FIXED POINT THEOREMS IN ORDERED METRIC SPACES AND APPLICATIONS TO NONLINEAR BOUNDARY VALUE PROBLEMS

TOSHIKAZU WATANABE

Tokyo University of Information Sciences 4-1 Onaridai
Wakaba-ku, Chiba, 265-8501 Japan
E-mail: twatana@edu.tuis.ac.jp

Abstract

In this paper, we extend the concept of mixed monotone mappings and then we consider certain fixed point theorems for a pair of mappings in metric spaces with a partial ordering. As an application, we study existence of solutions for the following fourth-order two-point boundary value problems for elastic beam equations: $$
\left\{\begin{array}{l} u^{\prime \prime \prime \prime}(t)=f\left(t, u(t), u^{\prime \prime}(t)\right) \\ u(0)=A, u^{\prime}(0)=B, u^{\prime \prime}(1)=C, u^{\prime \prime \prime}(1)=D \end{array}\right.
$$ where f is a continuous mapping of $[0,1] \times \mathbb{R} \times \mathbb{R}$ into \mathbb{R}. Moreover, using these fixed point theorems, we prove several existence results for the solutions of various boundary value problems. Key Words and Phrases: Fixed point theorem, partially ordered set, boundary value problem, differential equation.

2010 Mathematics Subject Classification: 34B99, 47H10, 54 H 25.

1. Introduction

A coupled fixed point theorem is a combination between fixed point results for contractive type mappings and the monotone iterative method proposed by Bhaskar and Lakshmikantham [5]. Several authors [1, 3, 4, 7, 9, 15, 18, 19, 22, 23] investigated it. It is a strong tool to study a existence and uniqueness solution of boundary value problems for several ordinary differential equations, see [5, 4, 23, 11]. Recently in [11], Jleli et.al extend and generalize several existing results in the literature [4, 5, 11, 23]. They also show the existence and uniqueness of solutions of the following fourth-order two-point boundary value problem for elastic beam equations:

$$
\left\{\begin{array}{l}
u^{\prime \prime \prime \prime}(t)=f(t, u(t), u(t)) \\
u(0)=u^{\prime}(0)=u^{\prime \prime}(1)=u^{\prime \prime \prime}(1)=0
\end{array}\right.
$$

where f is a continuous mapping of $[0,1] \times \mathbb{R} \times \mathbb{R}$ into \mathbb{R}.

We are also concerned about higher order boundary value problems. In particular, for the existence of a solution the use of a fixed point theorem is a very popular method. So, for instance, we consider the following problem,

$$
\left\{\begin{array}{l}
u^{\prime \prime \prime \prime}(t)=f\left(t, u(t), u^{\prime \prime}(t)\right) \tag{1.1}\\
u(0)=u(1)=u^{\prime \prime}(0)=u^{\prime \prime}(1)=0
\end{array}\right.
$$

or, for example, the next one (see [11]):

$$
\left\{\begin{array}{l}
u^{\prime \prime \prime \prime}(t)=f\left(t, u(t), u^{\prime \prime}(t)\right) \tag{1.2}\\
u(0)=u^{\prime}(0)=u^{\prime \prime}(1)=u^{\prime \prime \prime}(1)=0
\end{array}\right.
$$

where f is a continuous mapping of $[0,1] \times \mathbb{R} \times \mathbb{R}$ into \mathbb{R}. We will show that some coupled fixed point theorems are very useful in order to get a solution of these boundary value problems.

For the existence and uniqueness of solutions for the fourth-order two-point boundary value problem for (1.1), many researchers have studied, see $[2,10,12,13,16,17$, $25,26,27,8]$. The proof is carried out using the Leray-Schauder fixed point theorem, etc. $[2,8,10,12,13,16,17,25,26,27]$. Moreover, several authors consider the following boundary value problem, which includes (1.1).

$$
\left\{\begin{array}{l}
u^{\prime \prime \prime \prime}(t)=f\left(t, u(t), u^{\prime \prime}(t)\right) \tag{1.3}\\
u(0)=A, u(1)=B, u^{\prime \prime}(0)=C, u^{\prime \prime}(1)=D
\end{array}\right.
$$

Naturally the following boundary value problem, which includes (1.2), can be considerable.

$$
\left\{\begin{array}{l}
u^{\prime \prime \prime \prime}(t)=f\left(t, u(t), u^{\prime \prime}(t)\right) \tag{1.4}\\
u(0)=A, u^{\prime}(0)=B, u^{\prime \prime}(1)=C, u^{\prime \prime \prime}(1)=D
\end{array}\right.
$$

Recently Petruşel and Petruşel improve mixed monotone property and have a fixed point theorem. Using their method they solve second-order two-point boundary value problems for system of ordinary differential equations, for detail see [20].

In this paper, using the method of coupled fixed point theorem in [5, 4, 7, 15, 11], we show the existence of solutions for (1.4). Our paper is organized as follows. In Section 2, we describe the fixed point theorem in metric spaces endowed with a order. In Section 3, let X be a metric space. And we introduce reverse mixed-monotone property for the mapping of $X \times X$ into X. We consider two mappings of $X \times X$ into X which have mixed-monotone property and reverse mixed-monotone property and we have fixed point theorems (Theorems 3.2, 3.4). In Section 4, we show that our method can be applicable to fourth-order two-point boundary value problems (1.3), (1.4), and typical third-order two-point boundary value problems.

2. Fixed point theorem

First of all, we cited the following definitions and preliminary results will be useful later.

Let (X, d) be a metric space endowed with a partial order \preceq. We say that a mapping $F: X \rightarrow X$ is nondecreasing if for any $x, y \in X$,

$$
x \preceq y \Rightarrow F x \preceq F y .
$$

Let Φ denote the set of all functions $\varphi:[0, \infty) \rightarrow[0, \infty)$ satisfying
(a) φ is continuous and nondecreasing;
(b) $\varphi^{-1}(\{0\})=\{0\}$.

Let Ψ denote the set of all functions $\psi:[0, \infty) \rightarrow[0, \infty)$ satisfying
(c) $\lim _{t \rightarrow r+} \psi(t)>0$ (and finite) for all $r>0$;
(d) $\lim _{t \rightarrow 0+} \psi(t)=0$.

Let Θ denote the set of all functions $\theta:[0, \infty) \times[0, \infty) \times[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ satisfying
(e) θ is continuous;
(f) $\theta(s 1, s 2, s 3, s 4)=0$ if and only if $s 1 s 2 s 3 s 4=0$.

Examples of functions ψ of Ψ are given in [15]; see also [4, 21]. Examples of functions θ in Θ are given in [11].

In [11, Theorem 3.1], the following fixed point theorem is obtained.
Theorem 2.1. Let (X, d) be a complete metric space endowed with a partial order \preceq and $F: X \rightarrow X$ a continuous nondecreasing mapping such that there exist $\varphi \in \Phi$, $\psi \in \Psi$ and $\theta \in \Theta$ such that for any $x, y \in X$ with $x \succeq y$,

$$
\begin{align*}
\varphi(d(F x, F y)) \leq \varphi & (d(x, y))-\psi(d(x, y)) \\
& +\theta(d(x, F x), d(y, F y), d(x, F y), d(y, F x)) \tag{2.1}
\end{align*}
$$

Suppose also that there exists $x_{0} \in X$ such that $x_{0} \preceq F x_{0}$ (or $x_{0} \succeq F x_{0}$). Then F admits a fixed point, that is, there exists $\bar{x} \in X$ such that $\bar{x}=F \bar{x}$.

The previous result is still valid for F which is not necessarily continuous. Instead, we require an additional assumption to the metric space X with a partial order \preceq : We say that (X, d, \preceq) is regular if $\left\{a_{n}\right\}$ is a nondecreasing sequence in X with respect to \preceq such that $a_{n} \rightarrow a \in X$ as $n \rightarrow \infty$, then $a_{n} \preceq a$ for all n.
\bar{T} he following theorem is also obtained; see [11, Theorem 3.2].
Theorem 2.2. Let (X, d) be a complete metric space endowed with a partial order \preceq and $F: X \rightarrow X$ a nondecreasing mapping such that there exist $\varphi \in \Phi, \psi \in \Psi$ and $\theta \in \Theta$ such that for any $x, y \in X$ with $x \succeq y$, inequality (2.1) is satisfied. Suppose also that (X, d, \preceq) is regular and there exists $x_{0} \in X$ such that $x_{0} \preceq F x_{0}$ (or $x_{0} \succeq F x_{0}$). Then there exists $\bar{x} \in X$ such that $\bar{x}=F \bar{x}$.

3. Fixed point theorem for monotone mapping

In this section, for mappings F of $X \times X$ into X, we introduce a monotone property. Moreover we consider fixed point theorems for monotone mappings which have this monotone property. We say that a mapping F of $X \times X$ into X is mixed monotone
if F is nondecreasing in its first variable and nonincreasing in its second, that is, for $x, y, u, v \in X$,

$$
x \succeq u, y \preceq v \Rightarrow F(u, v) \preceq F(x, y)
$$

and a mapping \widetilde{F} of $X \times X$ into X is reverse mixed monotone if \widetilde{F} is nonincreasing in its first variable and nondecreasing in its second, that is, for $x, y, u, v \in X$,

$$
x \succeq u, y \preceq v \Rightarrow \widetilde{F}(u, v) \succeq \widetilde{F}(x, y)
$$

Let (X, d) be a metric space, Let F and \widetilde{F} be mappings of $X \times X$ into X. We also consider the mapping A of $X \times X$ into $[0, \infty)$ defined by

$$
A(x, y)=\frac{d(x, F(x, y))+d(y, \widetilde{F}(x, y))}{2},(x, y) \in X \times X
$$

and the mapping B of $X \times X \times X \times X$ into $[0, \infty)$ defined by

$$
B(x, y, u, v)=\frac{d(x, F(u, v))+d(y, \widetilde{F}(u, v))}{2},(x, y, u, v) \in X \times X \times X \times X
$$

Definition 3.1. Mappings F and \widetilde{F} admit a pre-coupled fixed point, if there exists $(a, b) \in X \times X$ such that $a=F(a, b)$ and $b=\widetilde{F}(a, b)$.

Motivated by [11, Theorem 3.4], we have the following fixed point theorem.
Theorem 3.2. Let (X, d) be a complete metric space endowed with a partial order $\preceq, F: X \times X \rightarrow X$ a continuous mixed monotone mapping and $\widetilde{F}: X \times X \rightarrow X$ a continuous reverse mixed monotone mapping. We assume that there exist $\varphi \in \Phi$, $\psi \in \Psi$ and $\theta \in \Theta$ such that for any $x, y, u, v \in X$ with $x \succeq u, y \preceq v$, the following inequality holds:

$$
\begin{align*}
& \varphi\left(\frac{d(F(x, y), F(u, v))+d(\tilde{F}(x, y), \widetilde{F}(u, v))}{2}\right) \\
\leq & \varphi\left(\frac{d(x, u)+d(y, v)}{2}\right)-\psi\left(\frac{d(x, u)+d(y, v)}{2}\right) \tag{3.1}\\
+ & \theta(A(x, y), A(u, v), B(x, y, u, v), B(u, v, x, y))
\end{align*}
$$

If there exist $x_{0}, y_{0} \in X$ such that

$$
\begin{equation*}
x_{0} \preceq F\left(x_{0}, y_{0}\right), y_{0} \succeq \widetilde{F}\left(x_{0}, y_{0}\right), \tag{3.2}
\end{equation*}
$$

or

$$
\begin{equation*}
x_{0} \succeq F\left(x_{0}, y_{0}\right), y_{0} \preceq \widetilde{F}\left(x_{0}, y_{0}\right) \tag{3.3}
\end{equation*}
$$

then F and \widetilde{F} admit a pre-coupled fixed point, that is, there exists $(a, b) \in X \times X$ such that $a=F(a, b)$ and $b=\widetilde{F}(a, b)$.
Proof. We consider the product set $Y=X \times X$ endowed with the metric η defined by

$$
\eta((x, y),(u, v))=\frac{d(x, u)+d(y, v)}{2},(x, y),(u, v) \in Y
$$

Since (X, d) is complete, clearly (Y, η) is also complete. We also consider the partial order \ll in Y defined by

$$
(u, v) \ll(x, y) \Leftrightarrow x \succeq u, y \preceq v
$$

for any $(x, y),(u, v) \in Y$. We also consider the mapping G of Y into Y defined by

$$
G(x, y)=(F(x, y), \widetilde{F}(x, y)),(x, y) \in Y
$$

Since F and \widetilde{F} are continuous, G is also continuous in (Y, η).
Now, we prove that G is nondecreasing with respect to \ll. Let $(x, y),(u, v) \in Y$ with $(u, v) \ll(x, y)$, that is, $x \succeq u, y \preceq v$. Since F is mixed monotone and \widetilde{F} is reverse mixed monotone, these imply that $\bar{F}(x, y) \succeq F(u, v), \widetilde{F}(x, y) \preceq \widetilde{F}(u, v)$, which give us that

$$
G(u, v)=(F(u, v), \widetilde{F}(u, v)) \ll G(x, y)=(F(x, y), \widetilde{F}(x, y))
$$

Thus we can prove that G is nondecreasing with respect to \ll.
On the other hand, for any $x, y, u, v \in X$, we can write

$$
A(x, y)=\eta((x, y), G(x, y)), B(x, y, u, v)=\eta((x, y), G(u, v))
$$

Then, from (3.1), for any $p=(x, y), q=(u, v) \in Y$ with $p \gg q$, we have

$$
\varphi(\eta(G p, G q)) \leq \varphi(\eta(p, q))-\psi(\eta(p, q))+\theta(\eta(p, G p), \eta(q, G q), \eta(p, G q), \eta(q, G p))
$$

Moreover, for $p_{0}=\left(x_{0}, y_{0}\right) \in Y$, from (3.2) and (3.3), we have $p_{0} \ll G p_{0}$ or $p_{0} \gg G p_{0}$.
Now G satisfies all the hypotheses of Theorem 2.1, we deduce that G has a fixed point $\bar{x}=(a, b) \in Y$, that is,

$$
\bar{x}=(a, b)=G \bar{x}=G(a, b)=(F(a, b), \widetilde{F}(a, b))
$$

It implies that $a=F(a, b), b=\widetilde{F}(a, b)$, that is, F and \widetilde{F} admit a pre-coupled fixed point (a, b).

The previous result is still valid for F and \widetilde{F} which are not necessarily continuous. Instead, we require additional assumptions to the metric space X with a partial order々:
Definition 3.3. Let (X, d) be a complete metric space endowed with a partial order \preceq. We say that
(i) (X, d, \preceq) is nondecreasing-regular (\uparrow-regular) if a nondecreasing sequence $\left\{x_{n}\right\} \subset X$ converges to x, then $x_{n} \preceq x$ for all n;
(ii) (X, d, \preceq) is nonincreasing-regular (\downarrow-regular) if a nonincreasing sequence $\left\{x_{n}\right\} \subset X$ converges to x, then $x_{n} \succeq x$ for all n.

Motivated by [11, Theorem 3.5], we have the following result.
Theorem 3.4. Let (X, d) be a complete metric space endowed with a partial order $\preceq, F: X \times X \rightarrow X$ a mixed monotone mapping, and $\widetilde{F}: X \times X \rightarrow X$ a reverse mixed monotone mapping. We assume that there exist $\varphi \in \Phi, \psi \in \Psi$ and $\theta \in \Theta$ such that for any $x, y, u, v \in X$ with $x \succeq u, y \preceq v$, inequality (3.1) holds. We also assume that (X, d, \preceq) is nondecreasing-regular and nonincreasing-regular ($\uparrow \downarrow$-regular), and there
exist $x_{0}, y_{0} \in X$ such that (3.2) or (3.3) hold. Then F and \widetilde{F} admit a pre-coupled fixed point, that is, there exists $(a, b) \in X \times X$ such that $a=F(a, b)$ and $b=\widetilde{F}(a, b)$.

Proof. It is sufficient to show that if (X, d, \preceq) is nondecreasing-regular and nonincrea-sing-regular ($\uparrow \downarrow$-regular), then (Y, η, \ll) is regular. The proof of this claim follows immediately from Theorem 2.2. In detail, also see the proof of [5, Theorem 2.2].

4. Applications

In this section, we study the existence of solutions of two types fourth-order twopoint boundary value problems for elastic beam equations and two types third-order two-point boundary value problems. In particular, a theorem in the subsection 4.1 (Type I) is an extension of the result in [11].
4.1. Type I. First of all, we study the existence of solutions of the following fourthorder two-point boundary value problem for elastic beam equations:

$$
\left\{\begin{array}{l}
u^{\prime \prime \prime \prime}(t)=f\left(t, u(t), u^{\prime \prime}(t)\right) \tag{4.1}\\
u(0)=A, u^{\prime}(0)=B, u^{\prime \prime}(1)=C, u^{\prime \prime \prime}(1)=D
\end{array}\right.
$$

with $I=[0,1]$ and $f \in C(I \times \mathbb{R} \times \mathbb{R}, \mathbb{R})$, where $C(I \times \mathbb{R} \times \mathbb{R}, \mathbb{R})$ is a set of continuous mappings of $I \times \mathbb{R} \times \mathbb{R}$ into \mathbb{R}. Let Ω be a set of functions ω of $[0, \infty)$ into $[0, \infty)$ satisfying
(i) ω is nondecreasing;
(ii) there exists $\psi \in \Psi$ such that $\omega(r)=\frac{r}{2}-\psi\left(\frac{r}{2}\right)$ for all $r \in[0, \infty)$.

For examples of such functions, see [15].
Next we consider the following assumptions $(A 1)$ and $(A 2)$.
(A1) There exists $\omega \in \Omega$ such that for all $t \in I$ and for all $a, b, c, e \in \mathbb{R}$, with $a \geq c$ and $b \leq e$,

$$
\begin{equation*}
0 \leq f(t, a, b)-f(t, c, e) \leq \omega(a-c)+\omega(e-b) \tag{4.2}
\end{equation*}
$$

(A2)There exist $\alpha, \beta \in C(I, \mathbb{R})$ which are solutions of

$$
\begin{equation*}
\alpha(t) \leq B t+A-\int_{0}^{1} H_{2}(t, s)(C-D+D s) d s+\int_{0}^{1} G(t, s) f(s, \alpha(s), \beta(s)) d s, t \in I \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta(t) \geq-\left(C-D+D t+\int_{0}^{1} H_{1}(t, s) f(s, \alpha(s), \beta(s)) d s\right), t \in I \tag{4.4}
\end{equation*}
$$

where the Green functions G and H_{1} are defined by

$$
G(t, s)= \begin{cases}\frac{1}{6} s^{2}(3 t-s), & (0 \leq s \leq t \leq 1) \\ \frac{1}{6} t^{2}(3 s-t), & (0 \leq t \leq s \leq 1)\end{cases}
$$

and

$$
H_{1}(t, s)= \begin{cases}0, & (0 \leq s \leq t \leq 1) \\ s-t, & (0 \leq t \leq s \leq 1)\end{cases}
$$

Note that

$$
\int_{0}^{1} G(t, s) f(s, u(s), v(s)) d s=\int_{0}^{1} H_{2}(t, s) \int_{0}^{1} H_{1}(s, r) f(r, u(r), v(r)) d r d s
$$

where the green function H_{2} is defined by

$$
H_{2}(t, s)= \begin{cases}t-s, & (0 \leq s \leq t \leq 1) \\ 0, & (0 \leq t \leq s \leq 1)\end{cases}
$$

It is easy to show that

$$
\begin{equation*}
0 \leq G(t, s) \leq \frac{1}{2} t^{2} s \text { for all } t, s \in I \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \leq H_{1}(t, s) \leq \min \{s, t\} \text { for all } t, s \in I \tag{4.6}
\end{equation*}
$$

Now we have the following theorem.
Theorem 4.1. Under the assumptions (A1) and (A2), the fourth-order two-point boundary value problem (4.1) has a solution.
Proof. Consider the natural partial order relation \preceq on $X=C(I, R)$, that is,

$$
u, v \in X, u \preceq v \Leftrightarrow u(t) \leq v(t) \text { for all } t \in I
$$

It is well known that X is a complete metric space with respect to the metric

$$
d(u, v)=\max _{t \in I}|u(t)-v(t)|:=\|u-v\|_{\infty}, u, v \in C(I, \mathbb{R})
$$

It is easy to show that (X, d, \preceq) is nondecreasing-regular and nonincreasing-regular ($\uparrow \downarrow$-regular), and that every pair of elements in $X \times X$ has either a lower bound or an upper bound. Solving problem (4.1) is equivalent to finding $u \in C(I, \mathbb{R})$ which is a solution of

$$
\begin{aligned}
u(t)=B t+A & -\int_{0}^{1} H_{2}(t, s)(C-D+D s) d s \\
& +\int_{0}^{1} G(t, s) f(s, u(s), v(s)) d s, t \in I
\end{aligned}
$$

where $v=u^{\prime \prime}$. Moreover the boundary value problem (4.1) can be written as

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)=v(t) \\
v^{\prime \prime}(t)=f(t, u(t), v(t)) \\
u(0)=A, u^{\prime}(0)=B, v(1)=C, v^{\prime}(1)=D
\end{array}\right.
$$

and it is equivalent to the following integral equations,

$$
\left\{\begin{aligned}
u(t)= & B t+A-\int_{0}^{1} H_{2}(t, s) v(s) d s \\
= & B t+A-\int_{0}^{1} H_{2}(t, s)(C-D+D s) d s \\
& +\int_{0}^{1} G(t, s) f(s, u(s), v(s)) d s, t \in I \\
v(t)= & v(t)=C-D+D t+\int_{0}^{1} H_{1}(t, s) f(s, u(s), v(s)) d s, t \in I
\end{aligned}\right.
$$

Let F and \widetilde{F} be mappings of $C(I, \mathbb{R}) \times C(I, \mathbb{R})$ into $C(I, \mathbb{R})$ defined by

$$
\begin{aligned}
F(x, y)(t)= & B t+A-\int_{0}^{1} H_{2}(t, s)(C-D+D s) d s \\
& +\int_{0}^{1} G(t, s) f(s, x(s), y(s)) d s, t \in I, x, y \in C(I, \mathbb{R})
\end{aligned}
$$

and

$$
\tilde{F}(x, y)(t)=-\left(C-D+D t+\int_{0}^{1} H_{1}(t, s) f(s, x(s), y(s)) d s\right), t \in I, x, y \in C(I, \mathbb{R})
$$

By the assumption ($A 1$), we can show that the mapping F is mixed monotone and the mapping \widetilde{F} is reverse mixed monotone. In fact, for all $t \in I$ and for all $x, y, u, v \in$ $C(I, \mathbb{R})$ with $x \succeq u$ and $y \preceq v$, we have

$$
0 \leq f(t, x(t), y(t))-f(t, u(t), v(t))
$$

Thus we have

$$
F(x, y)(t)-F(u, v)(t)=\int_{0}^{1} G(t, s)(f(s, x(s), y(s))-f(s, u(s), v(s))) d s \geq 0
$$

and

$$
\widetilde{F}(x, y)(t)-\widetilde{F}(u, v)(t)=-\int_{0}^{1} H_{1}(t, s)(f(s, x(s), y(s))-f(s, u(s), v(s))) d s \leq 0
$$

Again, since ω is nondecreasing and from (4.2) and (4.5), we have

$$
\begin{align*}
& F(x, y)(t)-F(u, v)(t) \\
= & \int_{0}^{1} G(t, s)(f(s, x(s), y(s))-f(s, u(s), v(s))) d s \\
\leq & \int_{0}^{1} G(t, s)\left(\omega(x(s)-u(s)) d s+\int_{0}^{1} G(t, s) \omega(v(s)-y(s)) d s\right. \tag{4.7}\\
\leq & \int_{0}^{1} G(t, s) d s\left(\omega\left(\|x-u\|_{\infty}\right)+\omega\left(\|v-y\|_{\infty}\right)\right) \\
\leq & \frac{\omega\left(\|x-u\|_{\infty}\right)+\omega\left(\|v-y\|_{\infty}\right)}{4}
\end{align*}
$$

for all $t \in I$ and for all $x, y, u, v \in C(I, \mathbb{R})$ with $x \succeq u$ and $y \preceq v$. Also from (4.2) and (4.6), we have

$$
\begin{align*}
& |\widetilde{F}(x, y)(t)-\widetilde{F}(u, v)(t)| \\
\leq & \int_{0}^{1} H_{1}(t, s)|f(s, x(s), y(s))-f(s, u(s), v(s))| d s \tag{4.8}\\
\leq & \frac{\omega\left(\|x-u\|_{\infty}\right)+\omega\left(\|v-y\|_{\infty}\right)}{2}
\end{align*}
$$

for all $t \in I$ and for all $x, y, u, v \in C(I, \mathbb{R})$ with $x \succeq u$ and $y \preceq v$. By (4.7) and (4.8), we get

$$
\frac{d(F(x, y), F(u, v))+d(\widetilde{F}(x, y), \widetilde{F}(u, v))}{2} \leq \frac{3\left(\omega\left(\|x-u\|_{\infty}\right)+\omega\left(\|v-y\|_{\infty}\right)\right)}{8}
$$

On the other hand, since ω is nondecreasing and condition (ii) for Ω, we have

$$
\begin{aligned}
\frac{3\left(\omega\left(\|x-u\|_{\infty}\right)+\omega\left(\|v-y\|_{\infty}\right)\right)}{8} & \leq \omega\left(\|x-u\|_{\infty}+\|v-y\|_{\infty}\right) \\
& =\frac{d(x, u)+d(y, v)}{2}-\psi\left(\frac{d(x, u)+d(y, v)}{2}\right)
\end{aligned}
$$

Thus we finally get

$$
\begin{aligned}
\eta((F(x, y), \widetilde{F}(x, y)),(F(u, v), \widetilde{F}(u, v))) & =\frac{d(F(x, y), F(u, v))+d(\widetilde{F}(x, y), \widetilde{F}(u, v))}{2} \\
& \leq \frac{d(x, u)+d(y, v)}{2}-\psi\left(\frac{d(x, u)+d(y, v)}{2}\right)
\end{aligned}
$$

Now, let $\alpha, \beta \in C(I, \mathbb{R})$ be solutions of (4.3) and (4.4). By the assumption (A2), we have $\alpha \preceq F(\alpha, \beta)$ and $\beta \succeq \widetilde{F}(\alpha, \beta)$. We also take $\varphi(t)=t$ for any $t \in[0, \infty)$ and $\theta \equiv 0$. Thus all the hypotheses of Theorem 3.4 are satisfied. Therefore $u, v \in C(I, \mathbb{R})$ are solution of the problem $F(u, v)=u$ and $\widetilde{F}(u, v)=v$. These prove that $u \in C(I, \mathbb{R})$ is a solution of (4.1).
4.2. Type II. Next as an application of our results, we study the existence of solutions of the following fourth-order two-point boundary value problem, see [2, 25, 27]:

$$
\left\{\begin{array}{l}
u^{\prime \prime \prime \prime}(t)=f\left(t, u(t), u^{\prime \prime}(t)\right) \tag{4.9}\\
u(0)=A, u(1)=B, u^{\prime \prime}(0)=C, u^{\prime \prime}(1)=D
\end{array}\right.
$$

with $I=[0,1]$ and $f \in C(I \times \mathbb{R} \times \mathbb{R}, \mathbb{R})$. We take the set of functions Ω same way as in Type I.

The assumptions $(A 1)$ and $(A 2)$ are same as those of Type I with respect to the following Green functions G and H.

$$
G(t, s)= \begin{cases}\frac{1}{6} s(1-t)\left(2 t-s^{2}-t^{2}\right), & (0 \leq s \leq t \leq 1) \\ \frac{1}{6} t(1-s)\left(2 s-t^{2}-s^{2}\right), & (0 \leq t \leq s \leq 1)\end{cases}
$$

and

$$
H(t, s)= \begin{cases}s(t-1) & (0 \leq s \leq t \leq 1) \\ t(s-1) & (0 \leq t \leq s \leq 1)\end{cases}
$$

Note that

$$
\int_{0}^{1} G(t, s) f(s, u(s), v(s)) d s=\int_{0}^{1} H(t, s) \int_{0}^{1} H(s, r) f(r, u(r), v(r)) d r d s, t \in I
$$

It is easy to show that

$$
\begin{equation*}
0 \leq G(t, s) \leq \frac{1}{3} \text { st for all } t, s \in I \tag{4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \leq-H(t, s) \leq \min \{s, t\} \text { for all } t, s \in I \tag{4.11}
\end{equation*}
$$

Theorem 4.2. Under the assumptions (A1) and (A2), the fourth-order two-point boundary value problem (4.9) has a solution.

Proof. From the same argument in Theorem 4.1, we consider the natural partial order relation \preceq on $X=C(I, R)$, that is,

$$
u, v \in X, u \preceq v \Leftrightarrow u(t) \leq v(t) \text { for all } t \in I
$$

It is well known that X is a complete metric space with respect to the metric

$$
d(u, v)=\max _{t \in I}|u(t)-v(t)|:=\|u-v\|_{\infty}, u, v \in C(I, R)
$$

It is easy to show that (X, d, \preceq) is nondecreasing-regular and nonincreasing-regular ($\uparrow \downarrow$-regular), and that every pair of elements in $X \times X$ has either a lower bound or an upper bound. Solving problem (4.9) is equivalent to finding $u \in C(I, \mathbb{R})$ which is a solution of

$$
\begin{aligned}
u(t)=(B-A) t+A & +\int_{0}^{1} H(t, s)((D-C) s+C) d s \\
& +\int_{0}^{1} G(t, s) f(s, u(s), v(s)) d s, t \in I
\end{aligned}
$$

where $v=u^{\prime \prime}$. Moreover equation (4.9) can be written as

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)=v(t) \\
v^{\prime \prime}(t)=f(t, u(t), v(t)) \\
u(0)=A, u(1)=B, v(0)=C, v(1)=D
\end{array}\right.
$$

and it is also equivalent to the following integral equations,

$$
\left\{\begin{aligned}
u(t)= & (B-A) t+A-\int_{0}^{1} H(t, s) v(s) d s \\
= & (B-A) t+A-\int_{0}^{1} H(t, s)((D-C) s+C) d s \\
& +\int_{0}^{1} G(t, s) f(s, u(s), v(s)) d s, t \in I \\
v(t)= & (D-C) t+C-\int_{0}^{1} H(t, s) f(s, u(s), v(s)) d s, t \in I
\end{aligned}\right.
$$

Let F and \widetilde{F} be mappings of $C(I, \mathbb{R}) \times C(I, \mathbb{R})$ into $C(I, \mathbb{R})$ defined by

$$
\begin{aligned}
F(x, y)(t)= & (B-A) t+A-\int_{0}^{1} H(t, s)((D-C) s+C) d s \\
& +\int_{0}^{1} G(t, s) f(s, x(s), y(s)) d s, t \in I, x, y \in C(I, \mathbb{R})
\end{aligned}
$$

and

$$
\widetilde{F}(x, y)(t)=(D-C) t+C-\int_{0}^{1} H(t, s) f(s, x(s), y(s)) d s, t \in I, x, y \in C(I, \mathbb{R})
$$

By the assumption (A1), we can show that the mapping F is mixed monotone and the mapping \widetilde{F} is reverse mixed monotone. In fact, for all $t \in I$ and for all $x, y, u, v \in$ $C(I, \mathbb{R})$, with $x \succeq u$ and $y \preceq v$,

$$
0 \leq f(t, x(t), y(t))-f(t, u(t), v(t))
$$

Thus we have

$$
F(x, y)(t)-F(u, v)(t)=\int_{0}^{1} G(t, s)(f(s, x(s), y(s))-f(s, u(s), v(s))) d s \geq 0
$$

and

$$
\widetilde{F}(x, y)(t)-\widetilde{F}(u, v)(t)=-\int_{0}^{1} H(t, s)(f(s, x(s), y(s))-f(s, u(s), v(s))) d s \leq 0
$$

The remaining parts of the proof are same as that of Type I using properties (4.10), (4.11), and the assumption (A2).
4.3. Type III. In this subsection, we consider the solutions of the following thirdorder two-point boundary value problem, see $[6,24,28]$:

$$
\left\{\begin{array}{l}
u^{\prime \prime \prime}(t)=f\left(t, u(t), u^{\prime \prime}(t)\right) \tag{4.12}\\
u(0)=A, u(1)=B, u^{\prime \prime}(0)=C
\end{array}\right.
$$

with $I=[0,1]$ and $f \in C(I \times \mathbb{R} \times \mathbb{R}, \mathbb{R})$. The assumptions $(A 1)$ and $(A 2)$ are same as that of Type I using the following Green functions G and H.

$$
G(t, s)= \begin{cases}\frac{-(t-s)^{2}+t(1-s)^{2}}{2}, & (0 \leq s \leq t \leq 1) \\ \frac{t(1-s)^{2}}{2}, & (0 \leq t \leq s \leq 1)\end{cases}
$$

and

$$
H(t, s)= \begin{cases}(1-t) s, & (0 \leq s \leq t \leq 1) \\ (1-s) t, & (0 \leq t \leq s \leq 1)\end{cases}
$$

Note that

$$
\int_{0}^{1} G(t, s) f(s, u(s), v(s)) d s=\int_{0}^{1} H(t, s) \int_{0}^{s} f(r, u(r), v(r)) d r d s
$$

It is easy to show that

$$
\begin{equation*}
0 \leq G(t, s) \leq \frac{1}{2} t(1-s)^{2} \text { for all } t, s \in I \tag{4.13}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \leq H(t, s) \leq \min \{s(1-t), t(1-s)\} \text { for all } t, s \in I \tag{4.14}
\end{equation*}
$$

Theorem 4.3. Under the assumptions (A1) and (A2), the third-order two-point boundary value problem (4.12) has a solution.

Proof. From the same argument in Theorem 4.1, we consider the natural partial order relation \preceq in $X=C(I, R)$. Then (X, d, \preceq) is complete, nondecreasing-regular, nonincreasing-regular ($\uparrow \downarrow$-regular), and every pair of elements in $X \times X$ has either a lower bound or an upper bound. Solving problem (4.12) is equivalent to finding $u \in C(I, \mathbb{R})$ which is a solution of

$$
u(t)=(B-A) t+A-\int_{0}^{1} H(t, s) C d s+\int_{0}^{1} G(t, s) f(s, u(s), v(s)) d s, t \in I
$$

where $v=u^{\prime \prime}$. Moreover the boundary value problem (4.12) can be written as follows

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)=v(t) \\
v^{\prime}(t)=-f(t, u(t), v(t)) \\
u(0)=A, u(0)=B, v(0)=C
\end{array}\right.
$$

and it is also equivalent to the following,

$$
\left\{\begin{aligned}
u(t)= & (B-A) t+A-\int_{0}^{1} H(t, s) v(s) d s \\
= & (B-A) t+A-\int_{0}^{1} H(t, s) C d s \\
& +\int_{0}^{1} G(t, s) f(s, u(s), v(s)) d s, t \in I \\
v(t)= & C-\int_{0}^{t} f(s, u(s), v(s)) d s, t \in I
\end{aligned}\right.
$$

Let F and \widetilde{F} be mappings of $C(I, \mathbb{R}) \times C(I, \mathbb{R})$ into $C(I, \mathbb{R})$ defined by

$$
\begin{aligned}
F(x, y)(t)= & (B-A) t+A-\int_{0}^{1} H(t, s) C d s \\
& +\int_{0}^{1} G(t, s) f(s, x(s), y(s)) d s, t \in I, x, y \in C(I, \mathbb{R})
\end{aligned}
$$

and

$$
\widetilde{F}(x, y)(t)=C-\int_{0}^{t} f(s, x(s), y(s)) d s, t \in I, x, y \in C(I, \mathbb{R})
$$

By the assumption (A1), we can show that the mapping F is mixed monotone and the mapping \widetilde{F} is reverse mixed monotone. The remaining parts of the proof are same as that of Type I using properties (4.13), (4.14), and the assumption (A2).
4.4. Type IV. Finally we consider the solutions of the following third-order twopoint boundary value problem, see [14]:

$$
\left\{\begin{array}{l}
u^{\prime \prime \prime}(t)=f\left(t, u(t), u^{\prime \prime}(t)\right) \tag{4.15}\\
u(0)=A, u(1)=B, u^{\prime \prime}(1)=C,
\end{array}\right.
$$

with $I=[0,1]$ and $f \in C(I \times \mathbb{R} \times \mathbb{R}, \mathbb{R})$. The assumptions $(A 1)$ and $(A 2)$ are same as those of Type I using the following Green functions G and H.

$$
G(t, s)= \begin{cases}\frac{1}{2} s^{2}(1-t), & (0 \leq s \leq t \leq 1) \\ \frac{1}{2} t\left((1-t)-(1-s)^{2}\right), & (0 \leq t \leq s \leq 1)\end{cases}
$$

and

$$
H(t, s)= \begin{cases}(1-t) s & (0 \leq s \leq t \leq 1) \\ (1-s) t & (0 \leq t \leq s \leq 1)\end{cases}
$$

Note that

$$
\int_{0}^{1} G(t, s) f(s, u(s), v(s)) d s=\int_{0}^{1} H(t, s) \int_{s}^{1} f(r, u(r), v(r)) d r d s
$$

It is easy to show that

$$
\begin{equation*}
0 \leq G(t, s) \leq \frac{1}{2} s^{2}(1-t) \text { for all } t, s \in I \tag{4.16}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \leq H(t, s) \leq \min \{s(1-t), t(1-s)\} \text { for all } t, s \in I \tag{4.17}
\end{equation*}
$$

Theorem 4.4. Under the assumptions (A1) and (A2), the third-order two-point boundary value problem (4.15) has a solution.

Proof. From the same argument in Theorem 4.1, we consider the natural partial order relation \preceq on $X=C(I, R)$. Then (X, d, \preceq) is complete, nondecreasing-regular and nonincreasing-regular ($\uparrow \downarrow$-regular), and every pair of elements in $X \times X$ has either a lower bound or an upper bound. Solving problem (4.15) is equivalent to finding $u \in C(I, \mathbb{R})$ which is a solution of

$$
u(t)=(B-A) t+A-\int_{0}^{1} H(t, s) C d s+\int_{0}^{1} G(t, s) f(s, u(s), v(s)) d s, t \in I
$$

where $v=u^{\prime \prime}$. Moreover the boundary value problem (4.15) can be written as

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)=v(t) \\
v^{\prime}(t)=f(t, u(t), v(t)) \\
u(0)=u(1)=v(1)=0
\end{array}\right.
$$

and it is also equivalent to the following integral equations,

$$
\left\{\begin{aligned}
u(t)= & (B-A) t+A-\int_{0}^{1} H(t, s) v(s) d s \\
= & (B-A) t+A-\int_{0}^{1} H(t, s) C d s \\
& +\int_{0}^{1} G(t, s) f(s, u(s), v(s)) d s, t \in I \\
v(t)= & C-\int_{t}^{1} f(s, u(s), v(s)) d s, t \in I
\end{aligned}\right.
$$

Let F and \widetilde{F} be mappings of $C(I, \mathbb{R}) \times C(I, \mathbb{R})$ into $C(I, \mathbb{R})$ defined by

$$
\begin{aligned}
F(x, y)(t)= & (B-A) t+A+\int_{0}^{1} H(t, s) C d s \\
& +\int_{0}^{1} G(t, s) f(s, x(s), y(s)) d s, t \in I, x, y \in C(I, \mathbb{R})
\end{aligned}
$$

and

$$
\widetilde{F}(x, y)(t)=C-\int_{t}^{1} f(s, u(s), v(s)) d s, t \in I, x, y \in C(I, \mathbb{R})
$$

By the assumption (A1), we can show that the mapping F is mixed monotone and the mapping \widetilde{F} is reverse mixed monotone. The remaining parts of the proof are same as that of Type I using properties (4.16), (4.17), and the assumption (A2).

Acknowledgement. The author would like to thank the referee for valuable suggestions and comments.

References

[1] M. Abbas, M. Ali Khan, S. Radenović, Common coupled fixed point theorems in cone metric spaces for w-compatible mappings, Appl. Math. Comput., 217(2010), 195-202.
[2] A.R. Aftabizadeh, Existence and uniqueness theorems for fourth-order boundary value problems, J. Math. Anal. Appl., 116(1986), 415-426.
[3] H. Aydi, M. Postolache, W. Shatanawi, Coupled fixed point results for (ψ, φ)-weakly contractive mappings in ordered G-metric spaces, Comput. Math. Appl., 63(2012), 298-309.
[4] V. Berinde, Coupled fixed point theorems for Φ-contractive mixed monotone mappings in partially ordered metric spaces, Nonlinear Anal., 75(2012), 3218-3228.
[5] T.G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65(2006), 1379-1393.
[6] A. Cabada, S. Lois, Existence of solution for discontinuous third order boundary value problems, J. Comput. Appl. Math., 110(1999), 105-114.
[7] B.S. Choudhury, A. Kundu, A coupled coincidence point result in partially ordered metric spaces for compatible mappings, Nonlinear Anal., 73(2010), 2524-2531.
[8] M.A. Del Pino, R.F. Manasevich, Existence for a fourth-order boundary value problem under a two-parameter nonresonance condition, Proc. Amer. Math. Soc., 112(1991), 81-86.
[9] W.-S. Du, Coupled fixed point theorems for nonlinear contractions satisfied MizoguchiTakahashi's condition in quasiordered metric spaces, Fixed Point Theory Appl., 2010(2010), Article ID 876372, 9 pages.
[10] C.P. Gupta, Existence and uniqueness theorems for the bending of an elastic beam equation, Appl. Anal., 26(1988), 289-304.
[11] M. Jleli, V. Čojbašic Rajíc, B. Samet and C. Vetro, Fixed point theorems on ordered metric spaces and applications to nonlinear elastic beam equations, J. Fixed Point Theory Appl., 12(2012), 175-192.
[12] Y. Li, Positive solutions of fourth-order boundary value problems with two parameters, J. Math. Anal. Appl., 281(2003), 477-484.
[13] B. Liu, Positive solutions of fourth-order two point boundary value problems, Appl. Math. Comput., 148(2004), 407-420.
[14] Z. Liu, J.S. Ume, S.M. Kang, Positive solutions of a singular nonlinear third order two-point boundary value problem, J. Math. Anal. Appl., 326(2007), 589-601.
[15] N.V. Luong, N.X. Thuan, Coupled fixed points in partially ordered metric spaces and application, Nonlinear Anal., 74(2011), 983-992.
[16] R. Ma, Positive solutions of fourth-order two point boundary value problems, Ann. Differential Equations, 15(1999), 305-313.
[17] R. Ma, Existence of positive solutions of a fourth order boundary value problem, Appl. Math. Comput., 168(2005), 1219-1231.
[18] J.J. Nieto, R.R. López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22(2005), 223-239.
[19] J.J. Nieto, R.R. López, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. (Engl. Ser.), 23(2007), 22052212.
[20] A. Petruşel, G. Petruşel, A study of a general system of operator equations in b-metric spaces via the vector approach in fixed point theory, J. Fixed Point Theory Appl., 9(2017), 1793-1814.
[21] I.A. Rus, A. Petruşel, G. Petruşel, Fixed Point Theory, Cluj University Press, Cluj-Napoca, 2008.
[22] B. Samet, C. Vetro, Coupled fixed point theorems for multi-valued nonlinear contraction mappings in partially ordered metric spaces, Nonlinear Anal., 74(2011), 4260-4268.
[23] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha-\psi$-contractive type mappings, Nonlinear Anal., 75(2012), 2154-2165.
[24] J.-P. Sun, Existence of solution and positive solution of BVP for nonlinear third-order dynamic equation, Nonlinear Anal., 64(2006), 629-636.
[25] R.A. Usmani, A uniqueness theorem for a boundary value problems, Proc. Amer. Math. Soc., 77(1979), 329-335.
[26] D.-B. Wang, J.-P. Sun, Existence of a solution and a positive solution of a boundary value problem for a nonlinear fourth-order dynamic equation, Nonlinear Anal., 69(2008), 1817-1823.
[27] Y. Yang, Fourth-order two-point boundary value problems, Proc. Amer. Math. Soc., 104(1988), 175-180.
[28] Q. Yao, Solution and positive solution for a semilinear third-order two-point boundary value problem, Appl. Math. Lett., 17 (2004), 1171-1175.

Received: June 7, 2016; Accepted: April 21, 2017.

