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1. INTRODUCTION

Banach’s fixed point theorem is an important result in the theory of metric spaces.
Over the years, various generalizations of it appeared in the literature, following a
number of different lines of thought. One such idea was to relax the conditions
imposed on the space itself, while another possibility was to generalize the contractive
condition.

A well-known generalization of metric spaces are b-metric spaces introduced by
Czerwik in [9], while the contractive condition in Banach’s theorem has been weakened
in several ways: see for example the results of Cirié, Hardy-Rogers, Reich, Suzuki in
[6, 10, 12, 14] and the recent works of Wardowski in [15, 16].

In the last two decades a number of generalizations appeared, combining the two
ideas mentioned above. For example, Cirié—, Hardy-Rogers-, Suzuki-type contractions
and fixed point theorems for them in b-metric spaces were discussed in [2, 3, 4, 5].

So far in the literature there are only a few examples considering Wardowski’s F-
contractions in b-metric spaces (see [1] and [7]). Our goal in this paper is to develop
fixed point theory in this direction: we study F-contractions and their generalizations
in the context of b-metric spaces. In order to achieve this, we use Wardowski’s paper
[15] as a starting point. In that paper the author imposed three general conditions
on functions F' and one extra contractive condition concerning the operator. In our
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work we prove fixed point theorems for different notions of F-contractions in b-metric
spaces, without using Wardowski’s condition (F2).

The results we present improve and generalize some of the results in the literature
on F-contractions. The technique used in the proofs also points out that Wardowski’s
original (F2) condition may be omitted from the currently used definitions of the
different types of F-contractions.

2. PRELIMINARIES

First we recall b-metric spaces and those of their properties which we are going to
use later.

Definition 2.1. Let X be a non-empty set and s > 1 a real number. A function
d: X xX — [0,00) is called a b-metric if the following conditions are satisfied, for
every z,y,z € X:
(B1) d(x,y) =0 if and only if z = y;
(B2) d(z,y) = d(y, x);

(B3) d(z,y) < s[d(z,z) + d(z,y)].
In this case (X, d) is called a b-metric space with constant s > 1.

Convergent sequences and Cauchy sequences in b-metric spaces, continuous oper-
ators on b-metric spaces, etc. are defined the same way as in metric spaces. The
limit of a convergent sequence is unique and every convergent sequence is a Cauchy
sequence. A b-metric space is called complete if every Cauchy sequence is convergent.
Czerwik in [9] generalized Banach’s fixed point theorem to the b-metric case.

Examples and more details on b-metric spaces can also be found in the articles
[2, 3, 4] and in the book [11].

One of the main difficulties when proving fixed point theorems in b-metric spaces
arises from the fact that the distance functional d: X x X — [0,00) is usually not
continuous. The following lemma will help to deal with this problem.

Lemma 2.2. (see also [11]) If (X, d) is a b-metric space with constant s > 1, x*,y* €
X and (zn)nen 48 a convergent sequence in X with lim, o , = x* then

1
—d(z*,y*) <liminf d(z,,y") < limsup d(x,,y") < sd(z”,y").
s

n—0o0 n—00

Proof. If we apply twice the relaxed triangle inequality (B3), we get for every n € N
1
—d(z*,y") — d(xn, ") < d(Tn,y") < sd(z”,y*) + sd(zy, z").
s

If we take liminf on the left-hand side inequality and limsup on the right-hand side
inequality, we obtain the desired property.

Our results are based on the following F . class of functions, defined in two steps.

Definition 2.3. A function F': (0,00) — R belongs to F if it satisfies the following
conditions:
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(F1) F is strictly increasing;
(F2) there exists k € (0,1) such that lim,_,o+ 2*F(z) = 0.

Note that we omitted Wardowski’s (F2) condition from the definition. Explicitly,
we will not require that

(WF2) if (ap)nen is a sequence of positive real numbers then lim,, o a,, = 0 if and
only if lim,, 0 F(ay) = —00.

The reason for this is that Lemma 2.4 stated below will suffice in the proofs.

Lemma 2.4. If F': (0,00) = R is an increasing function and (omp)nen C (0, 400) is
a decreasing sequence such that lim, o, F(a,) = —oo then lim,_ o ay = 0.

Proof.  Since (o, )nen is decreasing and bounded below, it is also convergent. Let
lim,, ,oo @, = a > 0 and suppose that ¢ > 0. Since «,, > a and F' is increasing,
it follows that F'(a) < F(an), for all n > 0. If we let n — oo then we obtain
F(a) < limy, o F(a,) = —oo which is a contradiction, hence a = 0.

The well-known examples of functions F' € F are Inz, Inz+x, In(z2+z) and *ﬁ

(see [15]). The functions given in the following two examples will belong to F in our
sense, but not in Wardowski’ sense.

Example 2.5. Let a > 0 and F': (0,00) — R, F(z) = 2. It is easy to see that F
satisfies both (F1) and (F2). However, F' does not satisfy Wardowski’s (F2). Indeed,
if o, = %, for every n € N* then lim, o a,, = 0 and lim,, oo F(a,,) = 0 # —00.

Example 2.6. Let F': (0,00) = R, F(x) = In(x+1). Clearly F is strictly increasing,
and since lim, o+ /zIn(z 4+ 1) = 0, (F2) is satisfied for k = . On the other hand,

if ay, = %, for every n € N* then lim,_, o, = 0 and lim,, o, F(a,) = 0.

When we pass from metric spaces to b-metric spaces, we will need an extra com-
patibility condition. The weakest possible such condition is the one that appears in
the following definition:

Definition 2.7. Let s > 1 and 7 > 0. We say that F' € F belongs to F; ; if it also
satisfies
(Fs7) if inf F = —o0 and z,y,z € (0,00) are such that 7 + F(sx) < F(y) and
T+ F(sy) < F(z) then

T+ F(s?x) < F(sy).

We make two important remarks. First, if inf ' # —oo then (Fs7) is satisfied, for
all s > 1 and 7 > 0. Second, when s =1 and 7 > 0 is arbitrary, condition (Fs7) is a
tautology, hence in this case the family F; . is F.

In [7] the authors introduce the following condition ((F4) in Definition 3.1):
(F’s7) if (on)nen C (0,00) is a sequence such that 7+ F(say,) < F(an—1), for all

n € N and for some 7 > 0, then 7+ F(s"a,,) < F(s" 'a,_1), for all n € N*.
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They use this condition to prove a fixed point theorem for multivalued F-contractions
when F is continuous from the right (Theorem 3.4 in [7]). The equivalence of these
two conditions is proven in the following proposition.

Proposition 2.8. If F is increasing then (Fst) is equivalent to (F’st).

Proof. We distinguish two cases. If inf F' # —oo then (Fs7) is trivial. On the other
hand, (F’s7) also holds, since in this case there exists no sequence («,) of positive
real numbers such that 74+ F(sa,) < F(ap—1), for all n € N*. Indeed if o,, was such
a sequence then

T+ F(an) <74 F(sa,) < Flap—1), VYneN* (2.1)
would hold. By induction, inequality (2.1) implies
F(an) < Flag) —n1, VYneN,

hence inf F = —o0o, which is a contradiction.

In the case when inf F' = —oo0, first we prove that (Fs7) implies (F’s7). Suppose
that (o )nen is a sequence of positive numbers such that 7+ F(sa,) < F(ay—1), for
all n € N*. We proceed by induction to prove that

T+ F(s"ay,) < F(s" ta,_1), VneN-. (2.2)

For n = 1 the statement is trivial. Suppose that (2.2) holds for a fixed n € N* and
let us prove it for n + 1. First we choose * = a1 1, ¥y = @, and z = s" Lo, 1. We
can use now (Fs7), because

T+ F(sy) =7+ F(sa,) <7+ F(s"a,) < F(s" la,_1) = F(2),

hence 7 + F(s?a,11) < F(say,). Next we choose T = sy, 11, Y = 8, 2 = 8" Loy, 1

and prove similarly that 7 + F(sa, 1) < F(s%a,). In n — 2 more steps we get the
desired inequality. It follows that (Fs7) implies (F’s7).

Finally, we prove that if inf F = —oo then (F’s7) implies (Fs7). Let z,y, z € (0, 00)
be such that 7+ F(sz) < F(y) and 7 + F(sy) < F(z). We are going to construct a
sequence (a, )nen that satisfies the condition imposed in (F's7). Let ag = 2z, an =y
and as = x. To give the rest of the terms of (), we observe that since inf F' = —o0,
we can pick an «,, > 0 such that 7 + F(sa,) < F(a,—1), for every n > 3. We apply
now (F’s7) for this sequence (a;,)nen: when n = 2 we obtain 7 + F(s?z) < F(sy).

Remark 2.9. In practice it is easier to check (Fs7) than (F’s7). Except of the

function _—i, all the other examples of functions belonging to F given before also
belong to F -, for any s > 1 and 7 > 0. We prove this for F: (0,00) = R, F(x) =
Inx + x. It is enough to prove that for any z,y € (0, 00) such that 7+ F(sz) < F(y),
the inequality 7 + F(s%x) < F(sy) is also satisfied.

Thus we know that 7 + In(sz) + sz < Iny + y. This inequality is equivalent to

s
In—+sr—y< —7.
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Since F' is increasing, sx < y follows from the inequality imposed on = and y. Hence
s2x—sy§sx—y§0and
s%x 9 ST
In—+s2—-—sy<In—+szx—y < -7,
sY Y

thus 7 + F(s%x) < F(sy) holds as well.

3. A FIXED POINT THEOREM FOR F-CONTRACTIONS IN b-METRIC SPACES

In this section we define F-contractions in b-metric spaces and we prove a fixed
point theorem for them. We also investigate the well-posedness of the fixed point
problem of F-contractions in b-metric spaces (for more details and further references
on the well-posedness of fixed point problems see [13]).

Definition 3.1. Let (X, d) be a b-metric space with constant s > 1 and T: X — X
an operator. If there exist 7 > 0 and F' € F ; such that for all ,y € X the inequality
d(Tz,Ty) > 0 implies

F) 74+ F(s-d(Tz,Ty)) < F(d(z,y)),
then T is called an F'-contraction.

Theorem 3.2. If (X,d) is a complete b-metric space with constant s > 1 and
T: X — X is an F-contraction for some F € F,, then T has a unique fized
point x*. Furthermore, for any xog € X the sequence x,41 = Tx, is convergent
and lim,, o T, = T*.

Proof.  First we prove that T has at most one fixed point. Suppose that x* and
y* are two different fixed points of T, thus Tx* = z* # y* = Ty*. It follows that
d(Tz*,Ty*) =d(z*,y*) > 0, hence we can apply (F) to get

T+ F(s-dTz",Ty")) < F(d(z*,y")) < F(s-d(z",y")) =F (s-d(Tz",Ty")).

This inequality implies 7 < 0, which is a contradiction, hence T" can have at most one
fixed point.

Next we prove the existence of a fixed point. Let zg € X be arbitrary. We construct
the sequence x,11 = Tx, and we denote by v, = d(xn11,%,) the consecutive dis-
tances. If there exists ng € N such that z,,41 = zp, then we have T'z,,, = x,,. Thus
x* = xp,, is a fixed point of T" and the proof is finished. In the case when x,,11 # x,,
Vn € N, we have v, > 0, for every n € N. Hence (F) implies F(syp4+1) < F(yn) — 7,
for every n € N. By Proposition 2.8, we get

F(s"y,11) < F(s"y,) — 7, Vn €N, (3.1)
and hence
F(s"y,) < F(s" 'y 1) =7 < F(s" 2y, ) =21 < --- < F(y) —n7, VYneN.

It follows that
F(s"v,) < F(v) —n7, VneN. (3.2)
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Since lim,, o F(y0) — nT = —00, inequality (3.2) implies lim,,—, oo F'(s™7,) = —00.
On the other hand, by inequality (3.1), the sequence (s"7v,)nen is decreasing and
we can apply Lemma 2.4 to get lim, o s"y, = 0. According to (F2), there exists
a k € (0,1) such that lim,, oo (s"7,)*F(s™y,) = 0. Multiplying (3.2) by (s™7,)*
results

0 < n(s"y) 7 + (8" 70) " F(s" ) < (s"vm)* F(70), Vn €N,
By the above, when n — 0o, we obtain lim,, ., 1.(s™,)¥ = 0. This inequality implies
that there exists n; € N such that n(s"y,)* <1, for all n > n;. Thus

1
"y < —, Yn>ng. (3.3)

nk
Next we prove that (z,)nen is a Cauchy sequence. For all n € N and p € N* the
following chain of inequalities holds:

A(@ntp; Tn) < SA(Tnyp, Tnt1) + S0
< S2d(Tntp, Tnt2) + 57 Yns1 + 5Tn

< Sgd(xn+p; mn—&-S) + 53'7n+2 + 52’7n+1 + S$Vn

<SP g1 + S g2+ S Y 5T
< 3p7n+p—1 + 5p_17n+p—2 + -+ 52771—1—1 + SVn

_ 1 (sn+p—1

gn—1 Ttp-1+ 8" P Py o4 s g 4 5 )

n+p—1 (')
g L S
- gn—1 Ti = gn—1 Vi

i=n i=n

Hence, for all n > n; and p € N* inequality (3.3) implies
1 «— I 1
d(.’Ener,(En) < gn—1 ZS’L’% < gn—1 Z 17% - 0’
K2 K3

i—n

thus (2, )nen is a Cauchy sequence. Since (X,d) is complete, there exists z* € X
such that lim, . z, = =*.

On the other hand, since 7 + F(d(Tx,Ty)) < 7+ F(s-d(Tz,Ty)) < F(d(x,y))
holds for all such z,y € X for which d(Tx,Ty) > 0, and because F is increasing,

d(Tz,Ty) < d(z,y), Vz,yeX.
This implies
A xpt1, Tx™) < d(zp,z*), Yn>0.

It follows by Lemma 2.2 that

0 < s 'd(z*, Tz*) < liminf d(z,,, Tx*) < limsup d(z,, Tx*) < limsup d(z,,z*) = 0,

n—o0 n—00 n—00
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hence z* = Tx*. We proved that the operator T" has a unique fixed point and for
every g € X the sequence x,, 1 = Tz, converges to this fixed point, thus the proof
is finished.

The following example illustrates a situation when Banach’s fixed point theorem
for complete b-metric spaces cannot be applied, while the conditions of Theorem 3.2
are satisfied.

Example 3.3. Let r, = 2%n, for every n € N, X = {r,, | n € N} and define the
functional d: X x X — [0,00), d(z,y) = (x—y)?. It is easy to check that (X, d, s = 2)
is a complete b-metric space, but it is not a metric space. Define T: X — X by setting
T(ro) = 1o and T'(r,) = rn_1, for every n > 1. We are going to prove that there
exists a 7 > 0 such that T is an F-contraction for F': (0,00) — R, F(x) = x, while T
is not a contraction in the b-metric sense. Indeed, since

n—1 2
2 (2 = (n — 1))
n—oo d(rm 7"0) n—oo (T'n — r0)2 n—o0 (2%71)2

thus Banach’s fixed point theorem for b-metric spaces cannot be applied for T
Next we prove that the conditions imposed on T in Theorem 3.2 are satisfied.
Condition (F) translates to

(F) for every =,y € X such that Tz # Ty, we have
2d(Tx, Ty) — d(z,y) < —.
We prove this in two steps. First, for every n > 2
2d(Try, Tro) — d(rp,ro) = 2 (2%1(71 — 1))2 — (2%71)2
= 2"(1 - 2n)
< -1.
Second, for every n, k € N* we have

2d(Trpir, Trn) — d(Tpik, ) =

- (2"7““(n+k— 1) — 23 (n— 1))2 - (2"3'“(n+k) —2%)2
= (28 —2F) (2 en+ 2 -1 -282n-1))

_ (1 —2§) Lon (2§(2n+2k— 1) — (2n — 1))

<1

By the above, 7 = 1 satisfies all the required properties and thus T is an F-contrac-
tion.

Theorem 3.4. If (X, d) is a complete b-metric space with constant s > 1 andT: X —
X is an F-contraction for some differentiable F € Fs ; with lim,_, o F'(x) < oo, then
the fized point problem for T is well-posed: i.e. for any sequence (zn)nen that satisfies
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lim,, 00 d(@p, Txy) = 0, we have lim, o d(x,,z*) = 0, where x* denotes the unique
fixed point of T.

Proof. In the most general case, the sequence (2, )nen can be decomposed into two
subsequences () = (Yn, )ken U (2n,, )ken, where for any k& € N we have Ty, = x*
and T'z,, # «*. Thus it is enough to prove the following two assertions:

(i) if (@n)nen is such that for all n € N Ta,, = *, then lim, o d(z,,2*) =0
(ii) if (zn)nen is such that for all n € N T, # «*, then lim, o d(2,,z*) = 0.
The first case is trivial, since d(z,, 2*) = d(z,, Tzy), and lim,_, « d(z,, Tz,) =0
We prove (ii). If T'(x,,) # =* for any n € N then we can apply (F) to get
F(d(xp,x*)) — F(sd(Txp,x*)) > 7.
Since d(xy,, z*) > sd(Txy, z*), we obtain
F(d(zp,2*)) — F(sd(Txy,z*)) S T
d(zp, x*) — sd(T2y, z*) T d(zy, %) — sd(Txp, )’
It follows that there exists a ¢,, between d(z,,z*) and sd(T'z,,z*) such that
Flley) = F(d(zp,2*)) — F(sd(Txy,z*)) > T .
d(xpn,x*) — sd(Txp,x*) d(xp,x*) — sd(Txy,x*)
The last inequality implies

0< #Cn) < d(xp,z*) — sd(Tan, x*) < sd(zp, Tty).
Since limy, oo d(2y, Txy) = 0, it follows that lim,_,~ F'(c,) = co. By the condition
imposed on F”, this can happen only if lim,,_,+ ¢, = 0. Hence lim,, ;o sd(Tzp, x*) =
0, which implies lim,, oo d(2y,,z*) = 0.

4. A FIXED POINT THEOREM FOR F-WEAK CONTRACTIONS IN b-METRIC SPACES

In order to combine Cirié—type fixed point theorems with the notion of F-
contractions, Wardowski and Dung introduced in [16] F-weak contractions and proved
a fixed point theorem for them. This notion is a natural generalization of classical
Cirié—type contractions, in the direction of F-contractions. Our goal in this section
is to extend the notion of F-weak contractions to b-metric spaces and prove a fixed
point theorem for them.

Definition 4.1. Let (X, d) be a b-metric space with constant s > 1 and T: X — X
an operator. If there exists 7 > 0 and F' € F,, such that for all z,y € X the
inequality d (T'z, Ty) > 0 implies

(Fu) 7+F (s-d (Ta,Ty)) < F (max {d(,y), d(w, Ta), d(y, Ty), LTI )

2s

then T is called an F'-weak contraction.

Theorem 4.2. Let (X,d) be a complete b-metric space with constant s > 1 and
T: X — X an F-weak contraction for some F' € Fs .. Then T has at most one fized
point and for any xg € X the sequence x, 11 = Tx, is convergent in X. Furthermore,
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if either T or F is continuous then T has a unique fized point x* and for all xog € X
the sequence x,4+1 = T'x, converges to x*.

Proof.  We prove first that T" has at most one fixed point. Suppose that x* and
y* are two different fixed points of T, thus Tax* = z* # y* = Ty*. It follows that
d(Tz*,Ty*) = d(x*,y*) > 0, hence we can apply (F,,) to get

T+ F(s-d(Tz*,Ty")) <
<F (max{d(x*’y*%d(ﬁ’Tx*)’d(y*’Ty*)’ d(x*7Ty*)24;d(y*7Tx*)}>
d(z*,y") +d(y*7w*)}>

<F (max{d(m*,y*)7d($*7$*)7d(y*ay*)v 92
= F (d(z*,y*)) < F (s-d(z*,y"))
=F(s-d(Tz",Ty")).

The last inequality implies 7 < 0, which is a contradiction. Hence T has at most
one fixed point.

Next we prove the existence of a fixed point. Let zo € X. Define the sequence
Zpt1 = Tz, and denote by 7y, = d(2,41, x,) the consecutive distances. If there exists
ng € N such that z,,+1 = zp, then Tx,, = z,,, and thus z* = x,, is a fixed point
of T', finishing the proof. We can suppose now that z,; # x,, for all n € N, hence
we can apply (F,,) for any n € N to get

d n—1,+4n
F(S’Yn) S F (maX{FYna’an’Yn—hW}) - T

< F (ma'X {’77177711’ W}) - T
S

= F (max {yn, Yn-1}) — 7.
If there exists n € N such that max {y,,vn—1} = y» then
F(s7n) < F(vn) — 7 < F(ym) < F(s7n),

which is a contradiction. We conclude that max {v,,vn—1} = Yn—1, for all n € N|
and thus we have
F(svn) < F(yn-1)—7, ¥neN
It follows that we can use the argument presented in the proof of Theorem 3.2 here
as well to obtain first
lim F(s"y,) < F(y) —nt < nh_)rr;o F(y) — nt = —o0,

n—oo

then lim, o s™y, = 0 and finally, by condition (F2), that (z,)nen is a Cauchy-
sequence. Since (X, d) is complete, there exists * € X such that lim,_, . z, = 2*.

It remains to prove that z* is a fixed point of T if either T or F' is continuous.
First, if T is continuous then T'(z*) = lim, 00 T(2y,) = limy, 00 Tn41 = x*, hence z*
is indeed a fixed point of T'. Second, if F' is continuous we distinguish two cases. If
there exists a subsequence (z,, )ien C (25 )nen such that x,,, = Tz*, for all i € N then
¥ = lim; 00 T, = lim;_yoo Tx* = Tx*. If there is no such subsequence of (z,)nen
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then there exists an ng € N such that for every n > ng we have d(Tz,,, Tz*) > 0. We
can apply (F.,) to get the following inequality, for every n > ny:

T+ F(s-d(zpg1,T2")) <
<F <max{d(mn,m*),'ymd(x*7Tm*), d(n, Tw )—2|—d(x 1) }) . (4.1)
s

Aiming for a contradiction, we suppose that a« = d(z*,Tz*) > 0 and we denote
Bn = d(xn,x*). Since lim, o x, = x*, there exists an ny € N such that for every
n > ny both 3, < 5 and 7, < § hold. As a consequence, for every n > n;

d(l‘n, TLL'*) + ﬁn+1 Sﬁn + sa + BnJrl
2s 2s

max{ﬂn,vn,a, } < max{ﬁn,*yn,a,

< max {ﬂn,'yn,a, W} =a. (4.2
Since F' is increasing, inequalities (4.1) and (4.2) for every n > max{ng,ni} imply
T+ F (s -d(xpt1,T2")) < F(d(z*, Tx")). (4.3)
On the other hand, Lemma 2.2 and the continuity and monotonicity of F' give
T+ F(d(z*,Tx")) < T—l—F(s-linnligfd(mn, Tx")) < T—&—linrging(&d(xn, Tx*)). (4.4)
If we pass to liminf in (4.3) and then apply (4.4), we get
T+ F(d(z*,Tz")) < F(d(z*,Tx")),

which contradicts 7 > 0. Hence we proved that 0 = a = d(z*, Tx*), and thus z* is a
fixed point of T.

5. F-CONTRACTIONS OF HARDY-ROGERS TYPE

In this section we prove a Hardy-Rogers type fixed point theorem for F-weak
contractions in b-metric spaces, which generalizes Theorem 3.1 in [8] to the b-metric
case.

Definition 5.1. Let (X,d) be a b-metric space with constant s > 1, a,b,c,e, f >0
real numbers and T': X — X an operator. If there exist 7 > 0 and F' € F, such that
for all z,y € X the inequality d (T'z, Ty) > 0 implies
(Fyr) 7T+ F(s-d(Tz,Ty)) <

< F (ad(z,y) + bd(z, Tx) + cd(y, Ty) + ed(z, Ty) + fd(y, Tx))

then T is called an F'-weak contraction of Hardy-Rogers type.

Theorem 5.2. Suppose that (X,d) is a complete b-metric space with constant s > 1
and T: X — X is an F-weak contraction of Hardy-Rogers type. If either a + b+ c+
(s+le<lora+b+c+ (s+1)f <1 holds then for every xo € X the sequence
Tpy1 = Tz, converges to a fixed point of T. Moreover, if a+ e+ f < s holds as well
then T has exactly one fized point.
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Proof. Let g € X and define z,.1 = Tx,, for every n € N. As before, denote
Yn = d(Tpt1,%n). If there exists ng € N such that x,,41 = @, then x,, is a fixed
point of T" and x,, = x,,, for every n > ng. On the other hand, when z,4+1 # x,, for
all n € N, we can apply (Fgg) for x = x,, and y = 2,11, the properties of F' and the
relaxed triangle inequality to obtain the following chain of inequalities:

T+ F(sym1) < Favn + 0y + ¢yngr + € d(@n, Tni2))
< F (ayn + byn + ¢Ynt1 + s€yn + s€ynt1)
=F((a+b+ se)yn + (c+ s€)ynt1) - (5.1)
Since F' is strictly increasing, it follows that
5Yn+1 < (@ + b+ se)yn + (¢ + se)ynt1,

and thus for every n > ng we have
(1 — S — e) $Ynt1 < (a+ b+ se)vn. (5.2)

In the case when a + b+ ¢+ (s + 1)e < 1 holds, we obtain

l—E—ezl—c—e>a+b+sezO
s

and hence inequality (5.2) implies svy,+1 < Yn, for every n € N. We can use now
inequality (5.1) and that F' is strictly increasing to obtain for every n € N

T+ F(smm41) < F((a+b+se)yn + (¢ + s€)vni1)
< Fla+b+se)y, + (c+e)ym)
< F(7n).

In the other case, when a + b+ c+ (s + 1)f < 1, we obtain the same inequality
analogously, if we start with = 2,11 and y = z,, in condition (FgR).

It follows that 7 + F(synt+1) < F(vn) for every n € N in either case. We can
now use the technique presented in the proof of Theorem 3.2 to prove that (z,)nen
is a Cauchy sequence. Thus, by completeness of X, there exists x* € X such that
lim,, —yoo T, = x*.

Let us prove that z* is a fixed point of 7. Assume that T'z* £ x*.

If Tz, = Tx* for infinitely many values of n then there exists a subsequence
(Zn, ) ken of (n)nen that takes the constant values 2* for all k € N, hence it converges
to Ta*. In this case, the uniqueness of the limit of the sequence (x,)nen implies
Tx* =x*.

In the other case, when there are only finitely many values of n € N for which
Tx, = x*, there exists an ng € N such that for all n > ng we have Tx,, # Tz*. In
this case we can write the following chain of inequalities, for every n > ng:

d(z*, Tz*) <s[d(z*, zpy1) + d(Txy, Tz")]
<s-d(x*,zpy1) +a-d(xn, %)+ b d(x,, Ty)
+e-d(a, Tx*)+e-d(xy, Tax™) + f-d@*, 2nt1),
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where we used the relaxed triangle inequality, condition (Fgyr) with z = z,,, y = z*
and the monotonicity of F.
If we pass to limsup in the inequality above and use Lemma 2.2, we obtain

(1 =co)d(z*,Tz") < se-d(z*,Tz"). (5.3)
Similarly, if we choose z = 2* and y = z,, in (FyRr), we obtain
(1 =0b)d(z*,Tz™) < sf -d(z*,Tx"). (5.4)

Depending on whether a +b+c+(1+s)e <1lora+b+c+(1+4s)f < 1 holds, either
inequality (5.3) or inequality (5.4) is a contradiction, hence Ta* = z*.

In the last step we prove that T' cannot have more than one fixed point when
inequality a + e+ f < s holds as well. Let us assume that 2* and y* are two different
fixed points of T'. Since Tz* = z* # y* = Ty*, we have

s-d(x*,y*) =s-d(Tz*, Ty")
<ad(z*,y*) +bd(z*, Tx*) + cd(y*, Ty") + ed(z*, Ty*) + fd(y*, Tx™)
=(a+e+ fld(z*,y*) <s-d(z*,y"),

which is a contradiction, and thus T' cannot have more than one fixed points.

Remark 5.3. Theorem 5.2 generalizes also a Hardy-Rogers type fixed point theorem
that appeared in [16] as Corollary 2.5 to the b-metric case. We also can omit the
continuity assumptions on T or F.
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