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1. INTRODUCTION

In this paper, we always assume that H; and Hs are real Hilbert spaces endowed
with inner products and induced norms denoted by (-, -) and || - ||, respectively, while
H refers to as any of these spaces.

Let Projg1 be the metric projection from H; onto C and let Projg2 be the metric
projection from Hy onto @. Recall that the split feasibility problem is to find a point
x € Hy such that

xeC, AxeqQ, (1.1)
where A : H; — Hs is a bounded linear operator. In this paper, we always use
Sol(SFP) to denote the solution set of the split feasibility problem.

The split feasibility problem, which was introduced and investigated by Censor
and Elfving [9] in finite-dimensional Hilbert spaces for modeling inverse problems
which arise from phase retrievals and in medical image reconstruction. It has been
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found that the split feasibility problem can also be used in various disciplines such
as image restoration, computer tomograph and radiation therapy treatment planning
[8]. Tt is known tat the split feasibility problem includes many problems, such as,
[2, 3, 12, 13, 19, 21, 24] as special cases.

It is known if the solution set of split feasibility problem (1.1) is not empty, then
the split feasibility problem is equivalent to a fixed point problem

P (z — yA*(I - PL?)Az) = a, (1.2)

where v > 0 is a constant and A* is the adjoint operator of A. Recently, many authors
have investigated the split feasibility problem and fixed points of nonexpansive map-
pings via the Byrne’s CQ iterative algorithm [6] in the setting of infinite-dimensional
Hilbert spaces; see, for example, [1, 7, 10, 14, 11, 20, 23] and the references therein.

The purpose of the paper is to investigated split feasibility problem (1.1) based on
a fixed point method. The paper is organized as follows. In Section 2, we provide
some necessary definitions, properties and lemmas. In Section 3, a weak convergence
theorem is established in the framework of infinite dimensional Hilbert spaces. In
Section 4, a split equality problem is also investigated as an application of our main
results.

2. PRELIMINARIES
Recall that a mapping T : H — H is said to be monotone iff
(Fox — Fy,r —y) >0, Va,yeH.
F: H — H is said to be strongly monotone iff there exists a constant » > 0 such that
(Fz — Fy,z —y) > vl —y|? Vz,yeH.

In such a case, we also say that F' is v-strongly monotone. F' : H — H is said to be
inverse-strongly monotone iff there exists a constant v > 0 such that

<F$—Fy,w—y>21/||FiU—Fy”27 vayGI—L

In such a case, we also say that F' is v-inverse-strongly monotone. It is not hard to
see that F is v-inverse-strongly monotone iff F~! is v-strongly monotone. Recall that
F . H — H is said to be Lipchitz continuous iff there exits L > 0 such that

|Fz = Fy|| < Lz —yll, Vo,y<cH.

In such case, we also say that F' is L-Lipchitz continuous. We here remark that if
F' is v-inverse-strongly monotone, then it is %—Lipschitz continuous and monotone.
If L = 1, then F is said to be nonexpansive. For the existence of fixed points of
nonexpansive mappings, one is referred to [4, 5, 15] and the references therein. In
this paper, the fixed point set of mapping F is denoted by Fiz(F). Let F be a
nonexpansive mapping and define a mapping T : H — H by Te = (I — F)z, Vx € H.
Then T is %—inverse—strongly monotone.
Recall that a mapping T : H — H is said to be firmly nonexpansive if

T2 = Ty|l* < llo —yl* = (@ —y) — (Tz = Ty)ll, Va,y € H.
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Recall that a mapping 7' : H — H is said to be averaged if it can be written as the
average of the identity mapping and a nonexpansive mapping, i.e., T := (1 —a)l +aS
where a € (0,1) and S : H — H is nonexpansive and I is the identity operator on
H. We note that averaged mappings are nonexpansive. Further, firmly nonexpansive
mappings (in particular, projections on nonempty closed and convex subsets and
resolvent operators of maximal monotone operators) are averaged.

The class of nonexpansive mappings recently has been extensively investigated for
solving various convex optimization problems. Mann iterative algorithm is an efficient
tool to study fixed points of nonexpansive mappings. Recall that the Mann iterative
algorithm generates a sequence {z,} in the following manner

x1 € Hyxpi1 = apTen + (1 —ap)z,, n>1,

where {«a, } is a sequence in (0,1). In [22], Reich proved {z,} generated in the Mann
iterative algorithm converges weakly to some fixed point of T" provide that control
sequence {a, } satisfies some conditions.
In order to obtain our main results, we need the following definitions and lemmas.
Recall that a space E is said to have the Opial’s condition [18] if, for each {z,} in
E, the condition that {z,,} converges weakly to p implies that

liminf ||z, — p|| < liminf ||z,, — p'|,
n—oo n—oo
Vp' € E with p’ # p. It is known that the above inequality is also equivalent to

limsup ||z, — p|| < limsup ||z, — p'||.
n— oo n—oo

Recall that the metric (nearest point) projection PH : H — C from a Hilbert space
H onto a nonempty, closed and convex subset C' of H is defined as follows: for each
point z € H, there exists a unique point Pg x € C with the property:

lz — Pl z|| < ||z — yll.
Thus for any z € H, & = Pz iff # € C and ||z — || = inf{||lz — y|| : y € C}.

Lemma 2.1. Let Pg : H — C be the metric projection from H on a nonempty,
closed, and convexr subset C. Then the following conclusions hold true

(a) Given z € H and z € C. Then z = PHx iff there holds the inequality:
<xizvyiz> Soa yec

(b) (PHx— Py, x—y) > ||PHx— PEy|?, z,y € H.
(¢) (I—-PHa— I - Py, —y) > (I - PH)a— (I —PH)yl? Va,y € H.
(d) [Pz — PHyll?> <llz —yl> = |(I — PH)z— (I — PH)y|? Va,y € H

Lemma 2.2 ([25]). Let H be a Hilbert space. Then there exists a strictly increasing
continuous convex function conf : [0,00) — [0,00) with conf(0) =0 such that

allz|* - a(l = a)conf(|z —yl) + (1 = a)lly|* = llaz + (1 — a)yl*, Va € [0,1],

for allz,y € B,(0) :={x € H : ||z|| < r}, where r is some positive real number.
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Lemma 2.3 ([4]). Let H be a Hilbert space and let T be a nonexpansive mapping on
H. If x,, — p, where — denotes the weak convergence, and lim ||z, — Tz,| = 0,
n—oo

then p is a fixed point of T', that is, p = Tp.

3. MAIN RESULTS

Theorem 3.1. Let Hy and Hs be two real Hilbert spaces. Let C be a nonempty closed
and convex subset of Hy and let Q@ be a nonempty closed and convex subset of Hs.
Let Projg1 be the metric projection from Hy onto C and let ijgz be the metric
projection from Ho onto Q. Let A : Hy — Hy be a bounded linear operator and let
S : C — C be a nonexpansive mapping such that Sol(SFP) N Fix(S) # 0. Let {z,}
be a sequence generated in the following iterative algorithm: x1 € C and

Tpy1 = oan:z:nJr(lfan)Projgl (ﬂnszr(lfﬂn)(xn—’ynA*(IfPTOjSZ)Axn)), (3.1)

where {a, }, {Brn} and {y,} are three real nonnegative sequences such that
()0<a<a,<a <1,
(ii) 0 < B < B <1,
(1) 0 <7 < < < 2
where a,a’, 3,y and v are four real numbers. Then {x,} converges weakly to some
point in Sol(SFP) N Fix(S).

Proof. Define a mapping T : C' — H; by
Tx=A"(I - PTojg2)Am, Vr e C.
Then (3.1) becomes
21 €C, Xpt1 =Sz, + (1 - ozn)PT‘Ojgl (ann + (1= Bp)(xn — %Txn)), (3.2)
Using Lemma 2.1, we have

(T —Ty,x —y) = (A*(I — Projg2)Ax — A" (I - Projgz)Ay, x—y)

={(I - Projgz)Ax —(I- ProjSQ)Ay, Az — Ay)
> ||(1 = Projg*) Az — (I = Projg?) Ay|®* 53)
1 * iHo * i Ho .
> WHA (I- ijg YAz — A*(I — ijg )Ayl|?
1
= WHTJU —Tyl*.

This shows that T is W—inverse—strongly monotone.

Next, we prove T71(0) = A71(Q). Letting z € A~1(Q), we find from the definition
of T that € T~1(0). This proves A=1(Q) € T71(0). Letting z € T~1(0), we have
Tx = 0. Since Sol(SFP)N Fixz(S) # 0, we can take a point y € Sol(SFP)N Fix(S).
This implies Sy =y and Ay = ProjSQAy. Hence, Ty = 0. Using (3.3), we have

0= (Tx—Ty,x—y) > ||(I — Projgz)AxHZ,
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which implies that z € A=1(Q), that is, T=1(0) C A~1(Q).
This shows that 7-1(0) = A=1(Q).
Since T is W—inverse—strongly monotone, we have

(I =Tz — (I = D)yl = 70Tz — Ty) — (z — y)|?
=2 |Tx — Tyl|> = 2valx — y, Tz — Ty) + ||z — y?

< 22Ta — Tyl - ”2A||2 [ R
= |lz —yll* - %(W — )| Tz — Ty|*.
From condition (iii), we find that (I v, T') is nonexpansive.
Fix 2* € Sol(SFP) N Fix(S) = A7HQ) N Fiz(S) = CNT~Y0) N Fiz(S), we
find from (3.2) that
[€nt1 — 27|
<(1- an)||P7’0jgl (ﬂnzn + (1= Bn)(zn — ’YnTwn)) — || + o || Szn — 27|
< (1= an) | (Butn + (1 = B) (@0 — mTn)) — 27| + e — 27
< (1= an) (Bullzn — 71| + (1= Bl (I = 3T)n — (I = W T)a"ll) + | — 2|
< (1 —an)Bullrn — 2%+ (1 = an)(1 = Bo)llzn — 2| + anllz, — 27|
= [lzn —2]l.

It follows that sequence {||z,, —z*||} is nonincreasing. This implies that nh_)rr;<> [l — 2|
exists. In particular, we find that {x,} is bounded. Using Lemma 2.2, we find that
1 — 2"
< (1 —ay)||Proji (Bun + (1= B)(@n — ynTxy)) — *|1* + an | Sz — 2|
— an(1 — ag)eonf(|Szy — Proj&* (Bun + (1= Ba) (0 — yTan))|l)
< (1= @) (Buzn + (1 = Ba)(n — Tn)) — 27| + anllzn — 272
— an(1 — ag)eonf(|Szy — Proj&* (Bun + (1= Ba) (@0 — yTan))ll)
< (1= an) (Bullen 2" + (1 = B)ll (2w = yaTn) —a*|))’
+aglen — 2P = conf(|[Szn = Proji* (Bwn + (1 = Ba)(@n — 1mTzn)) )
< lwn = @] = an(1 = an)eonf([[San — Proj&* (Buwn + (1 = Bu) (20 — ¥aTzn))|)-
This implies that
(1 — ay)conf(||Sz, — Proji (Bnxn + (1 = Bn)(xn — 1 Tzy))|)
||2

< llwn =21 = e — 27|

Since lim ||z, — z*|| exists, we see that
n—oo

lim_conf(|Szn — Proj* (Bazn + (1= Ba)(@n — yaTan))|) = 0
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It follows that
lim [|Sz, — Proja" (Bnzn + (1 = Ba)(zn — v Txn))| = 0. (3.4)

n—oo
Since T is W-inverse—strongly monotone, one sees that

lxn — T, — x*H2 = [(xn — =) = Y (Tap — Tz*)|?

= |lzn — z*||* = 2(z,, — 2*, Tz, — Ta*) 4+ V2| T2y, — Tx*||?

27y,

< llon — 2™|* —

2
= llzn = 2*I* = Y (s — v I T2l
[l
(3.5)
Note that || - ||? is convex. Using (3.2) and (3.5), we find that
41 — 2%
< (1= an)|ProjE (Buzn + (1 = Bu)(tn — mTwn)) — 2°IP + anSn — 2°
< (1 —an) (ann + (1= Bn)(wn — VnTmn)) - x*HQ + apl|Tn — 33*”2
<(- O‘n)(ﬂnnmn — 2P+ (1= Ba)ll(zn — mTwn) — Z*Hz) +ag e, — ||

. 2
< lwn = 2™ = (1 = an) (1 - Bz ~ Pl T .

It follows that

2
(1 —an)(1 - Bn)%z(w - 'Yn)HTanQ < [z, —p||2 — lznt1 _p”Q'

Using conditions (i), (ii) and (iii), we find that lim ||Tz,| = 0. Note that
n—oo

1S@n = zp|| < ||S2n — Proj& (Bpwn + (1= Bn) (w0 — mTas))|l
+ ||P7°0jgl (ﬂnwn + (1 = Bn)(Tn — PYnTxn)) — Ty
< 1520 — Projé* (Buttn + (1= Ba) (#n — 1 Tn) |
+ |l (ﬁnmn + (1 = Bn) (0 — 'VnTxn)) — Zn|
<|[|Sz, — Projgl (ann + (1 = Bn)(xn — 'YnTxn)) |+ vl Tz |-
In view of nh%ngo |ITxy,| = 0, we find from (3.4) that nl;rréo 1Sz, — x| = 0.

Since {z,} is bounded, we see there exists a subsequence {z,,} of {z,} converges
weakly to p in Hy. Since C is weakly closed, we see that p € C. Since T is W—
inverse-strongly monotone, we have

1
1A]1?
Letting i — oo in (3.6), we find that Tp = 0, that is, p € T~%(0). Note that

Sy, —xpn, = 0 as i — oco. Using the demiclosed principal of nonexpansive mappings,
we find that p € Fiz(S).

0< [T, — Tpl|*> < (Txn, — Tp,xn, — p). (3.6)
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Finally, we prove that {z,} converges weakly to p € Sol(SFP) N Fixz(S). Assume
that there exists another subsequence {z,,} of {z,} converges weakly to ¢, where

q#p
Since H; has the Opial’s condition, we obtain that

lim ||z, — p|| = liminf ||z, — p|| < liminf ||z, — p'||
n— oo 71— 00 11— 00
= lim ||z, —¢|| = lim ||z,, —q[| < lim |z,, —¢| = lim [z, —p].
n—oo Jj—o0 J—00 n—0oo

This is a contradiction. It follows that p = ¢. This proves that {x, } converges weakly
to p. This completes the proof. O

Using Theorem 3.1, we find the following results immediately.

Corollary 3.2. Let Hy and Hy be two real Hilbert spaces. Let C' be a nonempty
closed and convex subset of Hy and let QQ be a nonempty closed and convex subset
of Hy. Let Projg1 be the metric projection from Hy onto C and let Projg2 be the
metric projection from Hy onto Q. Let A : Hy — Hs be a bounded linear operator
such that Sol(SFP) # 0. Let {x,} be a sequence generated in the following iterative
algorithm

1 €C, Tpy1= anxn+(1fan)Projg1 (ﬂnanr(lfﬂn)(xnf'ynA*(IfPTOjSZ)Amn)),

where {a,}, {Bn} and {v,} are three real nonnegative sequences such that
()0<a<a,<d <1,
(i) 0< B < B <1,
(ii1) 0 < < ¥ <7 < i,
where a, o', B,y and v are four real numbers. Then {x,} converges weakly to some
point in Sol(SFP).

Corollary 3.3. Let Hy and Hy be two real Hilbert spaces. Let C' be a nonempty
closed and convex subset of Hy and let Q be a nonempty closed and convex subset
of Hy. Let Projg1 be the metric projection from Hy onto C and let Projg2 be the
metric projection from Hy onto Q. Let A : Hy — Hs be a bounded linear operator
such that Sol(SFP) # 0. Let {x,} be a sequence generated in the following iterative
algorithm

21 €C, Tpi1=apw,+ (1-— Ozn)Projgl (a:n — Y A* (I — Projg2)Axn),

where {a,} and {vy,} are two real nonnegative sequences such that
()0<a<a,<d <1,
(i) 0 < v < 9 < < i
where a, o',y and v are four real numbers. Then {x,} converges weakly to some
point in Sol(SFP).

Corollary 3.4. Let Hy and Hy be two real Hilbert spaces. Let C be a monempty
closed and convex subset of Hy and let QQ be a nonempty closed and convex subset
of Hy. Let Projg1 be the metric projection from Hy onto C and let Projg2 be the
metric projection from Hs onto Q. Let A : Hy — Hy be a bounded linear operator
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and let S : C' — C be a nonexpansive mapping such that Sol(SFP) N Fix(S) # .
Let {x,} be a sequence generated in the following iterative algorithm

21 €C, Zpt1 =Sz, + (1— an)PTOjgl (xn — YA (I — ProjSQ)A:cn),

where {a,} and {v,} are two real nonnegative sequences such that
()0<a<a,<da <1,
(i1) 0 <7y <7 <7 < 2
where o, o',y and ' are four real numbers. Then {x,} converges weakly to some
point in Sol(SFP) N Fix(S).

4. APPLICATIONS

Let Hy, Ho and Hjs be three real Hilbert spaces. Let C' be a nonempty closed
and convex subsets of Hilbert space H; and let @ be a nonempty closed and convex
subsets of Hilbert space Hs. Let A : Hy — H3 and B : H, — H3 be two bounded
linear operators. Recall that the split equality problem is to

find « € C and y € @ such that Ax = By. (4.1)

Next, we use Sol(SEP) to denote the solution set of the split equality problem, which
was introduced and studied by Moudafi and Al-Shemas [17]; see also [16]. Obviously,
if B =TI (identity mapping on Hs) and Hs = Hs, then (4.1) reduces to (1.1).

By virtue of the product space techniques, we can convert the split equality problem
to a split feasibility problem. To see this, set M = C x @ and define

G =[A -Bl,w=[z,y]T. (4.2)

With these notations, we know that solving the the split equality problem is equivalent
to finding a point w € M such that Gw = 0.

Assume that the split equality problem is consistent, i.e., Sol(SEP) # (). Then
it is not difficult to see that w € M solves the the split equality problem iff it solves
operator equation G*Gw = 0, where G* is the adjoint operator of G. It is clear that
G*G : Hy x Hy — Hy x Hy is W—inverse-strongly monotone. By Theorem 3.1, we
deduce the following result immediately .

Theorem 4.1. Let Hy, Hy and Hs be three Hilbert spaces. Let C' be a nonempty
closed and convex subset of Hy and let Q be a nonempty closed and convex subset
of Hy. Let A: Hi — Hs and B : Hy, — Hs be two bounded linear operators. Let
S:CxQ — CxQ be a nonexpansive mapping. Suppose Sol(SEP) N Fix(S) # 0.
Let {w,} be a sequence generated in the following algorithm.:

w1 € Ma Wn41 = OénSOJn + (1 - an>PM (ann + (1 - ﬁn)(wn - ’ynG*Gwn)),n > 1;
(4.3)
where M = C x Q, G is defined in (4.2), {an}, {Bn} and {y,} are three real nonneg-
ative sequences such that
(i)0<a<a,<d <1,
(i) 0 < B, < B <1,
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(1) 0 <7 < < < 2
where a, o/, B,y and ' are four real numbers. Then {w,} converges weakly to some
point in Sol(SEP) N Fix(S).

Remark 4.2. (4.3) can be expressed in terms of x,, and y,, that is,
1 € C,y1 €Q,
Tnt1 = @pnS12, + (1 — o) Po (ﬁnwn + (1= Bn)(@n — A" (Azy, — Byn)))7 n>1,
Ynt1 = anSotn + (1 — @n) Po (Bayn + (1 = Bn)(Yn + Ya B (Az, — Byyn))), n > 1,

(4.4)
where S1 x So = S.

Remark 4.3. Putting B = I in (4.4), we have the following algorithm to solve split
feasibility problem (1.1)

r1 € C, Y1 € Q,
Tpt1 = anS12n + (1 — an)Po (5113771 + (1= Bn)(@n — A" (Azy — yn)))a n>1,
Yntl = QnS2Ty + (1 - O‘H)PQ (ﬂnyn + (1 - Bn)(yn + 'YnB*(Axn - yn)))a n2>1,

(4.5)
where Sl X SQ =S.

If S = I in Theorem 4.1, we have the following result on split equity problem (4.1).

Corollary 4.4. Let Hy, Hy and Hs be three Hilbert spaces. Let C' be a nonempty
closed and convexr subsets of Hi and let @ be a nonempty closed and convex subsets
of Hy. Let A: Hy — Hs and B : Hy — H3 be two bounded linear operators. Suppose
that split equality problem is consistent. Let {w,} be a sequence generated in the
following algorithm.:

w1 € M7 Wn+1 = anwn“i’(l*an)PM (ﬂnwn“i’(l*ﬂn)(wn*'—YnG*Gwn))7n Z 1a (46)

where M = C x Q, G is defined in (4.2), {an}, {Bn} and {yn} are three real nonneg-
ative sequences such that

(i)0<a<a,<d <1,

(i) 0< B, < B <1,

(iii) 0 < < ¥ <7 < i,
where a, o', B,y and v are four real numbers. Then {w,} converges weakly to some
point in Sol(SEP).
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