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Abstract. In this paper some estimates of M -constants in Orlicz-Lorentz sequence spaces for

both, the Luxemburg and the Amemiya norms are given. Since degenerated Orlicz functions ϕ and
degenerated weighted sequences ω are also admitted, this investigations concern the most possible

wide class of Orlicz-Lorentz sequence spaces. M -constants were defined in 1969 by E.A. Lifshits,

and used in the study of lattice structures on Banach spaces, as well as in the fixed point theory, by
a number of authors. In the last section of the paper an application of our results to the fixed point

property is presented.
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1. Introduction

Recall that M -constants were introduced by Lifshits [27]. His investigations were
continued by Abramovich, Lozanovski and Tsekrekos (see [1] and [37], respectively).
Let E = (E,≤, ‖ · ‖) be a normed lattice. Then M -constants in E are defined by
formula

µn(E) = sup

{∥∥∥∥∥
n∨
i=1

xi

∥∥∥∥∥ : 0 ≤ xi ∈ E, ‖xi‖ ≤ 1 for i = 1, . . . , n

}
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or, equivalently

µn(E)= sup

{∥∥∥∥∥
n∑
i=1

xi

∥∥∥∥∥ : 0≤xi∈ E, ‖xi‖≤1 for i=1, . . . , n and xi ∧ xj = 0 for i 6= j

}

= sup

{∥∥∥∥∥
n∑
i=1

xi

∥∥∥∥∥ : 0≤xi∈ E, ‖xi‖=1 for i=1, . . . , n and xi ∧ xj = 0 for i 6=j

}
.

In [27], there were also defined the following L-constants

λn(E) = sup

{
‖x1‖+ . . .+ ‖xn‖
‖x1 + . . .+ xn‖

: 0 ≤ xi ∈ E for i = 1, . . . , n,

n∑
i=1

xi 6= 0

}
.

Denoting by E∗ the dual of E, we have λn(E∗) = µn(E) and µn(E∗) = λn(E) (see
[37]*Proposition 2). Moreover, if E is infinite dimensional, then λn(E)µn(E) ≥ n
for all n ∈ N. Generally, the numbers µn(E) and λn(E) are useful in the lattice-
isomorphic classification of special type of Banach lattices. For instance, [37] contains
a characterization of l1 and c0 (by a behavior of M -constants and L-constants) in the
family of Banach lattices with unconditional basis.

The above constants were also considered by Kalton in [16]. In particular, re-

lationships between lattice structure on E and the facts that lim infn→∞
λn(E)√

logn
or

lim infn→∞
µn(E)√

logn
are equal to zero were shown (see [16]*Theorems 9.4-6). Next,

Masty lo obtained an analogous result in Calderón-Lozanovskǐı spaces (see Theorem
2.5 in [32]). In this paper, he also find estimates for the constants µn and λn for
Calderón-Lozanovskǐı spaces. In consequence, the estimate for L-constant for Orlicz-
Lorentz spaces are found.

Borwein and Sims in [4] showed that the constant µ2(E), called the Riesz angle,
plays an important role in the fixed point theory. More precisely, they showed that
if E is a weakly orthogonal Banach lattice such that µ2(E) < 2, then E has the
weak fixed point property (that is, every non-expansive mapping from a non-empty
weakly compact convex subset of E into itself has a fixed point). More about the fixed
point theory can be found in the handbook [24]. The estimates of the Riesz angle
for Orlicz spaces were given by Jincai Wang and Yaqiang Yan (see [38] and [40, 41],
respectively). Also the papers [13] and [23] deal with the fixed point property in
Orlicz spaces.

At the end, we note that a lot of important information on M -constants, can be
found in the Wnuk paper [39].

The paper is organized as follows. In the next section we will recall some basic
definitions. In the third section we will present our results concerning the estimates of
the M -constants in Orlicz-Lorentz sequence spaces. In the last section we prove that
in Köthe sequence spaces X with the semi-Fatou property the notion of weak orthog-
onality of X in the sense of Borwein and Sims coincide with its order continuity. We
also present some sufficient conditions for the fixed point property of Orlicz-Lorentz
sequence spaces λϕ,ω and we illustrate this result with a non-expansive operator from
some Orlicz-Lorentz sequence spaces into itself that has a fixed point in the unit ball
of λϕ,ω.
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2. Preliminaries

Let l0 be the space of all real sequences x : N → (−∞,∞) and ei, i ∈ N, be
the unit basic vectors in c0. Given any x ∈ l0 we define its distribution function
µx : [0,+∞)→ {0,∞} ∪ N by

µx(λ) = m{i ∈ N : |x(i)| > λ},

where m is the counting measure on 2N (see [3, 25, 29]), and its non-increasing re-
arrangement x∗ = (x∗(i))∞i=1 as

x∗(i) = inf{λ ≥ 0 : µx(λ) < i}

(under the convention inf ∅ = ∞). We say that two sequences x, y ∈ l0 are equi-
measurable if µx(λ) = µy(λ) for all λ ≥ 0. It is obvious that equi-measurability of x
and y gives x∗ = y∗.

A Banach sequence space E = (E,≤, ‖ · ‖), where E ⊂ l0, is said to be a Köthe
sequence space if the following conditions are satisfied:

(i) if x ∈ E, y ∈ l0 and |y| ≤ |x|, then y ∈ E and ‖y‖ ≤ ‖x‖,
(ii) there exists a sequence x in E that is strictly positive on the whole N.

Recall that the Köthe sequence space E is called a symmetric space if E is rearrange-
ment invariant in the sense that if x ∈ E, y ∈ l0 and x∗ = y∗, then y ∈ E and
‖x‖ = ‖y‖. For basic properties of symmetric spaces we refer to [3, 25, 29].

In the whole paper ϕ denotes an Orlicz function (see [5, 31, 35]), that is, ϕ :
[−∞,∞]→ [0,∞] (our definition is extended from R into Re = [−∞,∞] by assuming
that ϕ(−∞) = ϕ(∞) =∞) and ϕ is convex, even, vanishing and continuous at zero,
left continuous on (0,∞) and not identically equal to zero on (−∞,∞). Let us denote

aϕ = sup{u ≥ 0 : ϕ(u) = 0},
bϕ = sup{u ≥ 0 : ϕ(u) <∞}.

Note that the left continuity of ϕ on (0,∞) is equivalent to the fact that
limu→(bϕ)− ϕ(u) = ϕ(bϕ).

The inverse function of the function ϕ restricted to the interval [aϕ, bϕ) or [aϕ, bϕ],
according to the situation when bϕ =∞ or when bϕ <∞ and ϕ(bϕ) <∞, respectively,
is denoted by ϕ−1.

Recall that an Orlicz function ϕ satisfies condition ∆2(0) if there exist constants
u0 > 0 and K > 0 such that ϕ(u0) > 0 and the inequality

ϕ(2u) ≤ Kϕ(u) (2.1)

holds for any u ∈ [0, u0] (then we also have aϕ = 0). Analogously, we say that an
Orlicz function ϕ satisfies condition ∆2(∞) if there exist constants u0 > 0 and K > 0
such that ϕ(u0) < ∞ and inequality (2.1) holds for any u ≥ u0 (then we obtain
bϕ = ∞). Finally, we say that an Orlicz function ϕ satisfies condition ∆2(R+) if ϕ
satisfies simultaneously conditions ∆2(0) and ∆2(∞), that is, there exists a constant
K > 0 such that inequality (2.1) holds for any u ∈ R+ (obviously, then aϕ = 0 and
bϕ =∞).
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For any Orlicz function ϕ we define its complementary function in the sense of
Young by the formula

ψ(u) = sup
v>0
{|u|v − ϕ(v)} (2.2)

for all u ∈ R. It is easy to show that ψ is also an Orlicz function.

Let ω : N→ R+ be a non-increasing and non-negative sequence, called a weighted
sequence. In the whole paper we will assume that ω(1) > 0.

If ϕ(bϕ) ≥ 1
ω(1) , then we define u1 > 0 by the equality ϕ(u1) = 1

ω(1) . We also

define

γϕ,ω =

{
u1 if ϕ(bϕ) ≥ 1

ω(1) ,

bϕ otherwise.
(2.3)

Now we will recall the definition of Orlicz-Lorentz spaces, which are a natural
generalization of Orlicz and Lorentz spaces. They were introduced at the beginning
of nineties [30, 17, 18, 19, 33, 34]. These investigations gave an impulse to further
investigations of the spaces, results of which have been published among others in the
papers [2, 8, 7, 9, 10, 11, 12, 14, 15, 20, 21, 22, 26].

Given any Orlicz function ϕ and a weighted sequence ω, we define on l0 the convex
modular Iϕ,ω : l0 → Re+ = [0,∞] by the formula

Iϕ,ω (x) :=

∞∑
i=1

ϕ(x∗(i))ω(i) = sup
π

∞∑
i=1

ϕ(x(π(i)))ω(i), (2.4)

where π denotes a permutation of the set N and the supremum is extended over all
permutation of N. The modular space

λϕ,ω = {x ∈ l0 : Iϕ,ω (βx) <∞ for some β > 0},

generated by the modular Iϕ,ω is called the Orlicz-Lorentz sequence space. Since the
modular unit ball {x ∈ l0 : Iϕ,ω(x) ≤ 1} is an absolutely convex and absorbing subset
of λϕ,ω, its Minkowski functional ‖ · ‖ϕ,ω defined by

‖x‖ϕ,ω = inf{β > 0 : Iϕ,ω (x/β) ≤ 1}.

is a seminorm in λϕ,ω. It is easy to check that, thanks to the condition ϕ(u)→∞ as
u→∞ it is a norm in λϕ,ω, which is called the Luxemburg norm.

We will also consider in the space λϕ,ω another norm ‖ · ‖Aϕ,ω, called the Amemiya
norm. It is defined by the formula

‖x‖Aϕ,ω = inf
k>0

1

k
{1 + Iϕ,ω(kx)}

for any x ∈ λϕ,ω. The norms ‖ · ‖ϕ,ω and ‖ · ‖Aϕ,ω are equivalent and the inequality

‖x‖ϕ,ω ≤ ‖x‖Aϕ,ω ≤ 2‖x‖ϕ,ω holds for all x ∈ λϕ,ω which follows by the formula

‖x‖ϕ,ω = inf
k>0

1

k
max(1, Iϕ,ω(kx)).

Both spaces λϕ,ω = (λϕ,ω, ‖ · ‖ϕ,ω) and λAϕ,ω = (λϕ,ω, ‖ · ‖Aϕ,ω) are symmetric Banach
spaces.
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3. Results

3.1. The case of the Luxemburg norm. First, we will present results concerning
Orlicz-Lorentz sequence spaces equipped with the Luxemburg norm. At the beginning
note that if aϕ = bϕ then (λϕ,ω, ‖ · ‖ϕ,ω) = (l∞, ‖ · ‖∞/bϕ) and µn(λϕ,ω) = 1 for any
n ∈ N. Assuming in the following that aϕ < bϕ we start with some definitions.

For any triple (ϕ, ω, n), (n ∈ N) we define three indexes αϕ,ω,n, α′ϕ,ω,n and α0
ϕ,n

by the formula

αϕ,ω,n = inf

ϕ
−1
(
ϕ(u)
n

)
u

: aϕ < u ≤ γϕ,ω

 = inf

{
ϕ−1(v)

ϕ−1(nv)
: 0 < v ≤ ϕ(γϕ,ω)

n

}
,

α′ϕ,ω,n = inf

ϕ
−1
(

1∑nk
i=1 ω(i)

)
ϕ−1

(
1∑k

i=1 ω(i)

) : k = 1, 2, . . .

 ,

α0
ϕ,n = lim inf

u→aϕ

ϕ−1
(
ϕ(u)
n

)
u

= lim inf
v→0

ϕ−1(v)

ϕ−1(nv)
,

where γϕ,ω is defined by formula (2.3). Moreover, in the definition of the index α′ϕ,ω,n
we put ϕ(bϕ) in place 1/

∑m
i=1 ω(i), whenever ϕ(bϕ) < 1/

∑m
i=1 ω(i).

Now, using the indexes αϕ,ω,n, α′ϕ,ω,n and α0
ϕ,n, we give in the first three theorems

upper and lower estimates for µn(λϕ,ω), respectively.

Theorem 3.1. For any Orlicz-Lorentz sequence space λϕ,ω and any natural number
n, there holds the following upper estimate

µn(λϕ,ω) ≤ k(n) ≤ 1

αϕ,ω,n
, (3.1)

where

k(n) := sup {kx(n) : x ∈ S+(λϕ,ω)}

and

kx(n) := inf

{
k > 0: Iϕ,ω

(x
k

)
≤ 1

n

}
.

Remark 3.1. Recall that, by the definition of the Luxemburg norm, Iϕ,ω (x) ≤ 1 for
any x ∈ S+(λϕ,ω). Let n ∈ N and x ∈ S+(λϕ,ω). If 1

n ≤ Iϕ,ω (x), then there exists

exactly one number kx(n) > 1 such that Iϕ,ω

(
x

kx(n)

)
= 1

n . In the opposite case, that

is, when 1
n > Iϕ,ω (x), we have kx(n) = 1. Finally, recall that if ϕ satisfies condition

∆2(0) and ϕ(bϕ) > 1/ω(1), then the equality Iϕ,ω (x) = 1 holds for any x ∈ S+(λϕ,ω).

Proof of Theorem 3.1. At the beginning we will show the first inequality from in-
equalities (3.1). Let x1, . . . , xn be a sequence from S+(λϕ,ω) such that xi ⊥ xj for
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i 6= j, i, j = 1, . . . , n. Then we have

Iϕ,ω

(∑n
j=1 xj

k(n)

)
=

∞∑
i=1

ϕ

((∑n
j=1 xj

k(n)

)∗
(i)

)
ω(i)

= sup
π

∞∑
i=1

ϕ

((∑n
j=1 xj

k(n)

)
(π(i))

)
ω(i)

= sup
π

n∑
j=1

( ∞∑
i=1

ϕ

((
xj
k(n)

)
(π(i))

)
ω(i)

)

≤
n∑
j=1

(
sup
π

∞∑
i=1

ϕ

((
xj
k(n)

)
(π(i))

)
ω(i)

)

=

n∑
j=1

( ∞∑
i=1

ϕ

((
xj
k(n)

)∗
(i)

)
ω(i)

)

=

n∑
j=1

Iϕ,ω

(
xj
k(n)

)
≤

n∑
j=1

Iϕ,ω

(
xj

kxj(n)

)
≤ n · 1

n
= 1.

(see (2.4)). Thus ‖
∑n
j=1 xi‖ϕ,ω ≤ k(n), whence by the arbitrariness of the sequence

x1, . . . , xn with the properties listed above, we obtain µn(λϕ,ω) ≤ k(n).
Now we will show the second inequality from inequalities (3.1). Let x ∈ S+(λϕ,ω)

be arbitrary. Then for any natural number i and any permutation π there is exactly
one of two possibilities. Either x(π(i)) ≤ aϕ and then

ϕ(αϕ,ω,n · x(π(i))) = 0 =
ϕ(x(π(i)))

n
,

or x(π(i)) > aϕ, and then, by the definition of αϕ,ω,n,

ϕ(αϕ,ω,n · x(π(i))) ≤ ϕ

ϕ−1
(
ϕ(x(π(i)))

n

)
x(π(i))

· x(π(i))

 =
ϕ(x(π(i)))

n
.

Therefore,

Iϕ,ω

(
x
1

αϕ,ω,n

)
= Iϕ,ω (αϕ,ω,n · x) = sup

π

∞∑
i=1

ϕ(αϕ,ω,n · x(π(i)))ω(i)

≤ sup
π

∞∑
i=1

ϕ(x(π(i)))

n
=

1

n
· Iϕ,ω (x) ≤ 1

n
.

Thus, kx(n) ≤ 1
αϕ,ω,n

for any x from S+(λϕ,ω), which finishes the proof. �

Remark 3.2. In the case when ω(i) = ω(1) for any i ∈ N, that is, when the Orlicz-
Lorentz space λϕ,ω is the classical Orlicz space lφ, where φ(u) = ω(1) · ϕ(u) for any
u ≥ 0 (see [28]), we have µn(λϕ,ω) = µn(lφ) = k(n) for any Orlicz function ϕ and any
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n ∈ N (for n = 2 see [41], for n > 2 we can proceed analogously as for n = 2). As we
will show in Example 3.2 below, the equality

µn(λϕ,ω) = k(n) (3.2)

is not true for any Orlicz-Lorentz space λϕ,ω. However, since there are Orlicz-Lorentz
spaces for which equality (3.2) is satisfied and which are not Orlicz spaces (see Ex-
ample 3.1), the question about the weakest possible condition which guarantees this
equation in these space arises.

Theorem 3.2. For any Orlicz-Lorentz sequence space λϕ,ω and any natural number
n there holds the lower estimate

1

α′ϕ,ω,n
= sup

ϕ
−1
(

1∑k
i=1 ω(i)

)
ϕ−1

(
1∑nk

i=1 ω(i)

) : k = 1, 2, . . .

 ≤ µn(λϕ,ω). (3.3)

Proof. We can assume without loss of generality that ϕ(bϕ) ≥ 1
ω(1) and then for any

natural k we define a sequence xk1 , x
k
2 , . . . , x

k
n of orthogonal elements of S+(λϕ,ω), by

formulas

xk1 = ϕ−1

(
1∑k

i=1 ω(i)

)
e1 + . . .+ ϕ−1

(
1∑k

i=1 ω(i)

)
ek,

xk2 = ϕ−1

(
1∑k

i=1 ω(i)

)
ek+1 + . . .+ ϕ−1

(
1∑k

i=1 ω(i)

)
e2k,

...

xkn = ϕ−1

(
1∑k

i=1 ω(i)

)
e(n−1)k+1 + . . .+ ϕ−1

(
1∑k

i=1 ω(i)

)
enk.

For any natural k we have Iϕ,ω
(
xk1
)

= Iϕ,ω
(
xk2
)

= . . . = Iϕ,ω
(
xkn
)

= 1, so

‖xk1‖ϕ,ω = ‖xk2‖ϕ,ω = . . . = ‖xkn‖ϕ,ω = 1

and

Iϕ,ω


xk1 + xk2 + . . .+ xkn

ϕ−1

(
1∑k

i=1
ω(i)

)
ϕ−1

(
1∑nk

i=1
ω(i)

)

 =

nk∑
j=1

ϕ

(
ϕ−1

(
1∑nk

i=1 ω(i)

))
ω(j) = 1,

whence

‖xk1 + xk2 + . . .+ xkn‖ϕ,ω =
ϕ−1

(
1∑k

i=1 ω(i)

)
ϕ−1

(
1∑nk

i=1 ω(i)

) .
Finally, by the arbitrariness of natural k, we obtain inequality (3.3). �

Since in many cases the index α′ϕ,ω,n can be difficult to calculate, the next theorem
is very important.
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Theorem 3.3. Let
∑∞
i=1 ω(i) =∞. Then for any Orlicz-Lorentz sequence space λϕ,ω

and any natural number n there holds the lower estimate

1

α0
ϕ,n

≤ µn(λϕ,ω). (3.4)

Proof. Let us take any ε > 0. First note that, by the assumption that ω = (ω(i))∞i=1

is non-increasing and
∑∞
i=1 ω(i) =∞, we can find l1 ∈ N such that

(1− ε) 1∑m
i=1 ω(i)

≤ 1∑m+1
i=1 ω(i)

(3.5)

for any m ≥ l1. Indeed, denoting by l1 the smallest natural number such that ω(1) ≤
ε
∑l1
i=1 ω(i), we get∑m

i=1 ω(i)∑m+1
i=1 ω(i)

= 1− ω(i+ 1)∑m+1
i=1 ω(i)

≥ 1− ω(1)∑l1
i=1 ω(i)

≥ 1− ε

for any m ≥ l1. We can also assume, without loss of generality, that 1/
∑l1
i=1 ω(i) ≤

ϕ(γϕ,ω)/n (for the definition of γϕ,ω see formula (2.3)).
By the definition of α0

ϕ,n, there exists a sequence (uk)∞k=1 in R such that uk ↘ 0 and

ϕ−1(uk)

ϕ−1(nuk)
≤ α0

ϕ,n + ε (3.6)

for any k ∈ N. Since nuk ↘ 0, we can find k1 such that

nuk1 ≤
1∑l1

i=1 ω(i)
.

Next, we can define m1 ≥ l1 as the biggest natural number among these m ∈ N for
which the equality

nuk1 ≤
1∑m

i=1 ω(i)

is satisfied. By inequality (3.5), we have

(1− ε) 1∑m1

i=1 ω(i)
≤ 1∑m1+1

i=1 ω(i)
< nuk1 ≤

1∑m1

i=1 ω(i)
.

Since
∑∞
i=1 ω(i) =∞, there exists l2 ≥ m1 + 1 such that

m∑
i=m1+1

ω(i) ≥ (1− ε)
m∑
i=1

ω(i) (3.7)

for any m ≥ l2. Next, by nuk ↘ 0, we can find k2 such that

nuk2 ≤
1∑l2

i=1 ω(i)
.

Analogously as above, by m2 ≥ l2 we denote the biggest natural number among these
m ∈ N for which the equality

nuk2 ≤
1∑m

i=1 ω(i)
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is satisfied. Note that, by inequalities (3.5) and (3.7), we get inequalities (3.8) and
(3.9) for j = 2. Applying again condition

∑∞
i=1 ω(i) = ∞, we can find l3 ≥ m2 + 1

such that
m∑

i=m1+m2+1

ω(i) ≥ (1− ε)
m∑
i=1

ω(i)

for any m ≥ l3. In consequence, in a finite number of steps we can built the sequences
(kj)

n
j=1 and (mj)

n
j=1 such that

(1− ε) 1∑mj

i=1 ω(i)
≤ 1∑mj+1

i=1 ω(i)
< nukj ≤

1∑mj

i=1 ω(i)
(3.8)

for j = 1, . . . , n and

m1+...+mj−1+mj∑
i=m1+...+mj−1+1

ω(i) ≥ (1− ε)
m1+...+mj−1+mj∑

i=1

ω(i) ≥ (1− ε)
mj∑
i=1

ω(i) (3.9)

for j = 2, . . . , n.
Now we define

x1 := ϕ−1

(
1∑m1

i=1 ω(i)

)
e1 + . . .+ ϕ−1

(
1∑m1

i=1 ω(i)

)
em1 ,

x2 := ϕ−1

(
1∑m2

i=1 ω(i)

)
em1+1 + . . .+ ϕ−1

(
1∑m2

i=1 ω(i)

)
em1+m2

,

...

xn := ϕ−1

(
1∑mn

i=1 ω(i)

)
em1+...+mn−1+1 + . . .+ ϕ−1

(
1∑mn

i=1 ω(i)

)
em1+...+mn−1+mn

.

We have xj ≥ 0 and Iϕ,ω (xj) = 1 for j = 1, . . . , n, whence xj ∈ S+(λϕ,ω) for the
same j. Moreover, by the definition of x1, . . . , xn, we get xi ⊥ xj for i, j = 1, . . . , n,
i 6= j, and (

∑n
j=1 xj)

∗ = (
∑n
j=1 xj). Hence, by inequality (3.6), we get

Iϕ,ω

(α0
ϕ,n + ε)

n∑
j=1

xj

 =

m1∑
i=1

ϕ

(
(α0
ϕ,n + ε) · ϕ−1

(
1∑m1

j=1 ω(j)

))
ω(i) + . . .

+

m1+...+mn−1+mn∑
i=m1+...+mn−1+1

ϕ

(
(α0
ϕ,n + ε) · ϕ−1

(
1∑mn

j=1 ω(j)

))
ω(i)

≥
m1∑
i=1

ϕ

(
ϕ−1(uk1)

ϕ−1(nuk1)
· ϕ−1

(
1∑m1

j=1 ω(j)

))
ω(i) + . . .

+

m1+...+mn−1+mn∑
i=m1+...+mn−1+1

ϕ

(
ϕ−1(ukn)

ϕ−1(nukn)
· ϕ−1

(
1∑mn

j=1 ω(j)

))
ω(i)
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Since ϕ−1 is an increasing function, we have

ϕ−1(nuki) ≤ ϕ−1

(
1∑mi

j=1 ω(j)

)
for i = 1, . . . , n. Therefore, continuing the previous inequalities, by using the last
inequality and inequalities (3.8) and (3.9), we get

Iϕ,ω

(α0
ϕ,n + ε)

n∑
j=1

xj

 ≥ m1∑
i=1

ϕ
(
ϕ−1(uk1)

)
ω(i)

+ . . .+

m1+...+mn−1+mn∑
i=m1+...+mn−1+1

ϕ
(
ϕ−1(ukn)

)
ω(i)

=

m1∑
i=1

uk1 · ω(i) + . . .+

m1+...+mn−1+mn∑
i=m1+...+mn−1+1

ukn · ω(i)

≥ 1− ε
n

(
m1∑
i=1

1∑m1

j=1 ω(j)
ω(i) + . . .

+

m1+...+mn−1+mn∑
i=m1+...+mn−1+1

1∑mn

j=1 ω(j)
ω(i)


≥ 1− ε

n
· n · (1− ε) = (1− ε)2.

So, ∥∥∥∥∥∥
n∑
j=1

xj

∥∥∥∥∥∥
ϕ,ω

≥ (1− ε)2

α0
ϕ,n + ε

,

whence by the arbitrariness of ε > 0, we get the estimate

µn(λϕ,ω) ≥ 1

α0
ϕ,n

. �

Remark 3.3. As we will show in Example 3.1 below, the condition
∑∞
i=1 ω(i) =∞

is not necessary for inequality (3.4) to be satisfied. On the other hand, for any ε > 0
we can find a weighted sequence ω such that for any Orlicz function ϕ, we have
µn(λϕ,ω) ≤ 1 + ε for any n ∈ N (see Example 3.2), and then the estimate (3.4) is not
satisfied whenever 1 + ε < 1

α0
ϕ,n

.

Example 3.1. Let ϕ(u) = up for u ≥ 0, where 1 ≤ p <∞. It is easy to show that

1

α0
ϕ,n

= p
√
n and

1

αϕ,ω,n
= p
√
n.

Therefore, by Theorem 3.1 we have µn(λϕ,ω) ≤ p
√
n. Additionally, if

∑∞
i=1 ω(i) =∞,

by Theorem 3.3, we get
µn(λϕ,ω) = p

√
n. (3.10)



M-CONSTANTS IN ORLICZ-LORENTZ SEQUENCE SPACES 151

The above equality holds also in the case when ω(1) = . . . = ω(n). Indeed, under this
assumption, we have

1

α′ϕ,ω,n
≥
ϕ−1

(
1∑1

i=1 ω(i)

)
ϕ−1

(
1∑n

i=1 ω(i)

) =

1
p
√
ω(1)

1
p
√
nω(1)

= p
√
n,

whence by Theorem 3.2, we get equality (3.10). In general, equality (3.10) need not
occur, as the next example shows.

Example 3.2. Now let ε be arbitrary positive number and let us take a weighted
sequence (ω(i)) such that

∑∞
i=1 ω(i) ≤ (1 + ε)ω(1), for example ω(i) = (ε · ω(1))/2i

for i ≥ 2. Then for any Orlicz function ϕ and any sequence x1, . . . , xn from S+(λϕ,ω),
xi ⊥ xj for i 6= j, i, j = 1, . . . , n, we obtain

Iϕ,ω

(∑n
j=1 xj

1 + ε

)
=

∞∑
i=1

ϕ

((∑n
j=1 xj

1 + ε

)∗
(i)

)
ω(i) ≤

∞∑
i=1

ϕ

(
γϕ,ω
1 + ε

)
ω(i)

≤ ϕ(γϕ,ω)

1 + ε

∞∑
i=1

ω(i) ≤ ϕ(γϕ,ω)

1 + ε
(1 + ε)ω(1) ≤ 1,

whence µn(λϕ,ω) ≤ 1 + ε. This example shows that for any Orlicz function ϕ there is
a weighted sequence (ω(i)) such that µn(λϕ,ω) is arbitrarily close to 1.

In the next example we will construct an Orlicz function for which α0
ϕ,n > αϕ,ω,n.

Example 3.3. For the Orlicz function ϕ defined by

ϕ(u) =

{
u2 for u ∈ [0, 1],
2u− 1 for u > 1,

we have

ϕ−1(v) =

{ √
v for v ∈ [0, 1],

v+1
2 for v > 1,

and, in consequence,

g(v) :=
ϕ−1(v)

ϕ−1(nv)
=


1√
n

for v ∈ (0, 1
n ],

2
√
v

nv+1 for v ∈ ( 1
n , 1),

v+1
nv+1 for v ≥ 1.

Note that the function g is continuous and non-increasing (decreasing for v ≥ 1
n ). We

have α0
ϕ,n = 1√

n
and simultaneously, by the fact that the function g in non-increasing,

αϕ,ω,n =
ϕ−1

(
ϕ(γϕ,ω)

n

)
γϕ,ω

,

where γϕ,ω is defined by formula (2.3). Since bϕ = ∞, so γϕ,ω is just the number
satisfying the equality ϕ(γϕ,ω) = 1

ω(1) . Therefore, if ω(1) ≤ 1
n , then

ϕ(γϕ,ω) ≥ n, γϕ,ω =
(1/ω((1)) + 1

2
≥ n+ 1

2
and αϕ,ω,n =

2γϕ,ω + n− 1

2nγϕ,ω
.
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In the case when ω(1) ∈ ( 1
n , 1), we have ϕ(γϕ,ω) ∈ (1, n), γϕ,ω = (1/ω((1))+1

2 ∈ (1, n+1
2 )

and αϕ,ω,n =

√
2γϕ,ω−1

γϕ,ω
√
n

. Finally, for ω(1) ≥ 1, we get ϕ(γϕ,ω) ≤ 1, γϕ,ω = 1√
ω(1)
≤ 1

and αϕ,ω,n = 1√
n

. Therefore, for ω(1) < 1, we get αϕ,ω,n < α0
ϕ,n.

In the next theorem we will use the following

Lemma 3.1 ([6] Lemma 1.1). For a given Orlicz function ϕ, the following assertions
are equivalent:

(i) The function ψ, complementary to ϕ in the sense of Young (see formula (2.2)),
satisfies condition ∆2(R+).

(ii) There exist a > 1 and k ∈ (0, 1) such that

ϕ
(u
a

)
≤ k

a
ϕ(u)

for any u ∈ R.
(iii) For any a > 1 there exists ξ > 1 such that

ϕ

(
ξu

a

)
≤ 1

ξa
ϕ(u) (3.11)

for any u ∈ R.

Theorem 3.4. Let ψ denote the function complementary in the sense of Young to
an Orlicz function ϕ (see formula (2.2)). Then the following statements hold true:

(i) If ψ satisfies condition ∆2(0), then µn(λϕ,ω) < n for any n ∈ N.
(ii) Let

∑∞
i=1 ω(i) =∞. If ψ does not satisfy condition ∆2(0), then µn(λϕ,ω) = n

for any n ∈ N.

Proof. (i). Let n ≥ 2 be any fixed natural number. If aϕ > 0, then we define on the
interval [0, γϕ,ω−aϕ] a new convex and increasing function ϕ1, by ϕ1(u) = ϕ(u+aϕ).

Since ϕ−1(v) = ϕ−1
1 (v) + aϕ for any v ∈ [0, ϕ(γϕ,ω)], we obtain

ϕ−1(v)

ϕ−1(nv)
=

ϕ−1
1 (v) + aϕ

ϕ−1
1 (nv) + aϕ

≥
1
n · ϕ

−1
1 (nv) + aϕ

ϕ−1
1 (nv) + aϕ

=
1

n
· ϕ
−1
1 (nv) + aϕ

ϕ−1
1 (nv) + aϕ

+
n− 1

n
· aϕ

ϕ−1
1 (nv) + aϕ

≥ 1

n
+
n− 1

n
· aϕ
γϕ,ω

for any v ∈ [0, ϕ(γϕ,ω)/n]. In consequence, by Theorem 3.1, µn(λϕ,ω) < n.
Now let aϕ = 0. First we will show that if ψ satisfies condition ∆2(0), then there

exists b = b(n) ∈ (0, 1) such that the inequality

ϕ

(
1

nb
u

)
≤ 1

n
ϕ(u) (3.12)

holds for any u ∈ [0, γϕ,ω].
Note that if ψ satisfies condition ∆2(R+), then putting a = n and ξ = 1

b in
inequality (3.11), we get inequality (3.12).
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Assume now that ψ does not satisfy condition ∆2(R+). For any fixed 0 < v0 < bψ,
we have 0 < r(v0) < ∞, where r denotes the right derivative of ψ. We define a new
Orlicz function ψ̄ by the formulas

r̄(s) =

{
r(s) for s ∈ [0, v0],
r(v0)
v0
· s for s ∈ (v0,∞)

and ψ̄(v) =

∫ v

0

r̄(s)ds.

Since ψ̄(v) = ψ(v) for v ∈ [0, v0] and ψ satisfies condition ∆2(0), the function ψ̄
satisfies condition ∆2(R+). So, analogously as above we get that the function ϕ̄,
where ϕ̄(u) =

∫ u
0
p̄(t)dt and p̄(t) = sup{s : r̄(s) ≤ t}, satisfies inequality (3.12)

for some b̄ = b̄(n) ∈ (0, 1). Since r(s) = r̄(s) for u ∈ [0, v0], we get p(t) = p̄(t)
for t ∈ [0, r(v0)) and, in consequence, ϕ(u) = ϕ̄(u) for u ∈ [0, r(v0)]. Therefore, if
r(v0) ≥ γϕ,ω, then ϕ satisfies inequality (3.12) with b = b̄.

Let now r(v0) < γϕ,ω. Note that the function f defined on the interval [ 1
2n , 1−

1
2n ],

by the formula

f(c) = sup
u∈[r(v0),γϕ,ω]

ϕ (cu)

cϕ(u)
,

is continuous on this interval (more precisely the function supu∈[r(v0),γϕ,ω]
ϕ(cu)
ϕ(u) is

convex and has finite values, so in consequence, the function f(c) is continuous) and

f(c) < 1 for any c ∈ [ 1
2n , 1−

1
2n ]. Thus, there exists b̂ ∈ ( 2

3 , 1) such that f(c) ≤ b̂ for

any c ∈ [ 1
2n , 1−

1
2n ]. Hence, we have

ϕ (cu) ≤ b̂cϕ(u)

for any u ∈ [r(v0), γϕ,ω] and any c ∈ [ 1
2n , 1 −

1
2n ]. In particular, for ĉ = 1

b̂n
, we have

ĉ ∈ ( 1
n , 1−

1
2n ) and

ϕ

(
1

b̂n
u

)
= ϕ (ĉu) ≤ b̂ĉϕ(u) =

1

n
ϕ(u)

for any u ∈ [r(v0), γϕ,ω]. So, inequality (3.12) holds for any u ∈ [0, γϕ,ω] for b =

max(b̄, b̂).

Finally, we will prove the inequality µn(λϕ,ω) < n. Substituting in (3.12) w = ϕ(u),
we get

ϕ

(
1

nb
ϕ−1(w)

)
≤ 1

n
w

for w ∈ [0, ϕ(γϕ,ω)], whence

1

nb
ϕ−1(w) ≤ ϕ−1

(
1

n
w

)
,

for the same w. In turn, denoting v = w
n , we have

1

nb
ϕ−1(nv) ≤ ϕ−1 (v)

for v ∈ [0, ϕ(γϕ,ω)/n]. Hence αϕ,ω,n ≥ 1
nb and, by Theorem 3.1, µn(λϕ,ω) ≤ nb < n.

(ii) Let n ≥ 2 be a fixed natural number. In order to show the equality µn(λϕ,ω) =
n, by Theorem 3.3, we need only to prove that α0

ϕ,n = 1
n .
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By concavity of ϕ−1, we have ϕ−1(v) ≥ 1
nϕ
−1(nv) for any v ∈ [0, bϕ), whence

α0
ϕ,n = lim inf

v→0

ϕ−1(v)

ϕ−1(nv)
≥ 1

n
. (3.13)

Since the function ψ does not satisfy condition ∆2(0), we have aϕ = 0 (it is easy to
show that if aϕ > 0, then ψ satisfies condition ∆2(0)). Moreover, by Lemma 3.1, we
can find a sequence of positive numbers (um)∞m=3 such that um < bϕ, limm→∞ um = 0
and

ϕ

(
um

n
(
1− 1

m

)) ≥ 1− 1
m

n
(
1− 1

m

)ϕ(um) =
ϕ(um)

n

for any m ≥ 3. Putting wm = ϕ(um), m = 2, 3, . . ., we obtain

ϕ

(
ϕ−1(wm)

n
(
1− 1

m

)) ≥ wm
n
,

whence
ϕ−1(wm)

n
(
1− 1

m

) ≥ ϕ−1
(wm
n

)
.

Denoting vm = wm

n , m = 3, 4, . . ., we have

ϕ−1(vm)

ϕ−1 (nvm)
≤ 1

n
(
1− 1

m

) . (3.14)

By inequalities (3.13) and (3.14), we get α0
ϕ,n = 1

n . �

3.2. The case of the Amemiya norm. Now, we will work on estimates of µn(X)
in case, when X is the Orlicz-Lorentz sequence space equipped with the Amemiya
norm, that is, X = λAϕ,ω = (λϕ,ω, ‖ · ‖Aϕ,ω).

In order to get possibly precise upper and lower estimates of the numbers µn(λAϕ,ω),
we define for any triple (ϕ, ω, n), (n ∈ N) another indices, namely

β′ψ,ω,n = sup


∑nk
i=1 ω(i)∑k
i=1 ω(i)

·
ψ−1

(
1∑nk

i=1 ω(i)

)
ψ−1

(
1∑k

i=1 ω(i)

) : k = 1, 2, . . .

 ,

β0
ψ,n = lim sup

u→0

ψ−1
(
ψ(u)
n

)
u

= lim sup
v→0

ψ−1(v)

ψ−1(nv)
.

where ψ denotes as before the complementary function of ϕ in the sense of Young
(see formula (2.2)). It is easy to show that for any n ∈ N we have

1

α0
ϕ,n

= nβ0
ψ,n.

Recall that an Orlicz function ϕ is an N -function at 0 if aϕ = 0 and lim
u→0

ϕ(u)/u = 0.

Analogously, an Orlicz function ϕ is an N -function at∞ if bϕ =∞ and lim
u→∞

ϕ(u)/u =

∞. Finally, we say that ϕ is an N -function, if it is simultaneously an N -function at
0 and an N -function at ∞. We start with the following
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Lemma 3.2. Let ϕ be an N -function at ∞. Then for any x ∈ λAϕ,ω we have the
following formula

‖x‖Aϕ,ω = inf
k>0

1

k
(1 + Iϕ,ω (kx)) = sup

{ ∞∑
i=1

x∗(i) y∗(i) ω(i) : Iψ,ω(y) ≤ 1

}
.

Proof. Let us take any y ∈ λψ,ω with Iψ,ω(y) ≤ 1. Then for any k > 0 we have

∞∑
i=1

x∗(i)y∗(i)ω(i) =
1

k

∞∑
i=1

k · x∗(i)y∗(i)ω(i)

≤ 1

k

∞∑
i=1

(ϕ(kx∗(i)) + ψ(y∗(i)))ω(i)

≤ 1

k
(1 + Iϕ,ω(kx)) ,

whence

sup

{ ∞∑
i=1

x∗(i) y∗(i) ω(i) : Iψ,ω(y) ≤ 1

}
≤ ‖x‖Aϕ,ω.

Now, we will prove the opposite inequality. By the assumption that ϕ is N -function
at ∞, there exist a constant k1 > 0 and a non-increasing sequence s = (s(i))∞i=1 with
s(i) ∈ [l(k1x

∗(i)), p(k1x
∗(i))] for i ∈ N (where l and p denote the left and the right

derivatives of ϕ, respectively) satisfying Iψ,ω(s) = 1. Then

∞∑
i=1

x∗(i)s(i)ω(i) =
1

k1

∞∑
i=1

k1 · x∗(i)s(i)ω(i)

=
1

k1

∞∑
i=1

(ϕ(k1x
∗(i)) + ψ(s(i)))ω(i)

=
1

k1
(1 + Iϕ,ω(k1x)) ≥ ‖x‖Aϕ,ω.

Therefore, the desired equality has been proved. �

Lemma 3.3. Let ϕ be an N -function and n ∈ N be arbitrary and fixed. Then for
any B ⊂ N such that m(B) = n (where m denotes the counting measure), we obtain

‖χB‖Aϕ,ω =

n∑
i=1

ψ−1

(
1∑n

j=1 ω(j)

)
ω(i). (3.15)

Proof. First we assume additionally that ϕ is differentiable. Then we have

‖χB‖Aϕ,ω = inf
k>0

1

k
(1 + Iψ,ω(kχB)) = inf

k>0

1

k

(
1 +

∞∑
i=1

ϕ(k(χB)∗(i))ω(i)

)

= inf
k>0

1

k

(
1 +

n∑
i=1

ϕ(k)ω(i)

)
= inf
k>0

1

k

(
1 + ϕ(k)

n∑
i=1

ω(i)

)
.
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Let us define the function f(0,∞)→ (0,∞) by

f(k) =
1

k

(
1 + ϕ(k)

n∑
i=1

ω(i)

)
We need to find its infimum. We have

f ′(k) =
k · ϕ′(k)

∑n
i=1 ω(i)− (1 + ϕ(k)

∑n
i=1 ω(i))

k2
,

so f ′(k0) = 0 if and only if

k0 · ϕ′(k0)

n∑
i=1

ω(i) = 1 + ϕ(k0)

n∑
i=1

ω(i) = 1 + (k0ϕ
′(k0)− ψ(ϕ′(k0)))

n∑
i=1

ω(i),

which is equivalent to the equation ψ(ϕ′(k0))
∑n
i=1 ω(i) = 1, that is,

ϕ′(k0) = ψ−1

(
1∑n

i=1 ω(i)

)
.

Hence

‖χB‖Aϕ,ω =
1

k0

(
1 + ϕ(k0)

n∑
i=1

ω(i)

)
=

1

k0

(
1 + (k0ϕ

′(k0)− ψ(ϕ′(k0)))

n∑
i=1

ω(i)

)

=
1

k0

(
1 + k0ϕ

′(k0)

n∑
i=1

ω(i)− 1

)
= ϕ′(k0)

n∑
i=1

ω(i)

= ψ−1

(
1∑n

i=1 ω(i)

) n∑
i=1

ω(i).

which finishes this part of the proof.
Assume now that ϕ is an arbitrary N -function. Then for any ε ∈ (0, 1), we can

find an Orlicz function ϕε such that ϕε is smooth and whole R and

ϕε((1− ε)u) ≤ ϕ(u) ≤ ϕε((1 + ε)u)

for any u ∈ R. Consequently

(1− ε)‖x‖Aϕε,ω ≤ ‖x‖
A
ϕ,ω ≤ (1 + ε)‖x‖Aϕε,ω

for any x ∈ λAϕ,ω. In particulary, for any ε ∈ (0, 1) we obtain

1− ε
1 + ε

n∑
i=1

ψ−1

(
1∑n

j=1 ω(j)

)
ω(i) ≤ ‖χB‖Aϕ,ω

≤ 1 + ε

1− ε

n∑
i=1

ψ−1

(
1∑n

j=1 ω(j)

)
ω(i)

Finally, by the arbitrarines of ε ∈ (0, 1), we get the equality (3.15) �
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Theorem 3.5. For any Orlicz-Lorentz sequence space λAϕ,ω and any natural number
n, there holds the following upper estimate

µn(λAϕ,ω) ≤ d(n), (3.16)

where

d(n) := inf{dk(n) : k > 1}, dk(n) := sup
{
dk,x(n) : x ∈ S+(λAϕ,ω)

}
and

dk,x(n) := inf

{
d > 0: Iϕ,ω

(
kx

d

)
≤ k − 1

n

}
.

Proof. Let x1, . . . , xn be a sequence from S+(λAϕ,ω) such that xi ⊥ xj for i 6= j,
i, j = 1, . . . , n. Then for any k > 1, we have∥∥∥∥∑n

i=1 xi
dk(n)

∥∥∥∥A
ϕ,ω

≤ 1

k

(
1 + Iϕ,ω

(
k
∑n
i=1 xi

dk(n)

))

≤ 1

k

(
1 +

n∑
i=1

Iϕ,ω

(
k · xi
dk(n)

))

≤ 1

k

(
1 +

n∑
i=1

Iϕ,ω

(
k · xi
dk,x(n)

))

≤ 1

k

(
1 + n · k − 1

n

)
= 1.

Therefore, ‖
∑n
i=1 xi‖Aϕ,ω ≤ dk(n) for any k > 1, whence ‖

∑n
i=1 xi‖Aϕ,ω ≤ d(n).

Consequently, by the arbitrariness of the sequence x1, . . . , xn, we obtain µn(λAϕ,ω) ≤
d(n). �

Theorem 3.6. Let ϕ be an N -function. Then for any Orlicz-Lorentz sequence space
λAϕ,ω and any natural number n there holds the lower estimate

β′ψ,ω,n ≤ µn(λAϕ,ω). (3.17)

Proof. Let k ∈ N be arbitrary and let a sequence xk1 , x
k
2 , . . . , x

k
n of orthogonal elements

be defined by the formulas

xk1 = ψ−1

(
1∑k

i=1 ω(i)

)
e1 + . . .+ ψ−1

(
1∑k

i=1 ω(i)

)
ek,

xk2 = ψ−1

(
1∑k

i=1 ω(i)

)
ek+1 + . . .+ ψ−1

(
1∑k

i=1 ω(i)

)
e2k,

...

xkn = ψ−1

(
1∑k

i=1 ω(i)

)
e(n−1)k+1 + . . .+ ψ−1

(
1∑k

i=1 ω(i)

)
enk.
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We have Iψ,ω(xkj ) = 1 for j = 1, 2, . . . , n and

Iψ,ω

ψ−1
(

1∑nk
i=1 ω(i)

)
ψ−1

(
1∑k

i=1 ω(i)

) (xk1 + xk2 + . . .+ xkn)

=

nk∑
j=1

ψ

(
ψ−1

(
1∑nk

i=1 ω(i)

))
ω(j)= 1.

Next, we define

yk1 :=
1∑k

i=1 ψ
−1

(
1∑k

j=1 ω(j)

)
ω(i)

(e1 + . . .+ ek),

yk2 :=
1∑k

i=1 ψ
−1

(
1∑k

j=1 ω(j)

)
ω(i)

(ek+1 + . . .+ e2k),

...

ykn :=
1∑k

i=1 ψ
−1

(
1∑k

j=1 ω(j)

)
ω(i)

(e(n−1)k+1 + . . .+ enk).

By Lemma 3.3 we have ‖ykj ‖Aϕ,ω = 1 for any j = 1, . . . , n. Moreover, yki ⊥ ykj for

i, j = 1, . . . , n, i 6= j and (
∑n
j=1 y

k
j )∗ = (

∑n
j=1 y

k
j ). Thus, by Lemma 3.2, we get∥∥∥∥∥∥

n∑
j=1

ykj

∥∥∥∥∥∥
A

ϕ,ω

≥
nk∑
i=1

 n∑
j=1

ykj

 (i) ·

ψ−1
(

1∑nk
l=1 ω(l)

)
ψ−1

(
1∑k

l=1 ω(l)

) n∑
j=1

xkj

 (i) · ω(i)

=

nk∑
i=1

1∑k
l=1 ψ

−1

(
1∑k

j=1 ω(j)

)
ω(l)

·
ψ−1

(
1∑nk

l=1 ω(l)

)
ψ−1

(
1∑k

l=1 ω(l)

) · ψ−1

(
1∑k

j=1 ω(j)

)
ω(i)

=
ψ−1

(
1∑nk

l=1 ω(l)

)
ψ−1

(
1∑k

l=1 ω(l)

) · ∑nk
i=1 ω(i)∑k
i=1 ω(i)

.

Finally, by the arbitrariness of k ∈ N, we obtain inequality (3.17). �

Theorem 3.7. Let ϕ be an N -function and
∑∞
i=1 ω(i) = ∞. Then for any Orlicz-

Lorentz sequence space λAϕ,ω and any natural number n there holds the lower estimate

1

α0
ϕ,n

= nβ0
ψ,n ≤ µn(λAϕ,ω). (3.18)

Proof. The proof of this theorem is based on some ideas from the proof of Theorem
3.3. Since they are applied in a different context it is fully presented. Let us take
any ε > 0. Analogously as in Theorem 3.3, by the assumption that ω = (ω(i))∞i=1 is
non-increasing and

∑∞
i=1 ω(i) =∞, we can find l1 ∈ N such that

(1− ε) 1∑m
i=1 ω(i)

≤ 1∑m+1
i=1 ω(i)

(3.19)



M-CONSTANTS IN ORLICZ-LORENTZ SEQUENCE SPACES 159

for any m ≥ l1. By the definition of β0
ψ,n there exists a sequence (vk)∞k=1 in R+ such

that vk ↘ 0 and

β0
ψ,n − ε ≤

ψ−1(vk)

ψ−1(nvk)
(3.20)

for any k ∈ N. Since nvk ↘ 0, we can find k1 such that

nvk1 ≤
1∑l1

i=1 ω(i)
.

Analogously as in the proof of Theorem 3.3, we denote by m1 the biggest natural
number among these m ∈ N for which m ≥ l1 and the equality

nuk1 ≤
1∑m

i=1 ω(i)

is satisfied. By inequality (3.19), we have

(1− ε) 1∑m1

i=1 ω(i)
≤ 1∑m1+1

i=1 ω(i)
< nvk1 ≤

1∑m1

i=1 ω(i)
.

By
∑∞
i=1 ω(i) =∞, there exists l2 > h1 := m1 + 1 such that

m∑
i=h1+1

ω(i) ≥ (1− ε)
m∑
i=1

ω(i)

for any m ≥ l2. Next, by nvk ↘ 0, we can find k2 such that

nvk2 ≤
1∑l2

i=1 ω(i)
.

Analogously as above, we denote by m2 the biggest natural number among these
m ∈ N for which m ≥ l2 and the equality

nvk2 ≤
1∑m

i=1 ω(i)

is satisfied. Applying again condition
∑∞
i=1 ω(i) =∞, we can find l3 > h2 := m2 + 1

such that
m∑

i=h1+h2+1

ω(i) ≥ (1− ε)
m∑
i=1

ω(i)

for any m ≥ l3. Finally, in a finite number of steps we can built the sequences (kj)
n
j=1,

(mj)
n
j=1 and (hj)

n
j=1 such that hj := mj + 1 and

(1− ε) 1∑mj

i=1 ω(i)
≤ 1∑mj+1

i=1 ω(i)
< nukj ≤

1∑mj

i=1 ω(i)
(3.21)

for j = 1, . . . , n and

h1+...+hj−1+hj∑
i=h1+...+hj−1+1

ω(i) ≥ (1− ε)
h1+...+hj−1+hj∑

i=1

ω(i) ≥ (1− ε)
hj∑
i=1

ω(i) (3.22)
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for j = 2, . . . , n. Now, we define

x1 := ψ−1

(
1∑h1

i=1 ω(i)

)
e1 + . . .+ ψ−1

(
1∑h1

i=1 ω(i)

)
eh1

,

x2 := ψ−1

(
1∑h2

i=1 ω(i)

)
eh1+1 + . . .+ ψ−1

(
1∑h2

i=1 ω(i)

)
eh1+h2

,

...

xn := ψ−1

(
1∑hn

i=1 ω(i)

)
eh1+...+hn−1+1 + . . .+ ψ−1

(
1∑hn

i=1 ω(i)

)
eh1+...+hn−1+hn .

Then Iψ,ω(xj) = 1 for any j = 1, . . . , n, xi ⊥ xj for i, j = 1, . . . , n, i 6= j and
(
∑n
j=1 xj)

∗ = (
∑n
j=1 xj). So, by inequalities (3.20) and (3.21), we have

Iψ,ω

(1− ε)(β0
ψ,n − ε)

n∑
j=1

xj


=

h1∑
i=1

ψ

(
(1− ε)(β0

ψ,n − ε) · ψ−1

(
1∑h1

j=1 ω(j)

))
ω(i) + . . .

+

h1+...+hn−1+hn∑
i=h1+...+hn−1+1

ψ

(
(1− ε)(β0

ψ,n − ε) · ψ−1

(
1∑hn

j=1 ω(j)

))
ω(i)

≤
h1∑
i=1

ψ

(
(1− ε) · ψ

−1(vk1)

ψ−1(nvk1)
· ψ−1

(
1∑h1

j=1 ω(j)

))
ω(i) + . . .

+

h1+...+hn−1+hn∑
i=h1+...+hn−1+1

ψ

(
(1− ε) · ψ

−1(vkn)

ψ−1(nvkn)
· ψ−1

(
1∑hn

j=1 ω(j)

))
ω(i)

≤
h1∑
i=1

ψ
(
(1− ε)ψ−1(vk1)

)
ω(i) + . . .+

h1+...+hn−1+hn∑
i=h1+...+hn−1+1

ψ
(
(1− ε)ψ−1(vkn)

)
ω(i)

≤
h1∑
i=1

(1− ε)ψ
(
ψ−1(vk1)

)
ω(i) + . . .+

h1+...+hn−1+hn∑
i=h1+...+hn−1+1

(1− ε)ψ
(
ψ−1(vkn)

)
ω(i)

≤
h1∑
i=1

(1− ε)vk1ω(i) + . . .+

h1+...+hn−1+hn∑
i=h1+...+hn−1+1

(1− ε)vknω(i)

≤
h1∑
i=1

(
1

n
∑h1

j=1 ω(j)

)
ω(i) + . . .+

h1+...+hn−1+hn∑
i=h1+...+hn−1+1

(
1

n
∑hn

j=1 ω(i)

)
ω(j) ≤ 1.
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Let now

y1 :=
1∑h1

i=1 ψ
−1

(
1∑h1

j=1 ω(j)

)
ω(i)

(e1 + . . .+ eh1
),

y2 :=
1∑h2

i=1 ψ
−1

(
1∑h2

j=1 ω(j)

)
ω(i)

(eh1+1 + . . .+ eh1+h2
),

...

yn :=
1∑hn

i=1 ψ
−1

(
1∑hn

j=1 ω(j)

)
ω(i)

(eh1+...+hn−1+1 + . . .+ eh1+...+hn−1+hn
).

By Lemma 3.3 we have ‖yj‖Aϕ,ω = 1 for any j = 1, . . . , n. Moreover, yi ⊥ yj for

i, j = 1, . . . , n, i 6= j and (
∑n
j=1 yj)

∗ = (
∑n
j=1 yj). Thus, by Lemma 3.2 and inequality

(3.22), we get∥∥∥∥∥∥
n∑
j=1

yj

∥∥∥∥∥∥
A

ϕ,ω

≥
h1+...+hn∑

i=1

 n∑
j=1

yj

 (i) ·

(1− ε)(β0
ψ,n − ε)

n∑
j=1

xj

 (i) · ω(i)

=

h1∑
i=1

(1− ε)(β0
ψ,n − ε) · ψ−1

(
1∑h1

j=1 ω(j)

)
∑h1

i=1 ψ
−1

(
1∑h1

j=1 ω(j)

)
ω(i)

ω(i) + . . .

+

h1+...+hn−1+hn∑
i=h1+...+hn−1+1

(1− ε)(β0
ψ,n − ε) · ψ−1

(
1∑hn

j=1 ω(j)

)
∑hn

i=1 ψ
−1

(
1∑hn

j=1 ω(j)

)
ω(i)

ω(i)

≥ (1− ε)2(β0
ψ,n − ε)


∑h1

i=1 ψ
−1

(
1∑h1

j=1 ω(j)

)
ω(i)

∑h1

i=1 ψ
−1

(
1∑h1

j=1 ω(j)

)
ω(i)

+ . . .

+

∑hn

i=1 ψ
−1

(
1∑hn

j=1 ω(j)

)
ω(i)

∑hn

i=1 ψ
−1

(
1∑hn

j=1 ω(j)

)
ω(i)


= n(1− ε)2(β0

ψ,n − ε).

Finally, by the arbitrariness of ε > 0, we obtain inequality (3.18). �

In Theorem 3.4 it was shown that if ψ does not satisfy condition ∆2(0), then
α0
ϕ,n = 1

n . Therefore, by Theorem 3.7, we obtain the following
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Theorem 3.8. Let
∑∞
i=1 ω(i) = ∞. If ψ does not satisfy condition ∆2(0), then

µn(λAϕ,ω) = n for any n ∈ N.

4. Some application to the fixed point theory

Recall, that in [4] Borwein and Sims proved that if a Banach lattice X = (X, ‖·‖X)
is weakly orthogonal, that is,

lim
n→∞

‖|xn| ∧ |x|‖X = 0

for any weakly null sequence (xn) in X and any x ∈ X, and if µ2(X) < 2 (µ2(X)
is called the Riesz angle of X), then X has the weak fixed point property. We also
refer the readers to the paper [36], where more about various weak orthogonalities in
Banach lattices and their relationships to the fixed point property can be found.

Since under the assumption that
∑∞
i=1 ω(i) =∞ the necessary and sufficient con-

dition for µ2(λϕ,ω) < 2 are known (see Theorem 3.4), we need only to know when
the spaces λϕ,ω are weakly orthogonal. We even prove more general result for Köthe
sequence spaces with the semi Fatou property. Recall that a Köthe sequence space
X has the semi Fatou property if 0 ≤ xn ≤ x ∈ X and xn ↗ x coordinatewise, then
‖xn‖X ↗ ‖x‖X . An element x ∈ X is said to be order continuous if for any sequence
(xn) in X+ (the positive cone in X) with 0 ≤ xn ≤ |x| and xn → 0 coordinatewise
there holds ‖xn‖ → 0. The subspace Xa of all order continuous elements in X is an
order ideal in X. The space X is called order continuous if Xa = X (see [29]).

Theorem 4.1. A Köthe sequence spaces X with the semi-Fatou property is weakly
orthogonal if and only if it is order continuous.

Proof. Sufficiency. Take any x ∈ X and any weakly null sequence (xn) in X and
choose arbitrary ε > 0. Since X is order continuous there exists i0 ∈ N such that
‖
∑∞
i=i0+1 |x(i)|ei‖X < ε.

Since weakly null sequences in Köthe sequence spaces are also coordinatewise null

sequences, there exists n0 ∈ N such that ‖
∑i0
i=1 |xn(i)|ei‖X < ε whenever n ≥ n0.

Hence

‖|xn| ∧ |x|‖X ≤

∥∥∥∥∥
i0∑
i=1

|xn(i)|ei +

∞∑
i=i0+1

|x(i)|ei

∥∥∥∥∥
X

≤

∥∥∥∥∥
i0∑
i=1

|xn(i)|ei

∥∥∥∥∥
X

+

∥∥∥∥∥
∞∑

i=i0+1

|x(i)|ei

∥∥∥∥∥
X

< 2ε

for all n ≥ n0. By the arbitrariness of ε > 0 we have limn→∞ ‖|xn| ∧ |x|‖X = 0.
Necessity. Assume that X is not order continuous. The Riesz lemma says that for

any 0 < ε < 1 there exists x ∈ S(X) such that

‖[x]‖X\Xa
= d(x,Xa) > 1− ε.
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Let us apply this lemma for ε = 1
3 and let x ∈ S(X) be such that d(x,Xa) > 2

3 . By
the semi-Fatou property of X, there exists i1 ∈ N such that

1

2
<

∥∥∥∥∥
i1∑
i=1

x(i)ei

∥∥∥∥∥
X

≤ 1.

Set x1 =
∑i1
i=1 x(i)ei. Since x1 ∈ Xa, we have that d(x− x1, Xa) = d(x,Xa) > 2

3 . So
there exists i2 ∈ N, i2 > i1 such that

1

2
<

∥∥∥∥∥
i2∑

i=i1+1

x(i)ei

∥∥∥∥∥
X

≤ 1.

Continuing this process by induction, one can find a strictly increasing sequence (in)
of natural numbers such that

1

2
<

∥∥∥∥∥∥
in∑

i=in−1+1

x(i)ei

∥∥∥∥∥∥
X

≤ 1,

for any n ∈ N with i0 = 0. Denoting

xn =

in∑
i=in−1+1

x(i)ei

we can easily prove that (xn) is a weakly null sequence in X. Let us take arbitrary
x∗ ∈ X∗. Then there exist a sequence y ∈ (Xa)′ (the Köthe dual of Xa) and a singular
functional % ∈ X∗, that is, %(z) = 0 for any z ∈ Xa, such that

x∗ = ξy + %,

where

ξy(z) =

∞∑
i=i

y(i)z(i)

for any z ∈ X. Since x =
∑∞
n=1 xn, we have

|ξy(x)| =

∣∣∣∣∣
∞∑
n=1

ξy(xn)

∣∣∣∣∣ ≤
∞∑
n=1

ξ|y|(|xn|) = ξ|y|(|x|) <∞,

whence we conclude that the series
∑∞
n=1 ξy(xn) converges. Therefore ξy(xn)→ 0 as

n→∞. In consequence (xn) is a weakly null sequence. However, we have

‖|xn| ∧ |x|‖X = ‖|xn|‖X >
1

2

for any n ∈ N. Therefore, X is not weakly orthogonal. �

Recall, that a weight sequence ω is said to be regular, if there exists η > 0 such
that

∑2n
i=1 ω(i) ≥ (1 + η)

∑n
i=1 ω(i) for any n ∈ N (see [19]). It is easy to show that

if ω is regular, then
∑∞
i=1 ω(i) =∞.
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Theorem 4.2. If ϕ is an Orlicz function such that both ϕ and ψ satisfy condition
∆2(0) and the weighted sequence ω = (ω(i)) is regular, then the space λϕ,ω has the
fixed point property.

Proof. Under the assumptions of the theorem, we have reflexivity of the space λϕ,ω
(see [10]), so it is enough to prove that the assumptions imply the weak fixed point
property of λϕ,ω. Let us recall that by Theorem 3.4, the assumptions imply that
µ2(λϕ,ω) < 2. By Theorem 2.4 from [17] and Theorem 4.1 the assumptions give
that the space λϕ,ω is weakly orthogonal. In consequence, by virtue of the result of
Borwein and Sims, recalled at the begining of this section, the space λϕ,ω has the
weak fixed point property. �

Example 4.1. Let ϕ(u) = u2 ln(|u|+ 1) for all u ∈ R and ω be regular. Then

lim
u→0

ϕ(2u)

ϕ(u)
= 8 and lim

u→0

ϕ(u2 )

ϕ(u)
=

1

8
.

Hence we get that ϕ ∈ ∆2(0) and ψ ∈ ∆2(0), whence by Theorem 4.2 the Orlicz-
Lorentz space λϕ,ω has the fixed point property.

Now we define T : λϕ,ω → λϕ,ω by

T (x) = (ln(1 + |x(1)|), ln(1 + |x(2)|), . . .)
for any x = (x(i)) ∈ λϕ,ω. Since ln(1 + u) ≤ u for any u ≥ 0, by properties of the
rearrangement and the fact that the Luxemburg norm is monotone, we have that
T : B(λϕ,ω) → B(λϕ,ω), where B(λϕ,ω) is the unit ball of λϕ,ω. Moreover, for any
0 < x1 < x2, we have

ln(1 + x2)− ln(1 + x1) =
1

1 + ξ
(x2 − x1)

for some ξ ∈ (x1, x2). Thus, for any x1, x2 ∈ (0,∞) we get

| ln(1 + x2)− ln(1 + x1)| ≤ |x2 − x1|,
whence using properties of the rearrangement and the Luxemburg norm again, we
obtain

‖T (x)− T (y)‖ϕ,ω ≤ ‖x− y‖ϕ,ω
for any B(λϕ,ω). Therefore T is a non-expansive operator, whence it has a fixed point
in B(λϕ,ω).
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[1] Y.A. Abramovich, G.Y. Lozanovskǐı, Certain numerical characteristics of KN-lineals, Matem-

aticeskie Zametki, 14(1973), no. 5, 723–732 (in Russian).

[2] S.V. Astashkin, F.A. Sukochev, C.P. Wong, Distributionally concave symmetric spaces and
uniqueness of symmetric structure, Adv. Mathematics, 232(2013), no. 1, 399–431.

[3] C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press, Inc., New York, 1988.

[4] J.M. Borwein, B. Sims, Non-expansive mappings on Banach lattices and related topics, Houston
J. Mathematics, 10(1984), no. 3, 339–356.

[5] S. Chen, Geometry of Orlicz Spaces, Dissertationes Math. (Rozprawy Matematyczne), 356,
Polish Academy of Sciences, Warsaw, 1996.

[6] S. Chen, H. Hudzik, On some convexities of Orlicz and Orlicz-Bochner spaces, Commentationes

Math. Univ. Carol., 29(1988), no. 1, 13–29.



M-CONSTANTS IN ORLICZ-LORENTZ SEQUENCE SPACES 165

[7] P. Foralewski, On some geometric properties of generalized Orlicz-Lorentz sequence spaces,
Indagationes Math. N. S., 24(2013), no. 2, 346–372.

[8] P. Foralewski, On some geometric properties of generalized Orlicz-Lorentz function spaces, Non-

linear Anal., 75(2012), no. 17, 6217–6236.
[9] P. Foralewski, H. Hudzik, R. Kaczmarek, M. Krbec, Miroslav, M. Wójtowicz, On the moduli and
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[21] A. Kamińska, Y. Raynaud, New formulas for decreasing rearrangements and a class of Orlicz-
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