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1. INTRODUCTION

Let H be a real Hilbert space and let C' be a nonempty, closed and convex subset
of H. For a mapping U : C — H, we denote by F(U) the set of fixed points of U.
Let k be a real number with 0 < k < 1. A mapping U : C — H is called a k-strict
pseudo-contraction [3] if

Uz — Uy|* < |z = y)|* + kl|lz = Uz — (y = Uy)||?
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for all z,y € C. If U is a k-strict pseudo-contraction and F'(U) # (), then we have
that, for z € C and q € F(U),

[Uz —ql” < |l — q* + kllz — Uz|*.
From Uz —q||? = |Uz — z|* + || — ¢||* + 2(Uz — x, = — q), we have that
Uz —|* + |z — gl + 2(Uz — 2,2 — q) < [lo = q||* + kllz - U],

Therefore, we have that

2
for all z € C' and g € F(U). A mapping U : C — H is called generalized hybrid [6] if
there exist o, 8 € R such that

a|Uz = Uyl* + (1 = )|z — Uy||* < Bl|Uz — y|I* + (1 = B) [l -yl

for all z,y € C. Such a mapping U is called (a, §)-generalized hybrid. Notice that
the class of generalized hybrid mappings covers several well-known mappings. For
example, a (1,0)-generalized hybrid mapping is nonexpansive, i.e.,

Uz = Uy[| < |z —yll, Vz,yecC.

(x—Uz,x —q) > ka—U.THQ (1.1)

It is nonspreading [7, 8] for « =2 and § =1, i.e.,
2|Uz — Uyl® < |Uz — ylI* +||Uy — 2l*, Vz,yeC.
It is also hybrid [15] for o = % and = %, ie.,
3|Uz — Uy|* < ||z =yl + Uz — y|I* + Uy — 2], Va,y e C.

In general, nonspreading and hybrid mappings are not continuous; see [4]. If U is
generalized hybrid and F(U) # 0, then we have that, for z € C and q € F(U),

allg = Uzl* + (1 = a)llg = Uzl® < Bllg — |* + (1 = B)llg — =]
and hence ||[Uz — ¢||* < ||z — ¢||*>. From this, we have that
20z —q,x —Uz) > ||z — Uzl]?

and hence

0
(x —q,x —Ux) > |z — Uxl?. (1.2)

- 2
On the other hand, there exists such a mapping in a Banach space. Let E be a smooth
Banach space and let B be a maximal monotone operator with B~10 # (). Then, for
the metric resolvent Jy of B for A > 0, we have from [13] that, for any = € E and
q € B0,

(Jax —q,J(x — Jrx)) > 0.
Then we get
(axe—z+xz—q,J(x—Jyx)) >0

and hence

(@ —q,J(@ = Jxa)) 2 |lo — Jxz|* =

el )
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where J is the duality mapping on E. Motivated by (1.1), (1.2) and (1.3), Takahashi
[16] introduced a new nonlinear mapping as follows: Let E be a smooth Banach space,
let C be a nonempty, closed and convex subset of E and let k£ be a real number with
k € (—o0,1). A mapping U : C — E with F(U) # ) is called k-demimetric if, for any
x € Cand qe F(U),

2

where J is the duality mapping on E. According to the definition, we get that a
k-strict pseudo-contraction U with F(U) # 0 is k-demimetric, an (o, §)-generalized
hybrid mapping U with F(U) # (0 is 0-demimetric and the metric resolvent Jy with
B710 # 0 is (—1)-demimetric.

On the other hand, we know the shrinking projection method which was introduced
by Takahashi, Takeuchi and Kubota [17] for finding a fixed point of a nonexpansive
mapping in a Hilbert space.

In this paper, using this new nonlinear mapping called demimetric and the shrink-
ing projection method, we prove a strong convergence theorem for finding a common
element of the set of common fixed points for a finite family of these new demimet-
ric mappings and the set of common solutions of variational inequality problems for
a finite family of inverse strongly monotone mappings in a Hilbert space. Using the
result, we obtain well-known and new strong convergence theorems in a Hilbert space.

k
(r—q,J(x—-Uz)) = lz = Uz]]?,

2. PRELIMINARIES

Throughout this paper, let N be the set of positive integers and let H be a real
Hilbert space with inner product (-, -) and norm || - ||, respectively. When {x,,} is a
sequence in H, we denote the strong convergence of {x,} to x € H by z,, — x and
the weak convergence by x,, — z. We have from [14] that for any 2,y € H and X\ € R,

Iz +yl* < llzl* + 2{y, @ + y), (2.1)

Az + (1= Nyl = Az ]? + (1= Dyl = A1 = N)lz —y]|*. (2.2)
Furthermore we have that for x,y,u,v € H,

2(z —y,u—v) =z =l + [ly —ul® = llz — ul* — [ly — v]|* (2.3)

Let C be a nonempty, closed and convex subset of a Hilbert space H. A mapping
T : C — H is called nonexpansive if |[Tz — Ty| < |z — y| for all 2,y € C. If
T : C — H is nonexpansive, then F(T') is closed and convex; see [5, 14]. For a
nonempty, closed and convex subset D of H, the nearest point projection of H onto
D is denoted by Pp, that is, ||z — Ppz|| < ||z — y|| for all x € H and y € D. Such a
mapping Pp is called the metric projection of H onto D. We know that the metric
projection Pp is firmly nonexpansive, i.e., ||Ppx — PDyH2 < {(Ppxz — Ppy,x — y) for
all z,y € H. Furthermore, (x — Ppxz,y — Ppx) < 0 holds for all z € H and y € D;
see [12, 14]. Using this inequality and (2.3), we have that

|Ppx —y||*> + |Ppx — z||* < ||z —y||?>, Yz € H, yeD. (2.4)
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Let H be a real Hilbert space and let C' be a nonempty, closed and convex subset of
H. For a > 0, a mapping A : C — H is called a-inverse strongly monotone if

(x —y, Ar — Ay) > o||Az — Ay||?, Vr,y € C.

If A is a-inverse strongly monotone and 0 < A < 2a, then I — XA : C — H is
nonexpansive. In fact, we have that for all x,y € C,

11 = AA)z — (I = XA)y|* = [z —y — M(Az — Ay)||®
= [l =yl = 2Mz — y, Az — Ay) + N*|| Az — Ay|®
< |z = yl* = 2xal| Az — Ay||* + N?[| Az — Ay]?
=z =yl + AX — 20)[| Az — Ay]]?
<z —yl*.
Thus, I — AA : C — H is nonexpansive; see [1, 11, 14] for more results of inverse-

strongly monotone mappings. The variational inequalty problem for A : C' — H is to
find a point v € C such that

(Au,z —u) >0, VzreC. (2.5)
The set of solutions of (2.5) is denoted by VI(C, A). We also have that, for A > 0,
u= Po(I — AA)u if and only if u € VI(C, A). In fact, let A > 0. Then, for u € C,

u=Po(I —A)u <= (I = )u—u,u—y) >0, Vyel

“AMu,u—y) >0, Yyel
Au,u—y) <0, VyeCl
= (Au,y—u) >0, Vyel
= ueVICA).

=
=

In the case when a Banach space F is a Hilbert space, the definition of a demimetric
mapping is as follows: Let H be a Hilbert space and let C' be a nonempty, closed and
convex subset of H. Let k € (—o0,1). A mapping U : C — H with F(U) # 0 is
called k-demimetric if, for any « € C and ¢ € F(U),

(x —qz—Uzx) > |z — Uz|?
Note again that the class of k-demimetric mappings with k& € (—oo,1) in a Hilbert
space covers k-strict pseudo-contractions with k& € [0, 1), generalized hybrid mappings,
the metric projections, the resolvents of a maximal monotone operator in a Hilbert
space.

The following lemma which was essentially proved in [16] is important and crucial
in the proof of our main result. For the sake of completeness, we give the proof.

Lemma 2.1 ([16]). Let H be a Hilbert space and let C be a nonempty, closed and
conver subset of H. Let k be a real number with k € (—oo,1) and let U be a k-
demimetric mapping of C into H. Then F(U) is closed and convez.
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Proof. Let us show that F(U) is closed. For a sequence {g,} such that ¢, — ¢ and
gn € F(U), we have from the definition of U that

1—k
(¢~ qn.q—Ugq) > THCI—UQ||2~

From ¢,, — g, we have 0 > 15|l — Uq||?. From 1 —k > 0, we have |[¢ — Ug|[* =0
and hence ¢ = Uq. This implies that F(U) is closed.

Let us prove that F(U) is convex. Let p,q € F(U) and set x = ap + (1 — a)gq,
where « € [0,1]. Then we have

|z —Uz|? = (x — Uz,z — Ux)
={ap+(1—a)g—Uzx,x —Ux)
={ap+(1—a)g— (aUz+ (1 —a)Uz),z — Ux)
=ap—Uz,z—Uz)+ (1 —a){(¢q—Uz,z —Ux)
=alp—z+r—-Uz,c—-Ux)+(1—a){g—x+x—Uzx,z —Uz)
k—1
< 2 Wye vl 4 afle - Ua?
1-— k—1
OB e a2 (- 0o - U2
(k—1)
= llz = Uzll* + ||z - U=|”
and hence
k—1
We have from 0 > k—1 that ||z —Uz| < 0 and hence = Uz. This means that F'(U)
is convex. 0

The following lemma is used in the proof of our main result.

Lemma 2.2. Let H be a Hilbert space and let C be a nonempty, closed and conver
subset of H. Let k € (—o0,1) and let T be a k-demimetric mapping of C into H
such that F(T) is nonempty. Let A be a real number with 0 < A < 1 — k and define
S=(1—=XNI+MNT. Then S is a quasi-nonexpansive mapping of C into H.

Proof. It is obvious that F(T') = F(S). Since T be a k-demimetric mapping of C' into
H, we have that for any « € C and z € F(S5),

(x—z,x—=Sx)y=(x—z,2 — (1= Nz —\Tz) = Na —z,2 — Tx)

1—k 1—k
e P L= PR
11—k s 11—k 5
fTHAxf)\TxH = |z — Sx||
A 1
> X Sl = Lo - a2
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Then S is a 0-demimetric mapping. Furthermore, we have from (2.3) that for any
z € Cand z € F(9),

%Hx—Sx||2 <{x—zuz—Sz)
= ||z — Sz||? < 2(x — 2,2 — Sz)
= |l = Sa|* < [l — Sz|* + ||z — 2|* — ||Sz — 2||?
= Sz —z)* < |la — 2|
= |[Sz —z|| < lz - 2.

Therefore, S is quasi-nonexpansive. O

3. MAIN RESULT

Let H be a Hilbert space and let C' be a nonempty, closed and convex subset of
H. A mapping U : C — H is called demiclosed if, for a sequence {z,} in C such that
T, — w and x, — Ux, — 0, then w = Uw holds. For example, if C' is a nonempty,
closed and convex subset of H and T is a nonexpansive mapping of C' of H, then T
is demiclosed; see [2]. In fact, let {z,} be a sequence in C such that z, — v and
x, — Ux, — 0. Since C' is weakly closed, we have that u € C'. Furthermore, we have
from x, — u that {z,} is bounded and then {Tz,} is bounded. Thus, we have that

lu—Tull* = ||u— 20 + 2, — Tul|?
= |lu =z |* + |20 — Tu|* + 2(u — zp, 2, — Tu)
= |lu—xp|* + |20 — Txp + Ty — Tul|® +2(u — 2, 2 — u +u — Tu)
= |lu—xp|* + |20 — Txp|® + | Tz — Tul|® + 2z, — T, Ty — Tut)
—2l|lu — )% 4 2{u — xp, u — Tu)
< u =z ||? 4 |20 — Txn|)® + |20 — ul|? + 2(xp — Ty, T, — Tu)
—2l|lu — )% 4 2{u — xp, u — Tu)
= ||z — Tanl® + 2(xy — T, Ty — Tu) + 2(u — T, u — Tu)
— 0.

Therefore, we have that u = Tu.

In this section, using the shrinking projection method, we prove a strong conver-
gence theorem for finding a common element of the set of common fixed points for a
finite family of demimetric mappings and the set of common solutions of variational
inequalty problems for a finite family of inverse strongly monotone mappings in a
Hilbert space.

Theorem 3.1. Let H be a Hilbert space and let C' be a nonempty, closed and convex
subset of H. Let {ki,...,kn} C (—00,1) and {p1,...,un} C (0,00). Let {T;},
be a finite family of kj-demimetric and demiclosed mappings of C' into H and let
{B:}N.| be a finite family of u;-inverse strongly monotone mappings of C into H.
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Assume that ﬂjleF(Tj) NN, VI(C,By)) # 0. Let vy € C and Cy = C. Let {x,}
be a sequence generated by

2n = Y50y &5((1 = Aa)] + AT,

w, = Ziil 0 Po(I — npB;)Tp,

Yn = OnTn + BnZn + YnWn,
Crny1={2€Cn:[lyn — 2| < [lzn — 2[l},
Tpy1 = P, 71, Vn €N,

where a,b,c € R, {A\},{m} C (0,00), {&,...,&m},{o1,...,on} C (0,1) and
{an}, {Bn}, {1} C (0,1) satisfy the following conditions:

(1) 0<a<X, <min{l —ky,...,1 —kyp}, 0<b<mn, <2min{u,...,pun};

(2) ij:l fj =1 and Zf\il o; = 17-
(3) 0<c<anBnym <1 anda,+ B+, =1

Then {x,} converges strongly to a point zp € ﬂjl‘/ilF(Tj) N (N, VI(C, By)), where
20 = Py p(ry)n(nX, vi(c,B,))T1-

Proof. Since B; is p;-inverse strongly monotone for all ¢ € {1,...,N} and 0 < b <
M < 2p;, Po(I — n,B;) is nonexpansive and F(Po(I —n,B;)) = VI(C, B;) is closed
and convex. Furthermore, we know from Lemma 2.1 that F(T}) is closed and convex.
Therefore, we have that N}, F(T;)N (N}, VI(C, B;)) is nonempty, closed and convex.
Thus we have that ngﬂle(Tj)m(mﬁ:1VI(CtBi)) is well defined. Since

lyn = 2]l < llzn = 2ll = llyn — 2* < Jzn — 2]

= [lyal® = llzall? = 2{yn — 2n, 2) <0,

it is obvious that C,, are closed and convex for all n € N. Let us show that ﬁjj\ilF (T;)N
(NN, VI(C, B;)) C C, for all n € N. Tt is obvious that

ML F(T;) N (ML, VI(C, B;)) € C1 = C.
Suppose that N}, F(T;) N (N}, VI(C, B;)) C Cy, for some k € N. Then we have from
Lemma 2.2 that for z € N}, F(T;) N (NL,VI(C, B;)),
M
2k = 2ll = 1) &((1 = AT + ATy )a — 2|

j=1

DG = A + AT )aw — 2| (3.1)

IN
<.
£

o

<
I
—

Eillzr — 2l = lloy — 2|
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Furthermore, we have that

N
lwe =2 = 1I)_ oiPe(l —m By — 2|

im1
N
<> ol Po(I = meB)xy — 2|| (3.2)
=1
N
< oillaw — 2| = |lax — 2]l.
i1
Thus we have that
llyr — 2| = |owxr + Brzi + Yewr — 2|
< agllek — 2| + Brllzk — 2| + e llwk — 2| (3.3)

< agllzr = 2| + Brllze — 2| + villzk — 2|

= [lzx — 2|I-
This implies z € Cy41. Therefore, we have by mathematical induction that
ijle(Tj) N (N, VI(C, B;)) C Cy
for all n € N. Thus z,,41 = Pg,_, 71 is well defined.
Since ML, F(T) N (N)L,VI(C, B;)) is nonempty, closed and convex, there exists

20 € ﬂ]]wle(,_Tj) N (ﬂfvleI(C, Bl)) such that zZo — Pﬁ;\ilF(Tj)ﬂ(ﬁf’zll/I(C,Bi))xl' By
Tny1 = Pc, ., 71, we have that

[21 = Znpa || < fler =yl
for all y € Cpy1. Since zo € NJL F(T;) N (ML, VI(C, B;)) C Cpy1, we have that

21 — 2nsall < 121 — 20l (3.4

This means that {z,} is bounded. From z, = P¢, z; and 2,41 € Cpy1 C Cp, we
have that

[21 = x|l < flzr = 2nga ]

Thus {||z1 — x,||} is bounded and nondecreasing. Then there exists the limit of
{Jlx1 — zu||}. Put limy, oo ||2n, — 21]| = ¢. For any m,n € N with m > n, we have
Cp, C C,. From z,,, = Po,,x1 € Cy,, C C,, and (2.4), we have that

lzm = Pe,z1]* + | Pe, a1 — zal* < |21 — .
This implies that
lzm = 2]l < o1 = 2ml* = llzn — 21]* < & = [lon — 1] (3.5)

Since ¢ — ||z, — 71]|> — 0 as n — 0o, we have that {z,,} is a Caushy sequence. By
the completeness of H and the closedness of C, there exists a point u € C' such that
limy, 00 T, = u.
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Let us show that u € ﬂjleF(Tj). From (3.5), we have lim,_,o0 [|[Tnt1 — Zn|| = 0.
By z,41 € Cy41, we have that
[yn =zl < llyn = Tngall + 2041 — zall
< wn = zngall + lZn41 — znl| (3.6)
<2z — Tl
This implies that
Jim [y, — 2, = 0. (3.7)
Let z € N1, F(T;) N (N, VI(C, B;)). Using [10], we have from (3.1) and (3.2) that
lyn = 2II* = anllzn — 2lI* + Ballzn — 21 + Yullwn — 2|
— nfnllzn =zl = anYallwn = 20 ||? = Y Bnllzn — wn?
< anllzn = 217 + Bullen — 2I* + yullen — 2|2
= anBullzn = all® — anmllwn — 2l = nBullzn — wa?
= llen = 2l1* = anBullzn — 2all* = anynllwn = @all* = y0Ballzn — wnll?
and hence
Exn = 2ll® + lwn — zal* + ¢|l2n — wall?
< anbllzn = 2all® + anyallwn — zall* + uBallzn — wall?
< lwn = 27 = llyn — 2
< lzn = yull(lzn = 2l + llyn = 21)-
From ¢ > 0 and (3.7) we have that

lim ||z, —2,]| =0, lim ||w, —z,| =0, lim [z, —w,| =0. (3.8)
n— oo n—oo n—oo

Since T is kj-demimetric for all j € {1,..., M}, we have that for z € ﬁj]‘ilF(Tj)7

M
(Xn, — 2,0 — 2n) = (Tp — 2,Tpy — Zgj((l — M)+ N Tj)xn)
j=1

M

£j<xn —Z,Tp — ((1 - )‘n)I + /\nTj)xn>

<.
I
—

M

gj/\n<$n —Z2,Tp — Tj$n>

j=1
M
1—k;
> S e o, ~ T P
j=1
M
1—k;
> ija 5 L@y — Tjan .

<.
I
—
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We have from lim,,_, ||z, — 25| = 0 that

lim ||z, — Tjz,||=0, Vje{l,...,M}.

n—o0

Since T} are demiclosed for all j € {1,...,M} and lim, oz, = u, we have u €
mj]\i1F<Tj)~

Let us show that v € N, VI(C, B;). Since Po(I — n,B;) is nonexpansive for all
i€{l,...,N}, we have that for = € NY,VI(C, B;),

N
<xn —Z,Tp — wn> = <xn — Z2,Tp — ZO}PC(I - nnBz)xn>
i=1

0i(xn — 2,2n, — Po(I — 0 By)xy)

|
.MZ

s
Il
_

1
> 01'5”:5"—Pc(]—?]nBi)JCn‘P.

-

=1

We have from lim,,_, ||wy, — 2, || = 0 that

li_>m |lzn, — Pc(I — npBi)zyn|| =0, Vie{l,...,N}.

Since {n,} is bounded, we have that there exists a subsequence {n,,} of {n,} such
that lim; oo np, = n and 0 < b < n < 2min{py,...,un}. For such n, we have that
for any i € {1,..., N},
2, — Pc(I = nBi)an, || < [lzn, — Po(I = 0, Bi)za, ||
+ |[Pc(I = nn, Bi)xn, — Po(I —nBj)zy, ||
< Mlzn, = Pe(I =y Bi)za, ||
+ (I = npy Bi)wn, — (I = nBi)xy, ||
= l|#n, = Po(d = 1, Bi)an, | + |1n, — 0l Bizn, ||
On the other hand, we have that for y € C and i € {1,..., N},
bl|Bizn| < mnllBizn | = [InnBizn ||
= l[#n = (Y = Biy) +y — muBiy — (wn — 1 Bizy )|
<len =yl + Byl + [[(I = naBi)y — (I = 1 Bi)n||
< llen = yll + max{pn, .., un HIBiyll + Iy — znll.

Since {z,} is bounded, we have that {B;x,} is bounded for all i € {1,..., N}. Thus
we have that

Jim 20, = Po(I = nBi)aw | =0, Vie{l,...,N}
—00

Since lim, o0 2, = u and Po(I — nB;) are nonexpansive for all i € {1,..., N}, we
have u € N2, VI(C, B;).
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From 20 = Poy pery)nnX vi(e,B))T1, U € ML F(Ty) N (N4 VI(C, By)), (3.4)
and z, — u, we have that
fox = 20l < llor = ul) = Jim_Jlox = ] < fir L

Then u = zy. Therefore, we have x,, = u = zg. This completes the proof. O

4. APPLICATIONS

In this section, we apply Theorem 3.1 to obtain well-known and new strong conver-
gence theorems in Hilbert spaces. We know the following lemmas obtained by Marino
and Xu [9] and Kocourek, Takahashi and Yao [6]; see also [18, 19].

Lemma 4.1 (]9, 18]). Let H be a Hilbert space and let C' be a nonempty, closed and
convex subset of H. Let k be a real number with 0 < k <1 and U : C — H be a
k-strict pseudo-contraction. If x, — z and x,, — Uz, — 0, then z € F(U).

Lemma 4.2 ([6, 19]). Let H be a Hilbert space, let C' be a nonempty, closed and
convex subset of H and let U : C — H be generalized hybrid. If x, — z and z, —
Uz, — 0, then z € F(U).

The following is a strong convergence theorem for a finite family of strict pseudo-
contractions in a Hilbert space.

Corollary 4.3. Let H be a Hilbert space and let C' be a nonempty, closed and convez
subset of H. Let {k1,...,kny} C[0,1) and let {Tj}j]\i1 be a finite family of k;-strict
pseudo-contractions of C into H. Assume that ﬁjj\ilF(Tj) # 0. Let 1 € C and
Cy=C. Let {x,} be a sequence generated by

Zn = Z;Vil gj((]- - )\n)I + )\nTj)xn,
Yn = OpTp + ﬂnznv
Crni1={2€Cp: lyn — 2[| < [lon — 2|},
Tny1 = Po,,, 71, Yn €N,
where a,c € R, {An} C (0,00), {61, &nr} C (0,1) and {an}, {Ba} C (0,1) satisfy
the following conditions:
(1) 0<a§)\n Smin{l—kl,...,l—kM};
M
(2) Zj:l gj = 1;
3) 0<c<ay,fBn<1anda,+ 8,=1.
Then {x,,} converges strongly to a point zy € ML, F(T}), where zo = Prat gz,

Proof. Since Tj is a kj-strict pseudo-contraction of C' into H such that F(T}) # 0,
from (1.1), T; is kj-demimetric. Furthermore, from Lemma 4.1, T} is demiclosed.
Furthermore, if B; = 0 for all i € {1,..., N} in Theorem 3.1, then B; is a l-inverse
strongly monotone mapping. Putting n,, = 1 for all n € N in Theorem 3.1, we have
that w, = =z, for all n € N. Furthermore, replacing 3, + v, by Bn, we have the
desired result from Theorem 3.1. O

The following is a strong convergence theorem for a finite family of generalized
hybrid mappings and a finite family of nonexpansive mappings in a Hilbert space.
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Corollary 4.4. Let H be a Hilbert space and let C' be a nonempty, closed and convex
subset of H. Let {T; }Jj‘/il be a finite family of generalized hybrid mappings of C into
H and let {U; Y}, be a finite family of nonexpansive mappings of C into H. Assume
that ﬂinlF(Tj) N(NY,FU;)) #0. Let z1 € C and Cy = C. Let {x,} be a sequence
generated by

= 30 &L= AT + ATy T,

wa = Yy 0iPo((1 = na) ]+ 0uUi)en,

Yn = QnZpn + BrnzZn + YnWn,

Crnt1 ={2 € Cp t |lyn — 2|l < [lzn — 2|I},

Tni1 = Pc,,, 71, Yn€N,

where a,b,c € R, {M\},{nn} C (0,00), {&,...,&m}, {o1,...,0on} C (0,1) and
{an}, {Bn}, {7} C (0,1) satisfy the following conditions:

1) 0<a<A, <1,0<b<nm, <1;

(2) L& =1and ¥ 0= 1

(3) 0 < ec<an,Bnm <l and ap+ B+, =1.
Then {x,} converges strongly to a point zo € ﬂjﬂilF(Tj) N (N, F(U;)), where 2o =
Py peryn(nd, Fu.))®1-

Proof. Since Tj is a generalized hybrid mapping of C into H such that F/(T};) # 0,
from (1.2), T; is O-demimetric. Furthermore, from Lemma 4.2, T} is demiclosed. Since
U, is nonexpansive, B; =1 — U, is a %-inverse strongly monotone mapping. We also
have from N, F(U;) # 0 that

NN VIC, T -U;) =N, F(PcU;) =Nl F(U).

Therefore, we have the desired result from Theorem 3.1. O
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