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Abstract. The paper contains some fixed point theorems for generalized contractions in dislo-

cated quasi-metric spaces. The simplest requirement is condition: p(f(y), f(x)) ≤ g(p(y, x)), for

all x, y ∈ X, where p is a dislocated quasi-metric on X (if p(x, y) = p(y, x) = 0, then x = y;
0 ≤ p(x, z) ≤ p(x, y) + p(y, z)) and g is a comparison function of a general type. Our results are far
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Introduction

In [8] some fixed point theorems were proved for dislocated metric spaces defined
by Hitzler and Seda in [2]. The aim of the present paper is to extend the results of [8,
Section 3], to the case of dislocated quasi-metric spaces defined by Zeyada, Hassan
and Ahmed in [10]. Consequently, our theorems strongly generalize the results of
Zoto and Hoxha proved in [11].

In Section 1 the definitions of a dislocated metric and of a dislocated quasi-metric
are presented. This section is devoted to the study of some properties of the respective
spaces, and completeness is of our particular interest.

Section 2 is devoted to fixed point theorems for general contractions. The simplest
requirement is condition (2.1): p(f(y), f(x)) ≤ ϕ(p(y, x)), for all x, y ∈ X, where
p is a dislocated quasi-metric on X, f : X → X is a mapping, and the comparison
function ϕ : [0,∞) → [0,∞) belongs to a wide class of mappings defined in [7]. The
main classical results are Theorem 2.5 (a far extension of the celebrated theorems of
Matkowski [5, Theorem 1.2], and of Boyd-Wong [1, Theorem 1]), and a more general
Theorem 2.7. The most sophisticated ones are the theorems for cyclic mappings (see
Definition 2.8): Theorem 2.11, and Theorem 2.12, which is proved with the use of
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cross mappings defined in [6]. Our theorems extend also the main results of Zoto and
Hoxha in [11], i.e. Theorems 3.6, 3.8.

1. Dislocated metric and dislocated quasi-metric

The notion of dislocated metric was introduced by Hitzler and Seda in [2], and the
notion of dislocated quasi-metric was introduced by Zeyada, Hassan and Ahmed in
[10].

Definition 1.1. Let X be a nonempty set, and p : X × X → [0,∞) a mapping
satisfying

if p(x, y) = p(y, x) = 0 then x = y, x, y ∈ X, (1.1)

p(x, z) ≤ p(x, y) + p(y, z), x, y, z ∈ X. (1.2)

Then p is called a dislocated quasi-metric (briefly a dq-metric), and (X, p) is called
a dislocated quasi-metric space (briefly a dq-metric space). If, in addition

p(x, y) = p(y, x), x, y ∈ X (1.3)

holds, then p is called a dislocated metric (briefly a d-metric), and (X, p) is called
a dislocated metric space (briefly a d-metric space).

The topology of a d-metric (or a dq-metric) space (X, p) is generated by balls
B(x, r) = {y ∈ X : p(x, y) < r}. Clearly, x ∈ B(x, r) does not necessarily hold, but
the family of all balls generates the respective smallest topology for X =

⋃
{B(x, r) :

x ∈ X, r > 0} [3, Theorem 12, p. 47].
Let us recall the subsequent two definitions.

Definition 1.2 (cf. [10, Definition 2.1]). A sequence (xn)n∈N in dq-metric space
(X, p) is called Cauchy if the following condition is satisfied

limm,n→∞min{p(xm, xn), p(xn, xm)} = 0 (1.4)

Definition 1.3 ([10, Definitions 2.2, 2.3]). A dq-metric space is called complete
if each Cauchy sequence (xn)n∈N in X converges to an x ∈ X, i.e. the following
condition is satisfied

limn→∞p(x, xn) = limn→∞p(xn, x) = 0. (1.5)

Unfortunately, these notions are not well suited to the topology of dq-metric spaces.
We prefer to replace “complete” by a more precise term “0-complete”.

Proposition 1.4. Let (X, p) be a dq-metric space. Then from condition (1.5) it
follows that

limm,n→∞p(xm, xn) = 0, (1.6)

and p(x, x) = 0.

Proof. Condition (1.2) yields

limm,n→∞p(xm, xn) ≤ lim
m→∞

p(xm, x) + lim
n→∞

p(x, xn) = 0,

and p(x, x) ≤ lim
n→∞

p(x, xn) + lim
n→∞

p(xn, x) = 0.

�
Hence we obtain
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Corollary 1.5. If for a sequence (xn)n∈N in a dq-metric space (X, p) condition (1.5)
holds, then (1.4) is equivalent to (1.6). In particular, if (X, p) is a 0-complete dq-
metric space, then (1.4) and (1.6) are equivalent.

Lemma 1.6. Let (X, p) be a dq-metric space. Then γ defined by

γ(x, y) = [p(x, y) + p(y, x)]/2 x, y ∈ X (1.7)

is a d-metric on X. If (X, p) is 0-complete, then (X, γ) is 0-complete.

Proof. It is clear that γ is a d-metric on X. If (1.6) holds for p replaced by γ, then
(1.4) is satisfied. Consequently, if (xn)n∈N is a Cauchy sequence in (X, γ) and (X, p)
is 0-complete, then there exists an x ∈ X such that

limn→∞p(x, xn) = limn→∞p(xn, x) = 0.

This equality yields limn→∞γ(x, xn) = 0, and thus (X, γ) is 0-complete. �

Lemma 1.7. Let (X, γ) be a d-metric space. Then δ defined by

δ(x, y) = γ(x, y) if x 6= y, and δ(x, x) = 0, x, y ∈ X (1.8)

is a metric on X, and (X, γ) is 0-complete iff (X, δ) is complete.

Proof. Clearly, δ is a metric on X. Assume that (X, δ) is a complete metric space,
and limm,n→∞γ(xm, xn) = 0. Then

0 ≤ limm,n→∞δ(xm, xn) ≤ limm,n→∞γ(xm, xn) = 0

means that there exists an x ∈ X such that limn→∞δ(x, xn) = 0. If there are infinitely
many xm = x, then

0 ≤ γ(x, xn) ≤ γ(x, xm) + γ(xm, xn) = γ(xm, xm) + γ(xm, xn),

and limm,n→∞γ(xm, xn) = 0 yield limn→∞γ(x, xn) = 0. If only finite xm = x, then

limn→∞γ(x, xn) = limn→∞δ(x, xn) = 0.

Consequently, if (X, δ) is complete, then (X, γ) is 0-complete.
Assume that (X, γ) is 0-complete, and limm,n→∞δ(xm, xn) = 0. If there exist

infinitely many xm equal, say to an x, then

0 ≤ δ(x, xn) ≤ δ(x, xm) + δ(xm, xn) = δ(xm, xn)

means that limn→∞δ(x, xn) = 0. If (xn)n∈N does not contain any constant subse-
quence, then there exists a subsequence (xkn)n∈N such that δ(xkm , xkn) = γ(xkm , xkn),
and now limm,n→∞δ(xm, xn) = 0 yields limm,n→∞γ(xkm , xkn) = 0. Therefore, there
exists an x ∈ X such that limn→∞γ(x, xkn) = 0 (as (X, γ) is 0-complete). Now,

0 ≤ δ(x, xn) ≤ δ(x, xkn) + δ(xkn , xn) ≤ γ(x, xkn) + δ(xkn , xn),

and limm,n→∞δ(xm, xn) = 0 mean that limn→∞δ(x, xn) = 0, i.e. (X, δ) is complete.
�

Now, Corollary 1.5, and Lemmas 1.6, 1.7 yield

Corollary 1.8. If a dq-metric space (X, p) is 0-complete, then for γ given by (1.7)
d-metric space (X, γ) is 0-complete. Any d-metric space (X, γ) is 0-complete iff for δ
defined by (1.8) metric space (X, δ) is complete.
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In [8, Definition 2.3], the following notion was presented for dislocated strongly
quasi-metric spaces (for which (1.1) is replaced by p(x, y) = 0 yields x = y,
x, y ∈ X): (X, p) is 0-complete if for every sequence (xn)n∈N in X such that
limn>m→∞p(xn, xm) = 0 there exists an x ∈ X such that limn→∞p(x, xn) = 0.

Both ideas of 0-completeness coincide for d-metric spaces. Indeed, if (X, p) is a
d-metric space then in view of (1.3) conditions (1.4), (1.6) are equivalent. In addition,
limn>m→∞p(xn, xm) = limn 6=m→∞ p(xn, xm), and p(xn, xn) ≤ 2p(xn, xm) mean that
(1.6) is equivalent to limn>m→∞p(xn, xm) = 0.

2. Generalized contractions

In the present section we extend the results of [8, Section 3], obtained for d-metric,
to suite the case of dq-metric.

We are interested in mappings f : X → X satisfying

p(f(y), f(x)) ≤ ϕ(p(y, x)) (2.1)

or

p(f(y), f(x)) ≤ min{ϕ(mlf (y, x)), ϕ(mrf (y, x))} (2.2)

for

mlf (y, x) = max{p(y, x), p(f(y), y), p(f(x), x)}, and

mrf (y, x) = max{p(y, x), p(y, f(y)), p(x, f(x))},
(2.3)

where (X, p) is a dq-metric space, and ϕ is a comparison function.
According to the notations from [7] Φ is a class of mappings ϕ : [0,∞) → [0,∞)

such that ϕ(α) < α, α > 0; and ϕ ∈ Φ0 iff ϕ ∈ Φ and ϕ(0) = 0. In turn, ΦP

consists of mappings ϕ : [0,∞)→ [0,∞) for which every sequence (an)n∈N such that
an+1 ≤ ϕ(an), n ∈ N converges to zero. It appears [7, Proposition 16], that ΦP ⊂ Φ0,
and if ϕ ∈ Φ0 satisfies

lim sup
β→α+

ϕ(β) < α, α > 0, (2.4)

then ϕ ∈ ΦP . Consequently, (see [7]), if ϕ ∈ Φ0 is upper semicontinuous from the
right (see [1]), then ϕ ∈ ΦP ; also, if ϕ ∈ Φ0 is nondecreasing and limn→∞ϕ

n(α) = 0,
α > 0 (see [5]), then ϕ ∈ ΦP .

There exist non-monotone mappings ϕ ∈ ΦP for which (2.4) does not hold (see [8,
Example]).

The subsequent lemma is a modification of [8, Lemma 3.1].

Lemma 2.1. Let X be a nonempty set, and let p : X × X → [0,∞), f : X → X
be mappings satisfying condition (2.1) or (2.2), for all x, y ∈ X and a ϕ ∈ Φ. Then
condition

p(f2(x), f(x)) ≤ ϕ(p(f(x), x)) and

p(f(x), f2(x)) ≤ ϕ(p(x, f(x)), x ∈ X
(2.5)

holds. In addition, if ϕ ∈ ΦP , then we have limn→∞p(f
n+1(x), fn(x)) =

limn→∞p(f
n(x), fn+1(x)) = limn→∞p(f

n(x), fn(x)) = 0, x ∈ X.
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Proof. For notational simplicity let us adopt xn = fn(x), n ∈ N. We have

mlf (x1, x) = max{p(x1, x), p(x2, x1)}.
Suppose p(x1, x) < p(x2, x1). Then (2.2) yields

0 < α = p(x2, x1) ≤ ϕ(mlf (x1, x)) = ϕ(p(x2, x1)) = ϕ(α),

a contradiction (ϕ ∈ Φ). Now, mlf (x1, x) = p(x1, x) holds, and we obtain the first
part of (2.5) (which for (2.1) is trivial). Now, for an = p(xn+1, xn), n ∈ N, and ϕ ∈ ΦP
we get limn→∞an = 0 (note that ϕ(0) = 0). A similar reasoning for mrf proves the
second part of (2.5), and limn→∞p(xn, xn+1) = 0. We also have

0 ≤ limn→∞p(xn, xn) ≤ limn→∞p(xn, xn+1) + limn→∞p(xn+1, xn) = 0

�
The notion of f -orbitally completeness presented in [11] should be better suited to

the topology of dq-metric spaces. Therefore, we suggest the subsequent idea.

Definition 2.2 (cf. [11, Definition 3.3]). Let (X, p) be a dq-metric space, and let
f : X → X be a mapping. Then (X, p) is called f-orbitally 0-complete if for every
sequence (xn)n∈N satisfying (1.4) and contained in any orbit {x0, f(x0), f2(x0), . . .}
(x0 ∈ X), there exists an x ∈ X such that (1.5) holds.

Remark 2.3. The results of [8, Section 3] (excepting [8, Theorem 3.10]), stay valid
for “0-complete” replaced by “f -orbitally 0-complete” (“f t-orbitally complete” for
Theorem 3.5).

The next lemma is a modification of [8, Lemma 3.2], proved for d-metric spaces.

Lemma 2.4. Let (X, p) be an f -orbitally 0-complete dq-metric space for a mapping f
satisfying condition (2.1) or (2.2), for all x, y ∈ X and a ϕ ∈ Φ0. If for xn = fn(x0),
limm,n→∞p(xm, xn) = 0 holds, then f has a unique fixed point; if x = f(x), then
p(x, x) = 0, and limn→∞p(x, xn) = limn→∞p(xn, x) = 0.

Proof. Let x ∈ X be such that limn→∞p(x, xn) = limn→∞p(xn, x) = 0. For condition
(2.1) we have

p(f(x), x) ≤ p(f(x), xn+1) + p(xn+1, x)

≤ ϕ(p(x, xn)) + p(xn+1, x) ≤ p(x, xn) + p(xn+1, x),

(ϕ ∈ Φ0) and

p(x, f(x)) ≤ p(x, xn+1) + p(xn+1, f(x))

≤ p(x, xn+1) + ϕ(p(xn, x)) ≤ p(x, xn+1) + p(xn, x).

Therefore, we have p(x, f(x)) = p(f(x), x) = 0, which yields x = f(x) (see (1.1)) and
p(x, x) = 0.

For condition (2.2), p(f(x), x) > 0 and large n we have

0 < p(f(x), x) ≤ p(f(x), xn+1) + p(xn+1, x) ≤ ϕ(mlf (x, xn)) + p(xn+1, x)

= ϕ(max{p(x, xn), p(f(x), x), p(xn+1, xn)}) + p(xn+1, x)

= ϕ(p(f(x), x)) + p(xn+1, x).
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Consequently, 0 < p(f(x), x) ≤ ϕ(p(f(x), x)) holds, a contradiction (ϕ ∈ Φ), and
p(f(x), x) = 0. In a similar way, by applying mrf we prove that p(x, f(x)) = 0, and
we get x = f(x).

If y is a fixed point of f , then

0 ≤ p(f(y), y) = p(y, y) = p(f(y), f(y)) ≤ ϕ(p(y, y)) = ϕ(mlf (y, y))

means that p(y, y) = 0.
Suppose x, y are two fixed points of f . Then

p(y, x) = p(f(y), f(x)) ≤ ϕ(p(y, x)) = ϕ(max{p(y, x), 0, 0}) = ϕ(mlf (y, x))

means that p(y, x) = 0, and similarly p(x, y) = 0, i.e. x = y. �
Now, we are ready to prove the following analog of [8, Theorem 3.3] (we refine the

respective proof from [8]).

Theorem 2.5. Let (X, p) be an f -orbitally 0-complete dq-metric space for a mapping
f satisfying condition (2.1) or (2.2), for all x, y ∈ X and a ϕ ∈ Φ0 having property
(2.4) or a ϕ ∈ ΦP such that

lim sup
β→α−

ϕ(β) < α, α > 0 (2.6)

(e.g. if ϕ is nondecreasing) holds. Then f has a unique fixed point; if x = f(x), then
p(x, x) = 0, and limn→∞p(x, f

n(x0)) = limn→∞p(f
n(x0), x) = 0, x0 ∈ X.

Proof. It is sufficient to prove that limm,n→∞p(xm, xn) = 0 holds for xn = fn(x0),
n ∈ N (see Corollary 1.5 and Lemma 2.4). Suppose that there are infinitely many
k, n ∈ N such that p(fn+1+k(x0), fk(x0)) ≥ ε > 0. Let n = n(k) > 0 be the smallest
numbers satisfying this inequality for infinitely many large k. For simplicity let us
adopt x = fk(x0), and xn = fn(x), n ∈ N. We have

ε ≤ p(xn+1, x) ≤ p(xn+1, xn) + p(xn, x) < p(xn+1, xn) + ε,

which for n = n(k) means that

lim
k→∞

p(xn+1, x) = lim
k→∞

p(xn, x) = ε,

as limk→∞ p(xn+1, xn) = limk→∞ p(x1, x) = 0 (see Lemma 2.1). Now for y = xn
condition (2.2) yields

ε ≤ p(xn+1, x) ≤ p(xn+1, x1) + p(x1, x) ≤ ϕ(mlf (xn, x)) + p(x1, x)

= ϕ(max{p(xn, x), p(xn+1, xn), p(x1, x)}) + p(x1, x),

and we obtain (from (2.1) as well)

ε ≤ ϕ(p(xn, x)) + p(x1, x)

for large k. Now, p(xn, x) < ε, limk→∞ p(xn, x) = ε, and condition (2.6) yield

ε ≤ lim sup
k→∞

ϕ(p(xn, x)) < ε,

a contradiction. Similarly, p(xn+1, x) ≥ ε,
p(xn+1, x)− p(xn+1, xn+2)− p(x1, x) ≤ p(xn+2, x1) ≤ ϕ(p(xn+1, x)),
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and condition (2.4) yield

ε ≤ lim sup
k→∞

ϕ(p(xn+1, x)) < ε,

a contradiction. Therefore, limn>m→∞p(xn, xm) = 0 holds. In a similar way, by
applying mrf we prove that limn>m→∞p(xm, xn) = 0, which with

p(xn, xn) ≤ p(xn, xn+1) + p(xn+1, xn)

yield limm,n→∞p(xm, xn) = 0. �
The previous theorem is a far extension of [11, Theorems 3.6, 3.8].
Let us recall the following.

Lemma 2.6 ([7, Lemma 29]). Let f : X → X be a mapping such that f t for a t ∈ N
has a unique fixed point, say x. Then x is the unique fixed point of f . If, in addition,
x ∈ limn→∞(f t)n(x0), x0 ∈ X, then x ∈ limn→∞f

n(x0), x0 ∈ X holds.

Now, Theorem 2.5 and Lemma 2.6 yield

Theorem 2.7. Let (X, p) be an f t-orbitally 0-complete dq-metric space for a mapping
f satisfying condition (2.1) or (2.2), for all x, y ∈ X, with f replaced by f t for a
t ∈ N, and a ϕ ∈ Φ0 having property (2.4) or a ϕ ∈ ΦP such that (2.6) holds. Then
f has a unique fixed point; if x = f(x), then p(x, x) = 0, and limn→∞p(x, f

n(x0)) =
limn→∞p(f

n(x0), x) = 0, x0 ∈ X.

Kirk, Srinivasan and Veeramani [4] suggested the idea of cyclic mappings which
was later formalized by Rus in [9] as cyclic representation of X = X1 ∪ · · · ∪Xt with
respect to f . The next definition means the same, but is more compact.

Definition 2.8 ([8, Definition 3.6]). A mapping f : X → X is called cyclic on
X1, . . . , Xt (for a t > 1) if ∅ 6= X = X1 ∪ · · · ∪Xt, and f(Xj) ⊂ Xj++, j = 1, . . . , t,
where j + + = j + 1 for j = 1, . . . , t− 1, and t+ + = 1.

Clearly, Xj 6= ∅ for a j in Definition 2.8, and hence Xj 6= ∅, j = 1, . . . , t.
The proof of Lemma 2.1 works also for the following.

Lemma 2.9. Let p : X × X → [0,∞) be a mapping, and let f : X → X be cyclic
on X1, . . . , Xt. Assume that (2.1) or (2.2) is satisfied for all x ∈ Xj, y ∈ Xj++,
j = 1, . . . , t, and a ϕ ∈ Φ. Then condition (2.5) holds, and if ϕ ∈ ΦP , then
limn→∞p(f

n+1(x), fn(x)) = limn→∞p(f
n(x), fn+1(x)) = limn→∞p(f

n(x), fn(x)) =
0, x ∈ X.

If we consider n such that x ∈ Xj and xn ∈ Xj++ for a j ∈ {1, . . . , t}, then the
proof of Lemma 2.4 yields the following analog.

Lemma 2.10. Let (X, p) be an f -orbitally 0-complete dq-metric space for a mapping f
cyclic on X1, . . . , Xt. Assume that (2.1) or (2.2) is satisfied for all x ∈ Xj, y ∈ Xj++,
j = 1, . . . , t, and a ϕ ∈ Φ0 . If for xn = fn(x0), limm,n→∞p(xm, xn) = 0 holds, then
f has a unique fixed point; if x = f(x), then p(x, x) = 0, and limn→∞p(x, xn) =
limn→∞p(xn, x) = 0.

Lemmas 2.9, 2.10 yield the following extension of Theorem 2.5.



366 LECH PASICKI

Theorem 2.11 (cf. [8, Theorem 3.9]). Let a dq-metric space (X, p) be f -orbitally
0-complete for an f cyclic on X1, . . . , Xt. Assume that (2.1) or (2.2) is satisfied for
all x ∈ Xj, y ∈ Xj++, j = 1, . . . , t, and a ϕ ∈ Φ0. If in addition, ϕ has property
(2.4) or ϕ ∈ ΦP and satisfies (2.6), then f has a unique fixed point; if x = f(x), then
p(x, x) = 0, and limn→∞p(x, f

n(x0)) = limn→∞p(f
n(x0), x) = 0, x0 ∈ X.

Proof. We apply a reasoning similar to the one presented in the proof of [8, Theorem
3.9]. It is sufficient to prove that limm,n→∞p(xm, xn) = 0 holds for xn = fn(x0),
n ∈ N (see Corollary 1.5 and Lemma 2.10). Suppose that there are infinitely many
k, n ∈ N such that p(x(n+1)t+k+1, xk) ≥ ε > 0. Let n = n(k) > 0 be the smallest
numbers satisfying this inequality for infinitely many large k. For simplicity let us
adopt x = fk(x0), and xn = fn(x), n ∈ N. Clearly, x ∈ Xj yields xnt+1, x(n+1)t+1 ∈
Xj++. We have

ε ≤ p(x(n+1)t+1, x) ≤ p(x(n+1)t+1, xnt+1) + p(xnt+1, x)

< p(x(n+1)t+1, xnt+1) + ε ≤ p(x(n+1)t+1, x(n+1)t) + · · ·+ p(xnt+2, xnt+1) + ε,

which for n = n(k) means that

lim
k→∞

p(x(n+1)t+1, x) = lim
k→∞

p(xnt+1, x) = ε,

as limm→∞ p(xm+1, xm) = 0 (see Lemma 2.9). Now for y = xnt+1 condition (2.2)
yields

ε ≤ p(x(n+1)t+1, x) ≤ p(x(n+1)t+1, x(n+1)t) + · · ·+ p(xnt+2, x1) + p(x1, x)

≤ p(x(n+1)t+1, x(n+1)t) + · · ·+ ϕ(mlf (xnt+1, x)) + p(x1, x)

= p(x(n+1)t+1, x(n+1)t) + · · ·
+ϕ(max{p(xnt+1, x), p(xnt+2, xnt+1), p(x1, x)}) + p(x1, x),

and we obtain (from (2.1) as well)

ε ≤ p(x(n+1)t+1, x(n+1)t) + · · ·+ ϕ(p(xnt+1, x)) + p(x1, x)

for large k. Now, p(xnt+1, x) < ε, limk→∞ p(xnt+1, x) = ε, and condition (2.6) yield

ε ≤ lim sup
k→∞

ϕ(p(xnt+1, x)) < ε,

a contradiction. Similarly, p(x(n+1)t+1, x) ≥ ε,

p(x(n+1)t+1, x)− p(x(n+1)t+1, x(n+1)t+2)− p(x1, x)

≤ p(x(n+1)t+2, x1) ≤ ϕ(p(x(n+1)t+1, x)),

and condition (2.4) yield

ε ≤ lim sup
k→∞

ϕ(p(x(n+1)t+1, x)) < ε,

a contradiction. Now, it is clear that limm,n→∞p(xm+nt+1, xm) = 0. Consequently,

limm,n→∞p(xm+nt+s, xm)

≤ limm,n→∞(p(xm+nt+s, xm+nt+s−1) + · · ·
+p(xm+nt+2, xm+nt+1) + p(xm+nt+1, xm)) = 0
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for any s ∈ {2, . . . , t}, i.e. limn>m→∞p(xn, xm) = 0. In a similar way, by applying
mrf we prove that limn>m→∞p(xm, xn) = 0, and the final inequality of the proof of
Theorem 2.5 shows that limm,n→∞p(xm, xn) = 0. �

Let us present cyclic mappings of the second type, i.e. those for (2.1) or (2.2) with
x, y ∈ Xj , j = 1, . . . , t. It is convenient to apply the idea of cross mappings introduced
in [6].

Let Fj : Xj → 2Ej++, j = 1, . . . , t (for a t > 1) be multivalued mappings. Then
for Y = X1 × · · · ×Xt, E = E1 × · · · × Et we define a cross mapping F : Y → 2E

as follows [6, (3.1)]:

F (x) = Ft(xt)× F1(x1)× · · · × Ft−1(xt−1), x = (x1, . . . , xt) ∈ Y. (2.7)

We can see that for Ej ⊂ Xj , j = 1, . . . , t the composition Ft ◦Ft−1 ◦ · · · ◦F1 has a
fixed point in X1 iff F has a fixed point. This concept is very efficient for multivalued
mappings (see [6, Section 3]). Let us apply cross mappings to prove the following
extension of [8, Theorem 3.10].

Theorem 2.12. Let (X, p) be a dq-metric space, and let f : X → X be cyclic on
0-complete sets X1, . . . , Xt. Assume that (2.1) or (2.2) is satisfied for all x, y ∈ Xj,
j = 1, . . . , t, and a nondecreasing ϕ ∈ ΦP . Then f has a unique fixed point; if x =
f(x), then we have p(x, x) = 0, and limn→∞p(x, f

n(x0)) = limn→∞p(f
n(x0), x) = 0,

x0 ∈ X.

Proof. Let us consider Y = X1 × · · · ×Xt and

q(y, x) = max{p(y1, x1), . . . , p(yt, xt)}, x, y ∈ Y.
Then (Y, q) is a dq-metric space. If ϕ is nondecreasing and (2.1) or (2.2) is satisfied for
p, then it is also satisfied for q, as e.g. max{ϕ(a), ϕ(b)} = ϕ(max{a, b}). In addition,
Y is h-orbitally 0-complete for the cross mapping h : Y → Y defined by

h(x) = (f(xt), f(x1), . . . , f(xt−1)), x ∈ Y.
In view of Theorem 2.5 the mapping h has a unique fixed point. This means that f t

has a unique fixed point. Now we apply Lemma 2.6. �
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