lemma 3.1])

L1 = {e
1,2
, e

2,3
, · · · , e

m−1,m
}.

Moreover, L1 forms a linear basis of the vector space nilm/[nilm, nilm]. By [3, Propo-
sition 3.2], this gives a natural homomorphism

π : Aut(nilm)→ Aut(nil/nil2) = GL(m− 1,R)



NIELSEN THEORY ON INFRA-NILMANIFOLDS 497

whose image is isomorphic to (R∗)m−1 o Z2 where

(R∗)m−1 ∼=



r1 0 · · · 0
0 r2 · · · 0
...

...
. . .

...
0 0 · · · rm−1

 | ri ∈ R∗


and

Z2 is generated by


0 · · · 0 1
0 · · · 1 0
... . .

. ...
...

1 · · · 0 0

.

Hence it follows that Aut(nilm) ∼= ker(π) o ((R∗)m−1 o Z2) and

K :=
(
(R∗)m−1 o Z2

)⋂
GL(m− 1,Z) = (Z2)m−1 o Z2

is a maximal compact subgroup of Aut(Nilm) = Aut(nilm).
Let Γm be the lattice of Nilm with integer entries. By the unique extension prop-

erty, we have
Aut(Γm) ⊂ Aut(Nilm) = Aut(nilm)

and we have the following commutative diagram

Aut(nilm)
π−−−−→ (R∗)m−1 o Z2 −−−−→ 1x∪ x∪

Aut(Γm)
π−−−−→ K = (Z2)m−1 o Z2 −−−−→ 1

Let φ ∈ Aut(Γm). With respect to the linear generators

L := {e1,2 , · · · , em−1,m ; e1,3 , · · · , em−2,m ; · · · ; e1,m−1 , e2,m ; e1,m}
of nilm, φ ∈ Aut(nilm) can be expressed as a lower triangular block matrix

φ =


F1 0 · · · 0
∗ F2 · · · 0
...

...
. . .

...
∗ ∗ · · · Fm−1

 .

Note also that π(φ) = F1 ∈ K. Hence F1 is either diagonal or anti-diagonal.
Now we are ready to state and prove our main result of this section. When m ≥ 4,

all homeomorphisms f of M has the Nielsen number N(f) = 0.

Theorem 6.1. Let m ≥ 4 and let M be an infra-nilmanifold which is essentially
covered by the standard nilmanifold Γm\Nilm. Then

Lh(M) = {0}, Nh(f) = {0}, Rh(f) = {∞}.
In particular, the Bieberbach groups of Nilm having Γm as its nil-radical have the
R∞-property.
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Proof. First assume that M = Γm\Nilm is the standard nilmanifold. Let f be a
self-homeomorphism of M with linearization

F =


F1 0 · · · 0
∗ F2 · · · 0
...

...
. . .

...
∗ ∗ · · · Fm−1

 ∈ Aut(Γm).

Then

L(f) = det(Id − F ) =

m−1∏
i=1

det(Im−i − Fi)

where d = 1
2m(m− 1).

Now we assert that det(Id − F ) = 0. Indeed we will show that the product of the
first two terms is zero;

det(Im−1 − F1) det(Im−2 − F2) = 0.

Consider first the case where F1 is diagonal

F1 = diag(ε1, ε2, · · · , εm−1).

If some εj = 1 then det(Im−1−F1) = 0 and so det(Id−F ) = 0. Hence we shall consider
the case where all εj = −1. In this case we can easily understand the diagonal blocks
of F . Indeed, the second block is

F2 = diag(ε1ε2, ε2ε3, · · · , εm−2εm−1).

This follows from the fact that F ∈ Aut(nilm) preserves the identities

e
p,p+2

= [e
p,p+1

, e
p+1,p+2

], ∀ p with 1 ≤ p ≤ m− 2.

Because all εj = −1, we have F2 = Im−2, hence

det(I − F ) = · · · det(I − F2) · · · = 0.

In order to study det(I −B) for an anti-diagonal B, let

B = adiag(δ1, δ2, · · · , δk).

Then

det(Ik −B) =


n−1∏
i=1

(1− δiδk−i)(1− δn) when k = 2n− 1

n∏
i=1

(1− δiδk−i) when k = 2n.

Consider now the case where F1 is anti-diagonal

F1 = adiag(ε1, ε2, · · · , εm−1).

Then

F1 = adiag(ε1, ε2, · · · , εm−1),

F2 = − adiag(ε1ε2, ε2ε3, · · · , εm−2εm−1).
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If there exists i such that εi · ε(m−1)−i = +1, then

det(Im−1 − F1) = · · · (1− εi · ε(m−1)−i) · · · = 0,

and we have det(Id − F ) = 0.
Now suppose εi ·ε(m−1)−i = −1 for all i. Then, among the factors of det(Im−2−F2),

we have (since m ≥ 4)

(1− δ1δm−2) = (1− (ε1ε2)(εm−2εm−1))

= (1− (ε1εm−1)(ε2εm−2))

= (1− (−1)(−1)) = 0.

Thus, again we have det(Id − F ) = 0.
Consequently, L(Γm\Nilm) = {0}, N(Γm\Nilm) = {0} and R(Γm\Nilm) = {∞}.

In particular, Γm has the R∞-property
Now we assume that M is an infra-nilmanifold which is essentially covered by

the standard nilmanifold Γm\Nilm and which has nontrivial holonomy group. By
Theorem 2.2, we must have m = 2n ≥ 4 and M = Π\Nilm is double covered by the
standard nilmanifold Γm\Nilm.

Let f be a self-homeomorphism of M = Π\Nilm. Since Γm is a characteristic
subgroup of Π, f is always lifted a homeomorphism f̄ of the nilmanifold Γm\Nilm so
that the following diagram is commutative

Γm\Nilm
f̄−−−−→ Γm\Nilmy y

M
f−−−−→ M

Because the projection Γm\Nilm → M is a double covering projection, there are
exactly two liftings of f , one f̄ and the other ḡ, both of them are homeomorphisms of
the standard nilmanifold Γm\Nilm. So, L(f̄) = L(ḡ) = 0. By the averaging formula,
we have

L(f) =
1

2

(
L(f̄) + L(ḡ)

)
= 0 + 0 = 0.

Similarly, N(f) = 0 and R(f) =∞ for all self-homeomorphisms f of M = Γm\Nilm.
By definition, Π has the R∞-property. �

Example 6.2. There are two Bieberbach groups of Nil4 with nontrivial holonomy
groups Φ with Γ4 as the discrete nil-radical. It is generated by Γ4 together with an
element α = (a,A) where

a = Z[ 1
2 ] =


1 0 0 1

2
0 1 0 0
0 0 1 0
0 0 0 1

 ∈ Nil4
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and A is one of the following0 0 1
0 1 0
1 0 0

 ,

 0 0 −1
0 1 0
−1 0 0

 .

Hence, both Bieberbach groups are extensions of Γ4 by Z2.
Therefore, there are only two infra-nilmanifolds which are essentially covered by

the nilmanifold Γ4\Nil4.
We take Π = 〈Γ, α = (a,A)〉, where

a = Z[ 1
2 ] =


1 0 0 1

2
0 1 0 0
0 0 1 0
0 0 0 1

 ∈ Nil4, A =

 0 0 −1
0 1 0
−1 0 0

 .

The normalizer N of Π in Nil4 oK is

N = Γ4 · Z(Nil4)×
(
(Z2)2 ⊕ (Z2)2

)
,

where (Z2)2 ⊕ (Z2)2 is generated by a1 0 0
0 a2 0
0 0 a1

 ,

 0 0 a1

0 a2 0
a1 0 0

 , with ai = ±1,

where every element having order 2. Therefore, the group of isometries of our space
Π\Nil4 is

Isom(Π\Nil4) = N/Γ4 = S1 o (Z2)2 ⊕ (Z2)2.

As an example, let f : Π\Nil4 → Π\Nil4 be a map induced by α = (e,B), where

B =

 0 0 1
0 −1 0
1 0 0

 .

Then f is an isometry of period 2. Of course, L(f) = N(f) = 0. But here is a
geometric reasoning.

We will calculate the fixed point set of f explicitly. With

x =


1 x1 x4 x6

0 1 x2 x5

0 0 1 x3

0 0 0 1

 ,

we solve the equation

B · x = a · (A · x)

to get

x1 = 0, x2 = 0, x3 = 0, x6 = − 1
4 .
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Consequently, the fixed points of f on the universal covering space Nil4 is

F̃ =




1 0 x5
1
4

0 1 0 x4

0 0 1 0
0 0 0 1

 : x4, x5 ∈ R

 ∼= R2.

All the other components of fixed points are just translates of F̃ by Π. Clearly, the
fixed point set of the map on Π\Nil4 is F = Π\(Π · F̃ ) = T 2, a 2-torus. This T 2 can
be surgered out. More precisely, one can find a tubular neighborhood V of T 2 which
is invariant by f . Now a result due to R. Brown (see Theorem 3 in [1]) enables us to
homotope f to a map f ′ which is fixed point free on V and f ′ = f on the boundary
of V . Then this new map is homotopic to the original f and has no fixed points.
Consequently, N(f) = L(f) = 0.

7. Nielsen theory of infra-nilmanifolds modeled on Nilm (m ≥ 4)

Write

E
i,j

= exp e
i,j

(i < j).

It is easy to observe that

[Ei,j , Ep,q ] =


E

i,q
if j = p

E−1
p,j

if i = q

e (= identity matrix in Nilm) otherwise.

(7.1)

Recall that the lattice Γm of Nilm with integer entries is generated by the E
i,j

’s.
By the unique extension property, we have

Endo(Γm) ⊂ Endo(Nilm) = Endo(nilm).

A Lie algebra endomorphism of nilm is a linear transformation of the linear space
nilm preserving all Lie brackets

[ei,j , ep,q ] =


e

i,q
if j = p

−e
p,j

if i = q

0 otherwise.

(7.2)

A Lie algebra endomorphism of nilm is an endomorphism of the lattice Γm if and only
if if preserves the E

i,j
’s.

Let φ be an endomorphism of Γm. Since φ = dφ preserves the lower central series

nilm = nil(1) ⊃ nil(2) ⊃ nil(3) ⊃ · · · ⊃ nil(m−1) ⊃ nil(m) = {0} of nilm, φ must be a
lower block triangular matrix of the form

φ = P =


P1,1

∗ P2,2

...
...

. . .

∗ ∗ · · · Pm−1,m−1

 .

Among the Lie brackets (7.2),
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• the nontrivial Lie brackets will determine the matrices

P2,2, P3,2, · · · , Pm−1,2;P3,3, · · · , Pm−1,3; · · · ;Pm−1,m−1,

and
• the trivial Lie brackets will give rise to the whole conditions for the matrices
P1,1, P2,1, · · · , Pm−1,1 to be satisfied.

Let us look at an example to make this clear.

Example 7.1. Let m = 4. The nontrivial Lie brackets are

[e1,2 , e2,3 ] = e1,3 , [e2,3 , e3,4 ] = e2,4 , [e1,2 , e2,4 ] = e1,4 = [e1,3 , e3,4 ].

These identities are preserved by φ and as a result they determine the matrices
P2,2, P3,2 and P3,3 as follows:

p44 = p11p22 − p21p12, p45 = p12p23 − p22p13,
p54 = p21p32 − p31p22, p55 = p22p33 − p32p23,
p64 = (p11p52 − p51p12)− (p31p42 − p41p32),
p65 = (p12p53 − p52p13)− (p32p43 − p42p33),
p66 = p11p55 − p31p45 = p33p44 − p13p54.

Next, the trivial Lie brackets

[e
1,2
, e

3,4
] = 0, [e

1,2
, e

1,3
] = 0, [e

2,3
, e

1,3
] = 0,

[e
2,3
, e

2,4
] = 0, [e

3,4
, e

2,4
] = 0, [e

1,3
, e

2,4
] = 0

will determine the conditions on the matrices P1,1, P2,1, P3,1 to be satisfied. Indeed,
the Lie bracket [e1,2 , e3,4 ] = 0 yields that

[φ(e1,2), φ(e3,4)]

= [p11e1,2
+ p21e2,3

+ p31e3,4
+ p41e1,3

+ p51e2,4
+ p61e1,4

,

p13e1,2
+ p23e2,3

+ p33e3,4
+ p43e1,3

+ p53e2,4
+ p63e1,4

] = 0,

hence

0 = p11p23 − p21p13, (7.3)

0 = p21p33 − p31p23, (7.4)

0 = (p11p53 − p51p13)− (p31p43 − p41p33).

Similarly, from the remaining trivial Lie brackets, we obtain

0 = p11p54 − p31p44, (7.5)

0 = p12p54 − p32p44, (7.6)

0 = p12p55 − p32p45, (7.7)

0 = p13p55 − p33p45. (7.8)

If p21 6= 0 or p23 6= 0 then (7.3) and (7.4) imply that

(p11, p13) = k1(p21, p23), (p31, p33) = k2(p21, p23)



NIELSEN THEORY ON INFRA-NILMANIFOLDS 503

for some k1, k2 ∈ R. Thus P1,1 must be one of the following formsk1p
∗
21 p12 0

p∗21 p22 0
k2p
∗
21 p32 0

 ,

0 p12 k1p
∗
23

0 p22 p∗23

0 p32 k2p
∗
23

 ,

k1p
∗
21 p12 k1p

∗
23

p∗21 p22 p∗23

k2p
∗
21 p32 k2p

∗
23

 .

Here, p∗ij ’s appearing in the above matrices denote nonzero numbers. By the identities
(7.5) ∼ (7.8), all of the above matrices for P1,1 must satisfy

k1(p32 − k2p22) + k2(p12 − k1p22) = 0, (7.9)

p12(p32 − k2p22) + p32(p12 − k1p22) = 0. (7.10)

Remark that one of these matrices P1,1 is singular.
Now we consider the case where p21 = p23 = 0. The identities (7.3) and (7.4) are

automatically true and so our matrix P1,1 is

P1,1 =

p11 p12 p13

0 p22 0
p31 p32 p33

 .

From the identities (7.5) ∼ (7.8), we have

p11p22p31 = 0, p13p22p33 = 0, (7.11)

p22(p11p32 + p12p31) = 0, p22(p12p33 + p13p32) = 0. (7.12)

If P1,1 is nonsingular, then p22 6= 0 and

(
p11 p13

p31 p33

)
is nonsingular. By (7.11),

p11p31 = 0 = p13p33,

and by (7.12),

p12 = p32 = 0.

Consequently, if P1,1 is nonsingular then P1,1 is either diagonal or anti-diagonal. This
fact was proved in [3, Proposition 3.2] and reminded in the previous section.

For another remark, we can see that there exists a self-map f of M = Γ4\Nil4
whose linearization is

P =


0 0 0
0 p22 0
0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0

 ∈ Endo(Γ4)

because our P satisfies the identities (7.11) and (7.12). Thus

L(f) = det(I − P ) = 1− p22.

This proves Theorem 7.2 below for M = Γ4\Nil4.
Let M be an infra-nilmanifold which is essentially covered by Γm\Nilm. In the

following we will find a family of self-maps {f} of M such that

{L(f)} = Z, {N(f)} = N ∪ {0}, {R(f)} = N ∪ {∞}.
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Consequently this will prove one of our main results:

Theorem 7.2. Let M be an infra-nilmanifold which is essentially covered by
Γm\Nilm. Then

L(M) = Z,
N(M) = N ∪ {0},
R(M) = N ∪ {∞}.

The proof of the theorem goes as follows: Let m = 2n ≥ 4 be even. Just like the
case when m = 4, we can see that there is an endomorphism P ∈ Endo(Γm) such
that P1,1 = (pij) is a matrix of the form

P1,1 =



0 · · · 0 · · · 0
...

. . .
... . .

. ...
0 · · · pn,n · · · 0
... . .

. ...
. . .

...
0 · · · 0 · · · 0

 ; (7.13)

pij = 0 for all (i, j) except for (i, j) = (n, n). Thus P2,2, · · · , Pm−1,m−1 are trivial
matrices. Hence L(f) = det(I − P ) = 1− pn,n. Therefore Theorem 7.2 is proved for
M = Γm\Nilm with m ≥ 4 even.

By Theorem 2.2, there are 2n−1 infra-nilmanifolds Π\Nilm which are essentially
covered by the nilmanifold Γm\Nilm. All of these have the covering group Z2 gener-
ated by

A =


0 0 · · · 0 ε1
0 0 · · · ε2 0
...

... . .
. ...

...
0 εm−2 · · · 0 0

εm−1 0 · · · 0 0

 ∈ GL(m− 1,Z),

εj = ±1, where the signs are taken in such a way that the number of −1’s is even, and
the matrix is symmetric. Remark that this matrix representation for A is obtained
by considering A ∈ Aut(Γm).

Lemma 7.3. Let m = 2n ≥ 4. Then there exists a fully invariant subgroup Λm ⊂ Γm
of Π so that Λm/[Λm,Λm] is generated by

E1,2 , · · · , En−1,n, E
2
n,n+1

, En+1,n+2, · · · , , Em−1,m

modulo [Λm,Λm]. In particular, these elements of Λm generate the Lie group Nilm.

Proof. Every element x of Γm can be written uniquely as

x = Ek1

1,2
Ek2

2,3
· · ·Ekm−1

m−1,m
· x̃

where x̃ ∈ [Γm,Γm]. Hence by (7.1), x2 has a unique expression

x2 = E2k1

1,2
E2k2

2,3
· · ·E2km−1

m−1,m
· x̃′ (7.14)

where x̃′ ∈ [Γm,Γm].
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Consider xα ∈ Π with x ∈ Γm and α = (a,A). Remark that the action of A on xa
is as follows:

A(xa) = A(Ek1

1,2
Ek2

2,3
· · ·Ekm−1

m−1,m
· x̃a)

= Eε1km−1

1,2
Eε2km−2

2,3
· · ·Eεm−1k1

m−1,m
· x̃′′ with x̃′′ ∈ [Nilm,Nilm].

Hence by (7.1) again,

(xα)2 = xa ·A(xa)

=
(
Ek1

1,2
Ek2

2,3
· · ·Ekm−1

m−1,m
· x̃a

)(
Eε1km−1

1,2
Eε2km−2

2,3
· · ·Eεm−1k1

m−1,m
· x̃′′
)

= Ek1+ε1km−1

1,2
· · ·Ekn+εnkm−n

n,n+1
· · ·Ekm−1+εm−1k1

m−1,m
· x̃′′′

where x̃′′′ ∈ [Nilm,Nilm]. Recall that εj = ±1, and the signs are taken in such a way
that the number of −1’s is even, and the sequence {εj} is symmetric

(ε1, · · · , εn−1, εn, εn+1, · · · , εm−1) = (ε1, · · · , εn−1, 1, εn−1, · · · , ε1).

Thus

(xα)2 = Ek1+ε1km−1

1,2
· · ·Ekn−1+εn−1km−(n−1)

n−1,n
E2kn

n,n+1
(7.15)

E−εn−1(kn−1+εn−1km−(n−1))
n+1,n+2

· · ·E−ε1(k1+ε1km−1)
m−1,m

· x̃′′′.

Recall also that Γm is of index 2 in Π. By the proof of [10, Lemma 3.1], we can
choose Λm as the subgroup of Π generated by the set of all elements x2 and (xα)2

where x ∈ Γm. Therefore by (7.14) and (7.15) we can see that

Λm = 〈E1,2 , · · · , En−1,n , E
2
n,n+1

, En+1,n+2 , · · · , Em−1,m〉

modulo [Λm,Λm]. �

Let f be a self-map of Π\Nilm whose linearization P has P1,1 as given in (7.13),
but P ∈ Endo(Λm). Remark also that the anti-diagonal matrix

A = adiag(ε1, · · · , εm−1) ∈ Aut(Γm)

is the same as

A = adiag(ε1, · · · , εm−1) ∈ Aut(Λm)

because of the symmetry of the exponents (1, · · · , 1, 2, 1, · · · , 1) in the generators

E
1,2
, · · · , En−1,n, E

2
n,n+1

, En+1,n+2, · · · , , Em−1,m

modulo [Λm,Λm] of Λm/[Λm,Λm].
By the averaging formula, we have

L(f) =
1

2
(det(I − P ) + det(I −AP ))

=
1

2
(det(I − P ) + det(I − P ))

= det(I − P ) = 1− pn,n
Therefore we have proved Theorem 7.2 for M = Π\Nilm with m ≥ 4 even.
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Now assume m = 2n + 1 ≥ 5. Then we can see that there is an endomorphism
P ∈ Endo(Γm) such that P1,1 = (pij) has a submatrix of the form(

pn,n pn,n+1

pn+1,n pn+1,n+1

)
=

(
1 −1
1 k − 1

)
and all other entries are zero. Furthermore, we can see that P2,2 is a 2n× 2n matrix
with all entries 0 except the (n, n)-entry which is k. The remaining diagonal block
matrices of P are zero matrices. Hence

L(f) = det(I − P ) = det(I − P1,1) det(I − P2,2) = 1(1− k).

we have proved Theorem 7.2 for M = Γm\Nilm with m ≥ 4 odd. Finally we recall
from Theorem 2.2 again that since m ≥ 4 is odd, there is no infra-nilmanifold which
is essentially covered by Γm\Nilm.

Finally we consider the Nielsen coincidence theory on infra-nilmanifolds which
are essentially covered by Γm\Nilm. However these infra-nilmanifolds with nontrivial
holonomy are not orientable. Thus the Lefschetz and the Nielsen coincidence numbers
are not defined. So, for coincidence theory we shall consider only the nilmanifold
Γm\Nilm and the coincidence result on the nilmanifold Γm\Nilm follows immediately
from the fixed point result, Theorem 7.2.
Corollary 7.4. We have

LC(Γm\Nilm) = Z,
NC(Γm\Nilm) = N ∪ {0},
RC(Γm\Nilm) = N ∪ {∞}.
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