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1. INTRODUCTION

Let H be a real Hilbert space with inner product (-,-) and induced norm || - ||, C
be a nonempty closed convex subset of H.

Let A: C — H be a nonlinear mapping on C. The classical variational inequality
problem (VIP) [15] is to find z* € C such that

(Az*,x —2*) >0, Vrel. (1.1)

LCorresponding author.
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The solution set of VIP (1.1) is denoted by VI(C, F'). The VIP (1.1) has been exten-
sively studied both in theory and algorithms. See, e.g., [21], [16], [19], [3], [4], [13]
and the references therein.

Let F1, F5 : C — H be two mappings. We consider the following general system of
variational inequalities (GSVI) of finding (z*,y*) € C' x C such that

Py +z*—y*,x—a*) >0, VreCl,
(voFor* +y* —a*,xc—y*) >0, VreCl,

where v; > 0 and v > 0 are two constants. The solution set of GSVI (1.2) is denoted
by GSVI(C, F1, F>). Recently, many authors have been devoting the study of the
GSVI (1.2); see e.g., [11], [24], 9], [7], [8], [2], [5], [10], [20], [14], [1], [6] and the
references therein.

In this paper, we introduce a general composite implicit scheme and a general com-
posite explicit scheme for finding a solution of GSVI (1.2) in a real Hilbert space H.
Further, we establish the strong convergence of these two general composite schemes
to a solution of GSVI (1.2), which is also the unique solution of some variational
inequality.

(1.2)

2. PRELIMINARIES

We need the following notions and facts.
A mapping F': C' — H is said to be
(i) L-Lipschitz if there exists a constant L > 0 such that

[Fz = Fy| < Lz —yl, Vz,yeC.
(ii) monotone if
(Fz — Fy,x —y) >0, Va,yeC;
(iii) n-strongly monotone if there exists a constant 1 > 0 such that
<F.’E—Fy,{£—y>2’l7”$—y”2, vxvyec;
(iv) a-inverse-strongly monotone if there exists a constant o > 0 such that
(Fx — Fy,x —y) > o||Fx — Fy||*>, Vz,ycC.
It can be easily seen that if T' is nonexpansive, then I — T is monotone. It is also
easy to see that the projection Pg is 1-ism.
On the other hand, it is obvious that if F': C' — H is a-inverse-strongly monotone,

then F' is monotone and i—Lipsehitz continuous. Moreover, we also have that, for all
u,v € C and A > 0,

(I = AF)u— (I = AF)v||> < |lu —v||* + A\ = 20)||Fu — Fv||*. (2.1)

So, if A < 2a, then I — A\F' is a nonexpansive mapping from C to H.
A mapping T : C — C is called k-strictly pseudocontractive (or a k-strict pseudo-
contraction) if there exists a constant k € [0,1) such that

1Tz = Ty|* < |z —yl* + kIl(I = T)z — (I = T)yl*, Va,yeC.
The mapping T is pseudocontractive if and only if

(Tex — Ty,x —y) < Hx—yHQ, Vr,y € C.
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T is strongly pseudocontractive if and only if there exists a constant A € (0,1) such
that

(Tx — Ty,x —y) < A||x — yHQ, Va,y € C.

The mapping T is also said to be pseudocontractive if £ = 1 and T is said to be
strongly pseudocontractive if there exists a positive constant A € (0,1) such that
T + (1 — A)I is pseudocontractive.

For any sequence {x,, }, we use x,, — x for weak convergence and z,, — z for strong
converges. Moreover, we use w,,(z,) to denote the weak w-limit set of the sequence

{zp}, ie,
wy(2y) = {z € H : x,, — z for some subsequence {z,,} of {z,}}.

We denote by Fix(T) the set of fixed points of T' and by R the set of all real
numbers.The metric (or nearest point) projection from H onto C' is the mapping
P : H — C which assigns to each point x € H the unique point Poz € C satisfying
the property

_ P = inf ||z — y|| =: d(z, C).
lv = Poxl| = inf [z —yl| =: d(z,C)

The following properties of projections are useful for our results.
Proposition 2.1. Given any x € H and z € C. One has

(i) z=Pox & (x—2z,y—2) <0, VyeC;

(ii) 2 = Pow & | — 2| < |lo —yll? — |y — 21, Vy € C;

(iii) (Pcx — Poy,x —y) > ||Pox — Poy||?, Vy € H, which hence implies that Pc
is nonexpansive and monotone.

A mapping T : H — H is said to be firmly nonexpansive if 27" — I is nonexpansive,
or equivalently, if T is 1-inverse strongly monotone (1-ism),

(r —y,Te —Ty) > ||Tx - Ty|*, Va,yecH.

Proposition 2.2. (see [9]) For given T,y € C, (Z,7) is a solution of the GSVI (1.2)
if and only if T is a fized point of the mapping G : C — C defined by

Gz = Pc(I — v F\)Po(I —veFy)x, Yz eC,

where § = Po(I — voFy)Z.

In particular, if the mapping F; : C — H is (;-inverse-strongly monotone for
j = 1,2, then the mapping G is nonexpansive provided v; € (0,2(;] for j =1,2. We
denote by = the fixed point set of the mapping G.

We need some facts and tools in a real Hilbert space H which are listed as lemmas
below.
Lemma 2.1. Let X be a real inner product space. Then there holds the following
inequality

o +yll? < lz)* + 2{y, x +y), Va,yeX.

Lemma 2.2. Let H be a real Hilbert space. Then the following hold:

(a) |lz =yl = ll=1* = lyI* — 2z — y,y) for all z,y € H;

(b) 1Az + pyll®> = Nz||* + pllyll® — Apllz — ylI? for all @,y € H and A, p € [0,1]
with A+ p=1;
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(c) If {xn} is a sequence in H such that x,, — x, it follows that
limsup ||z, — y||* = limsup ||z, — z||> + ||z — y||?, Vy€ H.
n—oo n—oo

It is clear that, in a real Hilbert space H, T : C' — C'is k-strictly pseudocontractive

if and only if the following inequality holds:
1-k
(Tz = Ty,x —y) <|lz —yl* = ——= (1 = D)z = (I = T)y|*, Va,y€C.

This immediately implies that if T is a k-strictly pseudocontractive mapping, then
I—-Tis 15’“ -inverse strongly monotone.
Lemma 2.3. (see [17, Proposition 2.1]) Let C be a nonempty closed convex subset of
a real Hilbert space H and T : C — C be a mapping.

(i) If T is a k-strictly pseudocontractive mapping, then T satisfies the Lipschitzian
condition

1+k
Tx —Ty| <
T2 =Tyl < 1

(i) If T is a k-strictly pseudocontractive mapping, then the mapping I — T s
semiclosed at 0, that is, if {xn} is a sequence in C such that x, — & and (I —T)x, —
0, then (I —T)Z =0.

(iii) If T is k-(quasi-)strict pseudocontraction, then the fized-point set Fix(T) of T
is closed and convex so that the projection Priy(r) is well defined.

Lemma 2.4. Let C' be a nonempty closed convex subset of a real Hilbert space H. Let
T :C — C be a k-strictly pseudocontractive mapping. Let vy and § be two nonnegative
real numbers such that (v + 6)k <. Then

vz —y) +6(Tz = Ty)|| < (v+ )|z —yl, Vo,yeC.

Let C be a nonempty closed convex subset of a real Hilbert space H. We introduce
some notations. Let A be a number in (0,1] and let p > 0. Associating with a
nonexpansive mapping T : C — C, we define the mapping 7 : C — H by

Tz := Te — \uF(Tx), Yz € C,

where F' : C' — H is an operator such that, for some positive constants x,n > 0, F' is
k-Lipschitzian and 7-strongly monotone on C; that is, F' satisfies the conditions:

|Fa— Fyl < vz -yl and (Fz— Fy,z—y) > nlle -yl
for all z,y € C.

||.’,E—y||, anyec-

3. MAIN RESULTS

Let C be a nonempty closed convex subset of a real Hilbert space H. Throughout
this section, we always assume the following:

F : C — H is a k-Lipschitzian and 7-strongly monotone operator with positive
constants x,n > 0, and F}; : C'— H is (;-inverse strongly monotone for j = 1, 2;

A is a ¥-strongly positive bounded linear operator on H with 4 € (1,2), i.e., there
exists a constant 4 > 0 such that

(Az,z) > 7l|z|®, Ve H;
V : C — H is an [-Lipschitzian mapping with constant [ > 0;
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0<u<i—2and0§’yl<7with7:17 1 — u(2n — uk?);

Gy = Po(I = vi(t)F1)Po(I = va(t)Fy), t € (0, min{1, 2= }) and

G = Pc(.[ — VlFl)Pc(I — Z/QFQ) with 0 < Vj < l/j(t) < QCJ and lim;_,q l/j(t) =Vj
for j =1,2;

Gy = Po(I—v1,F1)Po(I—vopnF) with 0 < vj < wvj, < 2¢; and limy, o0 V) n = v
for j =1,2;

Z # () and Pz is the metric projection of H onto =

{an} C[0,1] and {B,} C (0,1].

By Proposition 2.2, we know that G; and G,, are nonexpansive and Fix(G) =
Fix(Gt) = Fix(Gp).

In this section, we introduce the first general composite scheme that generates a
net {4 }e 0 minf1 225 y) implicitly as follows:

We prove the strong convergence of {z;} as t — 0 to a fixed point & of G (i.e., T € 5,
which is a unique solution to the VIP

(A= Dz,p-3)>0, Vpe =. (3.2)

For arbitrarily given o € C, we also propose the second general composite explicit
scheme, which generates a sequence {z,} in an explicit way:

Yn = an YV, + (I - O‘nﬂ'F)ann;
Tn41 = PC'[(I - ﬂnA)GnZEn + 5nyn]a Vn > 0,

and establish the strong convergence of {z,} as n — oo to a fixed point Z of G (i.e.,
T € Z), which is also the unique solution to VIP (3.2).

Now, for ¢ € (0, min{1, 3_;3[}), and 0, € (0, || A|| 7], consider a mapping Q; : C —
C defined by

Qix = Po|(I — 0,4)Ga + 0, (tyVx + (I — tuF)Gyx)], Va e C.

It is easy to see that @y is a contractive mapping with constant 1 —6; (5 —1+¢(7—~l)).
By the Banach contraction principle, Q); has a unique fixed point, denoted by x;, which
uniquely solves the fixed point equation (3.1).

We summary the basic properties of {x;} as follows.
Proposition 3.1. Let {x:} be defined via (3.1). Then

(i) {x+} is bounded for ¢t € (0, min{1, f%jl}),

(#) limy—yq ||z¢ — Gra¢|| = 0 provided lim;_,q 6; = 0;

(#i) xy : (0, min{1, 2;7[}) — H s locally Lipschitzian provided

T

(3.3)

, : (0, min{1, f%jl}) S (0,147

is locally Lipschitzian, and v;(t) : (0, min{1, 72;71}) — [v,2¢;] is locally Lipschitzian
Jorj=1,2;

(iv) x¢ defines a continuous path from (0, min{1, E:jl}) into H provided

(O,min{1, 277 -1
6; : (0, min{1, p— “Yl}) — (0, [|A[| ]
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is continuous, and v;(t) : (0, min{1, f__jl}) — [V, 2¢;] is continuous for j =1,2.
We are now in a position to prove the following theorem for strong convergence of
the net {x;} as ¢ — 0, which guarantees the existence of solutions of the variational
inequality (3.2).
Theorem 3.1. Let the net {x:} be defined via (5.1). If limy_060; = 0, then x:
converges strongly to a fized point & of G as t — 0, which solves the VIP (3.2).
Equivalently, we have Pz (2] — A)T = Z.
Proof. We first note that we have the uniqueness of solutions of the VIP (3.2) which
is a consequence of the strong monotonicity of A — I Next, we prove that x; — T
as t — 0. Observing Fix(G) = Fix(G;) by Proposition 2.2, from (3.1), we write, for
given p € =,

Ty — P =Tt — Wy + Wy — P =T — W + (IfGtA)(Gtsct *th)
+0:[t(vVxy — uFp) + (I —tuF)Gxy — (I — tuF)p] + 6.(I — A)p,

where w; = (I — 0, A)Gxy + 0, (tyVxy + (I — tuF)Gray). Then, by Proposition 2.1
(i), we have
e —pl|* = (2 —we, 2 — p) + (I — 0. A) (Gyay — Gep, w0 — D) + 0 [t(YV 2, — pFp, 20 — p)

+{((I —tuF)Gyzy — (I — tpuF)p, xy — p)] + 6,((I — A)p, x4 — p)

< (1 =03l — pll* + 0:[(1 — t7) || — pl|* + 7]z — pl?
+U{(VV = uF)p,x — p)] + 0((I — A)p,z — p)
=[1=0:(7 = L+ t(r = y))]l|lzt — plI* + 0:(H{(YV — pF)p, s — p) + (I = A)p, x; — p)).
Therefore,
1

F—=14+t(r—~I)

Since the net {zt},c (o ming1 25y, Is bounded (due to Proposition 3.1 (i)), we know

|z — p||* < (tH((YV = puF)p,xy —p) + (I — A)p,z1 — p)).  (3.4)

that if {¢,,} is a subsequence in (0, min{1, 72;7[}) such that t, — 0 and z;, — z*,
then from (3.4), we obtain z;, — x*. Let us show that z* € 5. To this end, note
that G : C — C defined by G := Po(I — v1F1)Pc(I — voF3) for 0 < v; < 2(; for
j =1,2. Then G is nonexpansive with Fix(G) = = (due to Proposition 2.2). By the
definition of z; and the nonexpansivity of Po(I —v;F}),j = 1,2 we get

Gz, — @4, ||

<Gt = Ge,we, || + |G, 2e, — 2, ||

S ||Pc(I — I/lFl)Pc(I — I/QFQ)(Etn — Pc(_[ — Vl(tn)Fl)Pc(I — I/Q(tn)FQ)lL'tn ||
+||th.’lftn - (I - HtHA)thxtn - th (tn'ﬂ/xtn + (I - tnMF)thl'tn)”
S ||Pc(I — VlFl)Pc(I - VQFQ)J}tn - Po(l - V1F1>Pc(l - Vg(tn)Fg).'I}t”
+||Pc(I - VlFl)Pc(I - V2(tn)F2)xtn - Pc(I - Vl(tn)Fl)Pc(I - I/Q(tn)FQ)l‘tn ||
—|—0tn H(I — A)thilitn + tn(’}/VZ'tn — /.LFthItn)H

S| = vakz)ay, — (I — va(tn)F2)ay, ||

+||(I — VlFl)PC(I — Vg(tn)FQ)irtn — (I — Vl(tn)Fl)PC(I — I/Q(tn)FQ)iCtn ||

01, (I = A)Gy, 2, + tn(YWar, — pFGy, ay,)
= |va(tn) — vl Foxe, || + (11 (tn) — vl FrPo (I — va(tn) F2)ay, ||
+0tn H(I - A)thxtn + tn(’}/VJ,'tn — ,uFthxtn)H
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Since 6y, — 0 and v;(t,) — v; as t, — 0 for j = 1,2, we have (I — G)zy, — 0
as t, — 0. Thus it follows from [12] that 2* € Fix(G). By Proposition 2.2 we get
¥ e =,
Ifinally, let us show that z* is a solution of the VIP (3.2). Since

2y =xr —we + (I — 0, A)Gray + 0:(tyVay + (I — tuF)Gexy),
we have

xy — Gery = 1y — wp + 0, (I — A)Gyy + 0t (YW ay — uFGray).
Since G is nonexpansive (due to Proposition 2.2), I — G¢ is monotone. So, from the
monotonicity of I — Gy, it follows that, for p € =& = Fix(Gy),

0<{((I-Gpxi—I—-Ge)p,xt—p)={(I—Gp)x,xt — D)
= ({2 — we, v — p) + 0 (I — A)Gry, ¢ — p) + Ot (YVy — pFGyxy, v — )
< 0((I — A)Gray,zp — p) + Ot (YVay — pF'Gray, a — p)
=0:((I — Az, xe — p) + 0:((I — A) (Gt — Dy, e — p) + 0:t(yVy — uFGray, 0 — p).
This implies that
(A= Dz, xe —p) < (I — A)Gy — Dy, xe —p) + (Y Vay — uFGray, 2 — p). (3.5)

Now, replacing ¢ in (3.5) with ¢, and letting n — oo, noticing the boundedness of
{YWVxi, — pFGy,x, } and the fact that (I — A)(Gy, — I)ay, — 0 as n — oo (due to
Proposition 3.1 (ii)), we obtain

(A= D)a* o = p) <0,
That is, 2* € Z is a solution of the VIP (3.2); hance * = & by uniqueness. In
summary, we have proven that each cluster point of {z;} (as t — 0) equals Z. Con-

sequently, z; — & as t — 0.
The VIP (3.2) can be rewritten as

(@I -A)z—z,2—-p) >0, VpeZ.
Using Proposition 2.1 (i), the last inequality is equivalent to the fixed point equation
P=(2I — A)z = 7. O
Taking F' = %I, @ =2 and v =1 in Theorem 3.1, we get
Corollary 3.1. Let {x:} be defined by
2y = Pol(I — 04 A)Gyxy + 0. (tV e + (1 — £)Gray)].

If limy_0 0; = 0, then {x;} converges strongly as t — 0 to a fixed point & of G (i.e.,
T € E), which is the unique solution of the VIP (3.2).

Next, we prove the following result in order to establish the strong convergence of
the sequence {z,} generated by the general composite explicit scheme (3.3).
Theorem 3.2. Let {x,} be the sequence generated by the explicit scheme (3.3), where
{an} and {B,} satisfy the following condition:

(C1) {an} C [0,1], {Bn} C(0,1] and oy, — 0, B, = 0 as n — oco.

Let LIM be a Banach limit. Then

LIM, (A — )&, & — x,) <0,



294 A. LATIF, A.S.M. ALOFI, A.E. AL-MAZROOEI AND J.C. YAO

where T = lim;_,q+ x; with x; being defined by
Ty = Pc[(l — GtA)G:ct + Ht(t'yVa:t + (I - t,LLF)GJ?t)], (36)

where G : C — C is defined by Gx = Po(I — v1F1)Po(I — vaFs)x for 0 < v; <
20,5 =1,2.

Proof. First, note that from the condition (C1), without loss of generality, we may
assume that 0 < 3, < ||A[|~! for all n > 0.

Let {z;} be the net generated by (3.6). Since G is a nonexpansive self-mapping
on C, by Theorem 3.1 with G; = G and Proposition 2.2, there exists lim; ,ox; €
Fix(G) = Z. Denote it by Z. Moreover, Z is the unique solution of the VIP (3.2).
From Proposition 3.1 (i) with Gy = G, we know that {z;} is bounded and so are the
nets {Va;} and {FGuz.}.

First of all, let us show that {x,} is bounded. To this end, take p € Fix(G) =
Fix(Gy,), then we get

”yn - p” = Han'VV'rn + (I - anNF)Gnajn _pll
||an(7V'rn - ,qu) + (I - anMF)ann - (I - anHF)anH
(1 = an(r =) llzn = pll + anl|(YV = uF)pl,

IA

and hence we obtain

| [V = uE)pl + 1T = Alllpll
) ,7 _ 1

This implies that {x,} is bounded and so are {Gz,}, {Gran}, {FGrzy}, {Va,} and
{yn}. Thus, utilizing the control condition (C1), we get

Brllyn — AGrzy|| = 0 as n — oo,

[ = pl| < max{]|zo —p| b, vn=0.

lTni1 — annH

[Nl

and

[Gat — zpia || < |Gxy — Gagl| + [|[Gan — Gran|| + [|Grn — Tpia |
< ||xt - $nH +|Gnan — mn-&-lH
+ |[|Pc(I — i F1)Po(I — voFs)x, — Po(I — 1 0 F1)Po(I — vo nFo)xy ||
<zt — zall + (|G — 2pga]
+|Pc(I =i Fy)Po(I — vaFa)zn — Po(I — 1 Fr) Po(I — va n Fa) 2|
+|[|Pc(I — 1 F1)Po(I — va 0 Fo)xy —Po(I — v1 0 F1) Po(I — vo o)y ||
< lwe = zall + |Gran — zngal| + (I = v2Fo)zn — (I — vonFo) ||
+ (I = Fy)Po(I —vonFo)xy — (I — 1,0 F1)Po(I — van Fa)zy ||
< lwe = 2ol + [n1 — Gnan|
+ 2 = velllF2znll + [v1m — |l F1Pe(I — v nFo)za ||
= ||z — @n| + €n, (3.7)
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where €, = ||zpt1 — Gnn||+||ve,n — 1ol Fozn || + V10 —vil|| FAPc(I — vo nFo)zy| — 0
as n — 0o. Also observing that A is strongly positive, we have
(Azy — Ay, — 2) = (A(my — 220), 00 — ) > 2 — 20 || (3.8)
For simplicity, we write wy = (I — 0;A)Gxy + 0, (tyVay + (I — tuF)Gzy). Then we
obtain that z; = Pow; and
Tt — Tpp1 = ¢ — wp + (I — 0 A)Gry 4+ 0:(ty Ve + (I — tuF)Gay) — Tpta

= (I - GtA)G:z:t - (I - QtA)xn_H + Qt(t’}/VIt

+ (I —tuF)Gry — Axpyq) + @ — wy.
Applying Lemma 2.1, we have

[2: = 2pia || < [|(T = 0;A) Gy — (I = 0 A) 241
+20:(Gry — t(uWFGry — yVy) — ATpg1, T — Tpt1) + 2(xp — Wi, Ty — Tpg1)
S || (I — QtA)Gxt — (I — QtA)scn_,_l ||2 +29t <G5L’t — t([,LFGIL’t — ’)/V.'Et) — AIn_;,_l, Ty — $n+1>
< (1= 09)%Gry — wpgr ||* + 20,(Gay — 3, 2 — Tpir)

*20tt</,LFGIL’t - ’)/Vilft, Tt — l’n+1> + 20t<xt - A$n+1, Tt — .’En+1>. (39)
Using (3.7) and (3.8) in (3.9), we obtain

2 = @ |? (3.10)
< (1= 09)2|Gry — 2pia||® + 200(Gxy — 24,2 — Tpgr)
+ 20t (YWay — pFGre, xp — Tpg1) + 20:(xs — ATpi1, Tt — Tpg1)
< (1 =092 (lze — wall + €n)? + 204[| Gy — 4|l — 2|
+ 20,t|YVar — pFGae||||ze — Tnpr|| + 20:(xe — Apg1, T — Tppg1)
= (077 = 207w — xall® + [l — 2 ]1? + (1 = 09)2 2]z — zallen + )
+20]|Gay — @2 — Tl + 20ut |V Var — pFGay||lze — 2pa |
+ 201 (xy — ATpy1, Tt — Tpy1)
< (677 — 20,)(Axy — Az, 2 — x) + [loe — 20| + (1= 07)?2llze — 2alen + €3)
+20]|Gay — 2|2 — Tl + 20ut |y Var — pFGa||lze — 2pa |
+ 201 (xy — ATpy1, Tt — Tpy1)
= 077(Azy — Az, 20 — x) + [|l2e — 20 ]? + (1= 09)2llwe — 20len + €3)
+20i]|Gae — @2 — Tl + 20ut |y Var — pFGay||lze — 2 |
+20,[{xs — ATpy1, ¢ — Tpg1) — (Axy — Axy, Tp — Ty)]
= 037( Az — @n), 2 — xn) + |2 — 2012 + (1= 09)? (2]l xe — zalen + €3)
+ 204 Gre — w20 — @[l 4 200t ||V Ve — pFGal|l|ay — 2na |
+ 20, [((I — A)xg,t — Tppg1) + (A(Tt — Tnp1), Tt — Tpp1) — (A(xp — Tp)y T — X))
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Applying the Banach limit LIM to (3.10), from ¢, — 0 we have
LIM,, ||z — 2yt )? (3.11)
< O?ALIM, (A(zy — xy,), ¢ — 2,) + LIM,, ||z, — 2, ||?
+20,||Gxy — x||LIM,, ||2s — g1 || + 20,87V 2y — pF Gy ||LIM,, || 2y — 2t ]
+ 20, [LIM, (I — A)zs, x4 — Tpt1) + LIMp (A(xs — Tpg1), Tt — Tpg1)
— LIM,, (A(xt — Tp), Tt — ).
Using the property LIM, a,, = LIM a,,+1 of the Banach limit in (3.11), we obtain

LIM,, ((A — Dy, ¢ — xy) (3.12)
= LIMn<(A — I)xt,a:t — 1’n+1>
0,7 1
< %YLIMn(A(:ct — )2 = ) + 2 (LM, o Zp||? = LIM,, ||zt — 2ns1 ||2]
t

+ |Gy — x4 |LIM,, ||zt — @n|| + E|7YV2r — pF Gay||LIM, ||z — 20|
+ LIM, (A(zy — Tpt1), @t — Tp1) — LIM (A(zy — ), 20 — )

on
< %LIMn(A(xt — 1), % — ) + |G — 24| LIMp |2s — 20

+t|yYVay — uFGay||[LIM, |2y — 24|
Since as t — 0,
O (A(xy — 20), 00 — ) < O] A7 — 20 |]* < 0K — 0, (3.13)
where | Al — za]]? < K,
|Gxy — x¢|| =0 ans t||yVay — pFGal| -0 ast— 0, (3.14)
we conclude from (3.12)-(3.14) that

LIM, (A — )%, — a)
< lim supLIM,, (A — Ixs, x4 — )
t—0

< limsqutTXYLIMMA(:ct — Tp), Tt — Tp) + limsup||Gry — x¢||LIM,, ||z — 24|
t—0 t—0

+lim supt||[yVx, — pFGay||LIM,, ||z, — 25|
t—0

This completes the proof. O
Now, using Theorem 3.2, we establish the strong convergence of the sequence {z,, }
generated by the general composite explicit scheme (3.3) to a fixed point Z of G (i.e.,
Z € E), which is also the unique solution of the VIP (3.2).
Theorem 3.3. Let {x,} be the sequence generated by the explicit scheme (3.3), where
{an} and {B,} satisfy the following conditions:
(C1) {an} C [0,1], {Bn} C (0,1] and o), = 0, B, — 0 as n — oo;
(C2) Y0y B = .
If {z,} is weakly asymptotically regular (i.e., xpi1 — x, — 0), then x, converges
strongly to a fixed point T of G (i.e., & € 5), which is the unique solution of the VIP

(3.2).
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Proof. First, note that from the condition (C1), without loss of generality, we may
assume that a,7 < 1 and %};—1) <1 for all n > 0.
Let z; be defined by (3.6), that is,

xy = Po[(I — 6,A)Gxy + 0,(Gay — t(uF Gy — V)],
for ¢ € (0, min{1, f%jl}), where G = Po(I — 11 F1)Po(I — 1o F3) for 0 < v; < 2(;, and
lim; g x; := & € Fix(G) = £ ). Then Z is the unique solution of the VIP (3.2).

We divide the rest of the proof into several steps.
Step 1. We see that

(V= pE)pl + I = Allllpll
51
for all p € 5 as in the proof of Theorem 3.2. Hence {z,} is bounded and so are

{Gl‘n}, {ann}a {Fann}a {an} and {yn}~
Step 2. We show that limsup,, . ((I — A)Z,x, — Z) < 0. To this end, put

an = ((A=1)Z,T —x,), Yn>0.

Then, by Theorem 3.2 we get LIM,,a,, < 0 for any Banach limit LIM. Since {z,} is
bounded, there exists a subsequence {z,,} of {x,} such that

2 — p|l < max{[lzo — p|, | 1, Ym0,

limsup(an 41 — a,) = lim Sup(anj-i-l - anj)
n—o00 Jj—o0

and x,,;, — v € H. This implies that x,,, ;1 — u since {x,} is weakly asymptotically
regular. Therefore, we have

w— lim (T — 2y, 41) =w — lim (T —x,,) =2 — u,
j—oo J—o0

and so

lim Sup(anJrl - an) = hm <(A - I)i'v (*% - xanrl) - (‘% - mn]» =0.
n—oo J—00

Then, by [18, Proposition 2] we obtain lim sup,,_, . a, < 0, that is,
limsup((I — A)Z, x, — &) = limsup((4A — I)Z,Z — x,,) < 0.
n—oo

n— oo

Step 3. We show that lim, o ||z, — Z|| = 0. Indeed, for simplicity, we write
wy, = (I = BrA)Grxy + Bnyy for all n > 0. Then x,,+1 = Pow,. Utilizing (3.3) and
G,T = I, we have

Yn — = — anuF)Gpz, — (I — anuF)Gpt + an(yVa, — pFz),
and
Applying Lemma 2.1 and [23, Lemma 31], we obtain
(I — anpuF)Gray — (I — anuF)Gni + an (YW, — pFi)|?
(I — anpuF)Gray — (I — anuF)Gri||? + 20, (YW, — pFT, yn — T)
(1 = ap7)?[lzn — Z[* + 200 YV 2n — pFE||[|lyn — ||
”xn - 53“2 + QOan’nyn - .UFi'”Hyn - 53”7

lyn — 2|

INIAIA I
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and hence
[ (3.15)
= (I = BuA)(Grtn — Gn&) + Bu(yn — &) + Bu(I — A)T + ng1 — wy?
< = BaA) Gy — Gn)|1? + 280 yn — &, Tng1 — &) + 282 ((I = A)T, 241 — 7)
+ 2(XTpg1 — Wn, Tpy1 — T)
< (I = BuA) Gy — Gn)|1? + 280 yn — & Tng1 — &) + 260 (I — AT, 2 g1 — F)
< (1= 8u7) |20 — 212 + 28ullyn — #lll20s1 — 2 + 280 (1 = A) 2041 — 7)
< (1= Bu¥)? 20 = Zl° + Bulllyn — ZI° + lznsr — %) + 262 — A)T, 2041 — T)
< (1= B9 2n — &l + Bullzn — 2l + 200 WV zn — pF | |lyn — 2]
+ Bullzns1 — &2 + 28, (I — A)F, py1 — F)
= [(1 = Ba%)? + Bulllwn — 21 + 200 WV an — pF | |lyn — Z||
+ Bullensr — 2|7 + 28, ((I = AT, 241 — T).
It then follows from (3.15) that

1- n_ 2 n ~ n ~ ~
e e O I /S A
P20~ A5 - )
— (1= 202D, g2
Qﬂn(ﬁl — 1) .

+

- 20 [[yVay — pFE||ly, — @
P00l Il )

+ 87l — 3 + 2T = A)F, 241 — 7)]

2571 ('771)

where wy, = == 5 and
n

1 _ . _ ~ ~ -
On = m[%nl\wwn = WF [y — &) + Bn7? |2 — Z(|* + 2(( — A) T, g1 — )]

It can be readily seen from Step 2 and conditions (C1) and (C2) that w, —
0, >0° gwn = 0o and limsup,_,, 6, < 0. By [22, Lemma 2.1] with 7, = 0, we
conclude that lim,_, |2, — &|| = 0. This completes the proof. O
Corollary 3.2. Let {z,} be the sequence generated by the explicit scheme (3.5).
Assume that the sequences {a,} and {Bn} satisfy the conditions (C1) and (C2) in
Theorem 8.3. If {x,} is asymptotically regular, then {x,} converges strongly to a
fized point & of G which is the unique solution of the VIP (3.2).
Putting p =2, F = %I and 7 = 1 in Theorem 3.3, we obtain the following.

Corollary 3.3. Let {x,} be generated by the following iterative scheme:

Yn = OénVJ?n + (1 - an)Gn-Tru
Tni1 = Po[(I — BnA)Gpzyn + Bryn], ¥n >0.
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Assume that the sequences {ow,} and {Bn} satisfy the conditions (C1) and (C2) in
Theorem 3.3. If {x,} is weakly asymptotically regular, then {x,} converges strongly
to a fized point & of G which is the unique solution of the VIP (3.2).
Remark 3.1. If {a,},{8,} in Corollary 3.2 and {v;,}5_, in G, satisfy conditions
(C2) and

(C3) >0 lant1 — an| < oo and 3707 [Bui1 — Bl < 005 or

(C4) S jlans1 — an] < oo and lim, o B = 1 or, equivalently,

Bn«l»l
Qnp —On41 : Bn_6n+1 —0N-
o = 0 and lim,, e = 0; or,

(C5) Y0 o lant1 — an| < oo and [Bnt1 — Bnl < 0(Bng1) + Tny Y opeg On < 00 (the
perturbed control condition);

(C6) >0 o [Vjmt1 — V| < oo for j =1,2,
then the sequence {x,} generated by (3.3) is asymptotically regular.

In view of the above remark, we have the following corollary.
Corollary 3.4. Let {x,} be the sequence generated by the explicit scheme (3.3),
where the sequences {an}, {Bn} and {vjn}5_, satisfy the conditions (C1), (C2), (C5)
and (C6) (or the conditions (C1), (C2), (C3) and (C6), or the conditions (C1), (C2),
(C4) and (C6)). Then {x,} converges strongly to a fized point & of G (i.e., & € E),
which is the unique solution of the VIP (3.2).

lim,, s 0
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