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1. Introduction

The study of fixed point theorems for the contraction mappings in partially or-
dered metric space is initiated by Ran and Reurings [20] which is further continued
by Nieto and Rodringuez-Lopez [14] and by Petruşel and Rus [19] and applied to
boundary value problems of nonlinear first order ordinary differential equations and
matrix equations for proving the existence results under certain monotonic conditions.
Similarly, the study of hybrid fixed point theorems in a partially ordered metric space
is initiated by Dhage [3, 4, 5] with applications to nonlinear differential and integral
equation under weaker mixed conditions of nonlinearities. See Dhage [6, 7] and the
references therein. In this paper we investigate the existence of approximate solutions
of hybrid differential equations with maxima using the Dhage iteration method em-
bodied in a hybrid fixed point theorem in a partially ordered spaces. We claim that
the results of this paper are new to the theory of nonlinear differential equations with
maxima.
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Given a closed and bounded interval J = [a, b] of the real line R for some b > a ≥ 0,
we consider the following hybrid differential equation (in short HDE) x′(t) = f(t, x(t)) + g

(
t, max
a≤ξ≤t

x(ξ)

)
,

x(a) = α0 ∈ R,
(1.1)

for all t ∈ J = [a, b] and f, g : J × R→ R are continuous functions.

By a solution of equation (1.1) we mean a differentiable function x ∈ C(J,R) that
satisfies equation (1.1), where C(J,R) is the space of continuous real-valued functions
defined on J .

Differential equations with maxima are often met in the applications, for instance
in the theory of automatic control. Numerous results on existence and uniqueness,
asymptotic stability as well as numerical solutions have been obtained. To name a
few, we refer the reader to [1, 15, 16, 17, 18] and the references therein. The HDE
(1.1) is a linear perturbation of first type of nonlinear differential equations. The
details of different types of perturbation appears in Dhage [2]. The special cases of
the HDE (1.1) in the forms {

x′(t) = f(t, x(t)), t ∈ J,

x(a) = α0,
(1.2)

and  x′(t) = g

(
t, max
a≤ξ≤t

x(ξ)

)
, t ∈ J,

x(a) = α0,

(1.3)

have already been discussed in the literature for different aspects of the solutions
using usual Picard iteration method. See Bainov and Hristova [1] and the references
therein for the details. In this paper we discuss the HDE (1.1) for existence and ap-
proximation of solutions via a new approach based upon the Dhage iteration method.
In consequence, we obtain the existence and approximation results for HDEs (1.2)
and (1.3) as special cases which are also new to the literature.

In the following section we give some preliminaries and the key tool that will be
used for proving the main result of this paper.

2. Preliminaries

Throughout this paper, unless otherwise mentioned, let (E,�, ‖ · ‖) denote a par-
tially ordered normed linear space. Two elements x and y in E are said to be
comparable if either the relation x � y or y � x holds. A non-empty subset C
of E is called a chain or totally ordered if all the elements of C are comparable.
It is known that E is regular if {xn} is a nondecreasing (resp. nonincreasing) se-
quence in E such that xn → x∗ as n → ∞, then xn � x∗ (resp. xn � x∗) for all
n ∈ N. The conditions guaranteeing the regularity of E may be found in Heikkilä and
Lakshmikantham [13] and the references therein.

We need the following definitions (see Dhage [3, 4, 5] and the references therein)
in what follows.
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Definition 2.1. A mapping T : E → E is called isotone or nondecreasing if it
preserves the order relation �, that is, if x � y implies T x � T y for all x, y ∈ E.
Similarly, T is called nonincreasing if x � y implies T x � T y for all x, y ∈ E.
Finally, T is called monotonic or simply monotone if it is either nondecreasing or
nonincreasing on E.

Definition 2.2. A mapping T : E → E is called partially continuous at a point
a ∈ E if for ε > 0 there exists a δ > 0 such that ‖T x − T a‖ < ε whenever x is
comparable to a and ‖x− a‖ < δ. T called partially continuous on E if it is partially
continuous at every point of it. It is clear that if T is partially continuous on E, then
it is continuous on every chain C contained in E.

Definition 2.3. A non-empty subset S of the partially ordered Banach space E is
called partially bounded if every chain C in S is bounded. An operator T on a
partially normed linear space E into itself is called partially bounded if T (E) is
a partially bounded subset of E. T is called uniformly partially bounded if all
chains C in T (E) are bounded by a unique constant.

Definition 2.4. A non-empty subset S of the partially ordered Banach space E is
called partially compact if every chain C in S is a relatively compact subset of E.
A mapping T : E → E is called partially compact if T (E) is a partially relatively
compact subset of E. T is called uniformly partially compact if T is a uniformly
partially bounded and partially compact operator on E. T is called partially totally
bounded if for any bounded subset S of E, T (S) is a partially relatively compact
subset of E. If T is partially continuous and partially totally bounded, then it is
called partially completely continuous on E.

Remark 2.1. Suppose that T is a nondecreasing operator on E into itself. Then T
is a partially bounded or partially compact if T (C) is a bounded or compact subset
of E for each chain C in E.

Definition 2.5. The order relation � and the metric d on a non-empty set E are
said to be D-compatible if {xn} is a monotone sequence, that is, monotone nonde-
creasing or monotone nonincreasing sequence in E and if a subsequence {xnk

} of {xn}
converges to x∗ implies that the original sequence {xn} converges to x∗. Similarly,
given a partially ordered normed linear space (E,�, ‖ · ‖), the order relation � and
the norm ‖ · ‖ are said to be compatible if � and the metric d defined through the
norm ‖ · ‖ are compatible. A subset S of E is called Janhavi if the order relation �
and the metric d or the norm ‖ · ‖ are compatible in it. In particular, if S = E, then
E is called a Janhavi metric or Janhavi Banach space.

Clearly, the set R of real numbers with usual order relation ≤ and the norm defined
by the absolute value function | · | has this property. Similarly, the finite dimensional
Euclidean space Rn with usual componentwise order relation and the standard norm
possesses the compatibility property and so is a Janhavi Banach space.

Definition 2.6. An upper semi-continuous and monotone nondecreasing function
ψ : R+ → R+ is called a D-function provided ψ(0) = 0. An operator T : E → E is
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called partially nonlinear D-contraction if there exists a D-function ψ such that

‖T x− T y‖ ≤ ψ
(
‖x− y‖

)
(2.1)

for all comparable elements x, y ∈ E, where 0 < ψ(r) < r for r > 0. In particular, if
ψ(r) = k r, k > 0, T is called a partial Lipschitz operator with a Lischitz constant
k and moreover, if 0 < k < 1, T is called a partial linear contraction on E with a
contraction constant k.

The Dhage iteration method or Dhage iteration principle embodied in the
following applicable hybrid fixed point theorem of Dhage [4] in a partially ordered
normed linear space is used as a key tool for our work contained in this paper. The
details of a Dhage iteration method or principle is given in Dhage [6, 7, 8], Dhage et
al. [11, 12] and the references therein.

Theorem 2.1 (Dhage [4]). Let
(
E,�, ‖ · ‖

)
be a regular partially ordered complete

normed linear space such that every compact chain C of E is Janhavi. Let A,B :
E → E be two nondecreasing operators such that

(a) A is partially bounded and partially nonlinear D-contraction,
(b) B is partially continuous and partially compact, and
(c) there exists an element x0 ∈ E such that x0 � Ax0+Bx0 or x0 � Ax0+Bx0.

Then the operator equation Ax + Bx = x has a solution x∗ in E and the sequence
{xn} of successive iterations defined by xn+1 = Axn + Bxn, n = 0, 1, . . . , converges
monotonically to x∗.

Remark 2.2. The condition that every compact chain of E is Janhavi holds if every
partially compact subset of E possesses the compatibility property with respect to
the order relation � and the norm ‖ · ‖ in it.

Remark 2.3. We remark that hypothesis (a) of Theorem 2.1 implies that the oper-
ator A is partially continuous and consequently both the operators A and B in the
theorem are partially continuous on E. The regularity of E in above Theorem 2.1
may be replaced with a stronger continuity condition of the operators A and B on E
which is a result proved in Dhage [3, 4].

3. Main result

In this section, we prove an existence and approximation result for the HDE (1.1)
on a closed and bounded interval J = [a, b] under mixed partial Lipschitz and partial
compactness type conditions on the nonlinearities involved in it. We place the HDE
(1.1) in the function space C(J,R) of continuous real-valued functions defined on J .
We define a norm ‖ · ‖ and the order relation ≤ in C(J,R) by

‖x‖ = sup
t∈J
|x(t)| (3.1)

and

x ≤ y ⇐⇒ x(t) ≤ y(t) for all t ∈ J. (3.2)

Clearly, C(J,R) is a Banach space with respect to above supremum norm and also
partially ordered w.r.t. the above partially order relation ≤. It is known that the
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partially ordered Banach space C(J,R) is regular and lattice so that every pair of
elements of E has a lower and an upper bound in it. The following useful lemma
concerning the Janhavi subsets of C(J,R) follows immediately from the Arzelá-Ascoli
theorem for compactness.

Lemma 3.1. Let
(
C(J,R),≤, ‖ · ‖

)
be a partially ordered Banach space with the

norm ‖ · ‖ and the order relation ≤ defined by (3.1) and (3.2) respectively. Then
every partially compact subset of C(J,R) is Janhavi.

Proof. The proof of the lemma is well-known and appears in the papers of Dhage
[6, 7], Dhage and Dhage [9, 10], Dhage et al. [12] and so we omit the details. �

We need the following definition in what follows.

Definition 3.1. A differentiable function u ∈ C(J,R) is said to be a lower solution
of the equation (1.1) if it satisfies u′(t) ≤ f(t, u(t)) + g

(
t, max
a≤ξ≤t

u(ξ)

)
,

u(a) ≤ α0,
(∗)

for all t ∈ J . Similarly, a differentiable function v ∈ C(J,R) is called an upper solution
of the HDE (1.1) if the above inequality is satisfied with reverse sign.

We consider the following set of assumptions in what follows:

(H1) There exist constants λ > 0, µ > 0 with λ ≥ µ such that

0 ≤ [f(t, x) + λx]− [f(t, y) + λy] ≤ µ(x− y)

for all t ∈ J and x, y ∈ R, x ≥ y.
(H2) There exists a constant M > 0 such that |g(t, x)| ≤M, for all t ∈ J, x ∈ R;
(H3) g(t, x) is nondecreasing in x for each t ∈ J .
(H4) HDE (1.1) has a lower solution u ∈ C(J,R).

Now we consider the following HDE x′(t) + λx(t) = f̃(t, x(t)) + g

(
t, max
a≤ξ≤t

u(ξ)

)
,

x(a) = α0,
(3.3)

for all t ∈ J = [a, b], where f̃ , g : J × R→ R and f̃(t, x) = f(t, x) + λx, λ > 0.

Remark 3.1. A differentiable function u ∈ C(J,R) is a solution of the equation
(3.3) if and only if it is a solution of the equation (1.1) defined on J.

We also consider the following condition in what follows.

(H5) There exists a constant K > 0 such that
∣∣∣f̃(t, x)

∣∣∣ ≤ K, for all t ∈ J and

x ∈ R;
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Lemma 3.2. Suppose that the hypotheses (H2), (H3) and (H5) hold. Then a function
x ∈ C(J,R) is a solution of the HDE (3.3) if and only if it is a solution of the nonlinear
integral equation

x(t) = α0e
−λt + e−λt

∫ t

a

eλsf̃(s, x(s)) ds

+ e−λt
∫ t

a

eλsg

(
s, max
a≤ξ≤s

x(ξ)

)
ds, (3.4)

for all t ∈ J .

Theorem 3.1. Suppose that hypotheses (H1)−(H5) hold. Then the HDE (1.1) has a
solution x∗ defined on J and the sequence {xn} of successive approximations defined
by

x0 = u,

xn+1(t) = α0e
−λt + e−λt

∫ t

a

eλsf̃(s, xn(s)) ds

+e−λt
∫ t

a

eλsg

(
s, max
a≤ξ≤s

xn(ξ)

)
ds,

(3.5)

for all t ∈ J , converges monotonically to x∗.

Proof. Set E = C(J,R). Then, in view of Lemma 3.1, every compact chain C in
E possesses the compatibility property with respect to the norm ‖ · ‖ and the order
relation ≤ so that every compact chain C is Janhavi in E.

Define two operators A and B on E by

Ax(t) = α0e
−λt + e−λt

∫ t

a

eλsf̃(s, x(s)) ds, t ∈ J, (3.6)

and

Bx(t) = e−λt
∫ t

a

eλsg

(
s, max
a≤ξ≤s

x(ξ)

)
ds, t ∈ J. (3.7)

From the continuity of the integral, it follows that A and B define the operators
A,B : E → E. Applying Lemma 3.2, the HDE (1.1) is equivalent to the operator
equation

Ax(t) + Bx(t) = x(t), t ∈ J.
Now, we show that the operators A and B satisfy all the conditions of Theorem

2.1 in a series of following steps.
Step I. A and B are nondecreasing on E.

Let x, y ∈ E be such that x ≥ y. Then by hypothesis (H1), we get

Ax(t) = α0e
−λt + e−λt

∫ t

a

eλsf̃(s, x(s)) ds

≥ α0e
−λt + e−λt

∫ t

a

eλsf̃(s, y(s)) ds

= Ay(t),
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for all t ∈ J .
Next, we show that the operator B is also nondecreasing on E. Let x, y ∈ E be

such that x ≥ y. Then x(t) ≥ y(t) for all t ∈ J . Since y is continuous on [a, t], there
exists a ξ∗ ∈ [a, t] such that

y(ξ∗) = max
a≤ξ≤t

y(ξ).

By definition of ≤, one has x(ξ∗) ≥ y(ξ∗). Consequently, we obtain

max
a≤ξ≤t

x(ξ) ≥ x(ξ∗) ≥ y(ξ∗) = max
a≤ξ≤t

y(ξ).

Now, using hypothesis (H3), it can be shown that the operator B is also nonde-
creasing on E.
Step II. A is partially bounded and partially contraction on E.

Let x ∈ E be arbitrary. Then by (H5) we have

|Ax(t)| ≤
∣∣α0e

−λt∣∣+ e−λt
∫ t

a

e−λs
∣∣∣f̃(s, x(s))

∣∣∣ ds
≤ |α0|+K

∫ b

a

eλs ds

≤ |α0|+ eλaK(b− a),

for all t ∈ J . Taking the supremum over t, we obtain

‖Ax(t)‖ ≤ |α0|+ eλaK(b− a),

so A is a bounded operator on E. This implies that A is partially bounded on E.
Let x, y ∈ E be such that x ≥ y. Then by (H1) we have

|Ax(t)−Ay(t)| ≤
∣∣∣∣e−λt ∫ t

a

eλs
[
f̃(s, x(s))− f̃(s, y(s))

]
ds

∣∣∣∣
≤ e−λt

∫ t

a

eλsµ |x(s)− y(s)| ds

≤ e−λt
∫ t

a

eλsλ |x(s)− y(s)| ds

≤ e−λt
∫ t

a

d

ds
eλs ‖x− y‖ ds

≤ (1− e−λa) ‖x− y‖ ,

for all t ∈ J . Taking the supremum over t, we obtain

‖Ax−Ay‖ ≤ L ‖x− y‖ ,

for all x, y ∈ E with x ≥ y. Hence A is a partially contraction on E and which also
implies that A is partially continuous on E.
Step III. B is partially continuous on E.
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Let {xn}n∈N be a sequence in a chain C such that xn → x, for all n ∈ N. Then

lim
n→∞

Bxn(t) = lim
n→∞

e−λt
∫ t

a

eλsg

(
s, max
a≤ξ≤s

xn(ξ)

)
ds

= e−λt
∫ t

a

eλs
[

lim
n→∞

g

(
s, max
a≤ξ≤s

xn(ξ)

)]
ds

= e−λt
∫ t

a

eλsg

(
s, max
a≤ξ≤s

x(ξ)

)
ds

= Bx(t),

for all t ∈ J . This shows that Bxn converges to Bx pointwise on J .

Now we show that {Bxn}n∈N is an equicontinuous sequence of functions in E. Let
t1, t2 ∈ J with t1 < t2. We have

|Bxn(t2)− Bxn(t1)| =
∣∣∣∣e−λt2 ∫ t2

a

eλsg

(
s, max
a≤ξ≤s

xn(ξ)

)
ds

−e−λt1
∫ t1

a

eλsg

(
s, max
a≤ξ≤s

xn(ξ)

)
ds

∣∣∣∣
≤
∣∣∣∣(e−λt2 − e−λt1) ∫ t1

a

eλsg

(
s, max
a≤ξ≤s

xn(ξ)

)
ds

∣∣∣∣
+

∣∣∣∣e−λt2 ∫ t2

t1

eλsg

(
s, max
a≤ξ≤s

xn(ξ)

)
ds

∣∣∣∣
→ 0 as t2 → t1,

uniformly for all n ∈ N. This shows that the convergence Bxn → Bx is uniform and
hence B is partially continuous on E.
Step IV. B is partially compact operator on E.

Let C be an arbitrary chain in E. We show that B(C) is uniformly bounded and
equicontinuous set in E. First we show that B(C) is uniformly bounded. Let y ∈ B(C)
be any element. Then there is an element x ∈ C such that y = Bx. By hypothesis
(H2)

|y(t)| = |Bx(t)|

=

∣∣∣∣e−λt ∫ t

a

eλsg

(
s, max
a≤ξ≤s

x(ξ)

)
ds

∣∣∣∣
≤
∫ t

a

eλs
∣∣∣∣g(s, max

a≤ξ≤s
x(ξ)

) ∣∣∣∣ ds
≤
∫ b

a

eλbM ds

≤ eλbM(b− a) = r,

for all t ∈ J . Taking the supremum over t we obtain ‖y‖ ≤ ‖Bx‖ ≤ r, for all
y ∈ B(C). Hence B(C) is uniformly bounded subset of E. Next we show that B(C)
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is an equicontinuous set in E. Let t1, t2 ∈ J , with t1 < t2. Then, for any y ∈ B(C),
one has∣∣y(t2)− y(t1)

∣∣ = |Bx(t2)− Bx(t1)|

=

∣∣∣∣e−λt2 ∫ t2

a

eλsg

(
s, max
a≤ξ≤s

x(ξ)

)
ds− e−λt1

∫ t1

a

eλsg

(
s, max
a≤ξ≤s

x(ξ)

)
ds

∣∣∣∣
≤
∣∣∣∣(e−λt2 − e−λt1) ∫ t1

a

eλsg

(
s, max
a≤ξ≤s

x(ξ)

)
ds

∣∣∣∣
+

∣∣∣∣e−λt2 ∫ t2

t1

eλsg

(
s, max
a≤ξ≤s

x(ξ)

)
ds

∣∣∣∣
→ 0 as t1 → t2

uniformly for all y ∈ B(C). This shows that B(C) is an equicontinuous subset of E.
So B(C) is a uniformly bounded and equicontinuous set of functions in E and hence it
is compact in view of Arzelá-Ascoli theorem. Consequently B : E → E is a partially
compact operator of E into itself.
Step V. u satisfies the inequality u ≤ Au+ Bu.

By hypothesis (H4) the equation (1.1) has a lower solution u defined on J . Then
we have  u′(t) ≤ f(t, u(t)) + g

(
t, max
a≤ξ≤t

u(ξ)

)
, t ∈ J,

u(a) ≤ α0.
(3.8)

Adding λu(t) on both sides of the first inequality in (3.8), we obtain

u′(t) + λu(t) ≤ f(t, u(t)) + λu(t) + g

(
t, max
a≤ξ≤t

u(ξ)

)
, t ∈ J.

Again, multiplying the above inequality by eλt,(
eλtu(t)

)′ ≤ eλtf̃(t, u(t)) + eλtg

(
t, max
a≤ξ≤t

u(ξ)

)
. (3.9)

A direct integration of (3.9) from a to t yields

u(t) ≤ α0e
−λt + e−λt

∫ t

a

eλsf̃(s, u(s))ds

+ e−λt
∫ t

a

eλsg

(
s, max
a≤ξ≤s

u(ξ)

)
ds,

(3.10)

for t ∈ J . From definitions of the operators A and B it follows that

u(t) ≤ Au(t) + Bu(t),

for all t ∈ J . Hence u ≤ Au + Bu. Thus A and B satisfy all the conditions of
Theorem 2.1 and we apply it to conclude that the operator equation Ax+Bx = x has
a solution. Consequently the integral equation and the equation (1.1) has a solution
x∗ defined on J . Furthermore, the sequence {xn}∞n=0 of successive approximations
defined by (3.5) converges monotonically to x∗. This completes the proof. �
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Remark 3.2. The conclusion of Theorem 3.1 also remains true if we replace the
hypothesis (H4) with the following one.

(H′4) The HDE (1.1) has an upper solution v ∈ C(J,R).

Remark 3.3. We note that if the HDE (1.1) has a lower solution u as well as an
upper solution v such that u ≤ v, then under the given conditions of Theorem 3.1
it has corresponding solutions x∗ and x∗ and these solutions satisfy x∗ ≤ x∗. Hence
they are the minimal and maximal solutions of the HDE (1.1) in the vector segment
[u, v] of the Banach space E = C(J,R), where the vector segment [u, v] is a set of
elements in C(J,R) defined by

[u, v] = {x ∈ C(J,R) | u ≤ x ≤ v}.

This is because the order relation ≤ defined by (3.2) is equivalent to the order relation
defined by the order cone K = {x ∈ C(J,R) | x ≥ θ} which is a closed set in C(J,R).

In the following we illustrate our hypotheses and the main abstract result for the
validity of conclusion.

Example 3.1. We consider the following HDE x′(t) = arctanx(t)− x(t) + tanh

(
max
0≤ξ≤t

x(ξ)

)
, t ∈ J = [0, 1],

x(0) = 1.
(3.11)

Here f(t, x) = arctanx(t) − x(t) and g(t, x) = tanhx. The functions f and g are
continuous on J × R. Next, we have

0 ≤ arctanx(t)− arctan y(t) ≤ 1

ξ2 + 1
(x− y),

for all x, y ∈ R, x > ξ > y. Therefore λ = 1 > 1
ξ2+1 = µ. Hence the function f

satisfies the hypothesis (H1). Moreover, the function f̃(t, x) = arctanx(t) is bounded
on J ×R with bound K = π/2, so that the hypothesis (H5) is satisfied. The function
g is bounded on J × R by M = 1, so (H2) holds. The function g(t, x) is increasing
in x for each t ∈ J , so the hypothesis (H3) is satisfied. The HDE (3.11) has a lower
solution u(t) = −2t + 1, t ∈ [0, 1]. Thus all hypothesis of Theorem 3.1 are satisfied
and hence the HDE (3.11) has a solution x∗ defined on J and the sequence {xn}∞n=0

defined by

x0 = −2t+ 1,

xn+1(t) = e−t + e−t
∫ t

0

es arctanxn(s) ds

+e−t
∫ t

0

es tanh

(
max
0≤ξ≤s

xn(ξ)

)
ds

for each t ∈ J , converges monotonically to x∗.

Remark 3.4. Finally while concluding, we mention that the study of this paper
may be extended with appropriate modifications to the nonlinear hybrid differential
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equation with maxima, x′(t) = f

(
t, x(t), max

a≤ξ≤t
x(ξ)

)
+ g

(
t, x(t), max

a≤ξ≤t
x(ξ)

)
,

x(a) = α0 ∈ R,
(3.12)

for all t ∈ J = [a, b], where f, g : J × R × R → R are continuous functions. When
g ≡ 0, the differential equation (3.12) reduces to the nonlinear differential equations
with maxima,  x′(t) = f

(
t, x(t), max

a≤ξ≤t
x(ξ)

)
, t ∈ J,

x(a) = α0 ∈ R,
(3.13)

which is studied in Otrocol and Rus [17] for existence and uniqueness theorem via
Picard iterations under strong Lipschitz condition. Therefore, the obtained results for
differential equation (3.12) with maxima via Dhage iteration method will include the
existence and approximation results for the differential equation with maxima (3.13)
under weak partial Lipschitz condition.
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[19] A. Petruşel, I.A. Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc.,

134(2006), 411-418.

[20] A.C.M. Ran, M.C. Reurings, A fixed point theorem in partially ordered sets and some applica-
tions to matrix equations, Proc. Amer. Math. Soc., 132(2004), 1435-1443.

Received: January 23, 2016; Accepted: April 26, 2016.


