FIXED POINT THEOREMS FOR VARIOUS TYPES OF F-CONTRACTIONS IN COMPLETE b-METRIC SPACES

A. LUKÁCS* AND S. KAJÁNTÓ**
*Department of Mathematics and Computer Science, Babeş-Bolyai University M. Kogălniceanu street No. 1, RO-400084, Cluj-Napoca, Romania E-mail: lukacs.andor@math.ubbcluj.ro
** Department of Mathematics and Computer Science, Babeş-Bolyai University
M. Kogălniceanu street No. 1, RO-400084, Cluj-Napoca, Romania

Abstract

We generalize various types of F-contractions defined by Wardowski, Vetro and others to b-metric spaces and prove fixed point theorems for them. The examples given show that these generalizations extend the existing results in a significant way. Key Words and Phrases: F-contractions, b-metric spaces, fixed point theorems. 2010 Mathematics Subject Classification: 47H09, 47H10, 54E50, 54H25.

1. Introduction

Banach's fixed point theorem is an important result in the theory of metric spaces. Over the years, various generalizations of it appeared in the literature, following a number of different lines of thought. One such idea was to relax the conditions imposed on the space itself, while another possibility was to generalize the contractive condition.

A well-known generalization of metric spaces are b-metric spaces introduced by Czerwik in [9], while the contractive condition in Banach's theorem has been weakened in several ways: see for example the results of Ćirić, Hardy-Rogers, Reich, Suzuki in $[6,10,12,14]$ and the recent works of Wardowski in $[15,16]$.

In the last two decades a number of generalizations appeared, combining the two ideas mentioned above. For example, Ćirić-, Hardy-Rogers-, Suzuki-type contractions and fixed point theorems for them in b-metric spaces were discussed in $[2,3,4,5]$.

So far in the literature there are only a few examples considering Wardowski's F contractions in b-metric spaces (see [1] and [7]). Our goal in this paper is to develop fixed point theory in this direction: we study F-contractions and their generalizations in the context of b-metric spaces. In order to achieve this, we use Wardowski's paper [15] as a starting point. In that paper the author imposed three general conditions on functions F and one extra contractive condition concerning the operator. In our
work we prove fixed point theorems for different notions of F-contractions in b-metric spaces, without using Wardowski's condition (F2).

The results we present improve and generalize some of the results in the literature on F-contractions. The technique used in the proofs also points out that Wardowski's original (F2) condition may be omitted from the currently used definitions of the different types of F-contractions.

2. Preliminaries

First we recall b-metric spaces and those of their properties which we are going to use later.

Definition 2.1. Let X be a non-empty set and $s \geq 1$ a real number. A function $d: X \times X \rightarrow[0, \infty)$ is called a b-metric if the following conditions are satisfied, for every $x, y, z \in X$:
(B1) $d(x, y)=0$ if and only if $x=y$;
(B2) $d(x, y)=d(y, x)$;
(B3) $d(x, y) \leq s[d(x, z)+d(z, y)]$.
In this case (X, d) is called a b-metric space with constant $s \geq 1$.
Convergent sequences and Cauchy sequences in b-metric spaces, continuous operators on b-metric spaces, etc. are defined the same way as in metric spaces. The limit of a convergent sequence is unique and every convergent sequence is a Cauchy sequence. A b-metric space is called complete if every Cauchy sequence is convergent. Czerwik in [9] generalized Banach's fixed point theorem to the b-metric case.

Examples and more details on b-metric spaces can also be found in the articles $[2,3,4]$ and in the book [11].

One of the main difficulties when proving fixed point theorems in b-metric spaces arises from the fact that the distance functional $d: X \times X \rightarrow[0, \infty)$ is usually not continuous. The following lemma will help to deal with this problem.

Lemma 2.2. (see also [11]) If (X, d) is a b-metric space with constant $s \geq 1, x^{*}, y^{*} \in$ X and $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a convergent sequence in X with $\lim _{n \rightarrow \infty} x_{n}=x^{*}$ then

$$
\frac{1}{s} d\left(x^{*}, y^{*}\right) \leq \liminf _{n \rightarrow \infty} d\left(x_{n}, y^{*}\right) \leq \limsup _{n \rightarrow \infty} d\left(x_{n}, y^{*}\right) \leq s d\left(x^{*}, y^{*}\right)
$$

Proof. If we apply twice the relaxed triangle inequality (B3), we get for every $n \in \mathbb{N}$

$$
\frac{1}{s} d\left(x^{*}, y^{*}\right)-d\left(x_{n}, x^{*}\right) \leq d\left(x_{n}, y^{*}\right) \leq \operatorname{sd}\left(x^{*}, y^{*}\right)+s d\left(x_{n}, x^{*}\right) .
$$

If we take liminf on the left-hand side inequality and limsup on the right-hand side inequality, we obtain the desired property.

Our results are based on the following $\mathcal{F}_{s, \tau}$ class of functions, defined in two steps.
Definition 2.3. A function $F:(0, \infty) \rightarrow \mathbb{R}$ belongs to \mathcal{F} if it satisfies the following conditions:
(F1) F is strictly increasing;
(F2) there exists $k \in(0,1)$ such that $\lim _{x \rightarrow 0^{+}} x^{k} F(x)=0$.
Note that we omitted Wardowski's (F2) condition from the definition. Explicitly, we will not require that
(WF2) if $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ is a sequence of positive real numbers then $\lim _{n \rightarrow \infty} \alpha_{n}=0$ if and only if $\lim _{n \rightarrow \infty} F\left(\alpha_{n}\right)=-\infty$.
The reason for this is that Lemma 2.4 stated below will suffice in the proofs.
Lemma 2.4. If $F:(0, \infty) \rightarrow \mathbb{R}$ is an increasing function and $\left(\alpha_{n}\right)_{n \in \mathbb{N}} \subset(0,+\infty)$ is a decreasing sequence such that $\lim _{n \rightarrow \infty} F\left(\alpha_{n}\right)=-\infty$ then $\lim _{n \rightarrow \infty} \alpha_{n}=0$.
Proof. Since $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ is decreasing and bounded below, it is also convergent. Let $\lim _{n \rightarrow \infty} \alpha_{n}=a \geq 0$ and suppose that $a>0$. Since $\alpha_{n} \geq a$ and F is increasing, it follows that $F(a) \leq F\left(\alpha_{n}\right)$, for all $n \geq 0$. If we let $n \rightarrow \infty$ then we obtain $F(a) \leq \lim _{n \rightarrow \infty} F\left(\alpha_{n}\right)=-\infty$ which is a contradiction, hence $a=0$.

The well-known examples of functions $F \in \mathcal{F}$ are $\ln x, \ln x+x, \ln \left(x^{2}+x\right)$ and $-\frac{1}{\sqrt{x}}$ (see [15]). The functions given in the following two examples will belong to \mathcal{F} in our sense, but not in Wardowski' sense.

Example 2.5. Let $a>0$ and $F:(0, \infty) \rightarrow \mathbb{R}, F(x)=x^{a}$. It is easy to see that F satisfies both (F1) and (F2). However, F does not satisfy Wardowski's (F2). Indeed, if $\alpha_{n}=\frac{1}{n}$, for every $n \in \mathbb{N}^{*}$ then $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\lim _{n \rightarrow \infty} F\left(\alpha_{n}\right)=0 \neq-\infty$.

Example 2.6. Let $F:(0, \infty) \rightarrow \mathbb{R}, F(x)=\ln (x+1)$. Clearly F is strictly increasing, and since $\lim _{x \rightarrow 0^{+}} \sqrt{x} \ln (x+1)=0$, (F2) is satisfied for $k=\frac{1}{2}$. On the other hand, if $\alpha_{n}=\frac{1}{n}$, for every $n \in \mathbb{N}^{*}$ then $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\lim _{n \rightarrow \infty} F\left(\alpha_{n}\right)=0$.

When we pass from metric spaces to b-metric spaces, we will need an extra compatibility condition. The weakest possible such condition is the one that appears in the following definition:

Definition 2.7. Let $s \geq 1$ and $\tau>0$. We say that $F \in \mathcal{F}$ belongs to $\mathcal{F}_{s, \tau}$ if it also satisfies
(Fs $\tau)$ if $\inf F=-\infty$ and $x, y, z \in(0, \infty)$ are such that $\tau+F(s x) \leq F(y)$ and $\tau+F(s y) \leq F(z)$ then

$$
\tau+F\left(s^{2} x\right) \leq F(s y)
$$

We make two important remarks. First, if $\inf F \neq-\infty$ then ($\mathrm{F} s \tau$) is satisfied, for all $s \geq 1$ and $\tau>0$. Second, when $s=1$ and $\tau>0$ is arbitrary, condition ($\mathrm{F} s \tau$) is a tautology, hence in this case the family $\mathcal{F}_{s, \tau}$ is \mathcal{F}.

In [7] the authors introduce the following condition ((F4) in Definition 3.1):
(F ' $s \tau$) if $\left(\alpha_{n}\right)_{n \in \mathbb{N}} \subset(0, \infty)$ is a sequence such that $\tau+F\left(s \alpha_{n}\right) \leq F\left(\alpha_{n-1}\right)$, for all $n \in \mathbb{N}$ and for some $\tau>0$, then $\tau+F\left(s^{n} \alpha_{n}\right) \leq F\left(s^{n-1} \alpha_{n-1}\right)$, for all $n \in \mathbb{N}^{*}$.

They use this condition to prove a fixed point theorem for multivalued F-contractions when F is continuous from the right (Theorem 3.4 in [7]). The equivalence of these two conditions is proven in the following proposition.

Proposition 2.8. If F is increasing then ($F s \tau$) is equivalent to (F ' $\tau \tau$).
Proof. We distinguish two cases. If inf $F \neq-\infty$ then ($\mathrm{F} s \tau$) is trivial. On the other hand, (F ' $s \tau$) also holds, since in this case there exists no sequence (α_{n}) of positive real numbers such that $\tau+F\left(s \alpha_{n}\right) \leq F\left(\alpha_{n-1}\right)$, for all $n \in \mathbb{N}^{*}$. Indeed if α_{n} was such a sequence then

$$
\begin{equation*}
\tau+F\left(\alpha_{n}\right) \leq \tau+F\left(s \alpha_{n}\right) \leq F\left(\alpha_{n-1}\right), \quad \forall n \in \mathbb{N}^{*} \tag{2.1}
\end{equation*}
$$

would hold. By induction, inequality (2.1) implies

$$
F\left(\alpha_{n}\right) \leq F\left(\alpha_{0}\right)-n \tau, \quad \forall n \in \mathbb{N}
$$

hence $\inf F=-\infty$, which is a contradiction.
In the case when $\inf F=-\infty$, first we prove that ($\mathrm{F} s \tau$) implies (F ' $s \tau$). Suppose that $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ is a sequence of positive numbers such that $\tau+F\left(s \alpha_{n}\right) \leq F\left(\alpha_{n-1}\right)$, for all $n \in \mathbb{N}^{*}$. We proceed by induction to prove that

$$
\begin{equation*}
\tau+F\left(s^{n} \alpha_{n}\right) \leq F\left(s^{n-1} \alpha_{n-1}\right), \quad \forall n \in \mathbb{N}^{*} \tag{2.2}
\end{equation*}
$$

For $n=1$ the statement is trivial. Suppose that (2.2) holds for a fixed $n \in \mathbb{N}^{*}$ and let us prove it for $n+1$. First we choose $x=\alpha_{n+1}, y=\alpha_{n}$ and $z=s^{n-1} \alpha_{n-1}$. We can use now ($\mathrm{F} s \tau$), because

$$
\tau+F(s y)=\tau+F\left(s \alpha_{n}\right) \leq \tau+F\left(s^{n} \alpha_{n}\right) \leq F\left(s^{n-1} \alpha_{n-1}\right)=F(z)
$$

hence $\tau+F\left(s^{2} \alpha_{n+1}\right) \leq F\left(s \alpha_{n}\right)$. Next we choose $x=s \alpha_{n+1}, y=s \alpha_{n}, z=s^{n-1} \alpha_{n-1}$ and prove similarly that $\tau+F\left(s^{3} \alpha_{n+1}\right) \leq F\left(s^{2} \alpha_{n}\right)$. In $n-2$ more steps we get the desired inequality. It follows that ($\mathrm{F} s \tau$) implies (F ' $s \tau$).

Finally, we prove that if $\inf F=-\infty$ then (F's τ) implies ($\mathrm{F} s \tau$). Let $x, y, z \in(0, \infty)$ be such that $\tau+F(s x) \leq F(y)$ and $\tau+F(s y) \leq F(z)$. We are going to construct a sequence $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ that satisfies the condition imposed in ($\mathrm{F}^{\prime} s \tau$). Let $\alpha_{0}=z, \alpha_{1}=y$ and $\alpha_{2}=x$. To give the rest of the terms of $\left(\alpha_{n}\right)$, we observe that since inf $F=-\infty$, we can pick an $\alpha_{n}>0$ such that $\tau+F\left(s \alpha_{n}\right) \leq F\left(\alpha_{n-1}\right)$, for every $n \geq 3$. We apply now (F ' $s \tau$) for this sequence $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$: when $n=2$ we obtain $\tau+F\left(s^{2} x\right) \leq F(s y)$.

Remark 2.9. In practice it is easier to check (Fsc) than (F' $s \tau$). Except of the function $\frac{-1}{\sqrt{x}}$, all the other examples of functions belonging to \mathcal{F} given before also belong to $\mathcal{F}_{s, \tau}$, for any $s \geq 1$ and $\tau>0$. We prove this for $F:(0, \infty) \rightarrow \mathbb{R}, F(x)=$ $\ln x+x$. It is enough to prove that for any $x, y \in(0, \infty)$ such that $\tau+F(s x) \leq F(y)$, the inequality $\tau+F\left(s^{2} x\right) \leq F(s y)$ is also satisfied.

Thus we know that $\tau+\ln (s x)+s x \leq \ln y+y$. This inequality is equivalent to

$$
\ln \frac{s x}{y}+s x-y \leq-\tau
$$

Since F is increasing, $s x \leq y$ follows from the inequality imposed on x and y. Hence $s^{2} x-s y \leq s x-y \leq 0$ and

$$
\ln \frac{s^{2} x}{s y}+s^{2} x-s y \leq \ln \frac{s x}{y}+s x-y \leq-\tau
$$

thus $\tau+F\left(s^{2} x\right) \leq F(s y)$ holds as well.

3. A fixed point theorem for F-contractions in b-metric spaces

In this section we define F-contractions in b-metric spaces and we prove a fixed point theorem for them. We also investigate the well-posedness of the fixed point problem of F-contractions in b-metric spaces (for more details and further references on the well-posedness of fixed point problems see [13]).

Definition 3.1. Let (X, d) be a b-metric space with constant $s \geq 1$ and $T: X \rightarrow X$ an operator. If there exist $\tau>0$ and $F \in \mathcal{F}_{s, \tau}$ such that for all $x, y \in X$ the inequality $d(T x, T y)>0$ implies
(F) $\tau+F(s \cdot d(T x, T y)) \leq F(d(x, y))$,
then T is called an F-contraction.
Theorem 3.2. If (X, d) is a complete b-metric space with constant $s \geq 1$ and $T: X \rightarrow X$ is an F-contraction for some $F \in \mathcal{F}_{s, \tau}$ then T has a unique fixed point x^{*}. Furthermore, for any $x_{0} \in X$ the sequence $x_{n+1}=T x_{n}$ is convergent and $\lim _{n \rightarrow \infty} x_{n}=x^{*}$.
Proof. First we prove that T has at most one fixed point. Suppose that x^{*} and y^{*} are two different fixed points of T, thus $T x^{*}=x^{*} \neq y^{*}=T y^{*}$. It follows that $d\left(T x^{*}, T y^{*}\right)=d\left(x^{*}, y^{*}\right)>0$, hence we can apply (F) to get

$$
\tau+F\left(s \cdot d\left(T x^{*}, T y^{*}\right)\right) \leq F\left(d\left(x^{*}, y^{*}\right)\right) \leq F\left(s \cdot d\left(x^{*}, y^{*}\right)\right)=F\left(s \cdot d\left(T x^{*}, T y^{*}\right)\right)
$$

This inequality implies $\tau \leq 0$, which is a contradiction, hence T can have at most one fixed point.

Next we prove the existence of a fixed point. Let $x_{0} \in X$ be arbitrary. We construct the sequence $x_{n+1}=T x_{n}$ and we denote by $\gamma_{n}=d\left(x_{n+1}, x_{n}\right)$ the consecutive distances. If there exists $n_{0} \in \mathbb{N}$ such that $x_{n_{0}+1}=x_{n_{0}}$ then we have $T x_{n_{0}}=x_{n_{0}}$. Thus $x^{*}=x_{n_{0}}$ is a fixed point of T and the proof is finished. In the case when $x_{n+1} \neq x_{n}$, $\forall n \in \mathbb{N}$, we have $\gamma_{n}>0$, for every $n \in \mathbb{N}$. Hence (F) implies $F\left(s \gamma_{n+1}\right) \leq F\left(\gamma_{n}\right)-\tau$, for every $n \in \mathbb{N}$. By Proposition 2.8, we get

$$
\begin{equation*}
F\left(s^{n+1} \gamma_{n+1}\right) \leq F\left(s^{n} \gamma_{n}\right)-\tau, \quad \forall n \in \mathbb{N}, \tag{3.1}
\end{equation*}
$$

and hence

$$
F\left(s^{n} \gamma_{n}\right) \leq F\left(s^{n-1} \gamma_{n-1}\right)-\tau \leq F\left(s^{n-2} \gamma_{n-2}\right)-2 \tau \leq \cdots \leq F\left(\gamma_{0}\right)-n \tau, \quad \forall n \in \mathbb{N} .
$$

It follows that

$$
\begin{equation*}
F\left(s^{n} \gamma_{n}\right) \leq F\left(\gamma_{0}\right)-n \tau, \quad \forall n \in \mathbb{N} . \tag{3.2}
\end{equation*}
$$

Since $\lim _{n \rightarrow \infty} F\left(\gamma_{0}\right)-n \tau=-\infty$, inequality (3.2) implies $\lim _{n \rightarrow \infty} F\left(s^{n} \gamma_{n}\right)=-\infty$. On the other hand, by inequality (3.1), the sequence $\left(s^{n} \gamma_{n}\right)_{n \in \mathbb{N}}$ is decreasing and we can apply Lemma 2.4 to get $\lim _{n \rightarrow \infty} s^{n} \gamma_{n}=0$. According to (F2), there exists a $k \in(0,1)$ such that $\lim _{n \rightarrow \infty}\left(s^{n} \gamma_{n}\right)^{k} F\left(s^{n} \gamma_{n}\right)=0$. Multiplying (3.2) by $\left(s^{n} \gamma_{n}\right)^{k}$ results

$$
0 \leq n\left(s^{n} \gamma_{n}\right)^{k} \tau+\left(s^{n} \gamma_{n}\right)^{k} F\left(s^{n} \gamma_{n}\right) \leq\left(s^{n} \gamma_{n}\right)^{k} F\left(\gamma_{0}\right), \quad \forall n \in \mathbb{N}
$$

By the above, when $n \rightarrow \infty$, we obtain $\lim _{n \rightarrow \infty} n\left(s^{n} \gamma_{n}\right)^{k}=0$. This inequality implies that there exists $n_{1} \in \mathbb{N}$ such that $n\left(s^{n} \gamma_{n}\right)^{k} \leq 1$, for all $n \geq n_{1}$. Thus

$$
\begin{equation*}
s^{n} \gamma_{n} \leq \frac{1}{n^{\frac{1}{k}}}, \quad \forall n \geq n_{1} \tag{3.3}
\end{equation*}
$$

Next we prove that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence. For all $n \in \mathbb{N}$ and $p \in \mathbb{N}^{*}$ the following chain of inequalities holds:

$$
\begin{aligned}
d\left(x_{n+p}, x_{n}\right) & \leq s d\left(x_{n+p}, x_{n+1}\right)+s \gamma_{n} \\
& \leq s^{2} d\left(x_{n+p}, x_{n+2}\right)+s^{2} \gamma_{n+1}+s \gamma_{n} \\
& \leq s^{3} d\left(x_{n+p}, x_{n+3}\right)+s^{3} \gamma_{n+2}+s^{2} \gamma_{n+1}+s \gamma_{n} \\
& \vdots \\
& \leq s^{p-1} \gamma_{n+p-1}+s^{p-1} \gamma_{n+p-2}+\cdots+s^{2} \gamma_{n+1}+s \gamma_{n} \\
& \leq s^{p} \gamma_{n+p-1}+s^{p-1} \gamma_{n+p-2}+\cdots+s^{2} \gamma_{n+1}+s \gamma_{n} \\
& =\frac{1}{s^{n-1}}\left(s^{n+p-1} \gamma_{n+p-1}+s^{n+p-2} \gamma_{n+p-2}+\cdots+s^{n+1} \gamma_{n+1}+s^{n} \gamma_{n}\right) \\
& =\frac{1}{s^{n-1}} \sum_{i=n}^{n+p-1} s^{i} \gamma_{i} \leq \frac{1}{s^{n-1}} \sum_{i=n}^{\infty} s^{i} \gamma_{i} .
\end{aligned}
$$

Hence, for all $n \geq n_{1}$ and $p \in \mathbb{N}^{*}$ inequality (3.3) implies

$$
d\left(x_{n+p}, x_{n}\right) \leq \frac{1}{s^{n-1}} \sum_{i=n}^{\infty} s^{i} \gamma_{i} \leq \frac{1}{s^{n-1}} \sum_{i=n}^{\infty} \frac{1}{i^{\frac{1}{k}}} \rightarrow 0
$$

thus $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence. Since (X, d) is complete, there exists $x^{*} \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=x^{*}$.

On the other hand, since $\tau+F(d(T x, T y)) \leq \tau+F(s \cdot d(T x, T y)) \leq F(d(x, y))$ holds for all such $x, y \in X$ for which $d(T x, T y)>0$, and because F is increasing,

$$
d(T x, T y) \leq d(x, y), \quad \forall x, y \in X
$$

This implies

$$
d\left(x_{n+1}, T x^{*}\right) \leq d\left(x_{n}, x^{*}\right), \quad \forall n \geq 0
$$

It follows by Lemma 2.2 that
$0 \leq s^{-1} d\left(x^{*}, T x^{*}\right) \leq \liminf _{n \rightarrow \infty} d\left(x_{n}, T x^{*}\right) \leq \limsup _{n \rightarrow \infty} d\left(x_{n}, T x^{*}\right) \leq \limsup _{n \rightarrow \infty} d\left(x_{n}, x^{*}\right)=0$,
hence $x^{*}=T x^{*}$. We proved that the operator T has a unique fixed point and for every $x_{0} \in X$ the sequence $x_{n+1}=T x_{n}$ converges to this fixed point, thus the proof is finished.

The following example illustrates a situation when Banach's fixed point theorem for complete b-metric spaces cannot be applied, while the conditions of Theorem 3.2 are satisfied.

Example 3.3. Let $r_{n}=2^{\frac{n}{2}} n$, for every $n \in \mathbb{N}, X=\left\{r_{n} \mid n \in \mathbb{N}\right\}$ and define the functional $d: X \times X \rightarrow[0, \infty), d(x, y)=(x-y)^{2}$. It is easy to check that $(X, d, s=2)$ is a complete b-metric space, but it is not a metric space. Define $T: X \rightarrow X$ by setting $T\left(r_{0}\right)=r_{0}$ and $T\left(r_{n}\right)=r_{n-1}$, for every $n \geq 1$. We are going to prove that there exists a $\tau>0$ such that T is an F-contraction for $F:(0, \infty) \rightarrow \mathbb{R}, F(x)=x$, while T is not a contraction in the b-metric sense. Indeed, since

$$
\lim _{n \rightarrow \infty} \frac{2 d\left(T r_{n}, T r_{0}\right)}{d\left(r_{n}, r_{0}\right)}=\lim _{n \rightarrow \infty} \frac{2\left(r_{n-1}-r_{0}\right)^{2}}{\left(r_{n}-r_{0}\right)^{2}}=\lim _{n \rightarrow \infty} \frac{2\left(2^{\frac{n-1}{2}}(n-1)\right)^{2}}{\left(2^{\frac{n}{2}} n\right)^{2}}=1
$$

thus Banach's fixed point theorem for b-metric spaces cannot be applied for T.
Next we prove that the conditions imposed on T in Theorem 3.2 are satisfied. Condition (F) translates to
(F) for every $x, y \in X$ such that $T x \neq T y$, we have

$$
2 d(T x, T y)-d(x, y) \leq-\tau
$$

We prove this in two steps. First, for every $n \geq 2$

$$
\begin{aligned}
2 d\left(T r_{n}, T r_{0}\right)-d\left(r_{n}, r_{0}\right) & =2\left(2^{\frac{n-1}{2}}(n-1)\right)^{2}-\left(2^{\frac{n}{2}} n\right)^{2} \\
& =2^{n}(1-2 n) \\
& \leq-1
\end{aligned}
$$

Second, for every $n, k \in \mathbb{N}^{*}$ we have

$$
\begin{aligned}
2 d\left(T r_{n+k}, T r_{n}\right) & -d\left(r_{n+k}, r_{n}\right)= \\
& =\left(2^{\frac{n+k}{2}}(n+k-1)-2^{\frac{n}{2}}(n-1)\right)^{2}-\left(2^{\frac{n+k}{2}}(n+k)-2^{\frac{n}{2}} n\right)^{2} \\
& =\left(2^{\frac{n}{2}}-2^{\frac{n+k}{2}}\right)\left(2^{\frac{n+k}{2}}(2 n+2 k-1)-2^{\frac{n}{2}}(2 n-1)\right) \\
& =\left(1-2^{\frac{k}{2}}\right) \cdot 2^{n}\left(2^{\frac{k}{2}}(2 n+2 k-1)-(2 n-1)\right) \\
& \leq-1 .
\end{aligned}
$$

By the above, $\tau=1$ satisfies all the required properties and thus T is an F-contraction.

Theorem 3.4. If (X, d) is a complete b-metric space with constant $s \geq 1$ and $T: X \rightarrow$ X is an F-contraction for some differentiable $F \in \mathcal{F}_{s, \tau}$ with $\lim _{x \rightarrow \infty} F^{\prime}(x)<\infty$, then the fixed point problem for T is well-posed: i.e. for any sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ that satisfies
$\lim _{n \rightarrow \infty} d\left(x_{n}, T x_{n}\right)=0$, we have $\lim _{n \rightarrow \infty} d\left(x_{n}, x^{*}\right)=0$, where x^{*} denotes the unique fixed point of T.
Proof. In the most general case, the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ can be decomposed into two subsequences $\left(x_{n}\right)=\left(y_{n_{k}}\right)_{k \in \mathbb{N}} \cup\left(z_{n_{k}}\right)_{k \in \mathbb{N}}$, where for any $k \in \mathbb{N}$ we have $T y_{n_{k}}=x^{*}$ and $T z_{n_{k}} \neq x^{*}$. Thus it is enough to prove the following two assertions:
(i) if $\left(x_{n}\right)_{n \in \mathbb{N}}$ is such that for all $n \in \mathbb{N} T x_{n}=x^{*}$, then $\lim _{n \rightarrow \infty} d\left(x_{n}, x^{*}\right)=0$;
(ii) if $\left(x_{n}\right)_{n \in \mathbb{N}}$ is such that for all $n \in \mathbb{N} T x_{n} \neq x^{*}$, then $\lim _{n \rightarrow \infty} d\left(x_{n}, x^{*}\right)=0$.

The first case is trivial, since $d\left(x_{n}, x^{*}\right)=d\left(x_{n}, T x_{n}\right)$, and $\lim _{n \rightarrow \infty} d\left(x_{n}, T x_{n}\right)=0$.
We prove (ii). If $T\left(x_{n}\right) \neq x^{*}$ for any $n \in \mathbb{N}$ then we can apply (F) to get

$$
F\left(d\left(x_{n}, x^{*}\right)\right)-F\left(\operatorname{sd}\left(T x_{n}, x^{*}\right)\right) \geq \tau
$$

Since $d\left(x_{n}, x^{*}\right)>\operatorname{sd}\left(T x_{n}, x^{*}\right)$, we obtain

$$
\frac{F\left(d\left(x_{n}, x^{*}\right)\right)-F\left(s d\left(T x_{n}, x^{*}\right)\right)}{d\left(x_{n}, x^{*}\right)-s d\left(T x_{n}, x^{*}\right)} \geq \frac{\tau}{d\left(x_{n}, x^{*}\right)-s d\left(T x_{n}, x^{*}\right)}
$$

It follows that there exists a c_{n} between $d\left(x_{n}, x^{*}\right)$ and $\operatorname{sd}\left(T x_{n}, x^{*}\right)$ such that

$$
F^{\prime}\left(c_{n}\right)=\frac{F\left(d\left(x_{n}, x^{*}\right)\right)-F\left(s d\left(T x_{n}, x^{*}\right)\right)}{d\left(x_{n}, x^{*}\right)-s d\left(T x_{n}, x^{*}\right)} \geq \frac{\tau}{d\left(x_{n}, x^{*}\right)-s d\left(T x_{n}, x^{*}\right)} .
$$

The last inequality implies

$$
0<\frac{\tau}{F^{\prime}\left(c_{n}\right)} \leq d\left(x_{n}, x^{*}\right)-s d\left(T x_{n}, x^{*}\right) \leq s d\left(x_{n}, T x_{n}\right)
$$

Since $\lim _{n \rightarrow \infty} d\left(x_{n}, T x_{n}\right)=0$, it follows that $\lim _{n \rightarrow \infty} F^{\prime}\left(c_{n}\right)=\infty$. By the condition imposed on F^{\prime}, this can happen only if $\lim _{n \rightarrow \infty} c_{n}=0$. Hence $\lim _{n \rightarrow \infty} s d\left(T x_{n}, x^{*}\right)=$ 0 , which implies $\lim _{n \rightarrow \infty} d\left(x_{n}, x^{*}\right)=0$.

4. A FIXED POINT THEOREM FOR F-WEAK CONTRACTIONS IN b-METRIC SPACES

In order to combine Ćirić-type fixed point theorems with the notion of F contractions, Wardowski and Dung introduced in [16] F-weak contractions and proved a fixed point theorem for them. This notion is a natural generalization of classical Ćirić-type contractions, in the direction of F-contractions. Our goal in this section is to extend the notion of F-weak contractions to b-metric spaces and prove a fixed point theorem for them.

Definition 4.1. Let (X, d) be a b-metric space with constant $s \geq 1$ and $T: X \rightarrow X$ an operator. If there exists $\tau>0$ and $F \in \mathcal{F}_{s, \tau}$ such that for all $x, y \in X$ the inequality $d(T x, T y)>0$ implies

$$
\left(\mathrm{F}_{w}\right) \tau+F(s \cdot d(T x, T y)) \leq F\left(\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2 s}\right\}\right)
$$

then T is called an F-weak contraction.
Theorem 4.2. Let (X, d) be a complete b-metric space with constant $s \geq 1$ and $T: X \rightarrow X$ an F-weak contraction for some $F \in \mathcal{F}_{s, \tau}$. Then T has at most one fixed point and for any $x_{0} \in X$ the sequence $x_{n+1}=T x_{n}$ is convergent in X. Furthermore,
if either T or F is continuous then T has a unique fixed point x^{*} and for all $x_{0} \in X$ the sequence $x_{n+1}=T x_{n}$ converges to x^{*}.
Proof. We prove first that T has at most one fixed point. Suppose that x^{*} and y^{*} are two different fixed points of T, thus $T x^{*}=x^{*} \neq y^{*}=T y^{*}$. It follows that $d\left(T x^{*}, T y^{*}\right)=d\left(x^{*}, y^{*}\right)>0$, hence we can apply $\left(\mathrm{F}_{w}\right)$ to get

$$
\begin{aligned}
\tau & +F\left(s \cdot d\left(T x^{*}, T y^{*}\right)\right) \leq \\
& \leq F\left(\max \left\{d\left(x^{*}, y^{*}\right), d\left(x^{*}, T x^{*}\right), d\left(y^{*}, T y^{*}\right), \frac{d\left(x^{*}, T y^{*}\right)+d\left(y^{*}, T x^{*}\right)}{2 s}\right\}\right) \\
& \leq F\left(\max \left\{d\left(x^{*}, y^{*}\right), d\left(x^{*}, x^{*}\right), d\left(y^{*}, y^{*}\right), \frac{d\left(x^{*}, y^{*}\right)+d\left(y^{*}, x^{*}\right)}{2 s}\right\}\right) \\
& =F\left(d\left(x^{*}, y^{*}\right)\right) \leq F\left(s \cdot d\left(x^{*}, y^{*}\right)\right) \\
& =F\left(s \cdot d\left(T x^{*}, T y^{*}\right)\right)
\end{aligned}
$$

The last inequality implies $\tau \leq 0$, which is a contradiction. Hence T has at most one fixed point.

Next we prove the existence of a fixed point. Let $x_{0} \in X$. Define the sequence $x_{n+1}=T x_{n}$ and denote by $\gamma_{n}=d\left(x_{n+1}, x_{n}\right)$ the consecutive distances. If there exists $n_{0} \in \mathbb{N}$ such that $x_{n_{0}+1}=x_{n_{0}}$ then $T x_{n_{0}}=x_{n_{0}}$, and thus $x^{*}=x_{n_{0}}$ is a fixed point of T, finishing the proof. We can suppose now that $x_{n+1} \neq x_{n}$, for all $n \in \mathbb{N}$, hence we can apply $\left(\mathrm{F}_{w}\right)$ for any $n \in \mathbb{N}$ to get

$$
\begin{aligned}
F\left(s \gamma_{n}\right) & \leq F\left(\max \left\{\gamma_{n}, \gamma_{n}, \gamma_{n-1}, \frac{d\left(x_{n-1}, x_{n+1}\right)}{2 s}\right\}\right)-\tau \\
& \leq F\left(\max \left\{\gamma_{n}, \gamma_{n-1}, \frac{s \gamma_{n}+s \gamma_{n-1}}{2 s}\right\}\right)-\tau \\
& =F\left(\max \left\{\gamma_{n}, \gamma_{n-1}\right\}\right)-\tau .
\end{aligned}
$$

If there exists $n \in \mathbb{N}$ such that $\max \left\{\gamma_{n}, \gamma_{n-1}\right\}=\gamma_{n}$ then

$$
F\left(s \gamma_{n}\right) \leq F\left(\gamma_{n}\right)-\tau<F\left(\gamma_{n}\right) \leq F\left(s \gamma_{n}\right)
$$

which is a contradiction. We conclude that $\max \left\{\gamma_{n}, \gamma_{n-1}\right\}=\gamma_{n-1}$, for all $n \in \mathbb{N}$, and thus we have

$$
F\left(s \gamma_{n}\right) \leq F\left(\gamma_{n-1}\right)-\tau, \quad \forall n \in \mathbb{N} .
$$

It follows that we can use the argument presented in the proof of Theorem 3.2 here as well to obtain first

$$
\lim _{n \rightarrow \infty} F\left(s^{n} \gamma_{n}\right) \leq F\left(\gamma_{0}\right)-n \tau \leq \lim _{n \rightarrow \infty} F\left(\gamma_{0}\right)-n \tau=-\infty
$$

then $\lim _{n \rightarrow \infty} s^{n} \gamma_{n}=0$ and finally, by condition (F2), that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchysequence. Since (X, d) is complete, there exists $x^{*} \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=x^{*}$.

It remains to prove that x^{*} is a fixed point of T if either T or F is continuous. First, if T is continuous then $T\left(x^{*}\right)=\lim _{n \rightarrow \infty} T\left(x_{n}\right)=\lim _{n \rightarrow \infty} x_{n+1}=x^{*}$, hence x^{*} is indeed a fixed point of T. Second, if F is continuous we distinguish two cases. If there exists a subsequence $\left(x_{n_{i}}\right)_{i \in \mathbb{N}} \subset\left(x_{n}\right)_{n \in \mathbb{N}}$ such that $x_{n_{i}}=T x^{*}$, for all $i \in \mathbb{N}$ then $x^{*}=\lim _{i \rightarrow \infty} x_{n_{i}}=\lim _{i \rightarrow \infty} T x^{*}=T x^{*}$. If there is no such subsequence of $\left(x_{n}\right)_{n \in \mathbb{N}}$
then there exists an $n_{0} \in \mathbb{N}$ such that for every $n \geq n_{0}$ we have $d\left(T x_{n}, T x^{*}\right)>0$. We can apply $\left(\mathrm{F}_{w}\right)$ to get the following inequality, for every $n \geq n_{0}$:

$$
\begin{align*}
\tau & +F\left(s \cdot d\left(x_{n+1}, T x^{*}\right)\right) \leq \\
& \leq F\left(\max \left\{d\left(x_{n}, x^{*}\right), \gamma_{n}, d\left(x^{*}, T x^{*}\right), \frac{d\left(x_{n}, T x^{*}\right)+d\left(x^{*}, x_{n+1}\right)}{2 s}\right\}\right) \tag{4.1}
\end{align*}
$$

Aiming for a contradiction, we suppose that $a=d\left(x^{*}, T x^{*}\right)>0$ and we denote $\beta_{n}=d\left(x_{n}, x^{*}\right)$. Since $\lim _{n \rightarrow \infty} x_{n}=x^{*}$, there exists an $n_{1} \in \mathbb{N}$ such that for every $n \geq n_{1}$ both $\beta_{n}<\frac{a}{2}$ and $\gamma_{n}<\frac{a}{2}$ hold. As a consequence, for every $n \geq n_{1}$

$$
\begin{align*}
\max \left\{\beta_{n}, \gamma_{n}, a, \frac{d\left(x_{n}, T x^{*}\right)+\beta_{n+1}}{2 s}\right\} & \leq \max \left\{\beta_{n}, \gamma_{n}, a, \frac{s \beta_{n}+s a+\beta_{n+1}}{2 s}\right\} \\
& \leq \max \left\{\beta_{n}, \gamma_{n}, a, \frac{s \frac{a}{2}+s a+\frac{a}{2}}{2 s}\right\}=a \tag{4.2}
\end{align*}
$$

Since F is increasing, inequalities (4.1) and (4.2) for every $n \geq \max \left\{n_{0}, n_{1}\right\}$ imply

$$
\begin{equation*}
\tau+F\left(s \cdot d\left(x_{n+1}, T x^{*}\right)\right) \leq F\left(d\left(x^{*}, T x^{*}\right)\right) \tag{4.3}
\end{equation*}
$$

On the other hand, Lemma 2.2 and the continuity and monotonicity of F give

$$
\begin{equation*}
\tau+F\left(d\left(x^{*}, T x^{*}\right)\right) \leq \tau+F\left(s \cdot \liminf _{n \rightarrow \infty} d\left(x_{n}, T x^{*}\right)\right) \leq \tau+\liminf _{n \rightarrow \infty} F\left(s \cdot d\left(x_{n}, T x^{*}\right)\right) . \tag{4.4}
\end{equation*}
$$

If we pass to liminf in (4.3) and then apply (4.4), we get

$$
\tau+F\left(d\left(x^{*}, T x^{*}\right)\right) \leq F\left(d\left(x^{*}, T x^{*}\right)\right),
$$

which contradicts $\tau>0$. Hence we proved that $0=a=d\left(x^{*}, T x^{*}\right)$, and thus x^{*} is a fixed point of T.

5. F-contractions of Hardy-Rogers type

In this section we prove a Hardy-Rogers type fixed point theorem for F-weak contractions in b-metric spaces, which generalizes Theorem 3.1 in [8] to the b-metric case.

Definition 5.1. Let (X, d) be a b-metric space with constant $s \geq 1, a, b, c, e, f \geq 0$ real numbers and $T: X \rightarrow X$ an operator. If there exist $\tau>0$ and $F \in \mathcal{F}_{s}$ such that for all $x, y \in X$ the inequality $d(T x, T y)>0$ implies

$$
\begin{aligned}
\left(\mathrm{F}_{H R}\right) \tau & +F(s \cdot d(T x, T y)) \leq \\
& \leq F(a d(x, y)+b d(x, T x)+c d(y, T y)+e d(x, T y)+f d(y, T x))
\end{aligned}
$$

then T is called an F-weak contraction of Hardy-Rogers type.
Theorem 5.2. Suppose that (X, d) is a complete b-metric space with constant $s \geq 1$ and $T: X \rightarrow X$ is an F-weak contraction of Hardy-Rogers type. If either $a+b+\bar{c}+$ $(s+1) e<1$ or $a+b+c+(s+1) f<1$ holds then for every $x_{0} \in X$ the sequence $x_{n+1}=T x_{n}$ converges to a fixed point of T. Moreover, if $a+e+f<s$ holds as well then T has exactly one fixed point.

Proof. Let $x_{0} \in X$ and define $x_{n+1}=T x_{n}$, for every $n \in \mathbb{N}$. As before, denote $\gamma_{n}=d\left(x_{n+1}, x_{n}\right)$. If there exists $n_{0} \in \mathbb{N}$ such that $x_{n_{0}+1}=x_{n_{0}}$ then $x_{n_{0}}$ is a fixed point of T and $x_{n}=x_{n_{0}}$, for every $n \geq n_{0}$. On the other hand, when $x_{n+1} \neq x_{n}$, for all $n \in \mathbb{N}$, we can apply $\left(\mathrm{F}_{H R}\right)$ for $x=x_{n}$ and $y=x_{n+1}$, the properties of F and the relaxed triangle inequality to obtain the following chain of inequalities:

$$
\begin{align*}
\tau+F\left(s \gamma_{n+1}\right) & \leq F\left(a \gamma_{n}+b \gamma_{n}+c \gamma_{n+1}+e \cdot d\left(x_{n}, x_{n+2}\right)\right) \\
& \leq F\left(a \gamma_{n}+b \gamma_{n}+c \gamma_{n+1}+s e \gamma_{n}+s e \gamma_{n+1}\right) \\
& =F\left((a+b+s e) \gamma_{n}+(c+s e) \gamma_{n+1}\right) . \tag{5.1}
\end{align*}
$$

Since F is strictly increasing, it follows that

$$
s \gamma_{n+1}<(a+b+s e) \gamma_{n}+(c+s e) \gamma_{n+1}
$$

and thus for every $n \geq n_{0}$ we have

$$
\begin{equation*}
\left(1-\frac{c}{s}-e\right) s \gamma_{n+1}<(a+b+s e) \gamma_{n} \tag{5.2}
\end{equation*}
$$

In the case when $a+b+c+(s+1) e<1$ holds, we obtain

$$
1-\frac{c}{s}-e \geq 1-c-e>a+b+s e \geq 0
$$

and hence inequality (5.2) implies $s \gamma_{n+1}<\gamma_{n}$, for every $n \in \mathbb{N}$. We can use now inequality (5.1) and that F is strictly increasing to obtain for every $n \in \mathbb{N}$

$$
\begin{aligned}
\tau+F\left(s \gamma_{n+1}\right) & \leq F\left((a+b+s e) \gamma_{n}+(c+s e) \gamma_{n+1}\right) \\
& \left.<F(a+b+s e) \gamma_{n}+(c+e) \gamma_{n}\right) \\
& <F\left(\gamma_{n}\right)
\end{aligned}
$$

In the other case, when $a+b+c+(s+1) f<1$, we obtain the same inequality analogously, if we start with $x=x_{n+1}$ and $y=x_{n}$ in condition $\left(\mathrm{F}_{H R}\right)$.

It follows that $\tau+F\left(s \gamma_{n+1}\right)<F\left(\gamma_{n}\right)$ for every $n \in \mathbb{N}$ in either case. We can now use the technique presented in the proof of Theorem 3.2 to prove that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence. Thus, by completeness of X, there exists $x^{*} \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=x^{*}$.

Let us prove that x^{*} is a fixed point of T. Assume that $T x^{*} \neq x^{*}$.
If $T x_{n}=T x^{*}$ for infinitely many values of n then there exists a subsequence $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ of $\left(x_{n}\right)_{n \in \mathbb{N}}$ that takes the constant values x^{*} for all $k \in \mathbb{N}$, hence it converges to $T x^{*}$. In this case, the uniqueness of the limit of the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ implies $T x^{*}=x^{*}$.

In the other case, when there are only finitely many values of $n \in \mathbb{N}$ for which $T x_{n}=x^{*}$, there exists an $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$ we have $T x_{n} \neq T x^{*}$. In this case we can write the following chain of inequalities, for every $n \geq n_{0}$:

$$
\begin{aligned}
d\left(x^{*}, T x^{*}\right) & \leq s\left[d\left(x^{*}, x_{n+1}\right)+d\left(T x_{n}, T x^{*}\right)\right] \\
& \leq s \cdot d\left(x^{*}, x_{n+1}\right)+a \cdot d\left(x_{n}, x^{*}\right)+b \cdot d\left(x_{n}, T x_{n}\right) \\
& +c \cdot d\left(x^{*}, T x^{*}\right)+e \cdot d\left(x_{n}, T x^{*}\right)+f \cdot d\left(x^{*}, x_{n+1}\right),
\end{aligned}
$$

where we used the relaxed triangle inequality, condition $\left(\mathrm{F}_{H R}\right)$ with $x=x_{n}, y=x^{*}$ and the monotonicity of F.

If we pass to limsup in the inequality above and use Lemma 2.2, we obtain

$$
\begin{equation*}
(1-c) d\left(x^{*}, T x^{*}\right) \leq s e \cdot d\left(x^{*}, T x^{*}\right) \tag{5.3}
\end{equation*}
$$

Similarly, if we choose $x=x^{*}$ and $y=x_{n}$ in $\left(\mathrm{F}_{H R}\right)$, we obtain

$$
\begin{equation*}
(1-b) d\left(x^{*}, T x^{*}\right) \leq s f \cdot d\left(x^{*}, T x^{*}\right) \tag{5.4}
\end{equation*}
$$

Depending on whether $a+b+c+(1+s) e<1$ or $a+b+c+(1+s) f<1$ holds, either inequality (5.3) or inequality (5.4) is a contradiction, hence $T x^{*}=x^{*}$.

In the last step we prove that T cannot have more than one fixed point when inequality $a+e+f<s$ holds as well. Let us assume that x^{*} and y^{*} are two different fixed points of T. Since $T x^{*}=x^{*} \neq y^{*}=T y^{*}$, we have

$$
\begin{aligned}
s \cdot d\left(x^{*}, y^{*}\right) & =s \cdot d\left(T x^{*}, T y^{*}\right) \\
& <a d\left(x^{*}, y^{*}\right)+b d\left(x^{*}, T x^{*}\right)+c d\left(y^{*}, T y^{*}\right)+e d\left(x^{*}, T y^{*}\right)+f d\left(y^{*}, T x^{*}\right) \\
& =(a+e+f) d\left(x^{*}, y^{*}\right)<s \cdot d\left(x^{*}, y^{*}\right)
\end{aligned}
$$

which is a contradiction, and thus T cannot have more than one fixed points.
Remark 5.3. Theorem 5.2 generalizes also a Hardy-Rogers type fixed point theorem that appeared in [16] as Corollary 2.5 to the b-metric case. We also can omit the continuity assumptions on T or F.

Acknowledgements. Both authors were supported by a grant of the Talent Support Council of Transylvania, project number NTP-HTT-M-16-0004. The second author was supported by Babeş-Bolyai University through a Performance Grant. The authors would also like to thank the referee for his valuable observations and comments, which improved both the exposition and the results of the paper.

References

[1] H.H. Alsulami, E. Karapinar, H. Piri, Fixed points of generalised F-Suzuki type contraction in complete b-metric spaces, Discrete Dynamics in Nature and Society, 2015, 8 pages.
[2] H. Aydi, M.F. Bota, E. Karapinar, S. Mitrović, A fixed point theorem for set-valued quasicontractions in b-metric spaces, Fixed Point Theory Appl., 88(2012), 8 pages.
[3] H. Aydi, M.F. Bota, E. Karapinar, S. Moradi, A common fixed point for weak ϕ-contractions on b-metric spaces, Fixed Point Theory, 13(2012), no. 2, 337-346.
[4] M.F. Boriceanu, M. Bota, A. Petruşel, Multivalued fractals in b-metric spaces, Cent. Eur. J. Math., 8(2010), no. 2, 367-377.
[5] C. Chifu, G. Petruşel, Fixed points for multivalued contractions in b-metric spaces with application to fractals, Taiwanese J. Math., 18(2014), no. 5, 1365-1375.
[6] L.B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45(1974), 267-273.
[7] M. Cosentino, M. Jleli, B. Samet, C. Vetro, Solvability of integrodifferential problems via fixed point theory in b-metric spaces, Fixed Point Theory Appl., 70(2015), 15 pages.
[8] M. Cosentino, P. Vetro, Fixed point results for F-contractive mappings of Hardy-Rogers-type, Filomat, 28(2014), no. 4, 715-722.
[9] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1(1993), 5-11.
[10] G.E. Hardy, T.D. Rogers, A generalization of a fixed point theorem of Reich, Canad. Math. Bull., 16(1973), no. 2, 201-206.
[11] W. Kirk, N. Shahzad, Fixed Point Theory in Distance Spaces, Springer International Publishing Switzerland, 2014.
[12] S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull., 14(1971), no 1, 121-124.
13] I.A. Rus, M.A. Şerban, Basic problems of the metric fixed point theory and the relevance of a metric fixed point theorem, Carpathian J. Math., 29(2013), no. 2, 239-258.
[14] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136(2008), 1861-1869.
[15] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory and Applications, 94(2012), 6 pages.
[16] D. Wardowski, Fixed points of F-weak contractions on complete metric spaces, Demonstratio Math., 47(2014), no. 1, 146-155.

Received: October 23, 2015; Accepted: February 1, 2017.

