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Abstract. In this paper, we extend the concept of mixed monotone mappings and then we consider
certain fixed point theorems for a pair of mappings in metric spaces with a partial ordering. As an

application, we study existence of solutions for the following fourth-order two-point boundary value

problems for elastic beam equations:u
′′′′(t) = f(t, u(t), u′′(t)),

u(0) = A, u′(0) = B, u′′(1) = C, u′′′(1) = D,

where f is a continuous mapping of [0, 1]×R×R into R. Moreover, using these fixed point theorems,
we prove several existence results for the solutions of various boundary value problems.
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1. Introduction

A coupled fixed point theorem is a combination between fixed point results for
contractive type mappings and the monotone iterative method proposed by Bhaskar
and Lakshmikantham [5]. Several authors [1, 3, 4, 7, 9, 15, 18, 19, 22, 23] investigated
it. It is a strong tool to study a existence and uniqueness solution of boundary value
problems for several ordinary differential equations, see [5, 4, 23, 11]. Recently in [11],
Jleli et.al extend and generalize several existing results in the literature [4, 5, 11, 23].
They also show the existence and uniqueness of solutions of the following fourth-order
two-point boundary value problem for elastic beam equations:{

u′′′′(t) = f(t, u(t), u(t)),

u(0) = u′(0) = u′′(1) = u′′′(1) = 0,

where f is a continuous mapping of [0, 1]× R× R into R.
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We are also concerned about higher order boundary value problems. In particular,
for the existence of a solution the use of a fixed point theorem is a very popular
method. So, for instance, we consider the following problem,{

u′′′′(t) = f(t, u(t), u′′(t)),

u(0) = u(1) = u′′(0) = u′′(1) = 0,
(1.1)

or, for example, the next one (see [11]):{
u′′′′(t) = f(t, u(t), u′′(t)),

u(0) = u′(0) = u′′(1) = u′′′(1) = 0,
(1.2)

where f is a continuous mapping of [0, 1]×R×R into R. We will show that some cou-
pled fixed point theorems are very useful in order to get a solution of these boundary
value problems.

For the existence and uniqueness of solutions for the fourth-order two-point bound-
ary value problem for (1.1), many researchers have studied, see [2, 10, 12, 13, 16, 17,
25, 26, 27, 8]. The proof is carried out using the Leray-Schauder fixed point theo-
rem, etc.[2, 8, 10, 12, 13, 16, 17, 25, 26, 27]. Moreover, several authors consider the
following boundary value problem, which includes (1.1).{

u′′′′(t) = f(t, u(t), u′′(t)),

u(0) = A, u(1) = B, u′′(0) = C, u′′(1) = D.
(1.3)

Naturally the following boundary value problem, which includes (1.2), can be consid-
erable. {

u′′′′(t) = f(t, u(t), u′′(t)),

u(0) = A, u′(0) = B, u′′(1) = C, u′′′(1) = D.
(1.4)

Recently Petruşel and Petruşel improve mixed monotone property and have a fixed
point theorem. Using their method they solve second-order two-point boundary value
problems for system of ordinary differential equations, for detail see [20].

In this paper, using the method of coupled fixed point theorem in [5, 4, 7, 15, 11],
we show the existence of solutions for (1.4). Our paper is organized as follows. In
Section 2, we describe the fixed point theorem in metric spaces endowed with a order.
In Section 3, let X be a metric space. And we introduce reverse mixed-monotone
property for the mapping of X×X into X. We consider two mappings of X×X into
X which have mixed-monotone property and reverse mixed-monotone property and
we have fixed point theorems (Theorems 3.2, 3.4). In Section 4, we show that our
method can be applicable to fourth-order two-point boundary value problems (1.3),
(1.4), and typical third-order two-point boundary value problems.

2. Fixed point theorem

First of all, we cited the following definitions and preliminary results will be useful
later.
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Let (X, d) be a metric space endowed with a partial order �. We say that a
mapping F : X → X is nondecreasing if for any x, y ∈ X,

x � y ⇒ Fx � Fy.

Let Φ denote the set of all functions ϕ : [0,∞)→ [0,∞) satisfying

(a) ϕ is continuous and nondecreasing;
(b) ϕ−1({0}) = {0}.

Let Ψ denote the set of all functions ψ : [0,∞)→ [0,∞) satisfying

(c) lim
t→r+

ψ(t) > 0 (and finite) for all r > 0;

(d) lim
t→0+

ψ(t) = 0.

Let Θ denote the set of all functions θ : [0,∞) × [0,∞) × [0,∞) × [0,∞) → [0,∞)
satisfying

(e) θ is continuous;
(f) θ(s1, s2, s3, s4) = 0 if and only if s1s2s3s4 = 0.

Examples of functions ψ of Ψ are given in [15]; see also [4, 21]. Examples of functions
θ in Θ are given in [11].

In [11, Theorem 3.1], the following fixed point theorem is obtained.

Theorem 2.1. Let (X, d) be a complete metric space endowed with a partial order
� and F : X → X a continuous nondecreasing mapping such that there exist ϕ ∈ Φ,
ψ ∈ Ψ and θ ∈ Θ such that for any x, y ∈ X with x � y,

ϕ(d(Fx, Fy)) ≤ ϕ(d(x, y))− ψ(d(x, y))

+ θ(d(x, Fx), d(y, Fy), d(x, Fy), d(y, Fx)).
(2.1)

Suppose also that there exists x0 ∈ X such that x0 � Fx0 (or x0 � Fx0). Then F
admits a fixed point, that is, there exists x ∈ X such that x = Fx.

The previous result is still valid for F which is not necessarily continuous. Instead,
we require an additional assumption to the metric space X with a partial order �:
We say that (X, d,�) is regular if {an} is a nondecreasing sequence in X with respect
to � such that an → a ∈ X as n→∞, then an � a for all n.

The following theorem is also obtained; see [11, Theorem 3.2].

Theorem 2.2. Let (X, d) be a complete metric space endowed with a partial order
� and F : X → X a nondecreasing mapping such that there exist ϕ ∈ Φ, ψ ∈ Ψ and
θ ∈ Θ such that for any x, y ∈ X with x � y, inequality (2.1) is satisfied. Suppose also
that (X, d,�) is regular and there exists x0 ∈ X such that x0 � Fx0 (or x0 � Fx0).
Then there exists x ∈ X such that x = Fx.

3. Fixed point theorem for monotone mapping

In this section, for mappings F of X×X into X, we introduce a monotone property.
Moreover we consider fixed point theorems for monotone mappings which have this
monotone property. We say that a mapping F of X ×X into X is mixed monotone
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if F is nondecreasing in its first variable and nonincreasing in its second, that is, for
x, y, u, v ∈ X,

x � u, y � v ⇒ F (u, v) � F (x, y),

and a mapping F̃ of X ×X into X is reverse mixed monotone if F̃ is nonincreasing
in its first variable and nondecreasing in its second, that is, for x, y, u, v ∈ X,

x � u, y � v ⇒ F̃ (u, v) � F̃ (x, y).

Let (X, d) be a metric space, Let F and F̃ be mappings of X ×X into X. We also
consider the mapping A of X ×X into [0,∞) defined by

A(x, y) =
d(x, F (x, y)) + d(y, F̃ (x, y))

2
, (x, y) ∈ X ×X,

and the mapping B of X ×X ×X ×X into [0,∞) defined by

B(x, y, u, v) =
d(x, F (u, v)) + d(y, F̃ (u, v))

2
, (x, y, u, v) ∈ X ×X ×X ×X.

Definition 3.1. Mappings F and F̃ admit a pre-coupled fixed point, if there exists

(a, b) ∈ X ×X such that a = F (a, b) and b = F̃ (a, b).

Motivated by [11, Theorem 3.4], we have the following fixed point theorem.

Theorem 3.2. Let (X, d) be a complete metric space endowed with a partial order

�, F : X × X → X a continuous mixed monotone mapping and F̃ : X × X → X
a continuous reverse mixed monotone mapping. We assume that there exist ϕ ∈ Φ,
ψ ∈ Ψ and θ ∈ Θ such that for any x, y, u, v ∈ X with x � u, y � v, the following
inequality holds:

ϕ

(
d(F (x, y), F (u, v)) + d(F̃ (x, y), F̃ (u, v))

2

)

≤ ϕ
(
d(x, u) + d(y, v)

2

)
− ψ

(
d(x, u) + d(y, v)

2

)
+ θ (A(x, y), A(u, v), B(x, y, u, v), B(u, v, x, y)) .

(3.1)

If there exist x0, y0 ∈ X such that

x0 � F (x0, y0), y0 � F̃ (x0, y0), (3.2)

or

x0 � F (x0, y0), y0 � F̃ (x0, y0), (3.3)

then F and F̃ admit a pre-coupled fixed point, that is, there exists (a, b) ∈ X×X such

that a = F (a, b) and b = F̃ (a, b).

Proof. We consider the product set Y = X ×X endowed with the metric η defined
by

η((x, y), (u, v)) =
d(x, u) + d(y, v)

2
, (x, y), (u, v) ∈ Y.
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Since (X, d) is complete, clearly (Y, η) is also complete. We also consider the partial
order � in Y defined by

(u, v)� (x, y)⇔ x � u, y � v

for any (x, y), (u, v) ∈ Y . We also consider the mapping G of Y into Y defined by

G(x, y) = (F (x, y), F̃ (x, y)), (x, y) ∈ Y.

Since F and F̃ are continuous, G is also continuous in (Y, η).
Now, we prove that G is nondecreasing with respect to �. Let (x, y), (u, v) ∈ Y

with (u, v)� (x, y), that is, x � u, y � v. Since F is mixed monotone and F̃ is reverse

mixed monotone, these imply that F (x, y) � F (u, v), F̃ (x, y) � F̃ (u, v), which give
us that

G(u, v) = (F (u, v), F̃ (u, v))� G(x, y) = (F (x, y), F̃ (x, y)).

Thus we can prove that G is nondecreasing with respect to �.
On the other hand, for any x, y, u, v ∈ X, we can write

A(x, y) = η((x, y), G(x, y)), B(x, y, u, v) = η((x, y), G(u, v)).

Then, from (3.1), for any p = (x, y), q = (u, v) ∈ Y with p� q, we have

ϕ (η(Gp,Gq)) ≤ ϕ(η(p, q))− ψ(η(p, q)) + θ (η(p,Gp), η(q,Gq), η(p,Gq), η(q,Gp)) .

Moreover, for p0 = (x0, y0) ∈ Y , from (3.2) and (3.3), we have p0 � Gp0 or p0 � Gp0.
Now G satisfies all the hypotheses of Theorem 2.1, we deduce that G has a fixed

point x = (a, b) ∈ Y , that is,

x = (a, b) = Gx = G(a, b) = (F (a, b), F̃ (a, b)).

It implies that a = F (a, b), b = F̃ (a, b), that is, F and F̃ admit a pre-coupled fixed
point (a, b). �

The previous result is still valid for F and F̃ which are not necessarily continuous.
Instead, we require additional assumptions to the metric space X with a partial order
�:

Definition 3.3. Let (X, d) be a complete metric space endowed with a partial order
�. We say that

(i) (X, d,�) is nondecreasing-regular (↑-regular) if a nondecreasing sequence
{xn} ⊂ X converges to x, then xn � x for all n;

(ii) (X, d,�) is nonincreasing-regular (↓-regular) if a nonincreasing sequence
{xn} ⊂ X converges to x, then xn � x for all n.

Motivated by [11, Theorem 3.5], we have the following result.

Theorem 3.4. Let (X, d) be a complete metric space endowed with a partial order

�, F : X×X → X a mixed monotone mapping, and F̃ : X×X → X a reverse mixed
monotone mapping. We assume that there exist ϕ ∈ Φ, ψ ∈ Ψ and θ ∈ Θ such that
for any x, y, u, v ∈ X with x � u, y � v, inequality (3.1) holds. We also assume that
(X, d,�) is nondecreasing-regular and nonincreasing-regular (↑↓-regular), and there
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exist x0, y0 ∈ X such that (3.2) or (3.3) hold. Then F and F̃ admit a pre-coupled

fixed point, that is, there exists (a, b) ∈ X ×X such that a = F (a, b) and b = F̃ (a, b).

Proof. It is sufficient to show that if (X, d,�) is nondecreasing-regular and nonincrea-
sing-regular (↑↓-regular), then (Y, η,�) is regular. The proof of this claim follows
immediately from Theorem 2.2. In detail, also see the proof of [5, Theorem 2.2]. �

4. Applications

In this section, we study the existence of solutions of two types fourth-order two-
point boundary value problems for elastic beam equations and two types third-order
two-point boundary value problems. In particular, a theorem in the subsection 4.1
(Type I) is an extension of the result in [11].

4.1. Type I. First of all, we study the existence of solutions of the following fourth-
order two-point boundary value problem for elastic beam equations:{

u′′′′(t) = f(t, u(t), u′′(t)),

u(0) = A, u′(0) = B, u′′(1) = C, u′′′(1) = D,
(4.1)

with I = [0, 1] and f ∈ C(I ×R×R,R), where C(I ×R×R,R) is a set of continuous
mappings of I × R × R into R. Let Ω be a set of functions ω of [0,∞) into [0,∞)
satisfying

(i) ω is nondecreasing;
(ii) there exists ψ ∈ Ψ such that ω(r) = r

2 − ψ( r
2 ) for all r ∈ [0,∞).

For examples of such functions, see [15].
Next we consider the following assumptions (A1) and (A2).
(A1) There exists ω ∈ Ω such that for all t ∈ I and for all a, b, c, e ∈ R, with a ≥ c

and b ≤ e,

0 ≤ f(t, a, b)− f(t, c, e) ≤ ω(a− c) + ω(e− b). (4.2)

(A2)There exist α, β ∈ C(I,R) which are solutions of

α(t) ≤ Bt+A−
∫ 1

0

H2(t, s)(C −D +Ds)ds+

∫ 1

0

G(t, s)f(s, α(s), β(s))ds, t ∈ I,

(4.3)

and

β(t) ≥ −
(
C −D +Dt+

∫ 1

0

H1(t, s)f(s, α(s), β(s))ds

)
, t ∈ I, (4.4)

where the Green functions G and H1 are defined by

G(t, s) =


1

6
s2(3t− s), (0 ≤ s ≤ t ≤ 1),

1

6
t2(3s− t), (0 ≤ t ≤ s ≤ 1),
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and

H1(t, s) =

{
0, (0 ≤ s ≤ t ≤ 1),

s− t, (0 ≤ t ≤ s ≤ 1).

Note that∫ 1

0

G(t, s)f(s, u(s), v(s))ds =

∫ 1

0

H2(t, s)

∫ 1

0

H1(s, r)f(r, u(r), v(r))drds,

where the green function H2 is defined by

H2(t, s) =

{
t− s, (0 ≤ s ≤ t ≤ 1),

0, (0 ≤ t ≤ s ≤ 1).

It is easy to show that

0 ≤ G(t, s) ≤ 1

2
t2s for all t, s ∈ I, (4.5)

and

0 ≤ H1(t, s) ≤ min{s, t} for all t, s ∈ I. (4.6)

Now we have the following theorem.

Theorem 4.1. Under the assumptions (A1) and (A2), the fourth-order two-point
boundary value problem (4.1) has a solution.

Proof. Consider the natural partial order relation � on X = C(I,R), that is,

u, v ∈ X,u � v ⇔ u(t) ≤ v(t) for all t ∈ I.

It is well known that X is a complete metric space with respect to the metric

d(u, v) = max
t∈I
|u(t)− v(t)| :=‖ u− v ‖∞, u, v ∈ C(I,R).

It is easy to show that (X, d,�) is nondecreasing-regular and nonincreasing-regular
(↑↓-regular), and that every pair of elements in X ×X has either a lower bound or
an upper bound. Solving problem (4.1) is equivalent to finding u ∈ C(I,R) which is
a solution of

u(t) = Bt+A−
∫ 1

0

H2(t, s)(C −D +Ds)ds

+

∫ 1

0

G(t, s)f(s, u(s), v(s))ds, t ∈ I,

where v = u′′. Moreover the boundary value problem (4.1) can be written as
u′′(t) = v(t),

v′′(t) = f(t, u(t), v(t)),

u(0) = A, u′(0) = B, v(1) = C, v′(1) = D,
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and it is equivalent to the following integral equations,

u(t) = Bt+A−
∫ 1

0

H2(t, s)v(s)ds

= Bt+A−
∫ 1

0

H2(t, s)(C −D +Ds)ds

+

∫ 1

0

G(t, s)f(s, u(s), v(s))ds, t ∈ I,

v(t) = v(t) = C −D +Dt+
∫ 1

0
H1(t, s)f(s, u(s), v(s))ds, t ∈ I.

Let F and F̃ be mappings of C(I,R)× C(I,R) into C(I,R) defined by

F (x, y)(t) = Bt+A−
∫ 1

0

H2(t, s)(C −D +Ds)ds

+

∫ 1

0

G(t, s)f(s, x(s), y(s))ds, t ∈ I, x, y ∈ C(I,R),

and

F̃ (x, y)(t) = −
(
C −D +Dt+

∫ 1

0

H1(t, s)f(s, x(s), y(s))ds

)
, t ∈ I, x, y ∈ C(I,R).

By the assumption (A1), we can show that the mapping F is mixed monotone and

the mapping F̃ is reverse mixed monotone. In fact, for all t ∈ I and for all x, y, u, v ∈
C(I,R) with x � u and y � v, we have

0 ≤ f(t, x(t), y(t))− f(t, u(t), v(t)).

Thus we have

F (x, y)(t)− F (u, v)(t) =

∫ 1

0

G(t, s)(f(s, x(s), y(s))− f(s, u(s), v(s)))ds ≥ 0,

and

F̃ (x, y)(t)− F̃ (u, v)(t) = −
∫ 1

0

H1(t, s)(f(s, x(s), y(s))− f(s, u(s), v(s)))ds ≤ 0.

Again, since ω is nondecreasing and from (4.2) and (4.5), we have

F (x, y)(t)− F (u, v)(t)

=

∫ 1

0

G(t, s)(f(s, x(s), y(s))− f(s, u(s), v(s)))ds

≤
∫ 1

0

G(t, s)(ω(x(s)− u(s))ds+

∫ 1

0

G(t, s)ω(v(s)− y(s))ds

≤
∫ 1

0

G(t, s)ds(ω(‖ x− u ‖∞) + ω(‖ v − y ‖∞))

≤ ω (‖ x− u ‖∞) + ω (‖ v − y ‖∞)

4

(4.7)
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for all t ∈ I and for all x, y, u, v ∈ C(I,R) with x � u and y � v. Also from (4.2) and
(4.6), we have

|F̃ (x, y)(t)− F̃ (u, v)(t)|

≤
∫ 1

0

H1(t, s) |f(s, x(s), y(s))− f(s, u(s), v(s))| ds

≤ ω (‖ x− u ‖∞) + ω (‖ v − y ‖∞)

2

(4.8)

for all t ∈ I and for all x, y, u, v ∈ C(I,R) with x � u and y � v. By (4.7) and (4.8),
we get

d (F (x, y), F (u, v)) + d
(
F̃ (x, y), F̃ (u, v)

)
2

≤ 3 (ω (‖x− u‖∞) + ω (‖v − y‖∞))

8
.

On the other hand, since ω is nondecreasing and condition (ii) for Ω, we have

3 (ω(‖x− u‖∞) + ω(‖v − y‖∞))

8
≤ ω(‖x− u‖∞ + ‖v − y‖∞)

=
d(x, u) + d(y, v)

2
− ψ

(
d(x, u) + d(y, v)

2

)
.

Thus we finally get

η((F (x, y), F̃ (x, y)), (F (u, v), F̃ (u, v))) =
d (F (x, y), F (u, v)) + d

(
F̃ (x, y), F̃ (u, v)

)
2

≤ d(x, u) + d(y, v)

2
− ψ

(
d(x, u) + d(y, v)

2

)
.

Now, let α, β ∈ C(I,R) be solutions of (4.3) and (4.4). By the assumption (A2), we

have α � F (α, β) and β � F̃ (α, β). We also take ϕ(t) = t for any t ∈ [0,∞) and θ ≡ 0.
Thus all the hypotheses of Theorem 3.4 are satisfied. Therefore u, v ∈ C(I,R) are

solution of the problem F (u, v) = u and F̃ (u, v) = v. These prove that u ∈ C(I,R)
is a solution of (4.1). �

4.2. Type II. Next as an application of our results, we study the existence of solu-
tions of the following fourth-order two-point boundary value problem, see [2, 25, 27]:{

u′′′′(t) = f(t, u(t), u′′(t)),

u(0) = A, u(1) = B, u′′(0) = C, u′′(1) = D,
(4.9)

with I = [0, 1] and f ∈ C(I ×R×R,R). We take the set of functions Ω same way as
in Type I.

The assumptions (A1) and (A2) are same as those of Type I with respect to the
following Green functions G and H.

G(t, s) =


1

6
s(1− t)(2t− s2 − t2), (0 ≤ s ≤ t ≤ 1),

1

6
t(1− s)(2s− t2 − s2), (0 ≤ t ≤ s ≤ 1),
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and

H(t, s) =

{
s(t− 1) (0 ≤ s ≤ t ≤ 1),

t(s− 1) (0 ≤ t ≤ s ≤ 1).

Note that∫ 1

0

G(t, s)f(s, u(s), v(s))ds =

∫ 1

0

H(t, s)

∫ 1

0

H(s, r)f(r, u(r), v(r))drds, t ∈ I.

It is easy to show that

0 ≤ G(t, s) ≤ 1

3
st for all t, s ∈ I, (4.10)

and

0 ≤ −H(t, s) ≤ min{s, t} for all t, s ∈ I. (4.11)

Theorem 4.2. Under the assumptions (A1) and (A2), the fourth-order two-point
boundary value problem (4.9) has a solution.

Proof. From the same argument in Theorem 4.1, we consider the natural partial order
relation � on X = C(I,R), that is,

u, v ∈ X,u � v ⇔ u(t) ≤ v(t) for all t ∈ I.

It is well known that X is a complete metric space with respect to the metric

d(u, v) = max
t∈I
|u(t)− v(t)| :=‖ u− v ‖∞, u, v ∈ C(I,R).

It is easy to show that (X, d,�) is nondecreasing-regular and nonincreasing-regular
(↑↓-regular), and that every pair of elements in X ×X has either a lower bound or
an upper bound. Solving problem (4.9) is equivalent to finding u ∈ C(I,R) which is
a solution of

u(t) = (B −A)t+A+

∫ 1

0

H(t, s)((D − C)s+ C)ds

+

∫ 1

0

G(t, s)f(s, u(s), v(s))ds, t ∈ I,

where v = u′′. Moreover equation (4.9) can be written as
u′′(t) = v(t),

v′′(t) = f(t, u(t), v(t)),

u(0) = A, u(1) = B, v(0) = C, v(1) = D,
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and it is also equivalent to the following integral equations,

u(t) = (B −A)t+A−
∫ 1

0

H(t, s)v(s)ds

= (B −A)t+A−
∫ 1

0

H(t, s)((D − C)s+ C)ds

+

∫ 1

0

G(t, s)f(s, u(s), v(s))ds, t ∈ I,

v(t) = (D − C)t+ C −
∫ 1

0

H(t, s)f(s, u(s), v(s))ds, t ∈ I.

Let F and F̃ be mappings of C(I,R)× C(I,R) into C(I,R) defined by

F (x, y)(t) = (B −A)t+A−
∫ 1

0

H(t, s)((D − C)s+ C)ds

+

∫ 1

0

G(t, s)f(s, x(s), y(s))ds, t ∈ I, x, y ∈ C(I,R),

and

F̃ (x, y)(t) = (D − C)t+ C −
∫ 1

0

H(t, s)f(s, x(s), y(s))ds, t ∈ I, x, y ∈ C(I,R).

By the assumption (A1), we can show that the mapping F is mixed monotone and

the mapping F̃ is reverse mixed monotone. In fact, for all t ∈ I and for all x, y, u, v ∈
C(I,R), with x � u and y � v,

0 ≤ f(t, x(t), y(t))− f(t, u(t), v(t)).

Thus we have

F (x, y)(t)− F (u, v)(t) =

∫ 1

0

G(t, s)(f(s, x(s), y(s))− f(s, u(s), v(s)))ds ≥ 0

and

F̃ (x, y)(t)− F̃ (u, v)(t) = −
∫ 1

0

H(t, s)(f(s, x(s), y(s))− f(s, u(s), v(s)))ds ≤ 0.

The remaining parts of the proof are same as that of Type I using properties (4.10),
(4.11), and the assumption (A2). �

4.3. Type III. In this subsection, we consider the solutions of the following third-
order two-point boundary value problem, see [6, 24, 28]:{

u′′′(t) = f(t, u(t), u′′(t)),

u(0) = A, u(1) = B, u′′(0) = C,
(4.12)
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with I = [0, 1] and f ∈ C(I × R × R,R). The assumptions (A1) and (A2) are same
as that of Type I using the following Green functions G and H.

G(t, s) =


−(t− s)2 + t(1− s)2

2
, (0 ≤ s ≤ t ≤ 1),

t(1− s)2

2
, (0 ≤ t ≤ s ≤ 1),

and

H(t, s) =

{
(1− t)s, (0 ≤ s ≤ t ≤ 1),

(1− s)t, (0 ≤ t ≤ s ≤ 1).

Note that ∫ 1

0

G(t, s)f(s, u(s), v(s))ds =

∫ 1

0

H(t, s)

∫ s

0

f(r, u(r), v(r))drds.

It is easy to show that

0 ≤ G(t, s) ≤ 1

2
t(1− s)2 for all t, s ∈ I, (4.13)

and

0 ≤ H(t, s) ≤ min{s(1− t), t(1− s)} for all t, s ∈ I. (4.14)

Theorem 4.3. Under the assumptions (A1) and (A2), the third-order two-point
boundary value problem (4.12) has a solution.

Proof. From the same argument in Theorem 4.1, we consider the natural partial
order relation � in X = C(I,R). Then (X, d,�) is complete, nondecreasing-regular,
nonincreasing-regular (↑↓-regular), and every pair of elements in X × X has either
a lower bound or an upper bound. Solving problem (4.12) is equivalent to finding
u ∈ C(I,R) which is a solution of

u(t) = (B −A)t+A−
∫ 1

0

H(t, s)Cds+

∫ 1

0

G(t, s)f(s, u(s), v(s))ds, t ∈ I,

where v = u′′. Moreover the boundary value problem (4.12) can be written as follows
u′′(t) = v(t),

v′(t) = −f(t, u(t), v(t)),

u(0) = A, u(0) = B, v(0) = C,
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and it is also equivalent to the following,

u(t) = (B −A)t+A−
∫ 1

0

H(t, s)v(s)ds

= (B −A)t+A−
∫ 1

0

H(t, s)Cds

+

∫ 1

0

G(t, s)f(s, u(s), v(s))ds, t ∈ I,

v(t) = C −
∫ t

0

f(s, u(s), v(s))ds, t ∈ I.

Let F and F̃ be mappings of C(I,R)× C(I,R) into C(I,R) defined by

F (x, y)(t) = (B −A)t+A−
∫ 1

0

H(t, s)Cds

+

∫ 1

0

G(t, s)f(s, x(s), y(s))ds, t ∈ I, x, y ∈ C(I,R),

and

F̃ (x, y)(t) = C −
∫ t

0

f(s, x(s), y(s))ds, t ∈ I, x, y ∈ C(I,R).

By the assumption (A1), we can show that the mapping F is mixed monotone and

the mapping F̃ is reverse mixed monotone. The remaining parts of the proof are same
as that of Type I using properties (4.13), (4.14), and the assumption (A2). �

4.4. Type IV. Finally we consider the solutions of the following third-order two-
point boundary value problem, see [14]:{

u′′′(t) = f(t, u(t), u′′(t)),

u(0) = A, u(1) = B, u′′(1) = C,
(4.15)

with I = [0, 1] and f ∈ C(I × R × R,R). The assumptions (A1) and (A2) are same
as those of Type I using the following Green functions G and H.

G(t, s) =


1

2
s2(1− t), (0 ≤ s ≤ t ≤ 1),

1

2
t((1− t)− (1− s)2), (0 ≤ t ≤ s ≤ 1),

and

H(t, s) =

{
(1− t)s (0 ≤ s ≤ t ≤ 1),

(1− s)t (0 ≤ t ≤ s ≤ 1).

Note that ∫ 1

0

G(t, s)f(s, u(s), v(s))ds =

∫ 1

0

H(t, s)

∫ 1

s

f(r, u(r), v(r))drds.
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It is easy to show that

0 ≤ G(t, s) ≤ 1

2
s2(1− t) for all t, s ∈ I, (4.16)

and

0 ≤ H(t, s) ≤ min{s(1− t), t(1− s)} for all t, s ∈ I. (4.17)

Theorem 4.4. Under the assumptions (A1) and (A2), the third-order two-point
boundary value problem (4.15) has a solution.

Proof. From the same argument in Theorem 4.1, we consider the natural partial order
relation � on X = C(I,R). Then (X, d,�) is complete, nondecreasing-regular and
nonincreasing-regular (↑↓-regular), and every pair of elements in X × X has either
a lower bound or an upper bound. Solving problem (4.15) is equivalent to finding
u ∈ C(I,R) which is a solution of

u(t) = (B −A)t+A−
∫ 1

0

H(t, s)Cds+

∫ 1

0

G(t, s)f(s, u(s), v(s))ds, t ∈ I,

where v = u′′. Moreover the boundary value problem (4.15) can be written as
u′′(t) = v(t),

v′(t) = f(t, u(t), v(t)),

u(0) = u(1) = v(1) = 0,

and it is also equivalent to the following integral equations,

u(t) = (B −A)t+A−
∫ 1

0

H(t, s)v(s)ds,

= (B −A)t+A−
∫ 1

0

H(t, s)Cds

+

∫ 1

0

G(t, s)f(s, u(s), v(s))ds, t ∈ I,

v(t) = C −
∫ 1

t

f(s, u(s), v(s))ds, t ∈ I.

Let F and F̃ be mappings of C(I,R)× C(I,R) into C(I,R) defined by

F (x, y)(t) = (B −A)t+A+

∫ 1

0

H(t, s)Cds

+

∫ 1

0

G(t, s)f(s, x(s), y(s))ds, t ∈ I, x, y ∈ C(I,R),

and

F̃ (x, y)(t) = C −
∫ 1

t

f(s, u(s), v(s))ds, t ∈ I, x, y ∈ C(I,R).
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By the assumption (A1), we can show that the mapping F is mixed monotone and

the mapping F̃ is reverse mixed monotone. The remaining parts of the proof are same
as that of Type I using properties (4.16), (4.17), and the assumption (A2). �
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