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1. Introduction

The concept of linear 2-normed spaces was introduced by Gähler ([18], [19]) in the
middle of 1960s.

We need to recall some basic facts concerning 2-normed spaces and some prelimi-
nary results.

Definition 1.1. let X be a real linear space with dimX > 1 and ‖·, ·‖ : X×X −→ R
be a function satisfying the following properties:

(1) ‖x, y‖ = 0 if and only if x and y are linearly dependent,
(2) ‖x, y‖ = ‖y, x‖,
(3) ‖λx, y‖ = |λ|‖x, y‖,
(4) ‖x, y + z‖ ≤ ‖x, y‖+ ‖x, z‖,

for all x, y, z ∈ X and λ ∈ R. Then the function ‖·, ·‖ is called a 2-norm on X and the
pair (X, ‖·, ·‖) is called a linear 2-normed space. Sometimes the condition (4) called
the triangle inequality.
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Example 1.2. For x = (x1, x2), y = (y1, y2) ∈ E = R2, the Euclidean 2-norm ‖x, y‖E
is defined by

‖x, y‖E = |x1y2 − x2y1| .

Definition 1.3. A sequence {xk} in a 2-normed space X is called a convergent
sequence if there is an x ∈ X such that

lim
k→∞

‖xk − x, y‖ = 0,

for all y ∈ X. If {xk} converges to x, write xk −→ x with k −→ ∞ and call x the
limit of {xk}. In this case, we also write limk→∞ xk = x.

Definition 1.4. A sequence {xk} in a 2-normed space X is said to be a Cauchy
sequence with respect to the 2-norm if

lim
k,l→∞

‖xk − xl, y‖ = 0,

for all y ∈ X. If every Cauchy sequence in X converges to some x ∈ X, then X is
said to be complete with respect to the 2-norm. Any complete 2-normed space is said
to be a 2-Banach space.

Now, we state the following results as lemma (See [21] for the details).

Lemma 1.5. Let X be a 2-normed space. Then,
(1)

∣∣‖x, z‖ − ‖y, z‖∣∣ ≤ ‖x− y, z‖ for all x, y, z ∈ X,
(2) if ‖x, z‖ = 0 for all z ∈ X, then x = 0,
(3) for a convergent sequence xn in X,

lim
n−→∞

‖xn, z‖ =
∥∥∥ lim
n−→∞

xn, z
∥∥∥

for all z ∈ X.

Throughout this paper, we will denote the set of natural numbers by N and the set
of real numbers by R. By Nm, m ∈ N, we will denote the set of all natural numbers
greater than or equal to m.

Let R+ = [0,∞) the set of nonnegative real numbers. We write BA to mean the
family of all functions mapping from a nonempty set A into a nonempty set B and
we use the notation X0 for the set X \ {0}.

The problem of the stability of functional equations was first raised by Ulam
[26]. This included the following question concerning the stability of group homo-
morphisms.

Let (G1, ∗1) be a group and let (G2, ∗2) be a metric group with a metric d(., .).
Given ε > 0, does there exists a δ > 0 such that if a mapping h : G1 → G2 satisfies
the inequality

d
(
h(x ∗1 y), h(x) ∗2 h(y)

)
< δ

for all x, y ∈ G1, then there exists a homomorphism H : G1 → G2 with

d
(
h(x), H(x)

)
< ε

for all x ∈ G1?
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If the answer is affirmative, we say that the equation of homomorphism

h(x ∗1 y) = h(x) ∗2 H(y)

is stable.
The first partial answer to Ulam’s question was given by Hyers [20] and he estab-

lished the stability result as follows:

Theorem 1.6. [20] Let E1 and E2 be two Banach spaces and f : E1 → E2 be a
function such that

‖f(x+ y)− f(x)− f(y)‖ ≤ δ
for some δ > 0 and for all x, y ∈ E1. Then the limit

A(x) := lim
n→∞

2−nf(2nx)

exists for each x ∈ E1, and A : E1 → E2 is the unique additive function such that

‖f(x)−A(x)‖ ≤ δ
for all x ∈ E1. Moreover, if f(tx) is continuous in t for each fixed x ∈ E1, then the
function A is linear.

Later, Aoki [8] and Bourgin [9] considered the problem of stability with unbounded
Cauchy differences. Rassias [23] attempted to weaken the condition for the bound of
the norm of Cauchy difference

‖f(x+ y)− f(x)− f(y)‖
and proved a generalization of Theorem 1.6 using a direct method (cf. Theorem 1.7):

Theorem 1.7. [23] Let E1 and E2 be two Banach spaces. If f : E1 → E2 satisfies
the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ θ
(
‖x‖p + ‖y‖p

)
for some θ ≥ 0, for some p ∈ R with 0 ≤ p < 1, and for all x, y ∈ E1, then there
exists a unique additive function A : E1 → E2 such that

‖f(x)−A(x)‖ ≤ 2θ

2− 2p
‖x‖p

for each x ∈ E1. If, in addition, f(tx) is continuous in t for each fixed x ∈ E1, then
the function A is linear.

Later, Rassias [24], [25] motivated Theorem 1.7 as follows:

Theorem 1.8. [24], [25] Let E1 be a normed space, E2 be a Banach space, and
f : E1 → E2 be a function. If f satisfies the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ θ
(
‖x‖p + ‖y‖p

)
(1.1)

for some θ ≥ 0, for some p ∈ R with p 6= 1, and for all x, y ∈ E1 − {0E1}, then there
exists a unique additive function A : E1 → E2 such that

‖f(x)−A(x)‖ ≤ 2θ

|2− 2p|
‖x‖p (1.2)

for each x ∈ E1 − {0E1
}.
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Note that Theorem 1.8 reduces to Theorem 1.6 when p = 0. For p = 1, the
analogous result is not valid. Also, Brzdȩk [10] showed that estimation (1.2) is optimal
for p ≥ 0 in the general case.

Recently, Brzdȩk [12] showed that Theorem 1.8 can be significantly improved;
namely, in the case p < 0, each f : E1 → E2 satisfying (1.1) must actually be
additive, and the assumption of completeness of E2 is not necessary. Unfortunately,
this result does not remain valid if we restrict the domain of f (see the further detail in
[16]). On the other hand, several mathematicians showed that the fixed point method
is an another very efficient and convenient tool for proving the Hyers-Ulam stability
for a quite wide class of functional equations (see [13]). Brzdȩk et al. [14] proved
the fixed point theorem for a nonlinear operator in metric spaces and used this result
to study the Hyers-Ulam stability of some functional equations in non-Archimedean
metric spaces. In this work, they also obtained the fixed point result in arbitrary
metric spaces as follows:

By using this theorem, Brzdȩk [11] improved, extended and complemented several
earlier classical stability results concerning the additive Cauchy equation (in particular
Theorem 1.8). During the past few years many mathematicians have investigated
various generalizations, extensions and applications of the Hyers-Ulam stability of a
number of functional equations (see, for instance, [4, 6, 5, 7, 3, 1, 2, 17, 13, 16] and
references therein).

Now, we will introduce the fixed point theorem, which is main tool theorem by
Brzdȩk and Ciepliński [Theorem 1, [15]]. That is following :

Let us introduce the following three hypotheses:
(H1) E is a nonempty set, (Y, ‖·, ·‖) is a 2-Banach space, Y0 is a subset of Y

containing two linearly independent vectors, j ∈ N, fi : E → E, gi : Y0 → Y0, and
Li : E × Y0 → R+ for i = 1, · · · , j;

(H2) T : Y E → Y E is an operator satisfying the inequality∥∥T ξ(x)− T µ(x), y
∥∥ ≤ j∑

i=1

Li(x, y)
∥∥∥ξ(fi(x)

)
− µ

(
fi(x)

)
, gi(y)

∥∥∥, ξ, µ ∈ Y E , (1.3)

for all x ∈ E, y ∈ Y0.
(H3) Λ : RE×Y0

+ → RE×Y0
+ is an operator defined by

Λδ(x, y) :=

j∑
i=1

Li(x, y)δ
(
fi(x), gi(y)

)
, δ ∈ RE×Y0

+ , x ∈ E, y ∈ Y0. (1.4)

Theorem 1.9. [15] Let hypotheses (H1) - (H3) hold and functions ε : E×Y0 → R+

and ϕ : E → Y fulfill the following two conditions:∥∥T ϕ(x)− T ϕ(x), y
∥∥ ≤ ε(x, y) x ∈ E, y ∈ Y0, (1.5)

ε∗(x, y) :=

∞∑
n=0

(
Λnε

)
(x, y) <∞ x ∈ E, y ∈ Y0. (1.6)

Then, there exists a unique fixed point ψ of T for which∥∥ϕ(x)− ψ(x), y
∥∥ ≤ ε∗(x, y) x ∈ E, y ∈ Y0. (1.7)
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Moreover, the function ψ ∈ Y E defined by

ψ(x) := lim
n→∞

(
(T nϕ)

)
(x) x ∈ E. (1.8)

Let X, Y be normed spaces. A function f : X → Y is Jensen provided it satisfies
the functional equation

2f

(
x+ y

2

)
= f(x) + f(y) for all x, y ∈ X, (1.9)

and we can say that f : X → Y is Jensen on X0 if it satisfies (1.9) for all x, y ∈ X0 :=
X \ {0} such that x+ y 6= 0.

2. Main results

In this section, we prove some hyperstability results for the Jensen equation (1.9) in
2-Banach spaces by using Theorem 1.9. In what follows (X, ‖·, ·‖) is a real 2-Banach
space.

Theorem 2.1. Let c ≥ 0, p, q ∈ R, p+ q < 0 and f : X → Y satisfy∥∥∥∥2f

(
x+ y

2

)
− f(x)− f(y), z

∥∥∥∥ ≤ c ‖x, z‖p ‖y, z‖q, (2.1)

for all x, y ∈ X0 such that x+ y 6= 0 and z ∈ Y0. Then f is Jensen on X0.

Proof. Observe that there exists m0 ∈ N such that

αm := 2

(
m+ 1

2

)p+q

+mp+q < 1 and m ≥ m0.

Since p + q < 0, one of p, q must be negative. Assume that q < 0, fix m ∈ Nm0 and
replace y by mx in (2.1) we get∥∥∥∥2f

((
m+ 1

2

)
x

)
− f(mx)− f(x), z

∥∥∥∥ ≤ c mq‖x, z‖p+q, x ∈ X0, z ∈ Y0 (2.2)

For each m ∈ N, we define the operators

Tm : Y X0 → Y X0 and Λm : RX0×Y0
+ → RX0×Y0

+

by

Tmξ(x) := 2ξ

((
m+ 1

2

)
x

)
− ξ(mx), ξ ∈ XX0 , x ∈ X0, (2.3)

Λmδ(x, z) := 2δ

((
m+ 1

2

)
x, z

)
+ δ(mx, z), δ ∈ RX0

+ , x ∈ X0, z ∈ Y0 (2.4)

and write

εm(x, z) := c mq‖x, z‖p+q, x ∈ X0, z ∈ Y0. (2.5)

It is easily seen that Λm has the form described in (1.4) with j = 2,

f1(x) =

(
m+ 1

2

)
x, f2(x) = mx
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and L1(x, z) = 2, L2(x, z) = 1. Further, (2.2) can be written in the following way∥∥Tmf(x)− f(x), z
∥∥ ≤ εm(x, z), x ∈ X0, z ∈ Y0.

Moreover, for every ξ, µ ∈ XX0 , x ∈ X0,∥∥∥Tmξ(x)−Tmµ(x), z
∥∥∥ =

∥∥∥2ξ

((
m+ 1

2

)
x

)
−ξ(mx)−2µ

((
m+ 1

2

)
x

)
+µ(mx), z

∥∥∥
≤ 2
∥∥∥ξ((m+ 1

2

)
x

)
− µ

((
m+ 1

2

)
x

)
, z
∥∥∥+

∥∥∥ξ(mx)− µ(mx), z
∥∥∥

=

2∑
i=1

Li(x, z)
∥∥∥ξ(fi(x)

)
− µ

(
fi(x)

)
, z
∥∥∥.

Consequently, for each m ∈ N, (1.3) is valid with T := Tm. Next, it easy to show that

Λn
mεm(x, z) = αn

m c mq‖x, z‖p+q, (2.6)

for all x ∈ X0, z ∈ Y0, n ∈ N0 and m ∈ Nm0 . Therefore, we obtain

ε∗m(x, z) : =

∞∑
n=0

(
Λn
mεm

)
(x, z)

= εm(x, z)

∞∑
n=0

αn
m

=
c mq‖x, z‖p+q

1− αm

for all x ∈ X0, z ∈ Y0 and m ∈ Nm0
.

By using Theorem 1.9 with ϕ = f , we get that the limit

Jm(x) := lim
n→∞

(
T n
mf
)
(x)

exists for each x ∈ X0 and m ∈ Nm0
, and

∥∥f(x)− Jm(x), z
∥∥ ≤ c mq‖x, z‖p+q

1− αm
(2.7)

for all x ∈ X0, z ∈ Y0 and m ∈ Nm0 . Next, we show that∥∥∥∥2T n
mf

(
x+ y

2

)
− T n

mf(x)− T n
mf(y), z

∥∥∥∥ ≤ c αn
m‖x, z‖p ‖y, z‖q, (2.8)

for every x, y ∈ X0 such that x + y 6= 0 and all z ∈ Y0. Since the case n = 0 is just
(2.1), take k ∈ N and assume that (2.8) holds for n = k and every x, y ∈ X0 such
that x+ y 6= 0.
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Then∥∥∥∥2T k+1
m f

(
x+ y

2

)
− T k+1

m f(x)− T k+1
m f(y), z

∥∥∥∥
=

∥∥∥∥4T k
mf

((
m+ 1

2

)(
x+ y

2

))
− 2T k

mf

(
m

(
x+ y

2

))
−2T k

mf

((
m+ 1

2

)
x

)
+ T k

mf
(
mx
)
− 2T k

mf

((
m+ 1

2

)
y

)
+ T k

mf
(
my
)
, z

∥∥∥∥
≤ 2

∥∥∥∥2T k
mf

((
m+ 1

2

)(
x+ y

2

))
− T k

mf

((
m+ 1

2

)
x

)
− T k

mf

((
m+ 1

2

)
y

)
, z

∥∥∥∥
+

∥∥∥∥2T k
mf

(
m

(
x+ y

2

))
− T k

mf
(
mx
)
− T k

mf
(
my
)
, z

∥∥∥∥
≤ c

(
2

(
m+ 1

2

)p+q

+mp+q

)
‖x, z‖p ‖y, z‖q

= c αn
m‖x, z‖p ‖y, z‖q,

for all x, y ∈ X0 such that x + y 6= 0 and all z ∈ Y0. Thus, by induction we have
shown that (2.8) holds for every n ∈ N. Letting n→∞ in (2.8), we obtain that

2Jm

(
x+ y

2

)
= Jm(x) + Jm(y),

for all x, y ∈ X0 such that x+ y 6= 0. In this way we obtain a sequence {Jm}m≥m0
of

Jensen functions on X0 such that

‖f(x)− Jm(x), z‖ ≤ c mq‖x, z‖p+q

1− αm
,

for all x ∈ X0 and all z ∈ Y0. It follows, with m→∞, that f is Jensen on X0. �

In similar way we can prove the following theorem in which we consider the case
when p+ q > 0. Then obviously at least one of p and q must be positive and without
loss of generality we can assume that q > 0.

Theorem 2.2. Let c ≥ 0, p, q ∈ R, p+ q > 0 and q > 0. If there exists two sequences
{em}m∈N, {gm}m∈N of real numbers such that {em}m∈N is bounded, limm→∞ gm = 0
and there exists a positive integer n0 such that one of the conditions is satisfied:

(C1) em ≡ 1 and limm→∞ λ1m < 1 where

λ1m := 2

∣∣∣∣em + gm
2

∣∣∣∣p+q

+ |gm|p+q
,

(C2) em+gm
2 ≡ 1 and limm→∞ λ2m < 1 where

λ1m :=
1

2
|em|p+q

+ |gm|p+q
,

and f : X → Y satisfies (2.1) then f is Jensen on X0.
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Proof. Replacing in (2.1) x by emx and y by gmx, where

m ∈ Nn0
:= {m ∈ N : m ≥ n0},

we get∥∥∥∥2f

((
em + gm

2

)
x

)
− f(emx)− f(gmx), z

∥∥∥∥ ≤ c |em|p |gm|q ‖x, z‖p+q, (2.9)

for all x ∈ X0, z ∈ Y0.
Let the case (Ci) holds, where i ∈ {1, 2}. For x ∈ X0 and z ∈ Y0, we define

Tmξ(x) := ki1ξ

((
em + gm

2

)
x

)
− ki2ξ(emx)− ki3ξ(gmx), (2.10)

Λmδ(x, z) := |ki1|δ
((

em + gm
2

)
x, z

)
+ |ki2|δ(emx, z) + |ki3|δ(gmx, z), (2.11)

εm(x, z) := c ki0 |em|p |gm|q ‖x, z‖p+q, (2.12)

where k11 = 2, k12 = 0, k13 = 1, k21 = 0, k22 = − 1
2 , k23 = − 1

2 , k10 = 1, k20 = 1
2 .

As in proof of Theorem 2.1 we observe that (2.9) takes form∥∥Tmf(x)− f(x), z
∥∥ ≤ εm(x, z), x ∈ X0, z ∈ Y0.

and Λm has the form described in (1.4) and (1.3) is valid for every ξ, µ ∈ XX0 , x ∈ X0

and z ∈ Y0.
Next we can find m0 ∈ N, such that m0 ≥ n0 and λim < 1 for m ∈ Nm0 . Therefore

ε∗m(x, z) : =

∞∑
n=0

(
Λn
mεm

)
(x, z) =

εm(x, z)

1− λim

for m = m0, x ∈ X0 and z ∈ Y0. Hence, according to Theorem 1.9, for each m ∈ Nm0

there exists a unique solution Jm : X → Y of the equation

Jm(x) := ki1Jm

((
em + gm

2

)
x

)
− ki2Jm(emx)− ki3Jm(gmx),

such that

‖f(x)− Jm(x), z‖ ≤ ε∗m(x, z), (2.13)

for all x ∈ X0 and all z ∈ Y0. Moreover,

2Jm

(
x+ y

2

)
= Jm(x) + Jm(y),

for all x, y ∈ X0 such that x + y 6= 0 and z ∈ Y0. In this way we obtain a sequence
{Jm}m≥m0 of Jensen functions on X0 such that (2.13) holds. It follows, with m→∞
that f is Jensen because

lim
m→∞

ε∗m(x, z) = ‖x, z‖p+q lim
m→∞

c ki0 |em|p |gm|q

1− λim
= 0. �

From the Theorem 2.2, we deduce in particular the following corollaries.
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Corollary 2.3. Let c ≥ 0, p, q ∈ R, p + q > 0 and q > 0. If there exits a positive
integer n0 such that

2

∣∣∣∣m− 1

2m

∣∣∣∣p+q

+

∣∣∣∣ 1

m

∣∣∣∣p+q

< 1 m ∈ Nn0
,

and f : X → Y fulfills (2.1) then f is Jensen on X0.

Proof. Putting gm = −1
m and using Theorem 2.2 (C1), we have

λ1m := 2

∣∣∣∣m− 1

2m

∣∣∣∣p+q

+

∣∣∣∣ 1

m

∣∣∣∣p+q

,

hence
lim

m→∞
λ1m < 1,

so the function f is Jensen on X0. �

Corollary 2.4. Let c ≥ 0, p, q ∈ R, p + q > 0 and q > 0. If there exits a positive
integer n0 such that

1

2

∣∣∣∣m− 1

m

∣∣∣∣p+q

+

∣∣∣∣ 1

m

∣∣∣∣p+q

< 1 m ∈ Nn0
,

and f : X → Y fulfills (2.1) then f is Jensen on X0.

Proof. Sitting em = 1− 1
m , gm = 1

m and using Theorem 2.2 (C2), we have

λ1m :=
1

2

∣∣∣∣m− 1

m

∣∣∣∣p+q

+

∣∣∣∣ 1

m

∣∣∣∣p+q

,

hence
lim

m→∞
λ2m < 1,

so the function f is Jensen on X0. �

In the following theorem, we investigate the generalized hyperstability results of
Jensen equation (1.9) in 2-Banach spaces. In the rest of the paper, {α}n is a sequence
of real numbers such that limn→∞ αn = 0.

Theorem 2.5. Let ϕ : X ×X × Y0 → [0,+∞) be a function fulfils the following two
conditions:

lim
n→∞

n∑
i=0

(n
i

)
2n−iϕ

(
βn−i
m αi

mx, β
n−i
m αi

my, z
)

= 0, (2.14)

lim
m→∞

∞∑
n=0

n∑
i=0

(n
i

)
2n−iϕ

(
βn−i
m αi

mx, β
n−i
m αi+1

m x, z
)

= 0, (2.15)

for all x, y ∈ X0, z ∈ Y0 and for sufficiently large integers m, where

βm =
1 + αm

2
.

Assume that f : X → Y satisfies∥∥∥∥2f

(
x+ y

2

)
− f(x)− f(y), z

∥∥∥∥ ≤ ϕ(x, y, z), (2.16)
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for all x, y ∈ X0 and all z ∈ Y0 such that x+ y 6= 0. Then f is Jensen on X0.

Proof. Replacing y by αmx in (2.16), where αm ∈ R, we get∥∥2f
(
βmx

)
− f(αmx)− f(x), z

∥∥ ≤ ϕ(x, αmx, z) (2.17)

for all x ∈ X0 and all z ∈ Y0, where

βm =
1 + αm

2
.

Define operators Tm : Y X0 → Y X0 and Λm : RX0×Y0
+ → RX0×Y0

+ by

Tmξ(x) := 2ξ
(
βmx

)
− ξ(αmx), ξ ∈ XX0 , x ∈ X0, (2.18)

Λmδ(x, z) := 2δ
(
βmx, z

)
+ δ(αmx, z), δ ∈ RX0

+ , x ∈ X0, z ∈ Y0, (2.19)

and write

εm(x, z) := ϕ(x, αmx, z), x ∈ X0, z ∈ Y0. (2.20)

It is easily seen that Λm has the form described in (1.4) with j = 2, f1(x) = βmx,
f2(x) = αmx, L1(x, z) = 2 and L2(x, z) = 1. Further, (2.17) can be written in the
following way ∥∥Tmf(x)− f(x), z

∥∥ ≤ εm(x, z), x ∈ X0, z ∈ Y0.

Moreover, for every ξ, µ ∈ XX0 , x ∈ X0 and z ∈ Y0∥∥∥Tmξ(x)− Tmµ(x), z
∥∥∥ ≤ L1(x, z)

∥∥∥(ξ − µ)
(
f1(x)

)
, z
∥∥∥+ L2(x, z)

∥∥∥(ξ − µ)
(
f2(x)

)
, z
∥∥∥

So, for each m ∈ N, (1.3) is valid with T := Tm. It is not hard to show that

Λn
mεm(x, z) =

n∑
i=0

(n
i

)
2n−iϕ

(
βn−i
m αi

mx, β
n−i
m αi+1

m x, z
)
, (2.21)

for all x ∈ X0, z ∈ Y0, n ∈ N0 and m ∈ Nn0
. Therefore,

ε∗m(x, z) :=

∞∑
n=0

n∑
i=0

(n
i

)
2n−iϕ

(
βn−i
m αi

mx, β
n−i
m αi+1

m x, z
)
, (2.22)

for all x ∈ X0, z ∈ Y0 and m ∈ Nm0
. By (2.14), we get ε∗m(x, z) < ∞ for all x ∈ X0

and all z ∈ Y0. Hence, according to Theorem 1.9, for each m > n0 the limit

Jm(x) := lim
n→∞

(
T n
mf
)
(x)

exists for each x ∈ X0 and m ∈ Nm0 , and∥∥f(x)− Jm(x), z
∥∥ ≤ ε∗m(x, z) (2.23)

for all x ∈ X0, z ∈ Y0 and m ∈ Nn0
.

By similar method in proof of Theorem 2.1, we can prove that∥∥∥∥2T n
mf

(
x+ y

2

)
− T n

mf(x)− T n
mf(y), z

∥∥∥∥ ≤ n∑
i=0

(n
i

)
2n−iϕ

(
βn−i
m αi

mx, β
n−i
m αi

my, z
)
,

(2.24)
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for every x, y ∈ X0 such that x+ y 6= 0 and all z ∈ Y0. Indeed, if n = 0, then (2.24)
is simply (2.16). So, take k ∈ N0 and suppose that (2.24) holds for n = k and every
x, y ∈ X0 such that x+ y 6= 0. Then

∥∥∥∥2T k+1
m f

(
x+ y

2

)
− T k+1

m f(x)− T k+1
m f(y), z

∥∥∥∥
=

∥∥∥∥4T k
mf

(
βm

(
x+ y

2

))
− 2T k

mf

(
αm

(
x+ y

2

))
−2T k

mf(βmx) + T k
mf(αmx)− 2T k

mf(βmy) + T k
mf(αmy), z

∥∥
≤ 2

∥∥∥∥2T k
mf

(
βm

(
x+ y

2

))
− T k

mf(βmx)− T k
mf(βmy), z

∥∥∥∥
+

∥∥∥∥2T k
mf

(
αm

(
x+ y

2

))
− T k

mf(αmx)− T k
mf(αmy), z

∥∥∥∥
≤ 2

k∑
i=0

(k
i

)
2k−iϕ

(
βk+1−i
m αi

mx, β
k+1−i
m αi

my, z
)

+

k∑
i=0

(k
i

)
2k−iϕ

(
βn−i
m αi+1

m x, βn−i
m αi+1

m y, z
)

=

k+1∑
i=0

(k+1

i

)
2k+1−iϕ

(
βk+1−i
m αi

mx, β
k+1−i
m αi

my, z
)

for all x, y ∈ X0 such that x + y 6= 0 and all z ∈ Y0. Thus, by induction we have
shown that (2.24) holds for every n ∈ N.

Letting n→∞ in (2.24) and using (2.14) and (2.15), we obtain

2Jm

(
x+ y

2

)
= Jm(x) + Jm(y) x, y ∈ X0, x+ y 6= 0, m > n0. (2.25)

Since limm→∞ ε∗m(x, z) = 0, it follows from the inequality in (2.23) that

lim
m→∞

Jm(x) = f(x)

for all x ∈ X0. Therefore we get, with m → ∞, from (2.25) that f is Jensen on
X0. �

Corollary 2.6. Let c ≥ 0, p, q ∈ R and f : X → Y satisfy (2.1). Moreover,
assume that there exits a positive integer n0 such that one of the following conditions
is satisfied:

(D1) p+ q < 0, q < 0 and for each m ≥ n0,

2

(
m+ 1

2

)p+q

+mp+q < 1,
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(D2) p+ q > 0, q > 0 and for each m ≥ n0,

2

∣∣∣∣m− 1

2m

∣∣∣∣p+q

+

(
1

m

)p+q

< 1,

(D3) p+ q > 0, q > 0 and for each m ≥ n0,

1

2

∣∣∣∣m− 1

m

∣∣∣∣p+q

+

(
1

m

)p+q

< 1

then f is Jensen on X0.

Theorem 2.5 implies the following corollary, which shows its simple application.

Corollary 2.7. Let ϕ : X×X×Y0 → [0,+∞) be a function fulfils (2.14) and (2.15).
Assume that G : X ×X → Y and f : X → Y satisfy the inequality∥∥∥∥2f

(
x+ y

2

)
− f(x)− f(y)−G(x, y), z

∥∥∥∥ ≤ ϕ(x, y, z) (2.26)

for all x, y ∈ X0 and all z ∈ Y0. If the functional equation

2g

(
x+ y

2

)
= g(x) + g(y) +G(x, y), x, y ∈ X (2.27)

has a solution f0 : X → Y , then f is a solution to (2.27).

Proof. From (2.26) we get that h := f − f0 satisfies (2.16). Consequently, Theorem
2.5 implies that h is Jensen on X0 which means f is a solution to (2.27). �
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