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1. Introduction

Banach’s fixed point theorem is an important result in the theory of metric spaces.
Over the years, various generalizations of it appeared in the literature, following a
number of different lines of thought. One such idea was to relax the conditions
imposed on the space itself, while another possibility was to generalize the contractive
condition.

A well-known generalization of metric spaces are b-metric spaces introduced by
Czerwik in [9], while the contractive condition in Banach’s theorem has been weakened

in several ways: see for example the results of Ćirić, Hardy-Rogers, Reich, Suzuki in
[6, 10, 12, 14] and the recent works of Wardowski in [15, 16].

In the last two decades a number of generalizations appeared, combining the two
ideas mentioned above. For example, Ćirić-, Hardy-Rogers-, Suzuki-type contractions
and fixed point theorems for them in b-metric spaces were discussed in [2, 3, 4, 5].

So far in the literature there are only a few examples considering Wardowski’s F -
contractions in b-metric spaces (see [1] and [7]). Our goal in this paper is to develop
fixed point theory in this direction: we study F -contractions and their generalizations
in the context of b-metric spaces. In order to achieve this, we use Wardowski’s paper
[15] as a starting point. In that paper the author imposed three general conditions
on functions F and one extra contractive condition concerning the operator. In our
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work we prove fixed point theorems for different notions of F -contractions in b-metric
spaces, without using Wardowski’s condition (F2).

The results we present improve and generalize some of the results in the literature
on F -contractions. The technique used in the proofs also points out that Wardowski’s
original (F2) condition may be omitted from the currently used definitions of the
different types of F -contractions.

2. Preliminaries

First we recall b-metric spaces and those of their properties which we are going to
use later.

Definition 2.1. Let X be a non-empty set and s ≥ 1 a real number. A function
d : X × X → [0,∞) is called a b-metric if the following conditions are satisfied, for
every x, y, z ∈ X:

(B1) d(x, y) = 0 if and only if x = y;
(B2) d(x, y) = d(y, x);
(B3) d(x, y) ≤ s [d(x, z) + d(z, y)].

In this case (X, d) is called a b-metric space with constant s ≥ 1.

Convergent sequences and Cauchy sequences in b-metric spaces, continuous oper-
ators on b-metric spaces, etc. are defined the same way as in metric spaces. The
limit of a convergent sequence is unique and every convergent sequence is a Cauchy
sequence. A b-metric space is called complete if every Cauchy sequence is convergent.
Czerwik in [9] generalized Banach’s fixed point theorem to the b-metric case.

Examples and more details on b-metric spaces can also be found in the articles
[2, 3, 4] and in the book [11].

One of the main difficulties when proving fixed point theorems in b-metric spaces
arises from the fact that the distance functional d : X × X → [0,∞) is usually not
continuous. The following lemma will help to deal with this problem.

Lemma 2.2. (see also [11]) If (X, d) is a b-metric space with constant s ≥ 1, x∗, y∗ ∈
X and (xn)n∈N is a convergent sequence in X with limn→∞ xn = x∗ then

1

s
d(x∗, y∗) ≤ lim inf

n→∞
d(xn, y

∗) ≤ lim sup
n→∞

d(xn, y
∗) ≤ sd(x∗, y∗).

Proof. If we apply twice the relaxed triangle inequality (B3), we get for every n ∈ N
1

s
d(x∗, y∗)− d(xn, x

∗) ≤ d(xn, y
∗) ≤ sd(x∗, y∗) + sd(xn, x

∗).

If we take lim inf on the left-hand side inequality and lim sup on the right-hand side
inequality, we obtain the desired property.

Our results are based on the following Fs,τ class of functions, defined in two steps.

Definition 2.3. A function F : (0,∞)→ R belongs to F if it satisfies the following
conditions:
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(F1) F is strictly increasing;
(F2) there exists k ∈ (0, 1) such that limx→0+ xkF (x) = 0.

Note that we omitted Wardowski’s (F2) condition from the definition. Explicitly,
we will not require that

(WF2) if (αn)n∈N is a sequence of positive real numbers then limn→∞ αn = 0 if and
only if limn→∞ F (αn) = −∞.

The reason for this is that Lemma 2.4 stated below will suffice in the proofs.

Lemma 2.4. If F : (0,∞)→ R is an increasing function and (αn)n∈N ⊂ (0,+∞) is
a decreasing sequence such that limn→∞ F (αn) = −∞ then limn→∞ αn = 0.
Proof. Since (αn)n∈N is decreasing and bounded below, it is also convergent. Let
limn→∞ αn = a ≥ 0 and suppose that a > 0. Since αn ≥ a and F is increasing,
it follows that F (a) ≤ F (αn), for all n ≥ 0. If we let n → ∞ then we obtain
F (a) ≤ limn→∞ F (αn) = −∞ which is a contradiction, hence a = 0.

The well-known examples of functions F ∈ F are lnx, lnx+x, ln(x2 +x) and − 1√
x

(see [15]). The functions given in the following two examples will belong to F in our
sense, but not in Wardowski’ sense.

Example 2.5. Let a > 0 and F : (0,∞) → R, F (x) = xa. It is easy to see that F
satisfies both (F1) and (F2). However, F does not satisfy Wardowski’s (F2). Indeed,
if αn = 1

n , for every n ∈ N∗ then limn→∞ αn = 0 and limn→∞ F (αn) = 0 6= −∞.

Example 2.6. Let F : (0,∞)→ R, F (x) = ln(x+1). Clearly F is strictly increasing,
and since limx→0+

√
x ln(x + 1) = 0, (F2) is satisfied for k = 1

2 . On the other hand,

if αn = 1
n , for every n ∈ N∗ then limn→∞ αn = 0 and limn→∞ F (αn) = 0.

When we pass from metric spaces to b-metric spaces, we will need an extra com-
patibility condition. The weakest possible such condition is the one that appears in
the following definition:

Definition 2.7. Let s ≥ 1 and τ > 0. We say that F ∈ F belongs to Fs,τ if it also
satisfies

(Fsτ) if inf F = −∞ and x, y, z ∈ (0,∞) are such that τ + F (sx) ≤ F (y) and
τ + F (sy) ≤ F (z) then

τ + F (s2x) ≤ F (sy).

We make two important remarks. First, if inf F 6= −∞ then (Fsτ) is satisfied, for
all s ≥ 1 and τ > 0. Second, when s = 1 and τ > 0 is arbitrary, condition (Fsτ) is a
tautology, hence in this case the family Fs,τ is F .

In [7] the authors introduce the following condition ((F4) in Definition 3.1):

(F’sτ) if (αn)n∈N ⊂ (0,∞) is a sequence such that τ + F (sαn) ≤ F (αn−1), for all
n ∈ N and for some τ > 0, then τ + F (snαn) ≤ F (sn−1αn−1), for all n ∈ N∗.
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They use this condition to prove a fixed point theorem for multivalued F -contractions
when F is continuous from the right (Theorem 3.4 in [7]). The equivalence of these
two conditions is proven in the following proposition.

Proposition 2.8. If F is increasing then (Fsτ) is equivalent to (F’sτ).
Proof. We distinguish two cases. If inf F 6= −∞ then (Fsτ) is trivial. On the other
hand, (F’sτ) also holds, since in this case there exists no sequence (αn) of positive
real numbers such that τ +F (sαn) ≤ F (αn−1), for all n ∈ N∗. Indeed if αn was such
a sequence then

τ + F (αn) ≤ τ + F (sαn) ≤ F (αn−1), ∀n ∈ N∗ (2.1)

would hold. By induction, inequality (2.1) implies

F (αn) ≤ F (α0)− nτ, ∀n ∈ N,

hence inf F = −∞, which is a contradiction.
In the case when inf F = −∞, first we prove that (Fsτ) implies (F’sτ). Suppose

that (αn)n∈N is a sequence of positive numbers such that τ +F (sαn) ≤ F (αn−1), for
all n ∈ N∗. We proceed by induction to prove that

τ + F (snαn) ≤ F (sn−1αn−1), ∀n ∈ N∗. (2.2)

For n = 1 the statement is trivial. Suppose that (2.2) holds for a fixed n ∈ N∗ and
let us prove it for n + 1. First we choose x = αn+1, y = αn and z = sn−1αn−1. We
can use now (Fsτ), because

τ + F (sy) = τ + F (sαn) ≤ τ + F (snαn) ≤ F (sn−1αn−1) = F (z),

hence τ + F (s2αn+1) ≤ F (sαn). Next we choose x = sαn+1, y = sαn, z = sn−1αn−1

and prove similarly that τ + F (s3αn+1) ≤ F (s2αn). In n − 2 more steps we get the
desired inequality. It follows that (Fsτ) implies (F’sτ).

Finally, we prove that if inf F = −∞ then (F’sτ) implies (Fsτ). Let x, y, z ∈ (0,∞)
be such that τ + F (sx) ≤ F (y) and τ + F (sy) ≤ F (z). We are going to construct a
sequence (αn)n∈N that satisfies the condition imposed in (F’sτ). Let α0 = z, α1 = y
and α2 = x. To give the rest of the terms of (αn), we observe that since inf F = −∞,
we can pick an αn > 0 such that τ + F (sαn) ≤ F (αn−1), for every n ≥ 3. We apply
now (F’sτ) for this sequence (αn)n∈N: when n = 2 we obtain τ + F (s2x) ≤ F (sy).

Remark 2.9. In practice it is easier to check (Fsτ) than (F’sτ). Except of the
function −1√

x
, all the other examples of functions belonging to F given before also

belong to Fs,τ , for any s ≥ 1 and τ > 0. We prove this for F : (0,∞) → R, F (x) =
lnx+ x. It is enough to prove that for any x, y ∈ (0,∞) such that τ +F (sx) ≤ F (y),
the inequality τ + F (s2x) ≤ F (sy) is also satisfied.

Thus we know that τ + ln(sx) + sx ≤ ln y + y. This inequality is equivalent to

ln
sx

y
+ sx− y ≤ −τ.
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Since F is increasing, sx ≤ y follows from the inequality imposed on x and y. Hence
s2x− sy ≤ sx− y ≤ 0 and

ln
s2x

sy
+ s2x− sy ≤ ln

sx

y
+ sx− y ≤ −τ,

thus τ + F (s2x) ≤ F (sy) holds as well.

3. A fixed point theorem for F -contractions in b-metric spaces

In this section we define F -contractions in b-metric spaces and we prove a fixed
point theorem for them. We also investigate the well-posedness of the fixed point
problem of F -contractions in b-metric spaces (for more details and further references
on the well-posedness of fixed point problems see [13]).

Definition 3.1. Let (X, d) be a b-metric space with constant s ≥ 1 and T : X → X
an operator. If there exist τ > 0 and F ∈ Fs,τ such that for all x, y ∈ X the inequality
d (Tx, Ty) > 0 implies

(F) τ + F (s · d (Tx, Ty)) ≤ F (d(x, y)),

then T is called an F -contraction.

Theorem 3.2. If (X, d) is a complete b-metric space with constant s ≥ 1 and
T : X → X is an F -contraction for some F ∈ Fs,τ then T has a unique fixed
point x∗. Furthermore, for any x0 ∈ X the sequence xn+1 = Txn is convergent
and limn→∞ xn = x∗.
Proof. First we prove that T has at most one fixed point. Suppose that x∗ and
y∗ are two different fixed points of T , thus Tx∗ = x∗ 6= y∗ = Ty∗. It follows that
d (Tx∗, Ty∗) = d (x∗, y∗) > 0, hence we can apply (F) to get

τ + F (s · d (Tx∗, T y∗)) ≤ F (d(x∗, y∗)) ≤ F (s · d(x∗, y∗)) = F (s · d (Tx∗, Ty∗)) .

This inequality implies τ ≤ 0, which is a contradiction, hence T can have at most one
fixed point.

Next we prove the existence of a fixed point. Let x0 ∈ X be arbitrary. We construct
the sequence xn+1 = Txn and we denote by γn = d(xn+1, xn) the consecutive dis-
tances. If there exists n0 ∈ N such that xn0+1 = xn0 then we have Txn0 = xn0 . Thus
x∗ = xn0 is a fixed point of T and the proof is finished. In the case when xn+1 6= xn,
∀n ∈ N, we have γn > 0, for every n ∈ N. Hence (F) implies F (sγn+1) ≤ F (γn)− τ ,
for every n ∈ N. By Proposition 2.8, we get

F (sn+1γn+1) ≤ F (snγn)− τ, ∀n ∈ N, (3.1)

and hence

F (snγn) ≤ F (sn−1γn−1)− τ ≤ F (sn−2γn−2)− 2τ ≤ · · · ≤ F (γ0)− nτ, ∀n ∈ N.
It follows that

F (snγn) ≤ F (γ0)− nτ, ∀n ∈ N. (3.2)
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Since limn→∞ F (γ0)−nτ = −∞, inequality (3.2) implies limn→∞ F (snγn) = −∞.
On the other hand, by inequality (3.1), the sequence (snγn)n∈N is decreasing and
we can apply Lemma 2.4 to get limn→∞ snγn = 0. According to (F2), there exists
a k ∈ (0, 1) such that limn→∞(snγn)kF (snγn) = 0. Multiplying (3.2) by (snγn)k

results

0 ≤ n(snγn)kτ + (snγn)kF (snγn) ≤ (snγn)kF (γ0), ∀n ∈ N.
By the above, when n→∞, we obtain limn→∞ n(snγn)k = 0. This inequality implies
that there exists n1 ∈ N such that n(snγn)k ≤ 1, for all n ≥ n1. Thus

snγn ≤
1

n
1
k

, ∀n ≥ n1. (3.3)

Next we prove that (xn)n∈N is a Cauchy sequence. For all n ∈ N and p ∈ N∗ the
following chain of inequalities holds:

d(xn+p, xn) ≤ sd(xn+p, xn+1) + sγn

≤ s2d(xn+p, xn+2) + s2γn+1 + sγn

≤ s3d(xn+p, xn+3) + s3γn+2 + s2γn+1 + sγn

...

≤ sp−1γn+p−1 + sp−1γn+p−2 + · · ·+ s2γn+1 + sγn

≤ spγn+p−1 + sp−1γn+p−2 + · · ·+ s2γn+1 + sγn

=
1

sn−1

(
sn+p−1γn+p−1 + sn+p−2γn+p−2 + · · ·+ sn+1γn+1 + snγn

)
=

1

sn−1

n+p−1∑
i=n

siγi ≤
1

sn−1

∞∑
i=n

siγi.

Hence, for all n ≥ n1 and p ∈ N∗ inequality (3.3) implies

d(xn+p, xn) ≤ 1

sn−1

∞∑
i=n

siγi ≤
1

sn−1

∞∑
i=n

1

i
1
k

→ 0,

thus (xn)n∈N is a Cauchy sequence. Since (X, d) is complete, there exists x∗ ∈ X
such that limn→∞ xn = x∗.

On the other hand, since τ + F (d(Tx, Ty)) ≤ τ + F (s · d(Tx, Ty)) ≤ F (d(x, y))
holds for all such x, y ∈ X for which d(Tx, Ty) > 0, and because F is increasing,

d(Tx, Ty) ≤ d(x, y), ∀x, y ∈ X.
This implies

d(xn+1, Tx
∗) ≤ d(xn, x

∗), ∀n ≥ 0.

It follows by Lemma 2.2 that

0 ≤ s−1d(x∗, Tx∗) ≤ lim inf
n→∞

d(xn, Tx
∗) ≤ lim sup

n→∞
d(xn, Tx

∗) ≤ lim sup
n→∞

d(xn, x
∗) = 0,



F -CONTRACTIONS IN COMPLETE b-METRIC SPACES 327

hence x∗ = Tx∗. We proved that the operator T has a unique fixed point and for
every x0 ∈ X the sequence xn+1 = Txn converges to this fixed point, thus the proof
is finished.

The following example illustrates a situation when Banach’s fixed point theorem
for complete b-metric spaces cannot be applied, while the conditions of Theorem 3.2
are satisfied.

Example 3.3. Let rn = 2
n
2 n, for every n ∈ N, X = {rn | n ∈ N} and define the

functional d : X×X → [0,∞), d(x, y) = (x−y)2. It is easy to check that (X, d, s = 2)
is a complete b-metric space, but it is not a metric space. Define T : X → X by setting
T (r0) = r0 and T (rn) = rn−1, for every n ≥ 1. We are going to prove that there
exists a τ > 0 such that T is an F -contraction for F : (0,∞)→ R, F (x) = x, while T
is not a contraction in the b-metric sense. Indeed, since

lim
n→∞

2d(Trn, T r0)

d(rn, r0)
= lim
n→∞

2(rn−1 − r0)2

(rn − r0)2
= lim
n→∞

2
(

2
n−1
2 (n− 1)

)2

(
2

n
2 n
)2 = 1,

thus Banach’s fixed point theorem for b-metric spaces cannot be applied for T .
Next we prove that the conditions imposed on T in Theorem 3.2 are satisfied.

Condition (F) translates to

(F) for every x, y ∈ X such that Tx 6= Ty, we have

2d(Tx, Ty)− d(x, y) ≤ −τ.

We prove this in two steps. First, for every n ≥ 2

2d(Trn, T r0)− d(rn, r0) = 2
(

2
n−1
2 (n− 1)

)2

−
(
2

n
2 n
)2

= 2n(1− 2n)

≤ −1.

Second, for every n, k ∈ N∗ we have

2d(Trn+k, T rn)− d(rn+k, rn) =

=
(

2
n+k

2 (n+ k − 1)− 2
n
2 (n− 1)

)2

−
(

2
n+k

2 (n+ k)− 2
n
2 n
)2

=
(

2
n
2 − 2

n+k
2

)(
2

n+k
2 (2n+ 2k − 1)− 2

n
2 (2n− 1)

)
=
(

1− 2
k
2

)
· 2n

(
2

k
2 (2n+ 2k − 1)− (2n− 1)

)
≤ −1.

By the above, τ = 1 satisfies all the required properties and thus T is an F -contrac-
tion.

Theorem 3.4. If (X, d) is a complete b-metric space with constant s ≥ 1 and T : X →
X is an F -contraction for some differentiable F ∈ Fs,τ with limx→∞ F ′(x) <∞, then
the fixed point problem for T is well-posed: i.e. for any sequence (xn)n∈N that satisfies



328 A. LUKÁCS AND S. KAJÁNTÓ

limn→∞ d(xn, Txn) = 0, we have limn→∞ d(xn, x
∗) = 0, where x∗ denotes the unique

fixed point of T .
Proof. In the most general case, the sequence (xn)n∈N can be decomposed into two
subsequences (xn) = (ynk

)k∈N ∪ (znk
)k∈N, where for any k ∈ N we have Tynk

= x∗

and Tznk
6= x∗. Thus it is enough to prove the following two assertions:

(i) if (xn)n∈N is such that for all n ∈ N Txn = x∗, then limn→∞ d(xn, x
∗) = 0;

(ii) if (xn)n∈N is such that for all n ∈ N Txn 6= x∗, then limn→∞ d(xn, x
∗) = 0.

The first case is trivial, since d(xn, x
∗) = d(xn, Txn), and limn→∞ d(xn, Txn) = 0.

We prove (ii). If T (xn) 6= x∗ for any n ∈ N then we can apply (F) to get

F (d(xn, x
∗))− F (sd(Txn, x

∗)) ≥ τ.
Since d(xn, x

∗) > sd(Txn, x
∗), we obtain

F (d(xn, x
∗))− F (sd(Txn, x

∗))

d(xn, x∗)− sd(Txn, x∗)
≥ τ

d(xn, x∗)− sd(Txn, x∗)
.

It follows that there exists a cn between d(xn, x
∗) and sd(Txn, x

∗) such that

F ′(cn) =
F (d(xn, x

∗))− F (sd(Txn, x
∗))

d(xn, x∗)− sd(Txn, x∗)
≥ τ

d(xn, x∗)− sd(Txn, x∗)
.

The last inequality implies

0 <
τ

F ′(cn)
≤ d(xn, x

∗)− sd(Txn, x
∗) ≤ sd(xn, Txn).

Since limn→∞ d(xn, Txn) = 0, it follows that limn→∞ F ′(cn) =∞. By the condition
imposed on F ′, this can happen only if limn→∞ cn = 0. Hence limn→∞ sd(Txn, x

∗) =
0, which implies limn→∞ d(xn, x

∗) = 0.

4. A fixed point theorem for F -weak contractions in b-metric spaces

In order to combine Ćirić-type fixed point theorems with the notion of F -
contractions, Wardowski and Dung introduced in [16] F -weak contractions and proved
a fixed point theorem for them. This notion is a natural generalization of classical
Ćirić-type contractions, in the direction of F -contractions. Our goal in this section
is to extend the notion of F -weak contractions to b-metric spaces and prove a fixed
point theorem for them.

Definition 4.1. Let (X, d) be a b-metric space with constant s ≥ 1 and T : X → X
an operator. If there exists τ > 0 and F ∈ Fs,τ such that for all x, y ∈ X the
inequality d (Tx, Ty) > 0 implies

(Fw) τ+F (s · d (Tx, Ty)) ≤ F
(

max
{
d(x, y), d(x, Tx), d(y, Ty), d(x,Ty)+d(y,Tx)

2s

})
,

then T is called an F -weak contraction.

Theorem 4.2. Let (X, d) be a complete b-metric space with constant s ≥ 1 and
T : X → X an F -weak contraction for some F ∈ Fs,τ . Then T has at most one fixed
point and for any x0 ∈ X the sequence xn+1 = Txn is convergent in X. Furthermore,
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if either T or F is continuous then T has a unique fixed point x∗ and for all x0 ∈ X
the sequence xn+1 = Txn converges to x∗.
Proof. We prove first that T has at most one fixed point. Suppose that x∗ and
y∗ are two different fixed points of T , thus Tx∗ = x∗ 6= y∗ = Ty∗. It follows that
d (Tx∗, T y∗) = d (x∗, y∗) > 0, hence we can apply (Fw) to get

τ + F (s · d (Tx∗, T y∗)) ≤

≤ F
(

max

{
d(x∗, y∗), d(x∗, Tx∗), d(y∗, T y∗),

d(x∗, T y∗) + d(y∗, Tx∗)

2s

})
≤ F

(
max

{
d(x∗, y∗), d(x∗, x∗), d(y∗, y∗),

d(x∗, y∗) + d(y∗, x∗)

2s

})
= F (d(x∗, y∗)) ≤ F (s · d(x∗, y∗))

= F (s · d (Tx∗, T y∗)) .

The last inequality implies τ ≤ 0, which is a contradiction. Hence T has at most
one fixed point.

Next we prove the existence of a fixed point. Let x0 ∈ X. Define the sequence
xn+1 = Txn and denote by γn = d(xn+1, xn) the consecutive distances. If there exists
n0 ∈ N such that xn0+1 = xn0

then Txn0
= xn0

, and thus x∗ = xn0
is a fixed point

of T , finishing the proof. We can suppose now that xn+1 6= xn, for all n ∈ N, hence
we can apply (Fw) for any n ∈ N to get

F (sγn) ≤ F
(

max

{
γn, γn, γn−1,

d(xn−1, xn+1)

2s

})
− τ

≤ F
(

max

{
γn, γn−1,

sγn + sγn−1

2s

})
− τ

= F (max {γn, γn−1})− τ.
If there exists n ∈ N such that max {γn, γn−1} = γn then

F (sγn) ≤ F (γn)− τ < F (γn) ≤ F (sγn),

which is a contradiction. We conclude that max {γn, γn−1} = γn−1, for all n ∈ N,
and thus we have

F (sγn) ≤ F (γn−1)− τ, ∀n ∈ N.
It follows that we can use the argument presented in the proof of Theorem 3.2 here
as well to obtain first

lim
n→∞

F (snγn) ≤ F (γ0)− nτ ≤ lim
n→∞

F (γ0)− nτ = −∞,

then limn→∞ snγn = 0 and finally, by condition (F2), that (xn)n∈N is a Cauchy-
sequence. Since (X, d) is complete, there exists x∗ ∈ X such that limn→∞ xn = x∗.

It remains to prove that x∗ is a fixed point of T if either T or F is continuous.
First, if T is continuous then T (x∗) = limn→∞ T (xn) = limn→∞ xn+1 = x∗, hence x∗

is indeed a fixed point of T . Second, if F is continuous we distinguish two cases. If
there exists a subsequence (xni)i∈N ⊂ (xn)n∈N such that xni = Tx∗, for all i ∈ N then
x∗ = limi→∞ xni = limi→∞ Tx∗ = Tx∗. If there is no such subsequence of (xn)n∈N
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then there exists an n0 ∈ N such that for every n ≥ n0 we have d(Txn, Tx
∗) > 0. We

can apply (Fw) to get the following inequality, for every n ≥ n0:

τ + F (s · d (xn+1, Tx
∗)) ≤

≤ F
(

max

{
d(xn, x

∗), γn, d(x∗, Tx∗),
d(xn, Tx

∗) + d(x∗, xn+1)

2s

})
. (4.1)

Aiming for a contradiction, we suppose that a = d(x∗, Tx∗) > 0 and we denote
βn = d(xn, x

∗). Since limn→∞ xn = x∗, there exists an n1 ∈ N such that for every
n ≥ n1 both βn <

a
2 and γn <

a
2 hold. As a consequence, for every n ≥ n1

max

{
βn, γn, a,

d(xn, Tx
∗) + βn+1

2s

}
≤ max

{
βn, γn, a,

sβn + sa+ βn+1

2s

}
≤ max

{
βn, γn, a,

sa2 + sa+ a
2

2s

}
= a. (4.2)

Since F is increasing, inequalities (4.1) and (4.2) for every n ≥ max{n0, n1} imply

τ + F (s · d (xn+1, Tx
∗)) ≤ F (d(x∗, Tx∗)). (4.3)

On the other hand, Lemma 2.2 and the continuity and monotonicity of F give

τ +F (d(x∗, Tx∗)) ≤ τ +F (s · lim inf
n→∞

d(xn, Tx
∗)) ≤ τ +lim inf

n→∞
F (s ·d(xn, Tx

∗)). (4.4)

If we pass to lim inf in (4.3) and then apply (4.4), we get

τ + F (d(x∗, Tx∗)) ≤ F (d(x∗, Tx∗)),

which contradicts τ > 0. Hence we proved that 0 = a = d(x∗, Tx∗), and thus x∗ is a
fixed point of T .

5. F-contractions of Hardy-Rogers type

In this section we prove a Hardy-Rogers type fixed point theorem for F -weak
contractions in b-metric spaces, which generalizes Theorem 3.1 in [8] to the b-metric
case.

Definition 5.1. Let (X, d) be a b-metric space with constant s ≥ 1, a, b, c, e, f ≥ 0
real numbers and T : X → X an operator. If there exist τ > 0 and F ∈ Fs such that
for all x, y ∈ X the inequality d (Tx, Ty) > 0 implies

(FHR) τ + F (s · d (Tx, Ty)) ≤
≤ F (ad(x, y) + bd(x, Tx) + cd(y, Ty) + ed(x, Ty) + fd(y, Tx))

then T is called an F -weak contraction of Hardy-Rogers type.

Theorem 5.2. Suppose that (X, d) is a complete b-metric space with constant s ≥ 1
and T : X → X is an F -weak contraction of Hardy-Rogers type. If either a+ b+ c+
(s + 1)e < 1 or a + b + c + (s + 1)f < 1 holds then for every x0 ∈ X the sequence
xn+1 = Txn converges to a fixed point of T . Moreover, if a+ e+ f < s holds as well
then T has exactly one fixed point.



F -CONTRACTIONS IN COMPLETE b-METRIC SPACES 331

Proof. Let x0 ∈ X and define xn+1 = Txn, for every n ∈ N. As before, denote
γn = d(xn+1, xn). If there exists n0 ∈ N such that xn0+1 = xn0

then xn0
is a fixed

point of T and xn = xn0
, for every n ≥ n0. On the other hand, when xn+1 6= xn, for

all n ∈ N, we can apply (FHR) for x = xn and y = xn+1, the properties of F and the
relaxed triangle inequality to obtain the following chain of inequalities:

τ + F (sγn+1) ≤ F (aγn + bγn + cγn+1 + e · d(xn, xn+2))

≤ F (aγn + bγn + cγn+1 + seγn + seγn+1)

= F ((a+ b+ se)γn + (c+ se)γn+1) . (5.1)

Since F is strictly increasing, it follows that

sγn+1 < (a+ b+ se)γn + (c+ se)γn+1,

and thus for every n ≥ n0 we have(
1− c

s
− e
)
sγn+1 < (a+ b+ se)γn. (5.2)

In the case when a+ b+ c+ (s+ 1)e < 1 holds, we obtain

1− c

s
− e ≥ 1− c− e > a+ b+ se ≥ 0

and hence inequality (5.2) implies sγn+1 < γn, for every n ∈ N. We can use now
inequality (5.1) and that F is strictly increasing to obtain for every n ∈ N

τ + F (sγn+1) ≤ F ((a+ b+ se)γn + (c+ se)γn+1)

< F (a+ b+ se)γn + (c+ e)γn)

< F (γn).

In the other case, when a + b + c + (s + 1)f < 1, we obtain the same inequality
analogously, if we start with x = xn+1 and y = xn in condition (FHR).

It follows that τ + F (sγn+1) < F (γn) for every n ∈ N in either case. We can
now use the technique presented in the proof of Theorem 3.2 to prove that (xn)n∈N
is a Cauchy sequence. Thus, by completeness of X, there exists x∗ ∈ X such that
limn→∞ xn = x∗.

Let us prove that x∗ is a fixed point of T . Assume that Tx∗ 6= x∗.
If Txn = Tx∗ for infinitely many values of n then there exists a subsequence

(xnk
)k∈N of (xn)n∈N that takes the constant values x∗ for all k ∈ N, hence it converges

to Tx∗. In this case, the uniqueness of the limit of the sequence (xn)n∈N implies
Tx∗ = x∗.

In the other case, when there are only finitely many values of n ∈ N for which
Txn = x∗, there exists an n0 ∈ N such that for all n ≥ n0 we have Txn 6= Tx∗. In
this case we can write the following chain of inequalities, for every n ≥ n0:

d(x∗, Tx∗) ≤s[d(x∗, xn+1) + d(Txn, Tx
∗)]

≤s · d(x∗, xn+1) + a · d(xn, x
∗) + b · d(xn, Txn)

+c · d(x∗, Tx∗) + e · d(xn, Tx
∗) + f · d(x∗, xn+1),
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where we used the relaxed triangle inequality, condition (FHR) with x = xn, y = x∗

and the monotonicity of F .
If we pass to lim sup in the inequality above and use Lemma 2.2, we obtain

(1− c)d(x∗, Tx∗) ≤ se · d(x∗, Tx∗). (5.3)

Similarly, if we choose x = x∗ and y = xn in (FHR), we obtain

(1− b)d(x∗, Tx∗) ≤ sf · d(x∗, Tx∗). (5.4)

Depending on whether a+ b+ c+ (1 + s)e < 1 or a+ b+ c+ (1 + s)f < 1 holds, either
inequality (5.3) or inequality (5.4) is a contradiction, hence Tx∗ = x∗.

In the last step we prove that T cannot have more than one fixed point when
inequality a+ e+ f < s holds as well. Let us assume that x∗ and y∗ are two different
fixed points of T . Since Tx∗ = x∗ 6= y∗ = Ty∗, we have

s · d(x∗, y∗) = s · d(Tx∗, T y∗)

< ad(x∗, y∗) + bd(x∗, Tx∗) + cd(y∗, T y∗) + ed(x∗, T y∗) + fd(y∗, Tx∗)

= (a+ e+ f)d(x∗, y∗) < s · d(x∗, y∗),

which is a contradiction, and thus T cannot have more than one fixed points.

Remark 5.3. Theorem 5.2 generalizes also a Hardy-Rogers type fixed point theorem
that appeared in [16] as Corollary 2.5 to the b-metric case. We also can omit the
continuity assumptions on T or F .
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