THE SHRINKING PROJECTION METHOD FOR A FINITE FAMILY OF DEMIMETRIC MAPPINGS WITH VARIATIONAL INEQUALITY PROBLEMS IN A HILBERT SPACE

WATARU TAKAHASHI*, CHING-FENG WEN** AND JEN-CHIH YAO***
* Center for Fundamental Science, and Research Center for Nonlinear Analysis and Optimization, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Keio Research and Education Center for Natural Sciences, Keio University, Kouhoku-ku, Yokohama 223-8521, Japan; and Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552, Japan E-mail: wataru@is.titech.ac.jp; wataru@a00.itscom.net ${ }^{* *}$ Center for Fundamental Science, and

> Research Center for Nonlinear Analysis and Optimization,
> Kaohsiung Medical University, Kaohsiung 80708, Taiwan
> E-mail: cfwen@kmu.edu.tw
*** Center for General Education, China Medical University, Taichung 40402, Taiwan; and Department of Mathematics, King Abdulaziz University P.O. Box 80203, Jeddah, 21589, Saudi Arabia

E-mail: yaojc@mail.cmu.edu.tw

Abstract

In this paper, using a new nonlinear mapping called demimetric and the shrinking projection method, we prove a strong convergence theorem for finding a common element of the set of common fixed points for a finite family of these new demimetric mappings and the set of common solutions of variational inequality problems for a finite family of inverse strongly monotone mappings in a Hilbert space. Using the result, we obtain well-known and new strong convergence theorems in a Hilbert space. Key Words and Phrases: Fixed point, demimetric mapping, inverse strongly monotone mapping, shrinking projection method, variational inequality problem. 2010 Mathematics Subject Classification: $47 \mathrm{H} 05,47 \mathrm{H} 10$.

1. Introduction

Let H be a real Hilbert space and let C be a nonempty, closed and convex subset of H. For a mapping $U: C \rightarrow H$, we denote by $F(U)$ the set of fixed points of U. Let k be a real number with $0 \leq k<1$. A mapping $U: C \rightarrow H$ is called a k-strict pseudo-contraction [3] if

$$
\|U x-U y\|^{2} \leq\|x-y\|^{2}+k\|x-U x-(y-U y)\|^{2}
$$

for all $x, y \in C$. If U is a k-strict pseudo-contraction and $F(U) \neq \emptyset$, then we have that, for $x \in C$ and $q \in F(U)$,

$$
\|U x-q\|^{2} \leq\|x-q\|^{2}+k\|x-U x\|^{2} .
$$

From $\|U x-q\|^{2}=\|U x-x\|^{2}+\|x-q\|^{2}+2\langle U x-x, x-q\rangle$, we have that

$$
\|U x-x\|^{2}+\|x-q\|^{2}+2\langle U x-x, x-q\rangle \leq\|x-q\|^{2}+k\|x-U x\|^{2} .
$$

Therefore, we have that

$$
\begin{equation*}
\langle x-U x, x-q\rangle \geq \frac{1-k}{2}\|x-U x\|^{2} \tag{1.1}
\end{equation*}
$$

for all $x \in C$ and $q \in F(U)$. A mapping $U: C \rightarrow H$ is called generalized hybrid [6] if there exist $\alpha, \beta \in \mathbb{R}$ such that

$$
\alpha\|U x-U y\|^{2}+(1-\alpha)\|x-U y\|^{2} \leq \beta\|U x-y\|^{2}+(1-\beta)\|x-y\|^{2}
$$

for all $x, y \in C$. Such a mapping U is called (α, β)-generalized hybrid. Notice that the class of generalized hybrid mappings covers several well-known mappings. For example, a (1,0)-generalized hybrid mapping is nonexpansive, i.e.,

$$
\|U x-U y\| \leq\|x-y\|, \quad \forall x, y \in C
$$

It is nonspreading $[7,8]$ for $\alpha=2$ and $\beta=1$, i.e.,

$$
2\|U x-U y\|^{2} \leq\|U x-y\|^{2}+\|U y-x\|^{2}, \quad \forall x, y \in C .
$$

It is also hybrid [15] for $\alpha=\frac{3}{2}$ and $\beta=\frac{1}{2}$, i.e.,

$$
3\|U x-U y\|^{2} \leq\|x-y\|^{2}+\|U x-y\|^{2}+\|U y-x\|^{2}, \quad \forall x, y \in C
$$

In general, nonspreading and hybrid mappings are not continuous; see [4]. If U is generalized hybrid and $F(U) \neq \emptyset$, then we have that, for $x \in C$ and $q \in F(U)$,

$$
\alpha\|q-U x\|^{2}+(1-\alpha)\|q-U x\|^{2} \leq \beta\|q-x\|^{2}+(1-\beta)\|q-x\|^{2}
$$

and hence $\|U x-q\|^{2} \leq\|x-q\|^{2}$. From this, we have that

$$
2\langle x-q, x-U x\rangle \geq\|x-U x\|^{2}
$$

and hence

$$
\begin{equation*}
\langle x-q, x-U x\rangle \geq \frac{1-0}{2}\|x-U x\|^{2} . \tag{1.2}
\end{equation*}
$$

On the other hand, there exists such a mapping in a Banach space. Let E be a smooth Banach space and let B be a maximal monotone operator with $B^{-1} 0 \neq \emptyset$. Then, for the metric resolvent J_{λ} of B for $\lambda>0$, we have from [13] that, for any $x \in E$ and $q \in B^{-1} 0$,

$$
\left\langle J_{\lambda} x-q, J\left(x-J_{\lambda} x\right)\right\rangle \geq 0 .
$$

Then we get

$$
\left\langle J_{\lambda} x-x+x-q, J\left(x-J_{\lambda} x\right)\right\rangle \geq 0
$$

and hence

$$
\begin{equation*}
\left\langle x-q, J\left(x-J_{\lambda} x\right)\right\rangle \geq\left\|x-J_{\lambda} x\right\|^{2}=\frac{1-(-1)}{2}\left\|x-J_{\lambda} x\right\|^{2}, \tag{1.3}
\end{equation*}
$$

where J is the duality mapping on E. Motivated by (1.1), (1.2) and (1.3), Takahashi [16] introduced a new nonlinear mapping as follows: Let E be a smooth Banach space, let C be a nonempty, closed and convex subset of E and let k be a real number with $k \in(-\infty, 1)$. A mapping $U: C \rightarrow E$ with $F(U) \neq \emptyset$ is called k-demimetric if, for any $x \in C$ and $q \in F(U)$,

$$
\langle x-q, J(x-U x)\rangle \geq \frac{1-k}{2}\|x-U x\|^{2},
$$

where J is the duality mapping on E. According to the definition, we get that a k-strict pseudo-contraction U with $F(U) \neq \emptyset$ is k-demimetric, an (α, β)-generalized hybrid mapping U with $F(U) \neq \emptyset$ is 0 -demimetric and the metric resolvent J_{λ} with $B^{-1} 0 \neq \emptyset$ is (-1)-demimetric.

On the other hand, we know the shrinking projection method which was introduced by Takahashi, Takeuchi and Kubota [17] for finding a fixed point of a nonexpansive mapping in a Hilbert space.

In this paper, using this new nonlinear mapping called demimetric and the shrinking projection method, we prove a strong convergence theorem for finding a common element of the set of common fixed points for a finite family of these new demimetric mappings and the set of common solutions of variational inequality problems for a finite family of inverse strongly monotone mappings in a Hilbert space. Using the result, we obtain well-known and new strong convergence theorems in a Hilbert space.

2. Preliminaries

Throughout this paper, let \mathbb{N} be the set of positive integers and let H be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$, respectively. When $\left\{x_{n}\right\}$ is a sequence in H, we denote the strong convergence of $\left\{x_{n}\right\}$ to $x \in H$ by $x_{n} \rightarrow x$ and the weak convergence by $x_{n} \rightharpoonup x$. We have from [14] that for any $x, y \in H$ and $\lambda \in \mathbb{R}$,

$$
\begin{gather*}
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, x+y\rangle \tag{2.1}\\
\|\lambda x+(1-\lambda) y\|^{2}=\lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda)\|x-y\|^{2} . \tag{2.2}
\end{gather*}
$$

Furthermore we have that for $x, y, u, v \in H$,

$$
\begin{equation*}
2\langle x-y, u-v\rangle=\|x-v\|^{2}+\|y-u\|^{2}-\|x-u\|^{2}-\|y-v\|^{2} . \tag{2.3}
\end{equation*}
$$

Let C be a nonempty, closed and convex subset of a Hilbert space H. A mapping $T: C \rightarrow H$ is called nonexpansive if $\|T x-T y\| \leq\|x-y\|$ for all $x, y \in C$. If $T: C \rightarrow H$ is nonexpansive, then $F(T)$ is closed and convex; see [5, 14]. For a nonempty, closed and convex subset D of H, the nearest point projection of H onto D is denoted by P_{D}, that is, $\left\|x-P_{D} x\right\| \leq\|x-y\|$ for all $x \in H$ and $y \in D$. Such a mapping P_{D} is called the metric projection of H onto D. We know that the metric projection P_{D} is firmly nonexpansive, i.e., $\left\|P_{D} x-P_{D} y\right\|^{2} \leq\left\langle P_{D} x-P_{D} y, x-y\right\rangle$ for all $x, y \in H$. Furthermore, $\left\langle x-P_{D} x, y-P_{D} x\right\rangle \leq 0$ holds for all $x \in H$ and $y \in D$; see $[12,14]$. Using this inequality and (2.3), we have that

$$
\begin{equation*}
\left\|P_{D} x-y\right\|^{2}+\left\|P_{D} x-x\right\|^{2} \leq\|x-y\|^{2}, \quad \forall x \in H, y \in D \tag{2.4}
\end{equation*}
$$

Let H be a real Hilbert space and let C be a nonempty, closed and convex subset of H. For $\alpha>0$, a mapping $A: C \rightarrow H$ is called α-inverse strongly monotone if

$$
\langle x-y, A x-A y\rangle \geq \alpha\|A x-A y\|^{2}, \quad \forall x, y \in C
$$

If A is α-inverse strongly monotone and $0<\lambda \leq 2 \alpha$, then $I-\lambda A: C \rightarrow H$ is nonexpansive. In fact, we have that for all $x, y \in C$,

$$
\begin{aligned}
\|(I-\lambda A) x & -(I-\lambda A) y\left\|^{2}=\right\| x-y-\lambda(A x-A y) \|^{2} \\
& =\|x-y\|^{2}-2 \lambda\langle x-y, A x-A y\rangle+\lambda^{2}\|A x-A y\|^{2} \\
& \leq\|x-y\|^{2}-2 \lambda \alpha\|A x-A y\|^{2}+\lambda^{2}\|A x-A y\|^{2} \\
& =\|x-y\|^{2}+\lambda(\lambda-2 \alpha)\|A x-A y\|^{2} \\
& \leq\|x-y\|^{2} .
\end{aligned}
$$

Thus, $I-\lambda A: C \rightarrow H$ is nonexpansive; see $[1,11,14]$ for more results of inversestrongly monotone mappings. The variational inequalty problem for $A: C \rightarrow H$ is to find a point $u \in C$ such that

$$
\begin{equation*}
\langle A u, x-u\rangle \geq 0, \quad \forall x \in C \tag{2.5}
\end{equation*}
$$

The set of solutions of (2.5) is denoted by $\operatorname{VI}(C, A)$. We also have that, for $\lambda>0$, $u=P_{C}(I-\lambda A) u$ if and only if $u \in V I(C, A)$. In fact, let $\lambda>0$. Then, for $u \in C$,

$$
\begin{aligned}
u=P_{C}(I-\lambda A) u & \Longleftrightarrow\langle(I-\lambda A) u-u, u-y\rangle \geq 0, \quad \forall y \in C \\
& \Longleftrightarrow\langle-\lambda A u, u-y\rangle \geq 0, \quad \forall y \in C \\
& \Longleftrightarrow\langle A u, u-y\rangle \leq 0, \quad \forall y \in C \\
& \Longleftrightarrow\langle A u, y-u\rangle \geq 0, \quad \forall y \in C \\
& \Longleftrightarrow u \in V I(C, A) .
\end{aligned}
$$

In the case when a Banach space E is a Hilbert space, the definition of a demimetric mapping is as follows: Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H. Let $k \in(-\infty, 1)$. A mapping $U: C \rightarrow H$ with $F(U) \neq \emptyset$ is called k-demimetric if, for any $x \in C$ and $q \in F(U)$,

$$
\langle x-q, x-U x\rangle \geq \frac{1-k}{2}\|x-U x\|^{2}
$$

Note again that the class of k-demimetric mappings with $k \in(-\infty, 1)$ in a Hilbert space covers k-strict pseudo-contractions with $k \in[0,1)$, generalized hybrid mappings, the metric projections, the resolvents of a maximal monotone operator in a Hilbert space.

The following lemma which was essentially proved in [16] is important and crucial in the proof of our main result. For the sake of completeness, we give the proof.

Lemma 2.1 ([16]). Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H. Let k be a real number with $k \in(-\infty, 1)$ and let U be a k demimetric mapping of C into H. Then $F(U)$ is closed and convex.

Proof. Let us show that $F(U)$ is closed. For a sequence $\left\{q_{n}\right\}$ such that $q_{n} \rightarrow q$ and $q_{n} \in F(U)$, we have from the definition of U that

$$
\left\langle q-q_{n}, q-U q\right\rangle \geq \frac{1-k}{2}\|q-U q\|^{2}
$$

From $q_{n} \rightarrow q$, we have $0 \geq \frac{1-k}{2}\|q-U q\|^{2}$. From $1-k>0$, we have $\|q-U q\|^{2}=0$ and hence $q=U q$. This implies that $F(U)$ is closed.

Let us prove that $F(U)$ is convex. Let $p, q \in F(U)$ and set $x=\alpha p+(1-\alpha) q$, where $\alpha \in[0,1]$. Then we have

$$
\begin{aligned}
\|x-U x\|^{2}= & \langle x-U x, x-U x\rangle \\
= & \langle\alpha p+(1-\alpha) q-U x, x-U x\rangle \\
= & \langle\alpha p+(1-\alpha) q-(\alpha U x+(1-\alpha) U x), x-U x\rangle \\
= & \alpha\langle p-U x, x-U x\rangle+(1-\alpha)\langle q-U x, x-U x\rangle \\
= & \alpha\langle p-x+x-U x, x-U x\rangle+(1-\alpha)\langle q-x+x-U x, x-U x\rangle \\
\leq & \frac{\alpha(k-1)}{2}\|x-U x\|^{2}+\alpha\|x-U x\|^{2} \\
& +\frac{(1-\alpha)(k-1)}{2}\|x-U x\|^{2}+(1-\alpha)\|x-U x\|^{2} \\
= & \frac{(k-1)}{2}\|x-U x\|^{2}+\|x-U x\|^{2}
\end{aligned}
$$

and hence

$$
0 \leq \frac{(k-1)}{2}\|x-U x\|^{2}
$$

We have from $0>k-1$ that $\|x-U x\| \leq 0$ and hence $x=U x$. This means that $F(U)$ is convex.

The following lemma is used in the proof of our main result.
Lemma 2.2. Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H. Let $k \in(-\infty, 1)$ and let T be a k-demimetric mapping of C into H such that $F(T)$ is nonempty. Let λ be a real number with $0<\lambda \leq 1-k$ and define $S=(1-\lambda) I+\lambda T$. Then S is a quasi-nonexpansive mapping of C into H.

Proof. It is obvious that $F(T)=F(S)$. Since T be a k-demimetric mapping of C into H, we have that for any $x \in C$ and $z \in F(S)$,

$$
\begin{aligned}
\langle x-z, x-S x\rangle & =\langle x-z, x-(1-\lambda) x-\lambda T x\rangle=\lambda\langle x-z, x-T x\rangle \\
& \geq \lambda \frac{1-k}{2}\|x-T x\|^{2}=\lambda^{2} \frac{1-k}{2 \lambda}\|x-T x\|^{2} \\
& =\frac{1-k}{2 \lambda}\|\lambda x-\lambda T x\|^{2}=\frac{1-k}{2 \lambda}\|x-S x\|^{2} \\
& \geq \frac{\lambda}{2 \lambda}\|x-S x\|^{2}=\frac{1}{2}\|x-S x\|^{2} .
\end{aligned}
$$

Then S is a 0 -demimetric mapping. Furthermore, we have from (2.3) that for any $x \in C$ and $z \in F(S)$,

$$
\begin{aligned}
\frac{1}{2} \| x & -S x \|^{2} \leq\langle x-z, x-S x\rangle \\
& \Longleftrightarrow\|x-S x\|^{2} \leq 2\langle x-z, x-S x\rangle \\
& \Longleftrightarrow\|x-S x\|^{2} \leq\|x-S x\|^{2}+\|x-z\|^{2}-\|S x-z\|^{2} \\
& \Longleftrightarrow\|S x-z\|^{2} \leq\|x-z\|^{2} \\
& \Longleftrightarrow\|S x-z\| \leq\|x-z\| .
\end{aligned}
$$

Therefore, S is quasi-nonexpansive.

3. Main result

Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H. A mapping $U: C \rightarrow H$ is called demiclosed if, for a sequence $\left\{x_{n}\right\}$ in C such that $x_{n} \rightharpoonup w$ and $x_{n}-U x_{n} \rightarrow 0$, then $w=U w$ holds. For example, if C is a nonempty, closed and convex subset of H and T is a nonexpansive mapping of C of H, then T is demiclosed; see [2]. In fact, let $\left\{x_{n}\right\}$ be a sequence in C such that $x_{n} \rightharpoonup u$ and $x_{n}-U x_{n} \rightarrow 0$. Since C is weakly closed, we have that $u \in C$. Furthermore, we have from $x_{n} \rightharpoonup u$ that $\left\{x_{n}\right\}$ is bounded and then $\left\{T x_{n}\right\}$ is bounded. Thus, we have that

$$
\begin{aligned}
\|u-T u\|^{2} & =\left\|u-x_{n}+x_{n}-T u\right\|^{2} \\
& =\left\|u-x_{n}\right\|^{2}+\left\|x_{n}-T u\right\|^{2}+2\left\langle u-x_{n}, x_{n}-T u\right\rangle \\
& =\left\|u-x_{n}\right\|^{2}+\left\|x_{n}-T x_{n}+T x_{n}-T u\right\|^{2}+2\left\langle u-x_{n}, x_{n}-u+u-T u\right\rangle \\
& =\left\|u-x_{n}\right\|^{2}+\left\|x_{n}-T x_{n}\right\|^{2}+\left\|T x_{n}-T u\right\|^{2}+2\left\langle x_{n}-T x_{n}, T x_{n}-T u\right\rangle \\
& -2\left\|u-x_{n}\right\|^{2}+2\left\langle u-x_{n}, u-T u\right\rangle \\
& \leq\left\|u-x_{n}\right\|^{2}+\left\|x_{n}-T x_{n}\right\|^{2}+\left\|x_{n}-u\right\|^{2}+2\left\langle x_{n}-T x_{n}, T x_{n}-T u\right\rangle \\
& -2\left\|u-x_{n}\right\|^{2}+2\left\langle u-x_{n}, u-T u\right\rangle \\
& =\left\|x_{n}-T x_{n}\right\|^{2}+2\left\langle x_{n}-T x_{n}, T x_{n}-T u\right\rangle+2\left\langle u-x_{n}, u-T u\right\rangle \\
& \rightarrow 0 .
\end{aligned}
$$

Therefore, we have that $u=T u$.
In this section, using the shrinking projection method, we prove a strong convergence theorem for finding a common element of the set of common fixed points for a finite family of demimetric mappings and the set of common solutions of variational inequalty problems for a finite family of inverse strongly monotone mappings in a Hilbert space.

Theorem 3.1. Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H. Let $\left\{k_{1}, \ldots, k_{M}\right\} \subset(-\infty, 1)$ and $\left\{\mu_{1}, \ldots, \mu_{N}\right\} \subset(0, \infty)$. Let $\left\{T_{j}\right\}_{j=1}^{M}$ be a finite family of k_{j}-demimetric and demiclosed mappings of C into H and let $\left\{B_{i}\right\}_{i=1}^{N}$ be a finite family of μ_{i}-inverse strongly monotone mappings of C into H.

Assume that $\cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N} V I\left(C, B_{i}\right)\right) \neq \emptyset$. Let $x_{1} \in C$ and $C_{1}=C$. Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
z_{n}=\sum_{j=1}^{M} \xi_{j}\left(\left(1-\lambda_{n}\right) I+\lambda_{n} T_{j}\right) x_{n} \\
w_{n}=\sum_{i=1}^{N} \sigma_{i} P_{C}\left(I-\eta_{n} B_{i}\right) x_{n} \\
y_{n}=\alpha_{n} x_{n}+\beta_{n} z_{n}+\gamma_{n} w_{n} \\
C_{n+1}=\left\{z \in C_{n}:\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
x_{n+1}=P_{C_{n+1}} x_{1}, \quad \forall n \in \mathbb{N}
\end{array}\right.
$$

where $a, b, c \in \mathbb{R},\left\{\lambda_{n}\right\},\left\{\eta_{n}\right\} \subset(0, \infty),\left\{\xi_{1}, \ldots, \xi_{M}\right\},\left\{\sigma_{1}, \ldots, \sigma_{N}\right\} \subset(0,1)$ and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\} \subset(0,1)$ satisfy the following conditions:
(1) $0<a \leq \lambda_{n} \leq \min \left\{1-k_{1}, \ldots, 1-k_{M}\right\}, 0<b \leq \eta_{n} \leq 2 \min \left\{\mu_{1}, \ldots, \mu_{N}\right\}$;
(2) $\sum_{j=1}^{M} \xi_{j}=1$ and $\sum_{i=1}^{N} \sigma_{i}=1$;
(3) $0<c \leq \alpha_{n}, \beta_{n}, \gamma_{n}<1$ and $\alpha_{n}+\beta_{n}+\gamma_{n}=1$.

Then $\left\{x_{n}\right\}$ converges strongly to a point $z_{0} \in \cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N} V I\left(C, B_{i}\right)\right)$, where $z_{0}=P_{\cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N} V I\left(C, B_{i}\right)\right)} x_{1}$.

Proof. Since B_{i} is μ_{i}-inverse strongly monotone for all $i \in\{1, \ldots, N\}$ and $0<b \leq$ $\eta_{n} \leq 2 \mu_{i}, P_{C}\left(I-\eta_{n} B_{i}\right)$ is nonexpansive and $F\left(P_{C}\left(I-\eta_{n} B_{i}\right)\right)=V I\left(C, B_{i}\right)$ is closed and convex. Furthermore, we know from Lemma 2.1 that $F\left(T_{j}\right)$ is closed and convex. Therefore, we have that $\cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N} V I\left(C, B_{i}\right)\right)$ is nonempty, closed and convex. Thus we have that $P_{\cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N} V I\left(C, B_{i}\right)\right)}$ is well defined. Since

$$
\begin{aligned}
\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\| & \Longleftrightarrow\left\|y_{n}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2} \\
& \Longleftrightarrow\left\|y_{n}\right\|^{2}-\left\|x_{n}\right\|^{2}-2\left\langle y_{n}-x_{n}, z\right\rangle \leq 0
\end{aligned}
$$

it is obvious that C_{n} are closed and convex for all $n \in \mathbb{N}$. Let us show that $\cap_{j=1}^{M} F\left(T_{j}\right) \cap$ $\left(\cap_{i=1}^{N} V I\left(C, B_{i}\right)\right) \subset C_{n}$ for all $n \in \mathbb{N}$. It is obvious that

$$
\cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N} V I\left(C, B_{i}\right)\right) \subset C_{1}=C .
$$

Suppose that $\cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N} V I\left(C, B_{i}\right)\right) \subset C_{k}$ for some $k \in \mathbb{N}$. Then we have from Lemma 2.2 that for $z \in \cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N} V I\left(C, B_{i}\right)\right)$,

$$
\begin{align*}
\left\|z_{k}-z\right\| & =\left\|\sum_{j=1}^{M} \xi_{j}\left(\left(1-\lambda_{k}\right) I+\lambda_{k} T_{j}\right) x_{k}-z\right\| \\
& \leq \sum_{j=1}^{M} \xi_{j}\left\|\left(\left(1-\lambda_{k}\right) I+\lambda_{k} T_{j}\right) x_{k}-z\right\| \tag{3.1}\\
& \leq \sum_{j=1}^{M} \xi_{j}\left\|x_{k}-z\right\|=\left\|x_{k}-z\right\|
\end{align*}
$$

Furthermore, we have that

$$
\begin{align*}
\left\|w_{k}-z\right\| & =\left\|\sum_{i=1}^{N} \sigma_{i} P_{C}\left(I-\eta_{k} B_{i}\right) x_{k}-z\right\| \\
& \leq \sum_{i=1}^{N} \sigma_{i}\left\|P_{C}\left(I-\eta_{k} B_{i}\right) x_{k}-z\right\| \tag{3.2}\\
& \leq \sum_{i=1}^{N} \sigma_{i}\left\|x_{k}-z\right\|=\left\|x_{k}-z\right\| .
\end{align*}
$$

Thus we have that

$$
\begin{align*}
\left\|y_{k}-z\right\| & =\left\|\alpha_{k} x_{k}+\beta_{k} z_{k}+\gamma_{k} w_{k}-z\right\| \\
& \leq \alpha_{k}\left\|x_{k}-z\right\|+\beta_{k}\left\|z_{k}-z\right\|+\gamma_{k}\left\|w_{k}-z\right\| \tag{3.3}\\
& \leq \alpha_{k}\left\|x_{k}-z\right\|+\beta_{k}\left\|x_{k}-z\right\|+\gamma_{k}\left\|x_{k}-z\right\| \\
& =\left\|x_{k}-z\right\| .
\end{align*}
$$

This implies $z \in C_{k+1}$. Therefore, we have by mathematical induction that

$$
\cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N} V I\left(C, B_{i}\right)\right) \subset C_{n}
$$

for all $n \in \mathbb{N}$. Thus $x_{n+1}=P_{C_{n+1}} x_{1}$ is well defined.
Since $\cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N} V I\left(C, B_{i}\right)\right)$ is nonempty, closed and convex, there exists $z_{0} \in \cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N} V I\left(C, B_{i}\right)\right)$ such that $z_{0}=P_{\cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N} V I\left(C, B_{i}\right)\right)} x_{1}$. By $x_{n+1}=P_{C_{n+1}} x_{1}$, we have that

$$
\left\|x_{1}-x_{n+1}\right\| \leq\left\|x_{1}-y\right\|
$$

for all $y \in C_{n+1}$. Since $z_{0} \in \cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N} V I\left(C, B_{i}\right)\right) \subset C_{n+1}$, we have that

$$
\begin{equation*}
\left\|x_{1}-x_{n+1}\right\| \leq\left\|x_{1}-z_{0}\right\| \tag{3.4}
\end{equation*}
$$

This means that $\left\{x_{n}\right\}$ is bounded. From $x_{n}=P_{C_{n}} x_{1}$ and $x_{n+1} \in C_{n+1} \subset C_{n}$, we have that

$$
\left\|x_{1}-x_{n}\right\| \leq\left\|x_{1}-x_{n+1}\right\|
$$

Thus $\left\{\left\|x_{1}-x_{n}\right\|\right\}$ is bounded and nondecreasing. Then there exists the limit of $\left\{\left\|x_{1}-x_{n}\right\|\right\}$. Put $\lim _{n \rightarrow \infty}\left\|x_{n}-x_{1}\right\|=c$. For any $m, n \in \mathbb{N}$ with $m \geq n$, we have $C_{m} \subset C_{n}$. From $x_{m}=P_{C_{m}} x_{1} \in C_{m} \subset C_{n}$ and (2.4), we have that

$$
\left\|x_{m}-P_{C_{n}} x_{1}\right\|^{2}+\left\|P_{C_{n}} x_{1}-x_{1}\right\|^{2} \leq\left\|x_{1}-x_{m}\right\|^{2} .
$$

This implies that

$$
\begin{equation*}
\left\|x_{m}-x_{n}\right\|^{2} \leq\left\|x_{1}-x_{m}\right\|^{2}-\left\|x_{n}-x_{1}\right\|^{2} \leq c^{2}-\left\|x_{n}-x_{1}\right\|^{2} . \tag{3.5}
\end{equation*}
$$

Since $c^{2}-\left\|x_{n}-x_{1}\right\|^{2} \rightarrow 0$ as $n \rightarrow \infty$, we have that $\left\{x_{n}\right\}$ is a Caushy sequence. By the completeness of H and the closedness of C, there exists a point $u \in C$ such that $\lim _{n \rightarrow \infty} x_{n}=u$.

Let us show that $u \in \cap_{j=1}^{M} F\left(T_{j}\right)$. From (3.5), we have $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$. By $x_{n+1} \in C_{n+1}$, we have that

$$
\begin{aligned}
\left\|y_{n}-x_{n}\right\| & \leq\left\|y_{n}-x_{n+1}\right\|+\left\|x_{n+1}-x_{n}\right\| \\
& \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-x_{n}\right\| \\
& \leq 2\left\|x_{n}-x_{n+1}\right\| .
\end{aligned}
$$

This implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0 \tag{3.7}
\end{equation*}
$$

Let $z \in \cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N} V I\left(C, B_{i}\right)\right)$. Using [10], we have from (3.1) and (3.2) that

$$
\begin{aligned}
\left\|y_{n}-z\right\|^{2} & =\alpha_{n}\left\|x_{n}-z\right\|^{2}+\beta_{n}\left\|z_{n}-z\right\|^{2}+\gamma_{n}\left\|w_{n}-z\right\|^{2} \\
& -\alpha_{n} \beta_{n}\left\|z_{n}-x_{n}\right\|^{2}-\alpha_{n} \gamma_{n}\left\|w_{n}-x_{n}\right\|^{2}-\gamma_{n} \beta_{n}\left\|z_{n}-w_{n}\right\|^{2} \\
& \leq \alpha_{n}\left\|x_{n}-z\right\|^{2}+\beta_{n}\left\|x_{n}-z\right\|^{2}+\gamma_{n}\left\|x_{n}-z\right\|^{2} \\
& -\alpha_{n} \beta_{n}\left\|z_{n}-x_{n}\right\|^{2}-\alpha_{n} \gamma_{n}\left\|w_{n}-x_{n}\right\|^{2}-\gamma_{n} \beta_{n}\left\|z_{n}-w_{n}\right\|^{2} \\
& =\left\|x_{n}-z\right\|^{2}-\alpha_{n} \beta_{n}\left\|z_{n}-x_{n}\right\|^{2}-\alpha_{n} \gamma_{n}\left\|w_{n}-x_{n}\right\|^{2}-\gamma_{n} \beta_{n}\left\|z_{n}-w_{n}\right\|^{2}
\end{aligned}
$$

and hence

$$
\begin{aligned}
c^{2}\left\|x_{n}-z_{n}\right\|^{2} & +c^{2}\left\|w_{n}-x_{n}\right\|^{2}+c^{2}\left\|z_{n}-w_{n}\right\|^{2} \\
& \leq \alpha_{n} \beta_{n}\left\|z_{n}-x_{n}\right\|^{2}+\alpha_{n} \gamma_{n}\left\|w_{n}-x_{n}\right\|^{2}+\gamma_{n} \beta_{n}\left\|z_{n}-w_{n}\right\|^{2} \\
& \leq\left\|x_{n}-z\right\|^{2}-\left\|y_{n}-z\right\|^{2} \\
& \leq\left\|x_{n}-y_{n}\right\|\left(\left\|x_{n}-z\right\|+\left\|y_{n}-z\right\|\right) .
\end{aligned}
$$

From $c>0$ and (3.7) we have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-x_{n}\right\|=0, \lim _{n \rightarrow \infty}\left\|w_{n}-x_{n}\right\|=0, \lim _{n \rightarrow \infty}\left\|z_{n}-w_{n}\right\|=0 \tag{3.8}
\end{equation*}
$$

Since T_{j} is k_{j}-demimetric for all $j \in\{1, \ldots, M\}$, we have that for $z \in \cap_{j=1}^{M} F\left(T_{j}\right)$,

$$
\begin{aligned}
\left\langle x_{n}-z, x_{n}-z_{n}\right\rangle & =\left\langle x_{n}-z, x_{n}-\sum_{j=1}^{M} \xi_{j}\left(\left(1-\lambda_{n}\right) I+\lambda_{n} T_{j}\right) x_{n}\right\rangle \\
& =\sum_{j=1}^{M} \xi_{j}\left\langle x_{n}-z, x_{n}-\left(\left(1-\lambda_{n}\right) I+\lambda_{n} T_{j}\right) x_{n}\right\rangle \\
& =\sum_{j=1}^{M} \xi_{j} \lambda_{n}\left\langle x_{n}-z, x_{n}-T_{j} x_{n}\right\rangle \\
& \geq \sum_{j=1}^{M} \xi_{j} \lambda_{n} \frac{1-k_{j}}{2}\left\|x_{n}-T_{j} x_{n}\right\|^{2} \\
& \geq \sum_{j=1}^{M} \xi_{j} a \frac{1-k_{j}}{2}\left\|x_{n}-T_{j} x_{n}\right\|^{2} .
\end{aligned}
$$

We have from $\lim _{n \rightarrow \infty}\left\|z_{n}-x_{n}\right\|=0$ that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{j} x_{n}\right\|=0, \quad \forall j \in\{1, \ldots, M\}
$$

Since T_{j} are demiclosed for all $j \in\{1, \ldots, M\}$ and $\lim _{n \rightarrow \infty} x_{n}=u$, we have $u \in$ $\cap_{j=1}^{M} F\left(T_{j}\right)$.

Let us show that $u \in \cap_{i=1}^{N} V I\left(C, B_{i}\right)$. Since $P_{C}\left(I-\eta_{n} B_{i}\right)$ is nonexpansive for all $i \in\{1, \ldots, N\}$, we have that for $z \in \cap_{i=1}^{N} V I\left(C, B_{i}\right)$,

$$
\begin{aligned}
\left\langle x_{n}-z, x_{n}-w_{n}\right\rangle & =\left\langle x_{n}-z, x_{n}-\sum_{i=1}^{N} \sigma_{i} P_{C}\left(I-\eta_{n} B_{i}\right) x_{n}\right\rangle \\
& =\sum_{i=1}^{N} \sigma_{i}\left\langle x_{n}-z, x_{n}-P_{C}\left(I-\eta_{n} B_{i}\right) x_{n}\right\rangle \\
& \geq \sum_{i=1}^{N} \sigma_{i} \frac{1}{2}\left\|x_{n}-P_{C}\left(I-\eta_{n} B_{i}\right) x_{n}\right\|^{2} .
\end{aligned}
$$

We have from $\lim _{n \rightarrow \infty}\left\|w_{n}-x_{n}\right\|=0$ that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-P_{C}\left(I-\eta_{n} B_{i}\right) x_{n}\right\|=0, \quad \forall i \in\{1, \ldots, N\} .
$$

Since $\left\{\eta_{n}\right\}$ is bounded, we have that there exists a subsequence $\left\{\eta_{n_{l}}\right\}$ of $\left\{\eta_{n}\right\}$ such that $\lim _{l \rightarrow \infty} \eta_{n_{l}}=\eta$ and $0<b \leq \eta \leq 2 \min \left\{\mu_{1}, \ldots, \mu_{N}\right\}$. For such η, we have that for any $i \in\{1, \ldots, N\}$,

$$
\begin{aligned}
\left\|x_{n_{l}}-P_{C}\left(I-\eta B_{i}\right) x_{n_{l}}\right\| & \leq\left\|x_{n_{l}}-P_{C}\left(I-\eta_{n_{l}} B_{i}\right) x_{n_{l}}\right\| \\
& +\left\|P_{C}\left(I-\eta_{n_{l}} B_{i}\right) x_{n_{l}}-P_{C}\left(I-\eta B_{i}\right) x_{n_{l}}\right\| \\
& \leq\left\|x_{n_{l}}-P_{C}\left(I-\eta_{n_{l}} B_{i}\right) x_{n_{l}}\right\| \\
& +\left\|\left(I-\eta_{n_{l}} B_{i}\right) x_{n_{l}}-\left(I-\eta B_{i}\right) x_{n_{l}}\right\| \\
& =\left\|x_{n_{l}}-P_{C}\left(I-\eta_{n_{l}} B_{i}\right) x_{n_{l}}\right\|+\left|\eta_{n_{l}}-\eta\right|\left\|B_{i} x_{n_{l}}\right\| .
\end{aligned}
$$

On the other hand, we have that for $y \in C$ and $i \in\{1, \ldots, N\}$,

$$
\begin{aligned}
b\left\|B_{i} x_{n}\right\| & \leq \eta_{n}\left\|B_{i} x_{n}\right\|=\left\|\eta_{n} B_{i} x_{n}\right\| \\
& =\left\|x_{n}-\left(y-\eta_{n} B_{i} y\right)+y-\eta_{n} B_{i} y-\left(x_{n}-\eta_{n} B_{i} x_{n}\right)\right\| \\
& \leq\left\|x_{n}-y\right\|+\eta_{n}\left\|B_{i} y\right\|+\left\|\left(I-\eta_{n} B_{i}\right) y-\left(I-\eta_{n} B_{i}\right) x_{n}\right\| \\
& \leq\left\|x_{n}-y\right\|+\max \left\{\mu_{1}, \ldots, \mu_{N}\right\}\left\|B_{i} y\right\|+\left\|y-x_{n}\right\| .
\end{aligned}
$$

Since $\left\{x_{n}\right\}$ is bounded, we have that $\left\{B_{i} x_{n}\right\}$ is bounded for all $i \in\{1, \ldots, N\}$. Thus we have that

$$
\lim _{l \rightarrow \infty}\left\|x_{n_{l}}-P_{C}\left(I-\eta B_{i}\right) x_{n_{l}}\right\|=0, \quad \forall i \in\{1, \ldots, N\}
$$

Since $\lim _{n \rightarrow \infty} x_{n}=u$ and $P_{C}\left(I-\eta B_{i}\right)$ are nonexpansive for all $i \in\{1, \ldots, N\}$, we have $u \in \cap_{i=1}^{N} V I\left(C, B_{i}\right)$.

From $z_{0}=P_{\cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N} V I\left(C, B_{i}\right)\right)} x_{1}, u \in \cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N} V I\left(C, B_{i}\right)\right)$, (3.4) and $x_{n} \rightarrow u$, we have that

$$
\left\|x_{1}-z_{0}\right\| \leq\left\|x_{1}-u\right\|=\lim _{n \rightarrow \infty}\left\|x_{1}-x_{n}\right\| \leq\left\|x_{1}-z_{0}\right\|
$$

Then $u=z_{0}$. Therefore, we have $x_{n} \rightarrow u=z_{0}$. This completes the proof.

4. Applications

In this section, we apply Theorem 3.1 to obtain well-known and new strong convergence theorems in Hilbert spaces. We know the following lemmas obtained by Marino and $\mathrm{Xu}[9]$ and Kocourek, Takahashi and Yao [6]; see also [18, 19].
Lemma 4.1 ($[9,18])$. Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H. Let k be a real number with $0 \leq k<1$ and $U: C \rightarrow H$ be a k-strict pseudo-contraction. If $x_{n} \rightharpoonup z$ and $x_{n}-U x_{n} \rightarrow 0$, then $z \in F(U)$.
Lemma 4.2 ([6, 19]). Let H be a Hilbert space, let C be a nonempty, closed and convex subset of H and let $U: C \rightarrow H$ be generalized hybrid. If $x_{n} \rightharpoonup z$ and $x_{n}-$ $U x_{n} \rightarrow 0$, then $z \in F(U)$.

The following is a strong convergence theorem for a finite family of strict pseudocontractions in a Hilbert space.
Corollary 4.3. Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H. Let $\left\{k_{1}, \ldots, k_{M}\right\} \subset[0,1)$ and let $\left\{T_{j}\right\}_{j=1}^{M}$ be a finite family of k_{j}-strict pseudo-contractions of C into H. Assume that $\cap_{j=1}^{M} F\left(T_{j}\right) \neq \emptyset$. Let $x_{1} \in C$ and $C_{1}=C$. Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
z_{n}=\sum_{j=1}^{M} \xi_{j}\left(\left(1-\lambda_{n}\right) I+\lambda_{n} T_{j}\right) x_{n} \\
y_{n}=\alpha_{n} x_{n}+\beta_{n} z_{n} \\
C_{n+1}=\left\{z \in C_{n}:\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
x_{n+1}=P_{C_{n+1}} x_{1}, \quad \forall n \in \mathbb{N}
\end{array}\right.
$$

where $a, c \in \mathbb{R},\left\{\lambda_{n}\right\} \subset(0, \infty),\left\{\xi_{1}, \ldots, \xi_{M}\right\} \subset(0,1)$ and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\} \subset(0,1)$ satisfy the following conditions:
(1) $0<a \leq \lambda_{n} \leq \min \left\{1-k_{1}, \ldots, 1-k_{M}\right\}$;
(2) $\sum_{j=1}^{M} \xi_{j}=1$;
(3) $0<c \leq \alpha_{n}, \beta_{n}<1$ and $\alpha_{n}+\beta_{n}=1$.

Then $\left\{x_{n}\right\}$ converges strongly to a point $z_{0} \in \cap_{j=1}^{M} F\left(T_{j}\right)$, where $z_{0}=P_{\cap_{j=1}^{M} F\left(T_{j}\right)} x_{1}$.
Proof. Since T_{j} is a k_{j}-strict pseudo-contraction of C into H such that $F\left(T_{j}\right) \neq \emptyset$, from (1.1), T_{j} is k_{j}-demimetric. Furthermore, from Lemma 4.1, T_{j} is demiclosed. Furthermore, if $B_{i}=0$ for all $i \in\{1, \ldots, N\}$ in Theorem 3.1, then B_{i} is a 1-inverse strongly monotone mapping. Putting $\eta_{n}=1$ for all $n \in \mathbb{N}$ in Theorem 3.1, we have that $w_{n}=x_{n}$ for all $n \in \mathbb{N}$. Furthermore, replacing $\beta_{n}+\gamma_{n}$ by β_{n}, we have the desired result from Theorem 3.1.

The following is a strong convergence theorem for a finite family of generalized hybrid mappings and a finite family of nonexpansive mappings in a Hilbert space.

Corollary 4.4. Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H. Let $\left\{T_{j}\right\}_{j=1}^{M}$ be a finite family of generalized hybrid mappings of C into H and let $\left\{U_{i}\right\}_{i=1}^{N}$ be a finite family of nonexpansive mappings of C into H. Assume that $\cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N} F\left(U_{i}\right)\right) \neq \emptyset$. Let $x_{1} \in C$ and $C_{1}=C$. Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
z_{n}=\sum_{j=1}^{M} \xi_{j}\left(\left(1-\lambda_{n}\right) I+\lambda_{n} T_{j}\right) x_{n} \\
w_{n}=\sum_{i=1}^{N} \sigma_{i} P_{C}\left(\left(1-\eta_{n}\right) I+\eta_{n} U_{i}\right) x_{n} \\
y_{n}=\alpha_{n} x_{n}+\beta_{n} z_{n}+\gamma_{n} w_{n} \\
C_{n+1}=\left\{z \in C_{n}:\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
x_{n+1}=P_{C_{n+1}} x_{1}, \quad \forall n \in \mathbb{N},
\end{array}\right.
$$

where $a, b, c \in \mathbb{R},\left\{\lambda_{n}\right\},\left\{\eta_{n}\right\} \subset(0, \infty),\left\{\xi_{1}, \ldots, \xi_{M}\right\},\left\{\sigma_{1}, \ldots, \sigma_{N}\right\} \subset(0,1)$ and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\} \subset(0,1)$ satisfy the following conditions:
(1) $0<a \leq \lambda_{n} \leq 1,0<b \leq \eta_{n} \leq 1$;
(2) $\sum_{j=1}^{M} \bar{\xi}_{j}=1$ and $\sum_{i=1}^{N} \sigma_{i}=1$;
(3) $0<c \leq \alpha_{n}, \beta_{n}, \gamma_{n}<1$ and $\alpha_{n}+\beta_{n}+\gamma_{n}=1$.

Then $\left\{x_{n}\right\}$ converges strongly to a point $z_{0} \in \cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N} F\left(U_{i}\right)\right)$, where $z_{0}=$ $P_{\cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N} F\left(U_{i}\right)\right)} x_{1}$.
Proof. Since T_{j} is a generalized hybrid mapping of C into H such that $F\left(T_{j}\right) \neq \emptyset$, from (1.2), T_{j} is 0-demimetric. Furthermore, from Lemma 4.2, T_{j} is demiclosed. Since U_{i} is nonexpansive, $B_{i}=I-U_{i}$ is a $\frac{1}{2}$-inverse strongly monotone mapping. We also have from $\cap_{i=1}^{N} F\left(U_{i}\right) \neq \emptyset$ that

$$
\cap_{i=1}^{N} V I\left(C, I-U_{i}\right)=\cap_{i=1}^{N} F\left(P_{C} U_{i}\right)=\cap_{i=1}^{N} F\left(U_{i}\right) .
$$

Therefore, we have the desired result from Theorem 3.1.
Acknowledgements. The first author was partially supported by Grant-in-Aid for Scientific Research No. 15K04906 from Japan Society for the Promotion of Science. The second author was partially supported by the grant MOST 105-2115-M-037-001. The third author was partially supported by the grant MOST 105-2115-M-039-002MY3.

References

[1] S.M. Alsulami, W. Takahashi, The split common null point problem for maximal monotone mappings in Hilbert spaces and applications, J. Nonlinear Convex Anal., 15(2014), 793-808.
[2] F.E. Browder, Nonlinear maximal monotone operators in Banach spaces, Math. Ann., 175(1968), 89-113.
[3] F.E. Browder, W.V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl., 20(1967), 197-228.
[4] T. Igarashi, W. Takahashi, K. Tanaka, Weak convergence theorems for nonspreading mappings and equilibrium problems, in Nonlinear Analysis and Optimization (S. Akashi, W. Takahashi and T. Tanaka Eds.) Yokohama Publishers, Yokohama, 2008, 75-85.
[5] S. Itoh, W. Takahashi, The common fixed point theory of singlevalued mappings and multivalued mappings, Pacific J. Math., 79(1978), 493-508.
[6] P. Kocourek, W. Takahashi, J.-C. Yao, Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert spaces, Taiwanese J. Math., 14(2010), 2497-2511.
[7] F. Kosaka, W. Takahashi, Existence and approximation of fixed points of firmly nonexpansivetype mappings in Banach spaces, SIAM. J. Optim., 19(2008), 824-835.
[8] F. Kosaka, W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces., Arch. Math., Basel, 91(2008), 166-177.
[9] G. Marino, H.-K. Xu, Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl., 329(2007), 336-346.
[10] T. Maruyama, W. Takahashi, M. Yao, Fixed point and mean ergodic theorems for new nonlinear mappings in Hilbert spaces, J. Nonlinear Convex Anal., 12(2011), 185-179.
[11] N. Nadezhkina, W. Takahashi, Strong convergence theorem by hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings, SIAM J. Optim., 16(2006), 1230-1241.
[12] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
[13] W. Takahashi, Convex Analysis and Approximation of Fixed Points (Japanese), Yokohama Publishers, Yokohama, 2000.
[14] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, Yokohama, 2009
15] W. Takahashi, Fixed point theorems for new nonlinear mappings in a Hilbert space, J. Nonlinear Convex Anal., 11(2010), 79-88.
[16] W. Takahashi, The split common fixed point problem and the shrinking projection method in Banach spaces, J. Convex Anal. 24(2017), 1017-1026.
[17] W. Takahashi, Y. Takeuchi, R. Kubota, Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 341(2008), 276286.
[18] W. Takahashi, N.-C. Wong, J.-C. Yao, Weak and strong mean convergence theorems for extended hybrid mappings in Hilbert spaces, J. Nonlinear Convex Anal., 12(2011), 553-575.
[19] W. Takahashi, J.-C. Yao, K. Kocourek, Weak and strong convergence theorems for generalized hybrid nonself-mappings in Hilbert spaces, J. Nonlinear Convex Anal., 11(2010), 567-586.

Received: July 28, 2016; Accepted: June 14, 2017.

