GENERAL COMPOSITE ITERATIVE METHODS FOR GENERAL SYSTEMS OF VARIATIONAL INEQUALITIES

A. LATIF*, A.S.M. ALOFI**, A.E. AL-MAZROOEI*** AND J.C. YAO****
*Department of Mathematics, King Abdulaziz University P.O. Box 80203, Jeddah 21589, Saudi Arabia
E-mail: alatif@kau.edu.sa
** Department of Mathematics, King Abdulaziz University P.O. Box 80203, Jeddah 21589, Saudi Arabia
E-mail: aalofi1@kau.edu.sa
*** Department of Mathematics, University of Jeddah P.O.Box 80327, Jeddah 21589, Saudi Arabia
E-mail: aealmazrooei@kau.edu.sa
${ }^{* * * *, 1}$ Center for General Education, China Medical University
Taichung 40402, Taiwan; and
Department of Mathematics, King Abdulaziz University P.O. Box 80203, Jeddah 21589, Saudi Arabia
E-mail: yaojc@mail.cmu.edu.tw

Abstract

In this paper, we introduce a general composite implicit scheme and a general composite explicit scheme for finding a solution of general system of variational inequalities in a real Hilbert space. We establish the strong convergence of these two general composite schemes to a solution of the general system of variational inequalities which is the unique solution of some variational inequality. Applications to variational inequalities are given. Key Words and Phrases: General composite iterative method, general system of variational inequalities, inverse-strongly monotone mapping, strictly pseudocontractive mapping, nonexpansive mapping, fixed point. 2010 Mathematics Subject Classification: 49J30, 47H09, 47J20, 49M05.

1. Introduction

Let H be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and induced norm $\|\cdot\|, C$ be a nonempty closed convex subset of H.

Let $A: C \rightarrow H$ be a nonlinear mapping on C. The classical variational inequality problem (VIP) [15] is to find $x^{*} \in C$ such that

$$
\begin{equation*}
\left\langle A x^{*}, x-x^{*}\right\rangle \geq 0, \quad \forall x \in C . \tag{1.1}
\end{equation*}
$$

[^0]The solution set of VIP (1.1) is denoted by $\mathrm{VI}(C, F)$. The VIP (1.1) has been extensively studied both in theory and algorithms. See, e.g., [21], [16], [19], [3], [4], [13] and the references therein.

Let $F_{1}, F_{2}: C \rightarrow H$ be two mappings. We consider the following general system of variational inequalities (GSVI) of finding $\left(x^{*}, y^{*}\right) \in C \times C$ such that

$$
\begin{cases}\left\langle\nu_{1} F_{1} y^{*}+x^{*}-y^{*}, x-x^{*}\right\rangle \geq 0, & \forall x \in C, \tag{1.2}\\ \left\langle\nu_{2} F_{2} x^{*}+y^{*}-x^{*}, x-y^{*}\right\rangle \geq 0, & \forall x \in C,\end{cases}
$$

where $\nu_{1}>0$ and $\nu_{2}>0$ are two constants. The solution set of GSVI (1.2) is denoted by $\operatorname{GSVI}\left(C, F_{1}, F_{2}\right)$. Recently, many authors have been devoting the study of the GSVI (1.2); see e.g., [11], [24], [9], [7], [8], [2], [5], [10], [20], [14], [1], [6] and the references therein.

In this paper, we introduce a general composite implicit scheme and a general composite explicit scheme for finding a solution of GSVI (1.2) in a real Hilbert space H. Further, we establish the strong convergence of these two general composite schemes to a solution of GSVI (1.2), which is also the unique solution of some variational inequality.

2. Preliminaries

We need the following notions and facts.
A mapping $F: C \rightarrow H$ is said to be
(i) L-Lipschitz if there exists a constant $L \geq 0$ such that

$$
\|F x-F y\| \leq L\|x-y\|, \quad \forall x, y \in C
$$

(ii) monotone if

$$
\langle F x-F y, x-y\rangle \geq 0, \quad \forall x, y \in C
$$

(iii) η-strongly monotone if there exists a constant $\eta>0$ such that

$$
\langle F x-F y, x-y\rangle \geq \eta\|x-y\|^{2}, \quad \forall x, y \in C
$$

(iv) α-inverse-strongly monotone if there exists a constant $\alpha>0$ such that

$$
\langle F x-F y, x-y\rangle \geq \alpha\|F x-F y\|^{2}, \quad \forall x, y \in C .
$$

It can be easily seen that if T is nonexpansive, then $I-T$ is monotone. It is also easy to see that the projection P_{C} is 1-ism.

On the other hand, it is obvious that if $F: C \rightarrow H$ is α-inverse-strongly monotone, then F is monotone and $\frac{1}{\alpha}$-Lipschitz continuous. Moreover, we also have that, for all $u, v \in C$ and $\lambda>0$,

$$
\begin{equation*}
\|(I-\lambda F) u-(I-\lambda F) v\|^{2} \leq\|u-v\|^{2}+\lambda(\lambda-2 \alpha)\|F u-F v\|^{2} . \tag{2.1}
\end{equation*}
$$

So, if $\lambda \leq 2 \alpha$, then $I-\lambda F$ is a nonexpansive mapping from C to H.
A mapping $T: C \rightarrow C$ is called k-strictly pseudocontractive (or a k-strict pseudocontraction) if there exists a constant $k \in[0,1)$ such that

$$
\|T x-T y\|^{2} \leq\|x-y\|^{2}+k\|(I-T) x-(I-T) y\|^{2}, \quad \forall x, y \in C .
$$

The mapping T is pseudocontractive if and only if

$$
\langle T x-T y, x-y\rangle \leq\|x-y\|^{2}, \quad \forall x, y \in C .
$$

T is strongly pseudocontractive if and only if there exists a constant $\lambda \in(0,1)$ such that

$$
\langle T x-T y, x-y\rangle \leq \lambda\|x-y\|^{2}, \quad \forall x, y \in C .
$$

The mapping T is also said to be pseudocontractive if $k=1$ and T is said to be strongly pseudocontractive if there exists a positive constant $\lambda \in(0,1)$ such that $T+(1-\lambda) I$ is pseudocontractive.

For any sequence $\left\{x_{n}\right\}$, we use $x_{n} \rightharpoonup x$ for weak convergence and $x_{n} \rightarrow x$ for strong converges. Moreover, we use $\omega_{w}\left(x_{n}\right)$ to denote the weak ω-limit set of the sequence $\left\{x_{n}\right\}$, i.e.,

$$
\omega_{w}\left(x_{n}\right):=\left\{x \in H: x_{n_{i}} \rightharpoonup x \text { for some subsequence }\left\{x_{n_{i}}\right\} \text { of }\left\{x_{n}\right\}\right\} .
$$

We denote by $\operatorname{Fix}(T)$ the set of fixed points of T and by \mathbf{R} the set of all real numbers. The metric (or nearest point) projection from H onto C is the mapping $P_{C}: H \rightarrow C$ which assigns to each point $x \in H$ the unique point $P_{C} x \in C$ satisfying the property

$$
\left\|x-P_{C} x\right\|=\inf _{y \in C}\|x-y\|=: d(x, C) .
$$

The following properties of projections are useful for our results.
Proposition 2.1. Given any $x \in H$ and $z \in C$. One has
(i) $z=P_{C} x \Leftrightarrow\langle x-z, y-z\rangle \leq 0, \forall y \in C$;
(ii) $z=P_{C} x \Leftrightarrow\|x-z\|^{2} \leq\|x-y\|^{2}-\|y-z\|^{2}, \forall y \in C$;
(iii) $\left\langle P_{C} x-P_{C} y, x-y\right\rangle \geq\left\|P_{C} x-P_{C} y\right\|^{2}, \forall y \in H$, which hence implies that P_{C} is nonexpansive and monotone.

A mapping $T: H \rightarrow H$ is said to be firmly nonexpansive if $2 T-I$ is nonexpansive, or equivalently, if T is 1-inverse strongly monotone (1-ism),

$$
\langle x-y, T x-T y\rangle \geq\|T x-T y\|^{2}, \quad \forall x, y \in H .
$$

Proposition 2.2. (see [9]) For given $\bar{x}, \bar{y} \in C,(\bar{x}, \bar{y})$ is a solution of the GSVI (1.2) if and only if \bar{x} is a fixed point of the mapping $G: C \rightarrow C$ defined by

$$
G x=P_{C}\left(I-\nu_{1} F_{1}\right) P_{C}\left(I-\nu_{2} F_{2}\right) x, \quad \forall x \in C,
$$

where $\bar{y}=P_{C}\left(I-\nu_{2} F_{2}\right) \bar{x}$.
In particular, if the mapping $F_{j}: C \rightarrow H$ is ζ_{j}-inverse-strongly monotone for $j=1,2$, then the mapping G is nonexpansive provided $\nu_{j} \in\left(0,2 \zeta_{j}\right]$ for $j=1,2$. We denote by Ξ the fixed point set of the mapping G.

We need some facts and tools in a real Hilbert space H which are listed as lemmas below.
Lemma 2.1. Let X be a real inner product space. Then there holds the following inequality

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, x+y\rangle, \quad \forall x, y \in X
$$

Lemma 2.2. Let H be a real Hilbert space. Then the following hold:
(a) $\|x-y\|^{2}=\|x\|^{2}-\|y\|^{2}-2\langle x-y, y\rangle$ for all $x, y \in H$;
(b) $\|\lambda x+\mu y\|^{2}=\lambda\|x\|^{2}+\mu\|y\|^{2}-\lambda \mu\|x-y\|^{2}$ for all $x, y \in H$ and $\lambda, \mu \in[0,1]$ with $\lambda+\mu=1$;
(c) If $\left\{x_{n}\right\}$ is a sequence in H such that $x_{n} \rightharpoonup x$, it follows that

$$
\limsup _{n \rightarrow \infty}\left\|x_{n}-y\right\|^{2}=\limsup _{n \rightarrow \infty}\left\|x_{n}-x\right\|^{2}+\|x-y\|^{2}, \quad \forall y \in H .
$$

It is clear that, in a real Hilbert space $H, T: C \rightarrow C$ is k-strictly pseudocontractive if and only if the following inequality holds:

$$
\langle T x-T y, x-y\rangle \leq\|x-y\|^{2}-\frac{1-k}{2}\|(I-T) x-(I-T) y\|^{2}, \quad \forall x, y \in C
$$

This immediately implies that if T is a k-strictly pseudocontractive mapping, then $I-T$ is $\frac{1-k}{2}$-inverse strongly monotone.
Lemma 2.3. (see [17, Proposition 2.1]) Let C be a nonempty closed convex subset of a real Hilbert space H and $T: C \rightarrow C$ be a mapping.
(i) If T is a k-strictly pseudocontractive mapping, then T satisfies the Lipschitzian condition

$$
\|T x-T y\| \leq \frac{1+k}{1-k}\|x-y\|, \quad \forall x, y \in C
$$

(ii) If T is a k-strictly pseudocontractive mapping, then the mapping $I-T$ is semiclosed at 0 , that is, if $\left\{x_{n}\right\}$ is a sequence in C such that $x_{n} \rightharpoonup \tilde{x}$ and $(I-T) x_{n} \rightarrow$ 0 , then $(I-T) \tilde{x}=0$.
(iii) If T is k-(quasi-)strict pseudocontraction, then the fixed-point set $\operatorname{Fix}(T)$ of T is closed and convex so that the projection $P_{\mathrm{Fix}(T)}$ is well defined.
Lemma 2.4. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $T: C \rightarrow C$ be a k-strictly pseudocontractive mapping. Let γ and δ be two nonnegative real numbers such that $(\gamma+\delta) k \leq \gamma$. Then

$$
\|\gamma(x-y)+\delta(T x-T y)\| \leq(\gamma+\delta)\|x-y\|, \quad \forall x, y \in C
$$

Let C be a nonempty closed convex subset of a real Hilbert space H. We introduce some notations. Let λ be a number in $(0,1]$ and let $\mu>0$. Associating with a nonexpansive mapping $T: C \rightarrow C$, we define the mapping $T^{\lambda}: C \rightarrow H$ by

$$
T^{\lambda} x:=T x-\lambda \mu F(T x), \quad \forall x \in C
$$

where $F: C \rightarrow H$ is an operator such that, for some positive constants $\kappa, \eta>0, F$ is κ-Lipschitzian and η-strongly monotone on C; that is, F satisfies the conditions:

$$
\|F x-F y\| \leq \kappa\|x-y\| \quad \text { and } \quad\langle F x-F y, x-y\rangle \geq \eta\|x-y\|^{2}
$$

for all $x, y \in C$.

3. Main Results

Let C be a nonempty closed convex subset of a real Hilbert space H. Throughout this section, we always assume the following:
$F: C \rightarrow H$ is a κ-Lipschitzian and η-strongly monotone operator with positive constants $\kappa, \eta>0$, and $F_{j}: C \rightarrow H$ is ζ_{j}-inverse strongly monotone for $j=1,2$;
A is a $\bar{\gamma}$-strongly positive bounded linear operator on H with $\bar{\gamma} \in(1,2)$, i.e., there exists a constant $\bar{\gamma}>0$ such that

$$
\langle A x, x\rangle \geq \bar{\gamma}\|x\|^{2}, \quad \forall x \in H
$$

$V: C \rightarrow H$ is an l-Lipschitzian mapping with constant $l \geq 0$;
$0<\mu<\frac{2 \eta}{\kappa^{2}}$ and $0 \leq \gamma l<\tau$ with $\tau=1-\sqrt{1-\mu\left(2 \eta-\mu \kappa^{2}\right)}$;
$G_{t}:=P_{C}\left(I-\nu_{1}(t) F_{1}\right) P_{C}\left(I-\nu_{2}(t) F_{2}\right), t \in\left(0, \min \left\{1, \frac{2-\bar{\gamma}}{\tau-\gamma l}\right\}\right)$ and
$G:=P_{C}\left(I-\nu_{1} F_{1}\right) P_{C}\left(I-\nu_{2} F_{2}\right)$ with $0<\nu_{j} \leq \nu_{j}(t) \leq 2 \zeta_{j}$ and $\lim _{t \rightarrow 0} \nu_{j}(t)=\nu_{j}$ for $j=1,2$;
$G_{n}:=P_{C}\left(I-\nu_{1, n} F_{1}\right) P_{C}\left(I-\nu_{2, n} F_{2}\right)$ with $0<\nu_{j} \leq \nu_{j, n} \leq 2 \zeta_{j}$ and $\lim _{n \rightarrow \infty} \nu_{j, n}=\nu_{j}$ for $j=1,2$;
$\Xi \neq \emptyset$ and P_{Ξ} is the metric projection of H onto Ξ;
$\left\{\alpha_{n}\right\} \subset[0,1]$ and $\left\{\beta_{n}\right\} \subset(0,1]$.
By Proposition 2.2, we know that G_{t} and G_{n} are nonexpansive and $\operatorname{Fix}(G)=$ $\operatorname{Fix}\left(G_{t}\right)=\operatorname{Fix}\left(G_{n}\right)$.

In this section, we introduce the first general composite scheme that generates a net $\left\{x_{t}\right\}_{t \in\left(0, \min \left\{1, \frac{2-\bar{\gamma}}{\tau-\gamma}\right\}\right)}$ implicitly as follows:

$$
\begin{equation*}
x_{t}=P_{C}\left[\left(I-\theta_{t} A\right) G_{t} x_{t}+\theta_{t}\left(t \gamma V x_{t}+(I-t \mu F) G_{t} x_{t}\right)\right] . \tag{3.1}
\end{equation*}
$$

We prove the strong convergence of $\left\{x_{t}\right\}$ as $t \rightarrow 0$ to a fixed point \tilde{x} of G (i.e., $\tilde{x} \in \Xi$), which is a unique solution to the VIP

$$
\begin{equation*}
\langle(A-I) \tilde{x}, p-\tilde{x}\rangle \geq 0, \quad \forall p \in \Xi \tag{3.2}
\end{equation*}
$$

For arbitrarily given $x_{0} \in C$, we also propose the second general composite explicit scheme, which generates a sequence $\left\{x_{n}\right\}$ in an explicit way:

$$
\left\{\begin{array}{l}
y_{n}=\alpha_{n} \gamma V x_{n}+\left(I-\alpha_{n} \mu F\right) G_{n} x_{n} \tag{3.3}\\
x_{n+1}=P_{C}\left[\left(I-\beta_{n} A\right) G_{n} x_{n}+\beta_{n} y_{n}\right], \quad \forall n \geq 0
\end{array}\right.
$$

and establish the strong convergence of $\left\{x_{n}\right\}$ as $n \rightarrow \infty$ to a fixed point \tilde{x} of G (i.e., $\tilde{x} \in \Xi)$, which is also the unique solution to VIP (3.2).

Now, for $t \in\left(0, \min \left\{1, \frac{2-\bar{\gamma}}{\tau-\gamma l}\right\}\right)$, and $\theta_{t} \in\left(0,\|A\|^{-1}\right]$, consider a mapping $Q_{t}: C \rightarrow$ C defined by

$$
Q_{t} x=P_{C}\left[\left(I-\theta_{t} A\right) G_{t} x+\theta_{t}\left(t \gamma V x+(I-t \mu F) G_{t} x\right)\right], \quad \forall x \in C
$$

It is easy to see that Q_{t} is a contractive mapping with constant $1-\theta_{t}(\bar{\gamma}-1+t(\tau-\gamma l))$. By the Banach contraction principle, Q_{t} has a unique fixed point, denoted by x_{t}, which uniquely solves the fixed point equation (3.1).

We summary the basic properties of $\left\{x_{t}\right\}$ as follows.
Proposition 3.1. Let $\left\{x_{t}\right\}$ be defined via (3.1). Then
(i) $\left\{x_{t}\right\}$ is bounded for $t \in\left(0, \min \left\{1, \frac{2-\bar{\gamma}}{\tau-\gamma l}\right\}\right)$;
(ii) $\lim _{t \rightarrow 0}\left\|x_{t}-G_{t} x_{t}\right\|=0$ provided $\lim _{t \rightarrow 0} \theta_{t}=0$;
(iii) $x_{t}:\left(0, \min \left\{1, \frac{2-\bar{\gamma}}{\tau-\gamma l}\right\}\right) \rightarrow H$ is locally Lipschitzian provided

$$
\theta_{t}:\left(0, \min \left\{1, \frac{2-\bar{\gamma}}{\tau-\gamma l}\right\}\right) \rightarrow\left(0,\|A\|^{-1}\right]
$$

is locally Lipschitzian, and $\nu_{j}(t):\left(0, \min \left\{1, \frac{2-\bar{\gamma}}{\tau-\gamma l}\right\}\right) \rightarrow\left[\nu_{j}, 2 \zeta_{j}\right]$ is locally Lipschitzian for $j=1,2$;
(iv) x_{t} defines a continuous path from $\left(0, \min \left\{1, \frac{2-\bar{\gamma}}{\tau-\gamma l}\right\}\right)$ into H provided

$$
\theta_{t}:\left(0, \min \left\{1, \frac{2-\bar{\gamma}}{\tau-\gamma l}\right\}\right) \rightarrow\left(0,\|A\|^{-1}\right]
$$

is continuous, and $\nu_{j}(t):\left(0, \min \left\{1, \frac{2-\bar{\gamma}}{\tau-\gamma l}\right\}\right) \rightarrow\left[\nu_{j}, 2 \zeta_{j}\right]$ is continuous for $j=1,2$.
We are now in a position to prove the following theorem for strong convergence of the net $\left\{x_{t}\right\}$ as $t \rightarrow 0$, which guarantees the existence of solutions of the variational inequality (3.2).
Theorem 3.1. Let the net $\left\{x_{t}\right\}$ be defined via (3.1). If $\lim _{t \rightarrow 0} \theta_{t}=0$, then x_{t} converges strongly to a fixed point \tilde{x} of G as $t \rightarrow 0$, which solves the VIP (3.2). Equivalently, we have $P_{\Xi}(2 I-A) \tilde{x}=\tilde{x}$.
Proof. We first note that we have the uniqueness of solutions of the VIP (3.2) which is a consequence of the strong monotonicity of $A-I$ Next, we prove that $x_{t} \rightarrow \tilde{x}$ as $t \rightarrow 0$. Observing $\operatorname{Fix}(G)=\operatorname{Fix}\left(G_{t}\right)$ by Proposition 2.2, from (3.1), we write, for given $p \in \Xi$,

$$
\begin{gathered}
\quad x_{t}-p=x_{t}-w_{t}+w_{t}-p=x_{t}-w_{t}+\left(I-\theta_{t} A\right)\left(G_{t} x_{t}-G_{t} p\right) \\
+\theta_{t}\left[t\left(\gamma V x_{t}-\mu F p\right)+(I-t \mu F) G_{t} x_{t}-(I-t \mu F) p\right]+\theta_{t}(I-A) p,
\end{gathered}
$$

where $w_{t}=\left(I-\theta_{t} A\right) G_{t} x_{t}+\theta_{t}\left(t \gamma V x_{t}+(I-t \mu F) G_{t} x_{t}\right)$. Then, by Proposition 2.1 (i), we have

$$
\begin{aligned}
&\left\|x_{t}-p\right\|^{2}=\left\langle x_{t}-w_{t}, x_{t}-p\right\rangle+\left\langle\left(I-\theta_{t} A\right)\left(G_{t} x_{t}-G_{t} p, x_{t}-p\right\rangle+\theta_{t}\left[t\left\langle\gamma V x_{t}-\mu F p, x_{t}-p\right\rangle\right.\right. \\
&\left.+\left\langle(I-t \mu F) G_{t} x_{t}-(I-t \mu F) p, x_{t}-p\right\rangle\right]+\theta_{t}\left\langle(I-A) p, x_{t}-p\right\rangle \\
& \leq\left(1-\theta_{t} \bar{\gamma}\right)\left\|x_{t}-p\right\|^{2}+\theta_{t}\left[(1-t \tau)\left\|x_{t}-p\right\|^{2}+t \gamma l\left\|x_{t}-p\right\|^{2}\right. \\
&\left.\quad+t\left\langle(\gamma V-\mu F) p, x_{t}-p\right\rangle\right]+\theta_{t}\left\langle(I-A) p, x_{t}-p\right\rangle \\
&=\left[1-\theta_{t}(\bar{\gamma}-1+t(\tau-\gamma l))\right]\left\|x_{t}-p\right\|^{2}+\theta_{t}\left(t\left\langle(\gamma V-\mu F) p, x_{t}-p\right\rangle+\left\langle(I-A) p, x_{t}-p\right\rangle\right) .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\left\|x_{t}-p\right\|^{2} \leq \frac{1}{\bar{\gamma}-1+t(\tau-\gamma l)}\left(t\left\langle(\gamma V-\mu F) p, x_{t}-p\right\rangle+\left\langle(I-A) p, x_{t}-p\right\rangle\right) . \tag{3.4}
\end{equation*}
$$

Since the net $\left\{x_{t}\right\}_{t \in\left(0, \min \left\{1, \frac{2-\bar{\gamma}}{\tau-\gamma}\right\}\right.}$) is bounded (due to Proposition 3.1 (i)), we know that if $\left\{t_{n}\right\}$ is a subsequence in $\left(0, \min \left\{1, \frac{2-\bar{\gamma}}{\tau-\gamma l}\right\}\right)$ such that $t_{n} \rightarrow 0$ and $x_{t_{n}} \rightharpoonup x^{*}$, then from (3.4), we obtain $x_{t_{n}} \rightarrow x^{*}$. Let us show that $x^{*} \in \Xi$. To this end, note that $G: C \rightarrow C$ defined by $G:=P_{C}\left(I-\nu_{1} F_{1}\right) P_{C}\left(I-\nu_{2} F_{2}\right)$ for $0<\nu_{j} \leq 2 \zeta_{j}$ for $j=1,2$. Then G is nonexpansive with $\operatorname{Fix}(G)=\Xi$ (due to Proposition 2.2). By the definition of x_{t} and the nonexpansivity of $P_{C}\left(I-\nu_{j} F_{j}\right), j=1,2$ we get

$$
\begin{aligned}
& \left\|G x_{t_{n}}-x_{t_{n}}\right\| \\
& \leq\left\|G x_{t_{n}}-G_{t_{n}} x_{t_{n}}\right\|+\left\|G_{t_{n}} x_{t_{n}}-x_{t_{n}}\right\| \\
& \leq\left\|P_{C}\left(I-\nu_{1} F_{1}\right) P_{C}\left(I-\nu_{2} F_{2}\right) x_{t_{n}}-P_{C}\left(I-\nu_{1}\left(t_{n}\right) F_{1}\right) P_{C}\left(I-\nu_{2}\left(t_{n}\right) F_{2}\right) x_{t_{n}}\right\| \\
& +\left\|G_{t_{n}} x_{t_{n}}-\left(I-\theta_{t_{n}} A\right) G_{t_{n}} x_{t_{n}}-\theta_{t_{n}}\left(t_{n} \gamma V x_{t_{n}}+\left(I-t_{n} \mu F\right) G_{t_{n}} x_{t_{n}}\right)\right\| \\
& \leq\left\|P_{C}\left(I-\nu_{1} F_{1}\right) P_{C}\left(I-\nu_{2} F_{2}\right) x_{t_{n}}-P_{C}\left(I-\nu_{1} F_{1}\right) P_{C}\left(I-\nu_{2}\left(t_{n}\right) F_{2}\right) x_{t_{n}}\right\| \\
& +\left\|P_{C}\left(I-\nu_{1} F_{1}\right) P_{C}\left(I-\nu_{2}\left(t_{n}\right) F_{2}\right) x_{t_{n}}-P_{C}\left(I-\nu_{1}\left(t_{n}\right) F_{1}\right) P_{C}\left(I-\nu_{2}\left(t_{n}\right) F_{2}\right) x_{t_{n}}\right\| \\
& +\theta_{t_{n}}\left\|(I-A) G_{t_{n}} x_{t_{n}}+t_{n}\left(\gamma V x_{t_{n}}-\mu F G_{t_{n}} x_{t_{n}}\right)\right\| \\
& \leq\left\|\left(I-\nu_{2} F_{2}\right) x_{t_{n}}-\left(I-\nu_{2}\left(t_{n}\right) F_{2}\right) x_{t_{n}}\right\| \\
& +\left\|\left(I-\nu_{1} F_{1}\right) P_{C}\left(I-\nu_{2}\left(t_{n}\right) F_{2}\right) x_{t_{n}}-\left(I-\nu_{1}\left(t_{n}\right) F_{1}\right) P_{C}\left(I-\nu_{2}\left(t_{n}\right) F_{2}\right) x_{t_{n}}\right\| \\
& +\theta_{t_{n}}\left\|(I-A) G_{t_{n}} x_{t_{n}}+t_{n}\left(\gamma V x_{t_{n}}-\mu F G_{t_{n}} x_{t_{n}}\right)\right\| \\
& =\left|\nu_{2}\left(t_{n}\right)-\nu_{2}\right|\left\|F_{2} x_{t_{n}}\right\|+\left|\nu_{1}\left(t_{n}\right)-\nu_{1}\right|\left\|F_{1} P_{C}\left(I-\nu_{2}\left(t_{n}\right) F_{2}\right) x_{t_{n}}\right\| \\
& +\theta_{t_{n}}\left\|(I-A) G_{t_{n}} x_{t_{n}}+t_{n}\left(\gamma V x_{t_{n}}-\mu F G_{t_{n}} x_{t_{n}}\right)\right\| .
\end{aligned}
$$

Since $\theta_{t_{n}} \rightarrow 0$ and $\nu_{j}\left(t_{n}\right) \rightarrow \nu_{j}$ as $t_{n} \rightarrow 0$ for $j=1,2$, we have $(I-G) x_{t_{n}} \rightarrow 0$ as $t_{n} \rightarrow 0$. Thus it follows from [12] that $x^{*} \in \operatorname{Fix}(G)$. By Proposition 2.2 we get $x^{*} \in \Xi$.

Finally, let us show that x^{*} is a solution of the VIP (3.2). Since

$$
x_{t}=x_{t}-w_{t}+\left(I-\theta_{t} A\right) G_{t} x_{t}+\theta_{t}\left(t \gamma V x_{t}+(I-t \mu F) G_{t} x_{t}\right),
$$

we have

$$
x_{t}-G_{t} x_{t}=x_{t}-w_{t}+\theta_{t}(I-A) G_{t} x_{t}+\theta_{t} t\left(\gamma V x_{t}-\mu F G_{t} x_{t}\right)
$$

Since G_{t} is nonexpansive (due to Proposition 2.2), $I-G_{t}$ is monotone. So, from the monotonicity of $I-G_{t}$, it follows that, for $p \in \Xi=\operatorname{Fix}\left(G_{t}\right)$,

$$
\begin{gathered}
0 \leq\left\langle\left(I-G_{t}\right) x_{t}-\left(I-G_{t}\right) p, x_{t}-p\right\rangle=\left\langle\left(I-G_{t}\right) x_{t}, x_{t}-p\right\rangle \\
=\left\langle\left\langle x_{t}-w_{t}, x_{t}-p\right\rangle+\theta_{t}\left\langle(I-A) G_{t} x_{t}, x_{t}-p\right\rangle+\theta_{t} t\left\langle\gamma V x_{t}-\mu F G_{t} x_{t}, x_{t}-p\right\rangle\right. \\
\leq \theta_{t}\left\langle(I-A) G_{t} x_{t}, x_{t}-p\right\rangle+\theta_{t} t\left\langle\gamma V x_{t}-\mu F G_{t} x_{t}, x_{t}-p\right\rangle \\
=\theta_{t}\left\langle(I-A) x_{t}, x_{t}-p\right\rangle+\theta_{t}\left\langle(I-A)\left(G_{t}-I\right) x_{t}, x_{t}-p\right\rangle+\theta_{t} t\left\langle\gamma V x_{t}-\mu F G_{t} x_{t}, x_{t}-p\right\rangle .
\end{gathered}
$$

This implies that

$$
\begin{equation*}
\left\langle(A-I) x_{t}, x_{t}-p\right\rangle \leq\left\langle(I-A)\left(G_{t}-I\right) x_{t}, x_{t}-p\right\rangle+t\left\langle\gamma V x_{t}-\mu F G_{t} x_{t}, x_{t}-p\right\rangle . \tag{3.5}
\end{equation*}
$$

Now, replacing t in (3.5) with t_{n} and letting $n \rightarrow \infty$, noticing the boundedness of $\left\{\gamma V x_{t_{n}}-\mu F G_{t_{n}} x_{t_{n}}\right\}$ and the fact that $(I-A)\left(G_{t_{n}}-I\right) x_{t_{n}} \rightarrow 0$ as $n \rightarrow \infty$ (due to Proposition 3.1 (ii)), we obtain

$$
\left\langle(A-I) x^{*}, x^{*}-p\right\rangle \leq 0 .
$$

That is, $x^{*} \in \Xi$ is a solution of the VIP (3.2); hance $x^{*}=\tilde{x}$ by uniqueness. In summary, we have proven that each cluster point of $\left\{x_{t}\right\}$ (as $t \rightarrow 0$) equals \tilde{x}. Consequently, $x_{t} \rightarrow \tilde{x}$ as $t \rightarrow 0$.

The VIP (3.2) can be rewritten as

$$
\langle(2 I-A) \tilde{x}-\tilde{x}, \tilde{x}-p\rangle \geq 0, \quad \forall p \in \Xi .
$$

Using Proposition 2.1 (i), the last inequality is equivalent to the fixed point equation

$$
P_{\Xi}(2 I-A) \tilde{x}=\tilde{x} .
$$

Taking $F=\frac{1}{2} I, \mu=2$ and $\gamma=1$ in Theorem 3.1, we get
Corollary 3.1. Let $\left\{x_{t}\right\}$ be defined by

$$
x_{t}=P_{C}\left[\left(I-\theta_{t} A\right) G_{t} x_{t}+\theta_{t}\left(t V x_{t}+(1-t) G_{t} x_{t}\right)\right] .
$$

If $\lim _{t \rightarrow 0} \theta_{t}=0$, then $\left\{x_{t}\right\}$ converges strongly as $t \rightarrow 0$ to a fixed point \tilde{x} of G (i.e., $\tilde{x} \in \Xi)$, which is the unique solution of the VIP (3.2).

Next, we prove the following result in order to establish the strong convergence of the sequence $\left\{x_{n}\right\}$ generated by the general composite explicit scheme (3.3).
Theorem 3.2. Let $\left\{x_{n}\right\}$ be the sequence generated by the explicit scheme (3.3), where $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ satisfy the following condition:
(C1) $\left\{\alpha_{n}\right\} \subset[0,1],\left\{\beta_{n}\right\} \subset(0,1]$ and $\alpha_{n} \rightarrow 0, \beta_{n} \rightarrow 0$ as $n \rightarrow \infty$.
Let LIM be a Banach limit. Then

$$
\operatorname{LIM}_{n}\left\langle(A-I) \tilde{x}, \tilde{x}-x_{n}\right\rangle \leq 0
$$

where $\tilde{x}=\lim _{t \rightarrow 0^{+}} x_{t}$ with x_{t} being defined by

$$
\begin{equation*}
x_{t}=P_{C}\left[\left(I-\theta_{t} A\right) G x_{t}+\theta_{t}\left(t \gamma V x_{t}+(I-t \mu F) G x_{t}\right)\right], \tag{3.6}
\end{equation*}
$$

where $G: C \rightarrow C$ is defined by $G x=P_{C}\left(I-\nu_{1} F_{1}\right) P_{C}\left(I-\nu_{2} F_{2}\right) x$ for $0<\nu_{j} \leq$ $2 \zeta_{j}, j=1,2$.
Proof. First, note that from the condition (C1), without loss of generality, we may assume that $0<\beta_{n} \leq\|A\|^{-1}$ for all $n \geq 0$.

Let $\left\{x_{t}\right\}$ be the net generated by (3.6). Since G is a nonexpansive self-mapping on C, by Theorem 3.1 with $G_{t}=G$ and Proposition 2.2, there exists $\lim _{t \rightarrow 0} x_{t} \in$ $\operatorname{Fix}(G)=\Xi$. Denote it by \tilde{x}. Moreover, \tilde{x} is the unique solution of the VIP (3.2). From Proposition 3.1 (i) with $G_{t}=G$, we know that $\left\{x_{t}\right\}$ is bounded and so are the nets $\left\{V x_{t}\right\}$ and $\left\{F G x_{t}\right\}$.

First of all, let us show that $\left\{x_{n}\right\}$ is bounded. To this end, take $p \in \operatorname{Fix}(G)=$ $\operatorname{Fix}\left(G_{n}\right)$, then we get

$$
\begin{aligned}
\left\|y_{n}-p\right\| & =\left\|\alpha_{n} \gamma V x_{n}+\left(I-\alpha_{n} \mu F\right) G_{n} x_{n}-p\right\| \\
& =\left\|\alpha_{n}\left(\gamma V x_{n}-\mu F p\right)+\left(I-\alpha_{n} \mu F\right) G_{n} x_{n}-\left(I-\alpha_{n} \mu F\right) G_{n} p\right\| \\
& \leq\left(1-\alpha_{n}(\tau-\gamma l)\right)\left\|x_{n}-p\right\|+\alpha_{n}\|(\gamma V-\mu F) p\|,
\end{aligned}
$$

and hence we obtain

$$
\left\|x_{n}-p\right\| \leq \max \left\{\left\|x_{0}-p\right\|, \frac{\|(\gamma V-\mu F) p\|+\|I-A\|\|p\|}{\bar{\gamma}-1}\right\}, \quad \forall n \geq 0
$$

This implies that $\left\{x_{n}\right\}$ is bounded and so are $\left\{G x_{n}\right\},\left\{G_{n} x_{n}\right\},\left\{F G_{n} x_{n}\right\},\left\{V x_{n}\right\}$ and $\left\{y_{n}\right\}$. Thus, utilizing the control condition (C1), we get

$$
\begin{aligned}
\left\|x_{n+1}-G_{n} x_{n}\right\| & =\left\|P_{C}\left[\left(I-\beta_{n} A\right) G_{n} x_{n}+\beta_{n} y_{n}\right]-G_{n} x_{n}\right\| \\
& \leq\left\|\left(I-\beta_{n} A\right) G_{n} x_{n}+\beta_{n} y_{n}-G_{n} x_{n}\right\| \\
& =\beta_{n}\left\|y_{n}-A G_{n} x_{n}\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

and

$$
\begin{align*}
\left\|G x_{t}-x_{n+1}\right\| & \leq\left\|G x_{t}-G x_{n}\right\|+\left\|G x_{n}-G_{n} x_{n}\right\|+\left\|G_{n} x_{n}-x_{n+1}\right\| \\
& \leq\left\|x_{t}-x_{n}\right\|+\left\|G_{n} x_{n}-x_{n+1}\right\| \\
& +\left\|P_{C}\left(I-\nu_{1} F_{1}\right) P_{C}\left(I-\nu_{2} F_{2}\right) x_{n}-P_{C}\left(I-\nu_{1, n} F_{1}\right) P_{C}\left(I-\nu_{2, n} F_{2}\right) x_{n}\right\| \\
& \leq\left\|x_{t}-x_{n}\right\|+\left\|G_{n} x_{n}-x_{n+1}\right\| \\
& +\left\|P_{C}\left(I-\nu_{1} F_{1}\right) P_{C}\left(I-\nu_{2} F_{2}\right) x_{n}-P_{C}\left(I-\nu_{1} F_{1}\right) P_{C}\left(I-\nu_{2, n} F_{2}\right) x_{n}\right\| \\
& +\left\|P_{C}\left(I-\nu_{1} F_{1}\right) P_{C}\left(I-\nu_{2, n} F_{2}\right) x_{n}-P_{C}\left(I-\nu_{1, n} F_{1}\right) P_{C}\left(I-\nu_{2, n} F_{2}\right) x_{n}\right\| \\
& \leq\left\|x_{t}-x_{n}\right\|+\left\|G_{n} x_{n}-x_{n+1}\right\|+\left\|\left(I-\nu_{2} F_{2}\right) x_{n}-\left(I-\nu_{2, n} F_{2}\right) x_{n}\right\| \\
& +\left\|\left(I-\nu_{1} F_{1}\right) P_{C}\left(I-\nu_{2, n} F_{2}\right) x_{n}-\left(I-\nu_{1, n} F_{1}\right) P_{C}\left(I-\nu_{2, n} F_{2}\right) x_{n}\right\| \\
& \leq\left\|x_{t}-x_{n}\right\|+\left\|x_{n+1}-G_{n} x_{n}\right\| \\
& +\left\|\nu_{2, n}-\nu_{2}\left|\left\|F_{2} x_{n}\right\|+\right| \nu_{1, n}-\nu_{1}\right\| F_{1} P_{C}\left(I-\nu_{2, n} F_{2}\right) x_{n} \| \\
& =\left\|x_{t}-x_{n}\right\|+\epsilon_{n}, \tag{3.7}
\end{align*}
$$

where $\epsilon_{n}=\left\|x_{n+1}-G_{n} x_{n}\right\|+\left\|\nu_{2, n}-\nu_{2}\left|\left\|F_{2} x_{n}\right\|+\left|\nu_{1, n}-\nu_{1}\right|\left\|F_{1} P_{C}\left(I-\nu_{2, n} F_{2}\right) x_{n}\right\| \rightarrow 0\right.\right.$ as $n \rightarrow \infty$. Also observing that A is strongly positive, we have

$$
\begin{equation*}
\left\langle A x_{t}-A x_{n}, x_{t}-x_{n}\right\rangle=\left\langle A\left(x_{t}-x_{n}\right), x_{t}-x_{n}\right\rangle \geq \bar{\gamma}\left\|x_{t}-x_{n}\right\|^{2} . \tag{3.8}
\end{equation*}
$$

For simplicity, we write $w_{t}=\left(I-\theta_{t} A\right) G x_{t}+\theta_{t}\left(t \gamma V x_{t}+(I-t \mu F) G x_{t}\right)$. Then we obtain that $x_{t}=P_{C} w_{t}$ and

$$
\begin{aligned}
x_{t}-x_{n+1} & =x_{t}-w_{t}+\left(I-\theta_{t} A\right) G x_{t}+\theta_{t}\left(t \gamma V x_{t}+(I-t \mu F) G x_{t}\right)-x_{n+1} \\
& =\left(I-\theta_{t} A\right) G x_{t}-\left(I-\theta_{t} A\right) x_{n+1}+\theta_{t}\left(t \gamma V x_{t}\right. \\
& \left.+(I-t \mu F) G x_{t}-A x_{n+1}\right)+x_{t}-w_{t} .
\end{aligned}
$$

Applying Lemma 2.1, we have

$$
\begin{gather*}
\left\|x_{t}-x_{n+1}\right\|^{2} \leq\left\|\left(I-\theta_{t} A\right) G x_{t}-\left(I-\theta_{t} A\right) x_{n+1}\right\|^{2} \\
+2 \theta_{t}\left\langle G x_{t}-t\left(\mu F G x_{t}-\gamma V x_{t}\right)-A x_{n+1}, x_{t}-x_{n+1}\right\rangle+2\left\langle x_{t}-w_{t}, x_{t}-x_{n+1}\right\rangle \\
\leq\left\|\left(I-\theta_{t} A\right) G x_{t}-\left(I-\theta_{t} A\right) x_{n+1}\right\|^{2}+2 \theta_{t}\left\langle G x_{t}-t\left(\mu F G x_{t}-\gamma V x_{t}\right)-A x_{n+1}, x_{t}-x_{n+1}\right\rangle \\
\leq\left(1-\theta_{t} \bar{\gamma}\right)^{2}\left\|G x_{t}-x_{n+1}\right\|^{2}+2 \theta_{t}\left\langle G x_{t}-x_{t}, x_{t}-x_{n+1}\right\rangle \\
-2 \theta_{t} t\left\langle\mu F G x_{t}-\gamma V x_{t}, x_{t}-x_{n+1}\right\rangle+2 \theta_{t}\left\langle x_{t}-A x_{n+1}, x_{t}-x_{n+1}\right\rangle . \tag{3.9}
\end{gather*}
$$

Using (3.7) and (3.8) in (3.9), we obtain

$$
\begin{align*}
& \left\|x_{t}-x_{n+1}\right\|^{2} \tag{3.10}\\
& \leq\left(1-\theta_{t} \bar{\gamma}\right)^{2}\left\|G x_{t}-x_{n+1}\right\|^{2}+2 \theta_{t}\left\langle G x_{t}-x_{t}, x_{t}-x_{n+1}\right\rangle \\
& +2 \theta_{t} t\left\langle\gamma V x_{t}-\mu F G x_{t}, x_{t}-x_{n+1}\right\rangle+2 \theta_{t}\left\langle x_{t}-A x_{n+1}, x_{t}-x_{n+1}\right\rangle \\
& \leq\left(1-\theta_{t} \bar{\gamma}\right)^{2}\left(\left\|x_{t}-x_{n}\right\|+\epsilon_{n}\right)^{2}+2 \theta_{t}\left\|G x_{t}-x_{t}\right\|\left\|x_{t}-x_{n+1}\right\| \\
& +2 \theta_{t} t\left\|\gamma V x_{t}-\mu F G x_{t}\right\|\left\|x_{t}-x_{n+1}\right\|+2 \theta_{t}\left\langle x_{t}-A x_{n+1}, x_{t}-x_{n+1}\right\rangle \\
& =\left(\theta_{t}^{2} \bar{\gamma}-2 \theta_{t} \bar{\gamma}\left\|x_{t}-x_{n}\right\|^{2}+\left\|x_{t}-x_{n}\right\|^{2}+\left(1-\theta_{t} \bar{\gamma}\right)^{2}\left(2\left\|x_{t}-x_{n}\right\| \epsilon_{n}+\epsilon_{n}^{2}\right)\right. \\
& +2 \theta_{t}\left\|G x_{t}-x_{t}\right\|\left\|x_{t}-x_{n+1}\right\|+2 \theta_{t} t\left\|\gamma V x_{t}-\mu F G x_{t}\right\|\left\|x_{t}-x_{n+1}\right\| \\
& +2 \theta_{t}\left\langle x_{t}-A x_{n+1}, x_{t}-x_{n+1}\right\rangle \\
& \leq\left(\theta_{t}^{2} \bar{\gamma}-2 \theta_{t}\right)\left\langle A x_{t}-A x_{n}, x_{t}-x_{n}\right\rangle+\left\|x_{t}-x_{n}\right\|^{2}+\left(1-\theta_{t} \bar{\gamma}\right)^{2}\left(2\left\|x_{t}-x_{n}\right\| \epsilon_{n}+\epsilon_{n}^{2}\right) \\
& +2 \theta_{t}\left\|G x_{t}-x_{t}\right\|\left\|x_{t}-x_{n+1}\right\|+2 \theta_{t} t\left\|\gamma V x_{t}-\mu F G x_{t}\right\|\left\|x_{t}-x_{n+1}\right\| \\
& +2 \theta_{t}\left\langle x_{t}-A x_{n+1}, x_{t}-x_{n+1}\right\rangle \\
& =\theta_{t}^{2} \bar{\gamma}\left\langle A x_{t}-A x_{n}, x_{t}-x_{n}\right\rangle+\left\|x_{t}-x_{n}\right\|^{2}+\left(1-\theta_{t} \bar{\gamma}\right)^{2}\left(2\left\|x_{t}-x_{n}\right\| \epsilon_{n}+\epsilon_{n}^{2}\right) \\
& +2 \theta_{t}\left\|G x_{t}-x_{t}\right\|\left\|x_{t}-x_{n+1}\right\|+2 \theta_{t} t\left\|\gamma V x_{t}-\mu F G x_{t}\right\|\left\|x_{t}-x_{n+1}\right\| \\
& \\
& +2 \theta_{t}\left[\left\langle x_{t}-A x_{n+1}, x_{t}-x_{n+1}\right\rangle-\left\langle A x_{t}-A x_{n}, x_{t}-x_{n}\right\rangle\right] \\
& =\theta_{t}^{2} \bar{\gamma}\left\langle A\left(x_{t}-x_{n}\right), x_{t}-x_{n}\right\rangle+\left\|x_{t}-x_{n}\right\|^{2}+\left(1-\theta_{t} \bar{\gamma}\right)^{2}\left(2\left\|x_{t}-x_{n}\right\| \epsilon_{n}+\epsilon_{n}^{2}\right) \\
& +2 \theta_{t}\left\|G x_{t}-x_{t}\right\|\left\|x_{t}-x_{n+1}\right\|+2 \theta_{t} t\left\|\gamma V x_{t}-\mu F G x_{t}\right\|\left\|x_{t}-x_{n+1}\right\| \\
& \\
& +2 \theta_{t}\left[\left\langle(I-A) x_{t}, x_{t}-x_{n+1}\right\rangle+\left\langle A\left(x_{t}-x_{n+1}\right), x_{t}-x_{n+1}\right\rangle-\left\langle A\left(x_{t}-x_{n}\right), x_{t}-x_{n}\right\rangle\right] .
\end{align*}
$$

Applying the Banach limit LIM to (3.10), from $\epsilon_{n} \rightarrow 0$ we have

$$
\begin{aligned}
& \operatorname{LIM}_{n}\left\|x_{t}-x_{n+1}\right\|^{2} \\
& \leq \theta_{t}^{2} \bar{\gamma} \operatorname{LIM}_{n}\left\langle A\left(x_{t}-x_{n}\right), x_{t}-x_{n}\right\rangle+\operatorname{LIM}_{n}\left\|x_{t}-x_{n}\right\|^{2} \\
& +2 \theta_{t}\left\|G x_{t}-x_{t}\right\| \operatorname{LIM}_{n}\left\|x_{t}-x_{n+1}\right\|+2 \theta_{t} t\left\|\gamma V x_{t}-\mu F G x_{t}\right\| \operatorname{LIM}_{n}\left\|x_{t}-x_{n+1}\right\| \\
& \quad+2 \theta_{t}\left[\operatorname{LIM}_{n}\left\langle(I-A) x_{t}, x_{t}-x_{n+1}\right\rangle+\operatorname{LIM}_{n}\left\langle A\left(x_{t}-x_{n+1}\right), x_{t}-x_{n+1}\right\rangle\right. \\
& \left.\quad-\operatorname{LIM}_{n}\left\langle A\left(x_{t}-x_{n}\right), x_{t}-x_{n}\right\rangle\right]
\end{aligned}
$$

Using the property $\operatorname{LIM}_{n} a_{n}=\operatorname{LIM}_{n} a_{n+1}$ of the Banach limit in (3.11), we obtain

$$
\begin{align*}
& \operatorname{LIM}_{n}\left\langle(A-I) x_{t}, x_{t}-x_{n}\right\rangle \tag{3.12}\\
& =\operatorname{LIM}_{n}\left\langle(A-I) x_{t}, x_{t}-x_{n+1}\right\rangle \\
& \leq \frac{\theta_{t} \bar{\gamma}}{2} \operatorname{LIM}_{n}\left\langle A\left(x_{t}-x_{n}\right), x_{t}-x_{n}\right\rangle+\frac{1}{2 \theta_{t}}\left[\operatorname{LIM}_{n}\left\|x_{t}-x_{n}\right\|^{2}-\operatorname{LIM}_{n}\left\|x_{t}-x_{n+1}\right\|^{2}\right] \\
& +\left\|G x_{t}-x_{t}\right\| \operatorname{LIM}_{n}\left\|x_{t}-x_{n}\right\|+t\left\|\gamma V x_{t}-\mu F G x_{t}\right\| \operatorname{LIM}_{n}\left\|x_{t}-x_{n}\right\| \\
& +\operatorname{LIM}_{n}\left\langle A\left(x_{t}-x_{n+1}\right), x_{t}-x_{n+1}\right\rangle-\operatorname{LIM}_{n}\left\langle A\left(x_{t}-x_{n}\right), x_{t}-x_{n}\right\rangle \\
& \leq \frac{\theta_{t} \bar{\gamma}}{2} \operatorname{LIM}_{n}\left\langle A\left(x_{t}-x_{n}\right), x_{t}-x_{n}\right\rangle+\left\|G x_{t}-x_{t}\right\| \operatorname{LIM}_{n}\left\|x_{t}-x_{n}\right\| \\
& +t\left\|\gamma V x_{t}-\mu F G x_{t}\right\| \operatorname{LIM}_{n}\left\|x_{t}-x_{n}\right\|
\end{align*}
$$

Since as $t \rightarrow 0$,

$$
\begin{equation*}
\theta_{t}\left\langle A\left(x_{t}-x_{n}\right), x_{t}-x_{n}\right\rangle \leq \theta_{t}\|A\|\left\|x_{t}-x_{n}\right\|^{2} \leq \theta_{t} K \rightarrow 0, \tag{3.13}
\end{equation*}
$$

where $\|A\|\left\|x_{t}-x_{n}\right\|^{2} \leq K$,

$$
\begin{equation*}
\left\|G x_{t}-x_{t}\right\| \rightarrow 0 \quad \text { ans } \quad t\left\|\gamma V x_{t}-\mu F G x_{t}\right\| \rightarrow 0 \quad \text { as } t \rightarrow 0, \tag{3.14}
\end{equation*}
$$

we conclude from (3.12)-(3.14) that

$$
\begin{aligned}
& \operatorname{LIM}_{n}\left\langle(A-I) \tilde{x}, \tilde{x}-x_{n}\right\rangle \\
& \leq \operatorname{limsupLIM}_{t}\left\langle(A-I) x_{t}, x_{t}-x_{n}\right\rangle \\
& \leq \limsup _{t \rightarrow 0} \frac{\theta_{t} \bar{\gamma}}{2} \operatorname{LIM}_{n}\left\langle A\left(x_{t}-x_{n}\right), x_{t}-x_{n}\right\rangle+\limsup _{t \rightarrow 0}\left\|G x_{t}-x_{t}\right\| \operatorname{LIM}_{n}\left\|x_{t}-x_{n}\right\| \\
& +\limsup _{t}\left\|\gamma V x_{t}-\mu F G x_{t}\right\| \operatorname{LIM}_{n}\left\|x_{t}-x_{n}\right\| \\
& =0
\end{aligned}
$$

This completes the proof.
Now, using Theorem 3.2, we establish the strong convergence of the sequence $\left\{x_{n}\right\}$ generated by the general composite explicit scheme (3.3) to a fixed point \tilde{x} of G (i.e., $\tilde{x} \in \Xi)$, which is also the unique solution of the VIP (3.2).
Theorem 3.3. Let $\left\{x_{n}\right\}$ be the sequence generated by the explicit scheme (3.3), where $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ satisfy the following conditions:
(C1) $\left\{\alpha_{n}\right\} \subset[0,1],\left\{\beta_{n}\right\} \subset(0,1]$ and $\alpha_{n} \rightarrow 0, \beta_{n} \rightarrow 0$ as $n \rightarrow \infty$;
(C2) $\sum_{n=0}^{\infty} \beta_{n}=\infty$.
If $\left\{x_{n}\right\}$ is weakly asymptotically regular (i.e., $x_{n+1}-x_{n} \rightharpoonup 0$), then x_{n} converges strongly to a fixed point \tilde{x} of G (i.e., $\tilde{x} \in \Xi$), which is the unique solution of the VIP (3.2).

Proof. First, note that from the condition (C1), without loss of generality, we may assume that $\alpha_{n} \tau<1$ and $\frac{2 \beta_{n}(\bar{\gamma}-1)}{1-\beta_{n}}<1$ for all $n \geq 0$.

Let x_{t} be defined by (3.6), that is,

$$
x_{t}=P_{C}\left[\left(I-\theta_{t} A\right) G x_{t}+\theta_{t}\left(G x_{t}-t\left(\mu F G x_{t}-\gamma V x_{t}\right)\right],\right.
$$

for $t \in\left(0, \min \left\{1, \frac{2-\bar{\gamma}}{\tau-\gamma l}\right\}\right)$, where $G=P_{C}\left(I-\nu_{1} F_{1}\right) P_{C}\left(I-\nu_{2} F_{2}\right)$ for $0<\nu_{j} \leq 2 \zeta_{j}$, and $\left.\lim _{t \rightarrow 0} x_{t}:=\tilde{x} \in \operatorname{Fix}(G)=\Xi\right)$. Then \tilde{x} is the unique solution of the VIP (3.2).

We divide the rest of the proof into several steps.
Step 1. We see that

$$
\left\|x_{n}-p\right\| \leq \max \left\{\left\|x_{0}-p\right\|, \frac{\|(\gamma V-\mu F) p\|+\|I-A\|\|p\|}{\bar{\gamma}-1}\right\}, \quad \forall n \geq 0
$$

for all $p \in \Xi$ as in the proof of Theorem 3.2. Hence $\left\{x_{n}\right\}$ is bounded and so are $\left\{G x_{n}\right\},\left\{G_{n} x_{n}\right\},\left\{F G_{n} x_{n}\right\},\left\{V x_{n}\right\}$ and $\left\{y_{n}\right\}$.
Step 2. We show that $\lim \sup _{n \rightarrow \infty}\left\langle(I-A) \tilde{x}, x_{n}-\tilde{x}\right\rangle \leq 0$. To this end, put

$$
a_{n}:=\left\langle(A-I) \tilde{x}, \tilde{x}-x_{n}\right\rangle, \quad \forall n \geq 0 .
$$

Then, by Theorem 3.2 we get $\operatorname{LIM}_{n} a_{n} \leq 0$ for any Banach limit LIM. Since $\left\{x_{n}\right\}$ is bounded, there exists a subsequence $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
\limsup _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=\limsup _{j \rightarrow \infty}\left(a_{n_{j}+1}-a_{n_{j}}\right)
$$

and $x_{n_{j}} \rightharpoonup u \in H$. This implies that $x_{n_{j}+1} \rightharpoonup u$ since $\left\{x_{n}\right\}$ is weakly asymptotically regular. Therefore, we have

$$
w-\lim _{j \rightarrow \infty}\left(\tilde{x}-x_{n_{j}+1}\right)=w-\lim _{j \rightarrow \infty}\left(\tilde{x}-x_{n_{j}}\right)=\tilde{x}-u,
$$

and so

$$
\limsup _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=\lim _{j \rightarrow \infty}\left\langle(A-I) \tilde{x},\left(\tilde{x}-x_{n_{j}+1}\right)-\left(\tilde{x}-x_{n_{j}}\right)\right\rangle=0 .
$$

Then, by [18, Proposition 2] we obtain $\lim _{\sup _{n \rightarrow \infty}} a_{n} \leq 0$, that is,

$$
\limsup _{n \rightarrow \infty}\left\langle(I-A) \tilde{x}, x_{n}-\tilde{x}\right\rangle=\limsup _{n \rightarrow \infty}\left\langle(A-I) \tilde{x}, \tilde{x}-x_{n}\right\rangle \leq 0
$$

Step 3. We show that $\lim _{n \rightarrow \infty}\left\|x_{n}-\tilde{x}\right\|=0$. Indeed, for simplicity, we write $w_{n}=\left(I-\beta_{n} A\right) G_{n} x_{n}+\beta_{n} y_{n}$ for all $n \geq 0$. Then $x_{n+1}=P_{C} w_{n}$. Utilizing (3.3) and $G_{n} \tilde{x}=\tilde{x}$, we have

$$
y_{n}-\tilde{x}=\left(I-\alpha_{n} \mu F\right) G_{n} x_{n}-\left(I-\alpha_{n} \mu F\right) G_{n} \tilde{x}+\alpha_{n}\left(\gamma V x_{n}-\mu F \tilde{x}\right),
$$

and

$$
x_{n+1}-\tilde{x}=x_{n+1}-w_{n}+\left(I-\beta_{n} A\right)\left(G_{n} x_{n}-G_{n} \tilde{x}\right)+\beta_{n}\left(y_{n}-\tilde{x}\right)+\beta_{n}(I-A) \tilde{x} .
$$

Applying Lemma 2.1 and [23, Lemma 31], we obtain

$$
\begin{aligned}
\left\|y_{n}-\tilde{x}\right\|^{2} & =\left\|\left(I-\alpha_{n} \mu F\right) G_{n} x_{n}-\left(I-\alpha_{n} \mu F\right) G_{n} \tilde{x}+\alpha_{n}\left(\gamma V x_{n}-\mu F \tilde{x}\right)\right\|^{2} \\
& \leq\left\|\left(I-\alpha_{n} \mu F\right) G_{n} x_{n}-\left(I-\alpha_{n} \mu F\right) G_{n} \tilde{x}\right\|^{2}+2 \alpha_{n}\left\langle\gamma V x_{n}-\mu F \tilde{x}, y_{n}-\tilde{x}\right\rangle \\
& \leq\left(1-\alpha_{n} \tau\right)^{2}\left\|x_{n}-\tilde{x}\right\|^{2}+2 \alpha_{n}\left\|\gamma V x_{n}-\mu F \tilde{x}\right\|\left\|y_{n}-\tilde{x}\right\| \\
& \leq\left\|x_{n}-\tilde{x}\right\|^{2}+2 \alpha_{n}\left\|\gamma V x_{n}-\mu F \tilde{x}\right\|\left\|y_{n}-\tilde{x}\right\|,
\end{aligned}
$$

and hence

$$
\begin{align*}
& \left\|x_{n+1}-\tilde{x}\right\|^{2} \tag{3.15}\\
& =\left\|\left(I-\beta_{n} A\right)\left(G_{n} x_{n}-G_{n} \tilde{x}\right)+\beta_{n}\left(y_{n}-\tilde{x}\right)+\beta_{n}(I-A) \tilde{x}+x_{n+1}-w_{n}\right\|^{2} \\
& \leq\left\|\left(I-\beta_{n} A\right)\left(G_{n} x_{n}-G_{n} \tilde{x}\right)\right\|^{2}+2 \beta_{n}\left\langle y_{n}-\tilde{x}, x_{n+1}-\tilde{x}\right\rangle+2 \beta_{n}\left\langle(I-A) \tilde{x}, x_{n+1}-\tilde{x}\right\rangle \\
& +2\left\langle x_{n+1}-w_{n}, x_{n+1}-\tilde{x}\right\rangle \\
& \leq\left\|\left(I-\beta_{n} A\right)\left(G_{n} x_{n}-G_{n} \tilde{x}\right)\right\|^{2}+2 \beta_{n}\left\langle y_{n}-\tilde{x}, x_{n+1}-\tilde{x}\right\rangle+2 \beta_{n}\left\langle(I-A) \tilde{x}, x_{n+1}-\tilde{x}\right\rangle \\
& \leq\left(1-\beta_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-\tilde{x}\right\|^{2}+2 \beta_{n}\left\|y_{n}-\tilde{x}\right\|\left\|x_{n+1}-\tilde{x}\right\|+2 \beta_{n}\left\langle(I-A) \tilde{x}, x_{n+1}-\tilde{x}\right\rangle \\
& \leq\left(1-\beta_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-\tilde{x}\right\|^{2}+\beta_{n}\left(\left\|y_{n}-\tilde{x}\right\|^{2}+\left\|x_{n+1}-\tilde{x}\right\|^{2}\right)+2 \beta_{n}\left\langle(I-A) \tilde{x}, x_{n+1}-\tilde{x}\right\rangle \\
& \leq\left(1-\beta_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-\tilde{x}\right\|^{2}+\beta_{n}\left[\left\|x_{n}-\tilde{x}\right\|^{2}+2 \alpha_{n}\left\|\gamma V x_{n}-\mu F \tilde{x}\right\|\left\|y_{n}-\tilde{x}\right\|\right] \\
& +\beta_{n}\left\|x_{n+1}-\tilde{x}\right\|^{2}+2 \beta_{n}\left\langle(I-A) \tilde{x}, x_{n+1}-\tilde{x}\right\rangle \\
& =\left[\left(1-\beta_{n} \bar{\gamma}\right)^{2}+\beta_{n}\right]\left\|x_{n}-\tilde{x}\right\|^{2}+2 \alpha_{n} \beta_{n}\left\|\gamma V x_{n}-\mu F \tilde{x}\right\|\left\|y_{n}-\tilde{x}\right\| \\
& +\beta_{n}\left\|x_{n+1}-\tilde{x}\right\|^{2}+2 \beta_{n}\left\langle(I-A) \tilde{x}, x_{n+1}-\tilde{x}\right\rangle .
\end{align*}
$$

It then follows from (3.15) that

$$
\begin{aligned}
\left\|x_{n+1}-\tilde{x}\right\|^{2} & \leq \frac{\left(1-\beta_{n} \bar{\gamma}\right)^{2}+\beta_{n}}{1-\beta_{n}}\left\|x_{n}-\tilde{x}\right\|^{2}+\frac{\beta_{n}}{1-\beta_{n}}\left[2 \alpha_{n}\left\|\gamma V x_{n}-\mu F \tilde{x}\right\|\left\|y_{n}-\tilde{x}\right\|\right. \\
& \left.+2\left\langle(I-A) \tilde{x}, x_{n+1}-\tilde{x}\right\rangle\right] \\
& =\left(1-\frac{2 \beta_{n}(\bar{\gamma}-1)}{1-\beta_{n}}\right)\left\|x_{n}-\tilde{x}\right\|^{2} \\
& +\frac{2 \beta_{n}(\bar{\gamma}-1)}{1-\beta_{n}} \cdot \frac{1}{2(\bar{\gamma}-1)}\left[2 \alpha_{n}\left\|\gamma V x_{n}-\mu F \tilde{x}\right\|\left\|y_{n}-\tilde{x}\right\|\right. \\
& \left.+\beta_{n} \bar{\gamma}^{2}\left\|x_{n}-\tilde{x}\right\|^{2}+2\left\langle(I-A) \tilde{x}, x_{n+1}-\tilde{x}\right\rangle\right] \\
& =\left(1-\omega_{n}\right)\left\|x_{n}-\tilde{x}\right\|^{2}+\omega_{n} \delta_{n},
\end{aligned}
$$

where $\omega_{n}=\frac{2 \beta_{n}(\bar{\gamma}-1)}{1-\beta_{n}}$ and
$\delta_{n}=\frac{1}{2(\bar{\gamma}-1)}\left[2 \alpha_{n}\left\|\gamma V x_{n}-\mu F \tilde{x}\right\|\left\|y_{n}-\tilde{x}\right\|+\beta_{n} \bar{\gamma}^{2}\left\|x_{n}-\tilde{x}\right\|^{2}+2\left\langle(I-A) \tilde{x}, x_{n+1}-\tilde{x}\right\rangle\right]$.
It can be readily seen from Step 2 and conditions (C1) and (C2) that $\omega_{n} \rightarrow$ $0, \sum_{n=0}^{\infty} \omega_{n}=\infty$ and $\limsup \sin _{n \rightarrow \infty} \delta_{n} \leq 0$. By [22, Lemma 2.1] with $r_{n}=0$, we conclude that $\lim _{n \rightarrow \infty}\left\|x_{n}-\tilde{x}\right\|=0$. This completes the proof.
Corollary 3.2. Let $\left\{x_{n}\right\}$ be the sequence generated by the explicit scheme (3.3). Assume that the sequences $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ satisfy the conditions (C1) and (C2) in Theorem 3.3. If $\left\{x_{n}\right\}$ is asymptotically regular, then $\left\{x_{n}\right\}$ converges strongly to a fixed point \tilde{x} of G which is the unique solution of the VIP (3.2).

Putting $\mu=2, F=\frac{1}{2} I$ and $\gamma=1$ in Theorem 3.3, we obtain the following.
Corollary 3.3. Let $\left\{x_{n}\right\}$ be generated by the following iterative scheme:

$$
\left\{\begin{array}{l}
y_{n}=\alpha_{n} V x_{n}+\left(1-\alpha_{n}\right) G_{n} x_{n}, \\
x_{n+1}=P_{C}\left[\left(I-\beta_{n} A\right) G_{n} x_{n}+\beta_{n} y_{n}\right], \quad \forall n \geq 0 .
\end{array}\right.
$$

Assume that the sequences $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ satisfy the conditions (C1) and (C2) in Theorem 3.3. If $\left\{x_{n}\right\}$ is weakly asymptotically regular, then $\left\{x_{n}\right\}$ converges strongly to a fixed point \tilde{x} of G which is the unique solution of the VIP (3.2).
Remark 3.1. If $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ in Corollary 3.2 and $\left\{\nu_{j, n}\right\}_{j=1}^{2}$ in G_{n} satisfy conditions (C2) and
(C3) $\sum_{n=0}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$ and $\sum_{n=0}^{\infty}\left|\beta_{n+1}-\beta_{n}\right|<\infty$; or
(C4) $\sum_{n=0}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$ and $\lim _{n \rightarrow \infty} \frac{\beta_{n}}{\beta_{n+1}}=1$ or, equivalently, $\lim _{n \rightarrow \infty} \frac{\alpha_{n}-\alpha_{n+1}}{\alpha_{n+1}}=0$ and $\lim _{n \rightarrow \infty} \frac{\beta_{n}-\beta_{n+1}}{\beta_{n+1}}=0$; or,
(C5) $\sum_{n=0}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$ and $\left|\beta_{n+1}-\beta_{n}\right| \leq o\left(\beta_{n+1}\right)+\sigma_{n}, \sum_{n=0}^{\infty} \sigma_{n}<\infty$ (the perturbed control condition);
(C6) $\sum_{n=0}^{\infty}\left|\nu_{j, n+1}-\nu_{j, n}\right|<\infty$ for $j=1,2$,
then the sequence $\left\{x_{n}\right\}$ generated by (3.3) is asymptotically regular.
In view of the above remark, we have the following corollary.
Corollary 3.4. Let $\left\{x_{n}\right\}$ be the sequence generated by the explicit scheme (3.3), where the sequences $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\nu_{j, n}\right\}_{j=1}^{2}$ satisfy the conditions (C1), (C2), (C5) and (C6) (or the conditions (C1), (C2), (C3) and (C6), or the conditions (C1), (C2), (C4) and (C6)). Then $\left\{x_{n}\right\}$ converges strongly to a fixed point \tilde{x} of G (i.e., $\tilde{x} \in \Xi$), which is the unique solution of the VIP (3.2).

Acknowledgement. This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University under grant no. (34-130-36-HiCi). The authors, therefore, acknowledge with thanks DSR technical and financial support.

References

[1] B.A. Bin Dehaish, A. Latif, H.O. Bakodah, X. Qin, A viscosity splitting algorithm for solving inclusion and equilibrium problems, J. Ineq. Appl., 50(2015).
[2] L.C. Ceng, Q.H. Ansari, J.C. Yao, Relaxed extragradient iterative methods for variational inequalities, Appl. Math. Comput., 218(2011), 1112-1123.
[3] L.C. Ceng, Q.H. Ansari, J.C. Yao, Some iterative methods for finding fixed points and for solving constrained convex minimization problems, Nonlinear Anal., 74(2011), 5286-5302.
[4] L.C. Ceng, S.M. Guu, J.C. Yao, A general composite iterative algorithm for nonexpansive mappings in Hilbert spaces, Comput. Math. Appl., 61(2011), 2447-2455.
[5] L.C. Ceng, S.M. Guu, J.C. Yao, Finding common solutions of a variational inequality, a general system of variational inequalities, and a fixed-point problem via a hybrid extragradient method, Fixed Point Theory Appl. 2011, Art. ID 626159, 22 pp.
[6] L.C. Ceng, A. Latif, A.E. Al-Mazrooei, Hybrid viscosity methods for equilibrium problems, variational inequalities, and fixed point problems, Applicable Anal., 95(2016), 1088-1117.
[7] L.C. Ceng, Z.R. Kong, C.F. Wen, On general systems of variational inequalities, Comput. Math. Appl., 66(2013), 1514-1532.
[8] L.C. Ceng, A. Petruşel, J.C. Yao, Relaxed extragradient methods with regularization for general system of variational inequalities with constraints of split feasibility and fixed point problems, Abstr. Appl. Anal. 2013, Art. ID 891232, 25 pp.
[9] L.C. Ceng, C.Y. Wang, J.C. Yao, Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities, Math. Methods Oper. Res., 67(2008), no. 3, 375-390.
[10] L.C. Ceng, M.M. Wong, Relaxed entragradient method for finding a common element of systems of variational inequalities and fixed point problems, Taiwanese J. Math., 17(2013), no. 2, 701724.
[11] L.C. Ceng, J.C. Yao, Relaxed and hybrid viscosity methods for general system of variational inequalities with split feasibility problem constraint, Fixed Point Theory Appl., 43(2013), 50 pp.
12] K. Goebel, W.A. Kirk, Topics in Metric Fixed-Point Theory, Cambridge University Press, Cambridge, 1990.
[13] J.S. Jung, A general composite iterative method for strictly pseudocontractive mappings in Hilbert spaces, Fixed Point Theory Appl., 173(2014), 21 pp.
14] A. Latif, D.R. Sahu, Q.H. Ansari, Variable KM-like algorithm for fixed point problems and split feasibility problems, Fixed Point Theory Appl., 211(2014).
[15] J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969.
[16] G. Marino, H.K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 318(2006), 43-56.
[17] G. Marino, H.K. Xu, Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Math. Math. Appl., 329(2007), 336-346.
[18] N. Shioji, W. Takahashi, Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc., 125(1997), no. 12, 3641-3645.
[19] M. Tian, A general iterative algorithm for nonexpansive mappings in Hilbert spaces, Nonlinear Anal., 73(2010), 689-694.
[20] R.U. Verma, On a new system of nonlinear variational inequalities and associated iterative algorithms, Math. Sci. Res. Hot-Line, 3(1999), no. 8, 65-68.
[21] I. Yamada, The hybrid steepest-descent method for variational inequality problems over the intersection of the fixed-point sets of nonexpansive mappings, in: Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, edited by D. Butnariu, Y. Censor and S. Reich, North-Holland, Amsterdam, Holland, 2001, 473-504.
[22] H.K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66(2002), no. 2, 240-256.
[23] H.K. Xu, T.H. Kim, Convergence of hybrid steepest-descent methods for variational inequalities, J. Optim. Theory. Appl., 119(2003), no. 1, 185-201.
[24] Y. Yao, Y.C. Liou, S.M. Kang, Approach to common elements of variational inequality problems and fixed point problems via a relaxed extragradient method, Comput. Math. Appl., 59(2010), 3472-3480.

Received: February 1st, 2015; Accepted: October 13, 2015.

[^0]: ${ }^{1}$ Corresponding author

