Fized Point Theory, 19(2018), No. 1, 359-368
DOI 10.24193/fpt-ro.2018.1.27
http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

DISLOCATED QUASI-METRIC AND GENERALIZED
CONTRACTIONS

LECH PASICKI

AGH University of Science and Technology
Faculty of Applied Mathematics
Al. Mickiewicza 30
30-059 Krakéw, Poland
E-mail: pasicki@agh.edu.pl

Abstract. The paper contains some fixed point theorems for generalized contractions in dislo-
cated quasi-metric spaces. The simplest requirement is condition: p(f(y), f(z)) < g(p(y,z)), for
all z,y € X, where p is a dislocated quasi-metric on X (if p(z,y) = p(y,z) = 0, then z = y;
0 < p(z,2) < p(z,y) + p(y, 2)) and g is a comparison function of a general type. Our results are far
extensions of some known fixed point theorems for dislocated quasi-metric spaces.
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INTRODUCTION

In [8] some fixed point theorems were proved for dislocated metric spaces defined
by Hitzler and Seda in [2]. The aim of the present paper is to extend the results of [8,
Section 3], to the case of dislocated quasi-metric spaces defined by Zeyada, Hassan
and Ahmed in [10]. Consequently, our theorems strongly generalize the results of
Zoto and Hoxha proved in [11].

In Section 1 the definitions of a dislocated metric and of a dislocated quasi-metric
are presented. This section is devoted to the study of some properties of the respective
spaces, and completeness is of our particular interest.

Section 2 is devoted to fixed point theorems for general contractions. The simplest
requirement is condition (2.1): p(f(y), f(z)) < ¢(p(y,x)), for all z,y € X, where
p is a dislocated quasi-metric on X, f: X — X is a mapping, and the comparison
function ¢: [0,00) — [0, 00) belongs to a wide class of mappings defined in [7]. The
main classical results are Theorem 2.5 (a far extension of the celebrated theorems of
Matkowski [5, Theorem 1.2], and of Boyd-Wong [1, Theorem 1]), and a more general
Theorem 2.7. The most sophisticated ones are the theorems for cyclic mappings (see
Definition 2.8): Theorem 2.11, and Theorem 2.12, which is proved with the use of
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cross mappings defined in [6]. Our theorems extend also the main results of Zoto and
Hoxha in [11], i.e. Theorems 3.6, 3.8.

1. DISLOCATED METRIC AND DISLOCATED QUASI-METRIC

The notion of dislocated metric was introduced by Hitzler and Seda in [2], and the
notion of dislocated quasi-metric was introduced by Zeyada, Hassan and Ahmed in
[10].

Definition 1.1. Let X be a nonempty set, and p: X x X — [0,00) a mapping
satisfying
if p(x,y) = p(y,x) = 0 then z =y, z,y € X, (1.1)
p(z,2) <plz,y) +p(y,2), zyz2€X. (1.2)
Then p is called a dislocated quasi-metric (briefly a dg-metric), and (X, p) is called
a dislocated quasi-metric space (briefly a dg-metric space). If, in addition

p(z,y) = py, z), z,y € X (1.3)
holds, then p is called a dislocated metric (briefly a d-metric), and (X, p) is called
a dislocated metric space (briefly a d-metric space).

The topology of a d-metric (or a dg-metric) space (X,p) is generated by balls
B(z,r) ={y € X: p(z,y) < r}. Clearly, z € B(z,r) does not necessarily hold, but
the family of all balls generates the respective smallest topology for X = | J{B(z,r):
x € X,r > 0} [3, Theorem 12, p. 47].

Let us recall the subsequent two definitions.

Definition 1.2 (cf. [10, Definition 2.1]). A sequence (zj)nen in dg-metric space
(X,p) is called Cauchy if the following condition is satisfied

hmm,n—wo min{p(xmvxn)vp(xmxm)} =0 (1'4)

Definition 1.3 ([10, Definitions 2.2, 2.3]). A dg-metric space is called complete
if each Cauchy sequence (x,)nen in X converges to an x € X, i.e. the following
condition is satisfied

lim,, eop(x, 2p) = limy,oop(@n, x) = 0. (1.5)
Unfortunately, these notions are not well suited to the topology of dg-metric spaces.
We prefer to replace “complete” by a more precise term “0O-complete”.
Proposition 1.4. Let (X,p) be a dg-metric space. Then from condition (1.5) it
follows that
limyy, n—yooD(Tm, Tn) = 0, (1.6)
and p(x,z) = 0.
Proof. Condition (1.2) yields

hm’rn,n—)oop(xma xn) S lim p(x’rﬂ7 x) + lim p(x’ Jjn) = 0’
m—r oo n—oo
0.

and p(z,7) < lim p(z,2,) + lim p(an, ) =
n— o0 n— o0

Hence we obtain
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Corollary 1.5. If for a sequence (x,)nen in a dg-metric space (X, p) condition (1.5)
holds, then (1.4) is equivalent to (1.6). In particular, if (X,p) is a 0-complete dg-
metric space, then (1.4) and (1.6) are equivalent.

Lemma 1.6. Let (X,p) be a dg-metric space. Then ~y defined by

Yz, y) = [p(z,y) +p(y2)l/2  zyeX (1.7)
is a d-metric on X. If (X, p) is 0-complete, then (X,~) is 0-complete.

Proof. Tt is clear that v is a d-metric on X. If (1.6) holds for p replaced by =, then
(1.4) is satisfied. Consequently, if (2, )nen is a Cauchy sequence in (X, ) and (X, p)
is 0-complete, then there exists an x € X such that
limy, s 0op(2, ) = limyoop(Tp, -T) = 0.

This equality yields lim,—.oy(x, z,) = 0, and thus (X, ) is 0-complete. O
Lemma 1.7. Let (X,7) be a d-metric space. Then ¢ defined by

0(z,y) =v(z,y) if ¢ #y, and 6(z,z) =0, r,y€eX (1.8)
is a metric on X, and (X,7) is 0-complete iff (X, ) is complete.

Proof. Clearly, ¢ is a metric on X. Assume that (X,d) is a complete metric space,
and limy, n—ye0Y(Tm, Zrn) = 0. Then
0< 1imm,n—>oc>6(xm7xn) < hmm,n%oo'}’(xmaxn> =0
means that there exists an € X such that lim,_,.d(x, z,) = 0. If there are infinitely
many z,, = x, then
0< 7(x7 xn) < 7(-1‘7 xm) + ’V(‘/I;maxn) = ’Y(l‘m,Im) + V(fﬂm, xn)a
and limy, n—yeoY(Tm, Tn) = 0 yield lim, ooy (2, ) = 0. If only finite x,,, = z, then
limy, s 0oy (2, ) = limy, 5 006(2, 24,) = 0.

Consequently, if (X, ¢) is complete, then (X,~) is 0-complete.

Assume that (X,7) is 0-complete, and lim, p—ood(Tm, zn) = 0. If there exist
infinitely many x,, equal, say to an x, then

0 <é(x,xn) <6(x,2m) + 0(Tm, Tn) = (T, Tp)
means that lim, ,d0(z,x,) = 0. If (z,)nen does not contain any constant subse-
quence, then there exists a subsequence (zy, )nen such that 6(z,, , 2%, ) = v(2k,,, Tk, ),
and now lim,, »—0o0(Zm, xn) = 0 yields lim,, - 00 (Tk,,, Tk, ) = 0. Therefore, there
exists an z € X such that lim, ,y(z, 2k, ) =0 (as (X,~) is 0-complete). Now,
0< 5(%71'71) < 5(1'717%) + 5(xkn7xn) < 7(1'717%) + 5($kn7xn)7
and limy,, »,—000(Zm, n) = 0 mean that lim, ,.0(z,z,) = 0, i.e. (X,J) is complete.
|
Now, Corollary 1.5, and Lemmas 1.6, 1.7 yield

Corollary 1.8. If a dg-metric space (X,p) is 0-complete, then for v given by (1.7)
d-metric space (X,7) is 0-complete. Any d-metric space (X,~) is 0-complete iff for §
defined by (1.8) metric space (X,0) is complete.
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In [8, Definition 2.3], the following notion was presented for dislocated strongly
quasi-metric spaces (for which (1.1) is replaced by p(x,y) = 0 yields x = y,
x,y € X): (X,p) is O-complete if for every sequence (zp)nen in X such that
limy,>m—sooP(Tn, Tm) = 0 there exists an x € X such that lim,,_,p(x, z,) = 0.

Both ideas of 0-completeness coincide for d-metric spaces. Indeed, if (X,p) is a
d-metric space then in view of (1.3) conditions (1.4), (1.6) are equivalent. In addition,
My s m—ooP(@n, Tm) = liMp4m—so0 P(Tn, Tm), and p(an, ) < 2p(2y, ) mean that
(1.6) is equivalent to limysm—coP(Tn, Tm) = 0.

2. GENERALIZED CONTRACTIONS

In the present section we extend the results of [8, Section 3], obtained for d-metric,
to suite the case of dg-metric.
We are interested in mappings f: X — X satisfying

p(f(y), f(x) < o(p(y,z)) (2.1)

p(f(y), f(x)) < min{p(mis(y,z)), p(mre(y, )} (2.2)
for

mlf(y’ 33‘) = max{p(y,x),p(f(y),y),p(f(x),x)}, and
mr¢(y,x) = max{p(y, z),p(y, f(y)), p(z, f(x))},

where (X, p) is a dg-metric space, and ¢ is a comparison function.

According to the notations from [7] ® is a class of mappings ¢: [0,00) — [0, 00)
such that p(a) < a, a > 0; and ¢ € ®g iff ¢ € & and ¢(0) = 0. In turn, Pp
consists of mappings ¢: [0,00) — [0, 00) for which every sequence (a,),en such that
an+1 < ¢(an), n € N converges to zero. It appears [7, Proposition 16|, that ®p C @,
and if ¢ € ®( satisfies

(2.3)

limsup p(8) < a, a >0, (2.4)
B—at
then ¢ € ®p. Consequently, (see [7]), if ¢ € ®¢ is upper semicontinuous from the
right (see [1]), then ¢ € ®p; also, if ¢ € ®¢ is nondecreasing and lim,,_, .. ¢™ () = 0,
a > 0 (see [5]), then p € @p.
There exist non-monotone mappings ¢ € ®p for which (2.4) does not hold (see [8,
Example]).
The subsequent lemma is a modification of [8, Lemma 3.1].

Lemma 2.1. Let X be a nonempty set, and let p: X x X — [0,00), f: X = X
be mappings satisfying condition (2.1) or (2.2), for all z,y € X and a ¢ € ®. Then
condition

p(f2(z), f(x) < o(p(f(x),x)) and
p(f(2), f2(2) < op(z, f(z)), z€X

holds.  In addition, if ¢ € ®p, then we have lim, ,.op(f" (), f*(z)) =
limy, ,oop(f™ (), f*7 (%)) = limpeop(f*(2), f*(2)) = 0, 2 € X.

(2.5)
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Proof. For notational simplicity let us adopt =, = f™(x), n € N. We have
mly(x1, ) = max{p(z1,x), p(v2, 1)}
Suppose p(x1,x) < p(xa,x1). Then (2.2) yields

O0<a= p(l'Q, xl) S w(mlf(xl,x)) = <p(p(I2, l‘l)) = QO(O(),
a contradiction (¢ € ®). Now, ml¢(z1,2) = p(x1,x) holds, and we obtain the first
part of (2.5) (which for (2.1) is trivial). Now, for a,, = p(@yt1,2n),n € N,and p € Op
we get lim,,_,o0a, = 0 (note that ¢(0) = 0). A similar reasoning for mr; proves the
second part of (2.5), and lim,,—,cop(Zn, Znt1) = 0. We also have

0< hmn—)oop(xnv xn) < limn—>oop($n7 JUn+1) + hmn—mop(l‘n—&-la zn) =0

O
The notion of f-orbitally completeness presented in [11] should be better suited to
the topology of dg-metric spaces. Therefore, we suggest the subsequent idea.

Definition 2.2 (cf. [11, Definition 3.3]). Let (X,p) be a dg-metric space, and let
f:+ X — X be a mapping. Then (X, p) is called f-orbitally 0-complete if for every
sequence (x,)nen satisfying (1.4) and contained in any orbit {zo, f(z0), f*(x0),...}
(xo € X), there exists an « € X such that (1.5) holds.

Remark 2.3. The results of [8, Section 3| (excepting [8, Theorem 3.10]), stay valid
for “O-complete” replaced by “f-orbitally 0-complete” (“f!-orbitally complete” for
Theorem 3.5).

The next lemma is a modification of [8, Lemma 3.2], proved for d-metric spaces.

Lemma 2.4. Let (X, p) be an f-orbitally 0-complete dg-metric space for a mapping f
satisfying condition (2.1) or (2.2), for allx,y € X and a p € ®q. If for z, = f™(xo),
limy,, 1y 00D(Tm, Tn) = 0 holds, then f has a unique fized point; if x = f(x), then
p(z,x) =0, and lim,,,op(x, 2,) = lim, oop(xn, z) = 0.
Proof. Let € X be such that lim,,.op(z, ) = lim,—, op(x,, ) = 0. For condition
(2.1) we have
p(f(x),z) <p(f(x), Tnt1) + p(Tnt1,7)
< @o(p(@,2n)) + p(Tns1,7) < pla, n) + p(Tny1, 2),

(p € ®p) and
p(x, f(2)) < p(@, Tns1) + p(@nt, f(2))
<p(@, Tnt1) + 9(P(2n, 2)) < p(@, Tntr) + plen, ).
Therefore, we have p(z, f(x)) = p(f(z),z) = 0, which yields z = f(z) (see (1.1)) and

p(z,z) =0.
For condition (2.2), p(f(z),z) > 0 and large n we have
0 <p(f(@),2) <p(f (@), Zns1) + pleni1, ) < @(mly(z, 2n)) +p(Tn41,2)
= p(max{p(z, zn), p(f (x), 2), p(Tnt1,20)}) + p(En i1, 2)
= ¢(p(f(@),2)) + p(Ent1, 7).
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d

Consequently, 0 < p(f(z),z) < o(p(f(z),z)) holds, a contradiction (¢ € ®), an
) =0, and

p(f(x),z) = 0. In a similar way, by applying mr; we prove that p(z, f(z)
we get © = f(x).
If y is a fixed point of f, then
0<p(f().y) =py,y) =p(f(v), f(y) < oy, y)) = @(mis(y,y))

means that p(y,y) = 0.
Suppose z,y are two fixed points of f. Then

p(y,z) =p(f(y), f(z)) < p(p(y, 7)) = p(max{p(y, x),0,0}) = p(mls(y, v))

means that p(y,z) = 0, and similarly p(z,y) =0, i.e. © =y. O
Now, we are ready to prove the following analog of [8, Theorem 3.3] (we refine the
respective proof from [8]).

Theorem 2.5. Let (X,p) be an f-orbitally 0-complete dg-metric space for a mapping
f satisfying condition (2.1) or (2.2), for all x,y € X and a ¢ € Py having property
(2.4) or a ¢ € ®p such that

limsup p(8) < a, a>0 (2.6)

B—a~

(e.g. if ¢ is nondecreasing) holds. Then f has a unique fizved point; if x = f(x), then
p(x,x) =0, and lim,_op(x, f*(x0)) = lim,—0op(f™(x0),x) =0, 29 € X.

Proof. Tt is sufficient to prove that lim,, »—eoP(Tm,2r) = 0 holds for x,, = f™(zo),
n € N (see Corollary 1.5 and Lemma 2.4). Suppose that there are infinitely many
k,n € N such that p(f"+1+*(x¢), f*(20)) > € > 0. Let n = n(k) > 0 be the smallest
numbers satisfying this inequality for infinitely many large k. For simplicity let us
adopt z = f*(x¢), and z,, = f*(x), n € N. We have

€ < p(@n+1,%) < P(Tnt1,Tn) + P(Tn, T) < P(Tnt1,Tn) + 6
which for n = n(k) means that
kli_{Eop(“’"H’ x) = kli_{rgop(xn,x) =€,
as limg oo p(Tnt1, Tn) = limg 0o p(x1,2) = 0 (see Lemma 2.1). Now for y = z,
condition (2.2) yields
€ < p(@nt1, ) < p(@nt1, 1) + plar, @) < p(mly(en, ) + play, )
= p(max{p(zn, 2), p(Tn+1, Tn), p(z1, 2)}) + P21, 2),
and we obtain (from (2.1) as well)
€ < ¢(p(en, z)) + (a1, 2)
for large k. Now, p(x,, ) < €, limy_yo0 p(xn, ) = €, and condition (2.6) yield
€ < limsup o(p(xn,x)) < €,
k—o00
a contradiction. Similarly, p(z,+1,) > €,

P(@nt1, ) — P(Tnt1, Tng2) — D(21,2) < p(Tpt2,21) < @(P(Tnt1,)),
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and condition (2.4) yield
e < limsup (p(zn+1,7)) <€,
k—o0

a contradiction. Therefore, lim,~m—ooD(Tn,Tm) = 0 holds. In a similar way, by
applying mry we prove that limy,>m—oeoP(Tm, ) = 0, which with

p(mn, xn) < p(Im xn—&-l) + p(ITL-i-lv xn)
yield limy, p—oop(@m, Tn) = 0. O
The previous theorem is a far extension of [11, Theorems 3.6, 3.8].
Let us recall the following.

Lemma 2.6 ([7, Lemma 29]). Let f: X — X be a mapping such that f* for at € N
has a unique fized point, say x. Then x is the unique fized point of f. If, in addition,
2 € limy, oo (f4)(20), 20 € X, then z € limy, o0 f™(x0), 20 € X holds.

Now, Theorem 2.5 and Lemma 2.6 yield

Theorem 2.7. Let (X,p) be an f-orbitally 0-complete dg-metric space for a mapping
f satisfying condition (2.1) or (2.2), for all z,y € X, with [ replaced by f! for a
t €N, and a p € g having property (2.4) or a ¢ € ®p such that (2.6) holds. Then
f has a unique fized point; if x = f(x), then p(z,z) =0, and lim,,,p(x, f*(x0)) =
limy, 5 0op(f™(20),2) =0, 29 € X.

Kirk, Srinivasan and Veeramani [4] suggested the idea of cyclic mappings which
was later formalized by Rus in [9] as cyclic representation of X = X; U---U X; with
respect to f. The next definition means the same, but is more compact.

Definition 2.8 ([8, Definition 3.6]). A mapping f: X — X is called cyclic on
Xi,....Xy (forat>1if0 #X =X;U---UXy, and f(X;) C Xjys, 7 =1,...,¢,
where j++=j+1forj=1,...,t—1,and t++ = 1.

Clearly, X; # 0 for a j in Definition 2.8, and hence X; #0, j =1,...,t.
The proof of Lemma 2.1 works also for the following.

Lemma 2.9. Let p: X x X — [0,00) be a mapping, and let f: X — X be cyclic
on X1,...,X;. Assume that (2.1) or (2.2) is satisfied for all x € X;, y € X414,
j=1,...,t, and a ¢ € ®. Then condition (2.5) holds, and if ¢ € ®p, then
limn%oop(fn-‘rl(x)ﬂfn(m)) = limnaoop(fn(x)afn-‘rl(x)) = limp0op(f"(2), [ (7)) =
0, xre X.

If we consider n such that x € X; and z,, € X;44 for a j € {1,...,t}, then the
proof of Lemma 2.4 yields the following analog.

Lemma 2.10. Let (X, p) be an f-orbitally 0-complete dg-metric space for a mapping f
cyclic on X1,...,X;. Assume that (2.1) or (2.2) is satisfied for allx € X, y € X4 4,
j=1,...,t, and a p € ®¢ . If for x, = f"(x0), limy, nosooP(Tm, Trn) = 0 holds, then
f has a unique fixed point; if x = f(x), then p(x,z) = 0, and lim,_p(x,z,) =
lim,, cop(xp, ) = 0.

Lemmas 2.9, 2.10 yield the following extension of Theorem 2.5.
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Theorem 2.11 (cf. [8, Theorem 3.9]). Let a dg-metric space (X,p) be f-orbitally
0-complete for an f cyclic on X1,...,X;. Assume that (2.1) or (2.2) is satisfied for
allz € X5,y € Xjpq, j=1,...,t, and a ¢ € ®¢. If in addition, ¢ has property
(2.4) or ¢ € ®p and satisfies (2.6), then [ has a unique fized point; if x = f(x), then
p(x,x) =0, and lim,_op(x, f*(x0)) = limy—0op(f™(x0),x) =0, 29 € X.
Proof. We apply a reasoning similar to the one presented in the proof of [8, Theorem
3.9]. It is sufficient to prove that lim,, n—eoD(Tm,zn) = 0 holds for z, = f"(zo),
n € N (see Corollary 1.5 and Lemma 2.10). Suppose that there are infinitely many
k,n € N such that p(@(nq1)e4r+1,2r) > € > 0. Let n = n(k) > 0 be the smallest
numbers satisfying this inequality for infinitely many large k. For simplicity let us
adopt = f*(z¢), and z,, = f"(z), n € N. Clearly, z € X; yields Tnt41s T(nt1)t4+1 €
Xjy+. We have
€ < P(X(ns1yt41,T) < P(T(ns1)e41s Tntr1) + P(Tner1, T)
<Pt 1)1, Tntr1) + € < P(Tng1)i41, Tngnye) + o+ P(Tntt2, Tney1) + 6

which for n = n(k) means that
kILY&P(x(n+1)t+1;$) = kILY&P(xnt+1, T) =,
as limy, 00 P(Tma1, Tm) = 0 (see Lemma 2.9). Now for y = ;41 condition (2.2)
yields
€ < P(X(n41)t41,T) < P(X(ng1)i41, Tn1)e) + -+ P(Xneyo, 1) + p(21, )
<P(@(nt1yer 1 T(nyrye) + oo+ @(mlp(Tnesr, ©)) + plor, )
= P(T (g 1)t415 T(nt1)e) + oo
+o(max{p(Tni+1,2), P(Tntv2, Tnes1), p(x1,2)}) + pla1, @),
and we obtain (from (2.1) as well)
€ < P(T(na )it Tnrye) + o+ 0P @ntt1,2)) + p(21, 7)

for large k. Now, p(zpiy1,) < €, limgyo0 P(Tnit1,x) = €, and condition (2.6) yield
e < limsup (p(znt+1, ) < €,
k—o0
a contradiction. Similarly, p(z(,41y¢41,%) > €,
p(lf(n+1)t+17 r) — p(«’lf(n+1)t+17 I(n+1)t+2) —p(z1, )
<P(@y1)i42, 1) < PP (nr1)e415 7)),
and condition (2.4) yield

e < limsup o(p(T(n41)t41, 7)) <€,

k—oc0
a contradiction. Now, it is clear that limy, n—coP(Zm+nit+1,Tm) = 0. Consequently,
hmm,n—)oop(xm+nt+sa I'm)
S hmm,n—)oo(p(xm—i-ntﬁ—sa mm-‘rnt-i-s—l) + -

+p($m+nt+27 xm+nt+1) + p($m+nt+1y xm)) =0
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for any s € {2,...,t}, i.e. limysm—ooP(Tn, Tm) = 0. In a similar way, by applying
mry we prove that limy,sm—ooP(Zm, ) = 0, and the final inequality of the proof of
Theorem 2.5 shows that limy, ,—coD(Tm, ) = 0. O

Let us present cyclic mappings of the second type, i.e. those for (2.1) or (2.2) with
z,y € X;,j=1,...,t. It is convenient to apply the idea of cross mappings introduced
in [6].

Let Fj: X; — 2Fi++ =1 ...t (for at > 1) be multivalued mappings. Then
for Y = X1 x---x Xy, E=FE; x--- x E; we define a cross mapping F: Y — 2F
as follows [6, (3.1)]:

F(l‘):Ft(Z‘t) XFl(JZl) Xoeee XFt_l(Z‘t_l), .23:(.131,...,37,5) ey. (27)

We can see that for £; C X, j =1,...,¢ the composition Fyo F;_jo0---0F; has a
fixed point in X iff F' has a fixed point. This concept is very efficient for multivalued
mappings (see [6, Section 3]). Let us apply cross mappings to prove the following
extension of [8, Theorem 3.10].

Theorem 2.12. Let (X,p) be a dg-metric space, and let f: X — X be cyclic on
0-complete sets Xi,...,X,. Assume that (2.1) or (2.2) is satisfied for all z,y € X,
j=1,...,t, and a nondecreasing p € ®p. Then f has a unique fized point; if x =
f(z), then we have p(z,x) = 0, and lim,_,cop(z, f™(x0)) = limy—eop(f™(20),x) = 0,
T € X.

Proof. Let us consider Y = X; x -+ x X; and

q(y71') :max{p(ylaxl)a7p(yt7xt)}u %yey

Then (Y q) is a dg-metric space. If ¢ is nondecreasing and (2.1) or (2.2) is satisfied for
p, then it is also satisfied for ¢, as e.g. max{p(a), ¢(b)} = p(max{a,b}). In addition,
Y is h-orbitally O-complete for the cross mapping h: Y — Y defined by

h(x):(f(xt)vf(xl)a"'7f(xt71))7 xEY

In view of Theorem 2.5 the mapping h has a unique fixed point. This means that f*
has a unique fixed point. Now we apply Lemma 2.6. O
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