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1. Introduction

In game theory, economic theory, sciences, engineers, etc., there are some problems, in
which, either the inputs, or the outputs, or both, of some considered operations cannot
be totally ordered. For example, the payoffs (utilities) of the players in some games
with incomplete preferences and the preferences of the agents on the productions or
endowments in some economies may not be characterized by real valued functions. In
economic theory, such utilities or preferences are called non-normal. In [8], some real
life examples of games with non-normal (incomplete) preferences are provided. In [11],
the Pareto equilibrium problems in strategic games with partially ordered preferences
was studied. Some existence theorems were proved by fixed point theorem on posets.

In this paper, we go a step further to extend the Pareto equilibrium problems
with partially ordered preferences studied in [11] to Pareto equilibrium problems
with preordered preferences. We consider that, in decision theory or game theory,
sometimes the decision makers have indifferent preferences on some distinct elements.
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Mathematically, it leads authors to study the properties of preordered sets. For
example, when we consider the positions of the objects in the real spaces with a given
3-d rectangular coordinate system, if only the horizontal distances from the origin and
the altitudes of the objects matter for consideration in this study, then the decision
makers of this problem face a preordered set, which is more precisely described below:

Let R3 = {(p, q, t) : p, q, t ∈ R)} be the 3-d Euclidean space. A binary relation on
R3, denoted by �C , is defined as below: for any (p1, q1, t1), (p2, q2, t2) ∈ R3, put

(p2, q2, t2) �C (p1, q1, t1), if and only if, p2
2 + q2

2 ≥ p2
1 + q2

1 and t2 ≥ t1.

(R3,�C) is a preordered set. Then the decision makers’ preferences of all objects on
a given horizontal circle with center 0 in the plane t = 0 are considered as indifferent
with respect to the preordered preference relation �C on R3.

In noncooperative strategic games, if the set of payoffs for the players are totally
(completely) ordered, which can be represented by real valued functions, then
fixed point theorems in topological spaces or metric spaces have been the essential
tools for the proofs of the existence of Nash equilibria or Pareto equilibria of these
games (see [2], [6], [12], [15]). As we further study strategic games with incomplete
(partially ordered or preordered) preferences, the concepts of Nash equilibria and
Pareto equilibria will be extended to ordered Nash equilibria and ordered Pareto
equilibria, respectively. The existence of ordered equilibrium can be similarly proved
by applying fixed point theorems on partially ordered or preordered sets (see [1],
[3], [7-12], [14]). For this reason, fixed point theorems for both single-valued and
set-valued mappings on ordered sets have been developed (see [3], [5], [8-11], and
[14]), which will be frequently used in this paper.

This paper is organized as follows: in Section 2, we investigate the properties of order-
clusters in preordered sets, which are used for the definitions of order-clustered fixed
points in the following sections; in Section 3, we prove several order-clustered fixed
point theorems for set-valued mappings on preordered sets, and provide the properties
of the collections of the order-clustered fixed points; in Section 4, we apply these
results to prove the existence of ordered Pareto equilibria for some noncooperative
strategic games with incomplete (preordered) preferences.

2. Order-clusters in preordered sets

Throughout the whole paper, we closely follow the notations and definitions in order
theory from [1], [3-4], [8], [12] and [14].

Let (P,�) be a preordered set (It is worthy to mention for clarification that a
preordered set (P,�) equipped with the preorder � on P is called a partially ordered
system (p.o.s.) in [5]). An � -totally ordered (linear ordered) subset C of P is said to
be a chain in P . Let A be a nonempty subset of P . The preordered set (A,�) is said
to be inductively ordered or inductive if and only if, every chain of elements of A has
an upper bound in A. It is a set fulfilling the assumption of Zorn’s lemma. (A,�)
is said to be chain-complete, whenever every chain of elements of A has a supremum
in A.
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Let (P,�) be a preordered set. For any x, y ∈ P , we say that x, y are �-order
equivalent (�-order indifference), which is denoted by x ∼ y, whenever both x � y
and y � x hold. It is clear that ∼ is an equivalent relation on P . For any x ∈ P , let
[x] denote the order equivalent class (order indifference class) containing x, which is
called a � −cluster (or simply an order cluster, or a cluster, if there is no confusion

caused). Let P/ ∼ or P̃ denote the collection of all order clusters in the preordered

set (P,�) . So x ∈ [x] ∈ P̃ , for every x ∈ P.
Then the ordering relation � on P naturally induces an ordering relation �P̃ on

P̃ as following: for every [x], [y] ∈ P̃ ,

[x] �P̃ [y], if and only if , x � y. (2.1)

That is equivalent to

[x] �P̃ [y], if and only if, x′ � y′, for any x′ ∈ [x] and for any y′ ∈ [y]. (2.2)

Proposition 2.1. For any given preordered set (P,�), (P̃ ,�P̃ ) is a poset, which is
called the cluster poset of the preordered set (P,�).

The partial order �P̃ on P̃ is said to be induced by the preorder � on P .
In game theory and decision theory, sometimes, the utilities of the decision making

on order indifference elements from the input set are also order indifferent in the
output set. It implies that, in order theory, there are some useful mappings between
two preordered sets which map order indifference elements in the domain to order
indifference elements in the range. It leads us to give the following definition.
Definition 2.2. Let (X,�X) and (U,�U ) be two preordered sets and let F : X →
2U\{∅} be a set-valued mapping. F is said to be order indifference, whenever, x ∼X y
implies

u ∼U v, for any u ∈ F (x) and v ∈ F (y), for x, y ∈ X. (2.3)

In particular, if F : X → U is a single-valued mapping, then F is order indifference,
whenever

x ∼X y implies F (x) ∼U F (y). (2.4)

Definition 2.3. Let (X,�X) and (U,�U ) be two preordered sets and let F : X →
2U\{∅} be a set-valued mapping. F is said to be order cluster-preserving, whenever,
x ∼X y implies

{[u] : u ∈ F (x)} = {[v] : v ∈ F (y)}. (2.5)

In particular, if F : X → U is a single-valued mapping, then F is order cluster-
preserving, whenever

x ∼X y implies F (x) ∼U F (y). (2.6)

It is worthy to note that for any order cluster-preserving set-valued mapping F : X →
2U\{∅}, for any given u ∈ F (x), it is not necessary to have [u] ⊆ F (x).

Let (X,�X) and (U,�U ) be preordered sets and let F : X → 2U\{∅} be a set-
valued mapping. F is said to be isotone or order-increasing upward whenever x �X y
in X implies that, for any z ∈ F (x), there is an element w ∈ F (y) such that z �U w.
F is said to be order-increasing downward whenever if x �X y in X implies that,
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for any w ∈ F (y), there is an element z ∈ F (x) such that z �U w. If F is both of
order-increasing upward and downward, then F is said to be order-increasing.

In particular, a single valued mapping F : X → U is said to be order-increasing,
whenever, x �X y in X implies F (x) �U F (y) in U . An order-increasing single valued
mapping F : X → U is said to be strictly order-increasing whenever x ≺X y implies
F (x) ≺U F (y).
Lemma 2.4. Let (X,�X) and (U,�U ) be two preordered sets and let F : X →
2U\{∅} be a set-valued mapping, then

(i) F is an order indifference mapping =⇒ F is order cluster-preserving. The
reverse is not true.

(ii) An order cluster-preserving set-valued mapping F is order indifference if and
only if the set {[u] : u ∈ F (x)} is a singleton.

Next we provide some counterexamples to show that there are some order cluster-
preserving mappings which are not order indifference, in both cases of set-valued and
single-valued.
Example 2.5. Let R2 = {(s, t) : s, t ∈ R} be the 2-d Euclidean space. We define a
binary relation on R2, denoted by �l, as below: for any (s1, t1), (s2, t2) ∈ R2,

(s2, t2) �l (s1, t1), if and only if, s2 ≥ s1.

One can check that the relation �l is a preordered on R2; and therefore (R2,�l) is
a preordered set. Every �l-cluster in (R2,�l) is a vertical line in R2. We define a
set-valued mapping F : X → 2R2\{∅} as: for any point (s, t) ∈ R2,

F (s, t) = {(s+ p, t) : p ≥ 0}. (2.7)

Note that for any (s, t) ∈ R2, the �l-cluster [(s, t)] is the vertical line passing through
point (s, t) in R2. From (2.7), for any (s, t) ∼l (s, t′), we have

{[(u, v)] : (u, v) ∈ F (s, t)} = {[(s+ p, t)] : p ≥ 0}
={[(s+ p, t′)] : p ≥ 0} = {[(u, v)] : (u, v) ∈ F (s, t′)}. (2.8)

From (2.5) in Definition 2.3, (2.8) implies that F is an order cluster-preserving set-
valued mapping on (R2,�l). For every (s, t) ∈ R2, it is clearly to see that {[(u, v)] :
(u, v) ∈ F (s, t)} is not a singleton. Then from part 2 in Lemma 2.4, F is not an order
indifference set-valued mapping. More precisely, we can directly show that F is not
an order indifference set-valued mapping. To this end, we take any (s, t) ∼l (s, t′),
and take p2 > p1 > 0. Then (s+ p2, t) ∈ F (s, t) and (s+ p1, t

′) ∈ F (s, t′). It is clear
to see that (s+ p2, t) 6∼l (s+ p1, t

′).
The following result is about single-valued mappings.

Lemma 2.6. Let (X,�X) and (U,�U ) be two preordered sets and let F : X → U
be a single-valued mapping. Then F is order indifference if and only if, it is order
cluster-preserving.
Proof. The proof follows part (ii) in Lemma 2.4. �

Next we provide two counterexamples to show that the order-increasing property
is not a sufficient condition for a set-valued mapping to be order cluster-preserving.
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Example 2.7. Let the preordered set (R2,�l) be defined as in Example 2.5. We
define a set-valued mapping F : R2 → 2R2\{∅} as: for any point (s, t) ∈ R2,

F (s, t) = {(s+ 2n, t) : n = 0,±1,±2, . . .}, for t ≥ 0; (2.9)

and

F (s, t) = {(s+ 2n+ 1, t) : n = 0,±1,±2, . . .}, for t < 0.

One can show that F is an �l-increasing set-valued mapping (both upward and down-
ward). Note that for every n = 0,±1,±2, . . ., the �l-cluster [(s + n, t)] is a subset
of R2, which can be represented by the vertical line in R2 passing through the point
(s+ n, t), that is,

[(s+ n, t)] = {(s+ n, p) : p ∈ R}. (2.10)

Then, for any t1 ≥ 0 and t2 < 0, we have (s, t1) ∼l (s, t2). On the other hand, from
(2.9)-(2.10), it follows

{[u] : u ∈ F (s, t1)} = {[(s+ 2n, t1] : n = 0,±1,±2, . . .} =

{{(s+ 2n, p) : p ∈ R} : n = 0,±1,±2, . . .}

and

{[u] : u ∈ F (s, t2)} = {[(s+ 2n+ 1, t2] : n = 0, 1, 2, . . .} =

{{(s+ 2n+ 1, p) : p ∈ R} : n = 0, 1, 2, . . .}.

Since for any given real number s, the equation s + 2n = s + 2m + 1 is equivalent
to 2n = 2m + 1, which does not have integral solution for m and n. It implies that
{[u] : u ∈ F (s, t1)} 6= {[u] : u ∈ F (s, t2)}. Hence F is not order cluster-preserving.
Example 2.8. Let the preordered set (R2,�l) be defined as in Example 2.5. We
define a set-valued mapping F : R2 → 2R2\{∅} as: for any point (s, t) ∈ R2,

F (s, t) = {(s, t), (s+ 1/3, t), (s+ 1, t)}, for t ≥ 0; (2.11)

and

F (s, t) = {(s, t), (s+ 1/2, t), (s+ 1, t)}, for t < 0. (2.12)

One can show that F is an �l-increasing set-valued mapping (both upward and down-
ward) with values of finite completed ordered subsets in (R2,�l). For any t1 ≥ 0 and
t2 < 0, we have (s, t1) ∼l (s, t2). By (2.11) and (2.12) we get

{[u] : u ∈ F (s, t1)} = {[(s, t)], [(s+ 1/3, t)], [(s+ 1, t)]},

and

{[u] : u ∈ F (s, t2)} = {[(s, t)], [(s+ 1/2, t)], [(s+ 1, t)]}.

It implies {[u] : u ∈ F (s, t1)} 6= [u] : u ∈ F (s, t2). Hence F is not order cluster-
preserving.
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3. Fixed point and order-clustered fixed point theorems for
set-valued mappings on preordered sets

Definition 3.1. Let (P,�) be a preordered set and let F : P → 2P \{∅} be a set-
valued mapping. An element x ∈ P is called an �-clustered fixed point (or simply a
clustered fixed point) of F , whenever there is a u ∈ [x] such that u ∈ F (x).

In particular for single-valued mappings, Definition 3.1 turns to be
Definition 3.2. Let (P,�) be a preordered set and let F : P → P be a single-valued
mapping. An element x ∈ X is called an �-clustered fixed point of F , whenever there
is a v ∈ [x] such that v = F (x); that is, x ∼ F (x).

The set of fixed points of F is denoted by F(F ) and the set of �-clustered fixed
points of F is denoted by FO(F ).

Since x ∼ x, then from Definitions 3.1 and 3.2, we have that, in both cases of
set-valued and single-valued mappings, that if x is a fixed point of F , then x is an
� −clustered fixed point of F .

There are some connections between fixed points and order-clustered fixed points
of mappings. We list them as a lemma below.
Lemma 3.3. Let (P,�) be a preordered set and let F be a mapping on P , single-
valued or set-valued. Then F has the following properties:

(i) F (F ) ⊆ FO(F ).
(ii) The order-clustered fixed points of F can be characterized as:

x ∈ FO(F ) if and only if [x] ∩ F (x) 6= ∅. (3.1)

(iii) If (P,�) is a poset, then F(F ) = FO(F ).
The inverse of the implication in part (i) of Lemma 3.3 does not hold. Hence

order-clustered fixed points are generalizations of the fixed points. If F is an order
cluster-preserving set-valued mapping, then the order-clustered fixed points of F can
be characterized by fixed points as below:
Lemma 3.4. Let (P,�) be a preordered set with its induced order cluster poset

(P̃ ,�P̃ ). Let F : P → 2P \{∅} be an order cluster-preserving set-valued mapping.

Let F̃ : P → 2P̃ \{∅} be a set-valued mapping defined by

F̃ ([x]) = {[u] : u ∈ F (x)}, for all [x] ∈ P̃ . (3.2)

Then, for any given element x ∈ P,
x ∈ FO(F ), if and only if [x] ∈ F(F̃ ).

Proof. Since F is an order cluster-preserving set-valued mapping, from (2.5), F̃ is
well defined.
”=⇒” For an arbitrary order-clustered fixed point x ∈ FO(F ), there is u ∈ [x] such

that u ∈ F (x). It implies [u] ∈ F̃ ([x]). Since [x] = [u], it follows that [x] ∈ F̃ ([x]),

and therefore, [x] ∈ F(F̃ ).

”⇐=” Suppose that [x] ∈ F(F̃ ) = {[u] : u ∈ F (x)}. It implies that there is u ∈ F (x)

with [u] = [x] ∈ F̃ ([x]). That is, u ∼ x satisfying u ∈ F (x). Hence x ∈ FO(F ). �
We recall some results from [9].
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Corollary 3.2. (see [9]) Let (P,�) be a chain-complete poset and let F : P → 2P \{∅}
be a set-valued mapping. Suppose that F satisfies the following two conditions:

A1. F is order-increasing upward;
A2. (F (x),�) is inductive with a finite number of maximal elements, for every

x ∈ P ;
A3. There is an element y∗ in P with y∗ � u∗, for some u∗ ∈ F (y∗).

Then F has a fixed point. Moreover, we have
(i) (F(F ),�) is a nonempty inductive poset;
(ii) (F(F ) ∩ [y∗),�) is a nonempty inductive poset.
By Proposition 2.1, and by applying Corollary 3.2 in [9], we can prove the following

theorem.
Theorem 3.5. Let (P,�) be a chain-complete preordered set with its cluster poset

(P̃ ,�P̃ ) and let F : P → 2P \{∅} be a set-valued mapping satisfying the following
conditions:

A0. F is order cluster-preserving;
A1. F is order-increasing upward;
A2. (F (x),�) is inductive with a finite number of maximal �-clusters, for every

x ∈ P ;
A3. There is an element y∗ in P with y∗ � u∗, for some u∗ ∈ F (y∗).

Then F has an �-clustered fixed point. Moreover, we have:
(i) (FO(F ),�) is a nonempty inductive preordered set;
(ii) (FO(F ) ∩ [y∗),�) is a nonempty inductive preordered set;
(iii) x ∈ FO(F ) implies [x] ⊆ FO(F ).

Proof. Since F : P → 2P \{∅} is order cluster-preserving, then similarly to Lemma

3.4, we define the corresponding set-valued mapping F̃ : P̃ → 2P̃ \{∅} as given by

(3.2). From the condition A0, Definition 2.3 guarantees that F̃ is well-defined on the

poset (P̃ ,�P̃ ). By using the conditions A1, A2, and A3 in this theorem, one can

check that F̃ satisfies all conditions of Corollary 3.2 in [9]; and therefore, we have:

1. (F(F̃ ),�P̃ ) is a nonempty inductive preordered set;

2. (F(F̃ ) ∩ [[y∗]),�P̃ ) is a nonempty inductive preordered set; and therefore, F̃

has an �P̃ -maximal fixed point [x∗] with [x∗] �P̃ [y∗].
From Lemma 3.4, a point [x] ∈ P̃ is a fixed point of the mapping F̃ on the cluster

poset (P̃ ,�P̃ ), if and only if, x ∈ P is an�-clustered fixed point of F on the preordered
set (P,�). It implies that FO(F ) 6= ∅.

Before we prove parts (i) and (ii) of this theorem, we first prove part (iii). Suppose
x ∈ FO(F ). It follows that there is an element w with x ∼ w such that w ∈ F (x).
Then we need to show that, for any y ∈ [x], we have y ∈ FO(F ). Since F : P →
2P \{∅} is order cluster-preserving, then, for an arbitrary element y ∼ x, from (2.5)
and for the given w with x ∼ w, we have

[w] ∈ {[u] : u ∈ F (x)} = {[v] : v ∈ F (y)}.

Hence there is z ∈ F (y) with [w] = [z], that is, w ∼ z. Then, from y ∼ x ∼ w ∼ z
satisfying z ∈ F (y), it implies y ∈ FO(F ). It proves part (iii) of this theorem.
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As [x] is considered as an element in P̃ , we have

F (F̃ ) = {[x] ∈ P̃ : [x] ∈ F̃ ([x])},

By Lemma 3.4 and the proved part (iii), it yields that

FO(F ) = ∪{[x] ∈ 2P : [x] ∈ F̃ ([x])},

and

FO(F ) ∩ [y∗) = ∪{[x] ∈ 2P : [x] ∈ F̃ ([x]) and [x] �P̃ [y∗]},
where [x] is considered as a subset of P . Notice that, for any [x], [z] ∈ P̃ , [z] �P̃ [x], if
and only if w � u, for all w ∈ [z] and u ∈ [x]. It follows that the inductive property of

(F(F̃ ),�P̃ ) implies that (FO(F ),�) is also inductive. Then parts (i) and (ii) in this
theorem immediately follow from parts (i) and (ii) in the conclusions of Corollary 3.2
in [9] and the above two equations, respectively.

In the proof of Theorem 3.5, Corollary 3.2 in [9] is directly applied. If the condition
A0 is moved away from Theorem 3.5, then the Definition 3.2 will not be valid and
then the results of Corollary 3.2 in [9] cannot be appropriately applied. We will next
prove the main theorem in this paper without the condition A0 given in Theorem 3.5.
The proof is similar to the proof of Theorem 3.1 [10], where the underlying space is
a poset.
Theorem 3.6. Let (P,�) be a chain-complete preordered set and let F : P → 2P \{∅}
be a set-valued mapping. Suppose that F satisfies the following two conditions:

A1. F is order-increasing upward;
A2. (F (x),�) is inductive with a finite number of maximal �-clusters, for every

x ∈ P ;
A3. There is an element y∗ in P with y∗ � u∗, for some u∗ ∈ F (y∗).
Then F has an �-clustered fixed point. Moreover, we have
(i) (FO(F ),�) is a nonempty inductive preordered set;
(ii) (FO(F ) ∩ [y∗),�) is a nonempty inductive preordered set.

Proof. Define a subset A of P as below:

A = {z ∈ P : there is v ∈ F (z) with z � v}.

From condition A3 in this theorem, y∗ ∈ A; and therefore, A 6= ∅. We claim that
if z ∈ A, then [z] ⊆ A. In fact, from z ∈ A, there is v ∈ F (z) with z � v. For any
y ∈ [z], from z � y (and y � z), since F is order-increasing upward, there is u ∈ F (y)
with v � u. Then, from y � z � v � u, it follows that y � u ∈ F (y). Hence y ∈ A.

It will next be shown that (A,�) is an inductive poset. To this end, taking any
arbitrary chain {zγ} ⊆ A, since (P,�) is chain-complete, then the supremum ∨{zγ}
exists and it is an �-cluster in P . We take z0 ∈ ∨{zγ}. Then we need to show that
{zγ} has an upper bound in A. It is sufficient to show z0 ∈ A (That is, (A,�) is a
chain-complete poset).

Since F is order-increasing upward, for any zγ , from zγ � z0, and zγ ∈ A, there
is an element vγ ∈ F (zγ) such that zγ � vγ . Since zγ � z0 and vγ ∈ F (zγ), from
condition A1, there is uγ ∈ F (z0) such that vγ � uγ . Hence for every index γ, there
is uγ ∈ F (z0) such that zγ � uγ ∈ F (z0).
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By condition A2, (F (z0),�) is inductive with a finite number of maximal �-
clusters. Similarly to the proof of Theorem 3.1 in [8], we can show that there is
an maximal �-clusters [v] of (F (z0),�) with v being selected from F (z0) such that

zγ � v, for all zγ in the chain {zγ}.

Since z0 ∈ ∨{zγ}, it implies z0 � v ∈ F (z0); and therefore z0 ⊆ A. From the
above claim, we have ∨{zγ} = [z0] ⊆ A. It follows that (A,�) is a chain-complete
preordered set; and therefore, (A,�) is an inductive preordered set. Hence, (A,�)
has �-maximal element. Take an arbitrary �-maximal element x∗ of (A,�). Since
x∗ ∈ A, then there is v∗ ∈ F (x∗) with x∗ � v∗. Applying condition A1, we can get
v∗ ∈ A. From x∗ � v∗ and since x∗ is an �-maximal element of (A,�), it implies
x∗ ∼ v∗, that is v∗ ∈ [x∗] and v∗ ∈ F (x∗). It follows that x∗ is an �-clustered fixed
point of F . Hence FO(F ) 6= ∅. (Here notice that x∗ may not be in F (x∗). So we
only showed x∗ ∈ FO(F ). It does not imply F(F ) 6= ∅).

We will next show that (FO(F ),�) is an inductive preordered set, which is con-
tained in the chain-complete preordered set (A,�). Taking any arbitrary chain
{xα} ⊆ FO(F ) ⊆ A, since (A,�) is chain-complete, then the supremum∨{xα} exists
which is an �-cluster contained in A. We take an arbitrary point x ∈ ∨{xα} ⊆ A. It
follows that [x) ∩ A 6= ∅. Then we divide rest of the proof for (FO(F ),�) to be an
inductive preordered set into two parts:

Suppose [x) ∩ A = {[x]} = ∨{xα}. It implies that x is an �-maximal element in
(A,�). Since x ∈ A, then from above proof, there is an �-maximal v ∈ F (x) such
that x � v. From the order-increasing upward property of F , for the given v ∈ F (x)
with x � v, there is w ∈ F (v) such that v � w. It implies that v ∈ A. Since x is
an �-maximal element in (A,�), and x � v, it follows that x ∼ v ∈ F (x). Hence
x ∈ FO(F ); and therefore, x is an upper bound of the chain {xα} in FO(F ). Since
x ∈ ∨{xα} is arbitrarily taken, it follows that

∨{xα} ⊆ FO(F ).

Suppose [x) ∩ A contains more than one �-clusters. Since ([x) ∩ A,�) is also a pre-
ordered set. From the Hausdorff maximality theorem, ([x)∩A,�) contains a maximal
chain {xβ} in ([x)∩A,�) (with respect to the sets inclusion partial order ⊇). Since x
is the �-smallest element in [x)∩A, it implies that {xβ} contains all elements in [x] as
its smallest elements. So {xα}∪{xβ} is a chain in (A,�). Since (A,�) has been proved
to be chain-complete, then ∨({xα}∪{xβ}) exists, which is also an �-cluster contained
in denoted in A. Take any poiny y ∈ ∨({xα} ∪ {xβ}). Since {xα} ⊆ FO(F ), then for
every α, as the above proof, there is vα ∈ F (y) such that xα � vα. From {xβ} ⊆ A,
for every β, there is uβ ∈ F (xβ) such that xβ � uβ . From the order-increasing up-
ward property of F , there is vβ ∈ F (y) such that xβ � uβ � vβ . By condition A2,
(F (y),�) is inductive with a finite number of �maximal clusters. Similarly to the
above proof, there is an�-maximal clusters [u], with u being selected in F (y) such that
xα � u, and xβ � u, for all xα in the chain {xα} and for all xβ in the chain {xβ}.
Since y ∈ ∨({xα} ∪ {xβ}), it implies y � u ∈ F (y), which implies that y ∈ A. From
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x � y, it follows that y ∈ [x)∩A. Since {xβ} is a maximal chain {xβ} in ([x)∩A,�)
(with respect to the sets inclusion partial order ⊇), then we must have y ∈ {xβ}.

From the order-increasing upward property of F and y � u ∈ F (y), there is
w ∈ F (u) such that u � w. So we have u ∈ A. From x � y � u � w, it implies that
u ∈ [x)∩A. Since {xβ} is a maximal chain in ([x)∩A,�) and y ∈ ∨({xα} ∪ {xβ}) ∈
{xβ}, from y � u ∈ [x) ∩A, it follows that y ∼ u ∈ F (y). It implies that y ∈ FO(F );
and therefore, from y ∈ ∨({xα} ∪ {xβ}), y is an upper bound of the chain {xα} in
FO(F ).

Hence we proved that the given arbitrary chain {xα} ⊆ FO(F ) has an upper bound
in (FO(F ),�). It follows that (FO(F ),�) is inductive.

Next we prove part (ii). From condition A3, u∗ ∈ [y∗); and therefore, [y∗) 6= ∅.
Define a set-valued mapping Fy∗ : [y∗) → 2[y∗) as Fy∗(x) = F (x) ∩ [y∗), for all x ∈
[y∗).

From u∗ � y∗, and u∗ ∈ F (y∗), it follows that Fy∗(y∗) 6= ∅. By the increasing
upward property of F , it can be shown that, for all x ∈ [y∗), Fy∗(x) = F (x)∩[y∗) 6= ∅.
Then similarly to the proof of Corollary 3.2 in [9], one can show that the mapping
from Fy∗ to 2[y∗)\{∅} satisfies all conditions A1, A2, and A3 in this theorem. Hence
part (ii) of this theorem immediately follows from the proved result in part (i).

As a consequence of Theorem 3.6 for single-valued mappings, we have:
Corollary 3.7. Let (P,�) be a chain-complete preordered set and let F : P → P be
a single-valued mapping. Suppose that F satisfies the following two conditions:

A1. F is order-increasing;
A3. There is an element y in P with y � F (y).

Then F has an �-clustered fixed point. Moreover, we have:
(i) (FO(F ),�) is a nonempty inductive preordered set;
(ii) (FO(F )∩ [y∗),�) is a nonempty inductive preordered set; and therefore, F has

an maximal �-clustered fixed point in [y∗).
In Lemma 3.3, we note that if (X,�X) is a poset, then order-clustered fixed point

coincides with fixed point, that is, F(F ) = FO(F ). Then, in case if the underlying
space (P,�) is a poset, which is considered as a special case of preordered sets, the
Corollary 3.2 in [9] follows from Theorem 3.6 immediately.

In [9], some counterexamples for Corollary 3.2 in [9] are provided to demonstrate
that the condition in A2 that the number of maximal elements is finite is necessary
for F to have a fixed point. We similarly provide some counterexamples for Theorem
3.6 below.
Example 3.8. Let R3 = {(u, v, w) : u, v, w ∈ R)} be the 3-d Euclidean space.
We define a binary relation on R3, denoted by �L, as below: for any (u1, v1, w1),
(u2, v2, w2) ∈ R3, we write

(u2, v2, w2) �L (u1, v1, w1), if and only if, u2 + v2 ≥ u1 + v1 and w2 ≥ w1.

One can check that the relation �L is a preordered on R3; and therefore (R3,�L) is
a preordered set. For every real numbers a, b, the subset

{(u, v, w) ∈ R3 : u+ v = a and w = b}
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is an �L-cluster of elements in (R3,�L).
Let S be the closed tetrahedron in R3 with vertexes (1, 0, 0), (0, 1, 0), (0, 0, 1) and

(2, 2, 2). The base of S is denoted by B1 that is the closed triangle R3 with ver-
texes (1, 0, 0), (0, 1, 0) and (0, 0, 1). Let T be the closed triangle R3 with vertexes
(6, 0, 0), (0, 6, 0) and (2, 2, 2). Take P to be the union of S and L, that is, P = S ∪L.

One can show that (P,�L) is indeed a chain-complete preordered set. (It is not a
poset.)

For any given number c ∈ [1, 6), let Bc be the intersection of S and the plane
u + v + w = c. For any given number d ∈ [0, 2], let Td be the intersection of T and
the plane w = d. Then we have

P =

 ⋃
1≤c<6

Bc

 ∪
 ⋃

0≤d≤2

Td

 .

All subsets Td, for 0 ≤ d ≤ 2, are not �L-comparable �L-clusters of (P,�L).
A2 = [(2, 2, 2)] is the unique singleton �L-cluster, which only contains the element
(2, 2, 2), for this chain-complete preordered set (P,�L).

For 0 ≤ d < 2, let Ad be the subset of T above the segment Td without the point
(2, 2, 2), which is the topless triangle with the missed top vertex (2, 2, 2) and base Td,
that is,

Ad =
⋃

d≤λ<2

Tλ, for every 0 ≤ d < 2.

Then every �L-cluster in any given Bc, for c ∈ [1, 6), or in any given Ad, for every
0 ≤ d < 2 is an �L-maximal element in Bc, or in Ad, respectively. Hence Bc and Ad
both contain infinitely many �L-maximal elements. Then P can be rewritten as

P =

 ⋃
1≤c<6

Bc

 ∪
 ⋃

0≤d<2

Td

 ∪ {(2, 2, 2)}.

We define a set-valued mapping F : P → 2P \{∅}as below:
1. For any point (u, v, w) ∈ Bc, with a given number c ∈ [1, 6), let

F (u, v, w) = B3(1+(c−1)/5);

2. For any point (u, v, w) ∈ Td, for some 0 ≤ d < 2, define

F (u, v, w) = A1+d/2, for every 0 ≤ d < 2;

3. F (2, 2, 2) = T\{(2, 2, 2)}
One can check that F satisfies all conditions in Theorems 3.1 [8], excepting the

condition that the set of the maximal elements of the inductive set (F (x),�L) is not
finite, for every x ∈ P . Next we show that F does not have �L-clustered fixed point.

Notice that, except the singleton �L-cluster (2, 2, 2) in (P,�L), every �L-cluster
in S is a closed segment contained in Bc, for some c ∈ [1, 6); and every �L-cluster in
T is Td, for some 0 ≤ d < 2. On the other hand, we have

Bc ∩ F (Bc) = Bc ∩B3(1+(c−1)/5) = ∅, for every c ∈ [1, 6);
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Td ∩ F (Td) = Td ∩A1+d/2 = ∅, for every d ∈ [0, 2);

and

{(2, 2, 2)} ∩ F (2, 2, 2) = {(2, 2, 2)} ∩ (T\{(2, 2, 2)}) = ∅.
It implies that for any given x, y ∈ P with x ∼L y, it is impossible to have y ∈ F (x)
(Or we can apply (3.1) in Lemma 3.3). It follows that F does not have �L-clustered
fixed point.
Example 3.9. Let (R3,�L), T and Td, for d ∈ [0, 2], be defined as in Example 3.8.
Let E be the closed tetrahedron in R3 with vertexes (1, 0, 0), (0, 1, 0), and (2, 2, 2).
Take P to be the union of E and T , that is, P = E ∪ T. One can show that (P,�L)
is indeed a chain-complete preordered set. (It is not a poset.)

For any given number a ∈ [0, 2), let Ea be the intersection of E and the plane
w = a. Then we have

P =

 ⋃
0≤a<2

Ea

 ∪
 ⋃

0≤d<2

Td

 ∪ {(2, 2, 2)}.

All subsets Ea, Td, for 0 ≤ a, d < 2, are �L-clusters of (P,�L). [(2, 2, 2)] is the unique
singleton �L-cluster, which only contains the element (2, 2, 2).

We define a set-valued mapping F : P → 2P \{∅} as below:
1. For any point (u, v, w) ∈ Ea, with a given number a ∈ [0, 2), let

F (u, v, w) =

(
3a+ 10

8
,

3a+ 10

8
, 1 +

a

2

)
;

2. For any point (u, v, w) ∈ Td, for some 0 ≤ d < 2, define

F (u, v, w) =

(
10− a

4
,

10− a
4

, 1 +
a

2

)
, for every 0 ≤ d < 2;

3. F (2, 2, 2) = T\{(2, 2, 2)}
Notice that, F (x) is a singleton, for all x ∈ P , except the point (2, 2, 2), at which

F (2, 2, 2) is an infinite set that contains infinitely many �L-maximal element. One
can check that F satisfies all conditions in Theorems 3.4, except the condition that
the set of the maximal elements of the inductive set (F (2, 2, 2),�L) is not finite. We
can similarly show that F does not have �L-clustered fixed point.

Next we give a counterexample to show that the chain-completeness of the pre-
ordered set (P,�) in Theorem 3.6 is necessary for F to have a fixed point.
Example 3.10. Let R2 = {(u, v) : u, v ∈ R)} be the 2-d Euclidean space. We define
a binary relation on R2, denoted by �C , as below: for any (u1, v1), (u2, v2) ∈ R2,

(u2, v2) �C (u1, v1), if and only if , u2
2 + v2

2 ≥ u2
1 + v2

1 .

One can check that the relation �C is a preordered on R2; and therefore (R2,�C)
is a preordered set. For every nonnegative numbers r, let Cr denote the circle with
radius r and at center (0, 0)

Cr = {(u, v) ∈ R2 : u2 + v2 = r2}.
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Let P be the desk in R2 with radius 2 and at center (0, 0) not including the unit
circle, that is,

P =
⋃

0≤r≤2,r 6=1

Cr.

All Cr, for r ∈ [0, 1)∪ (1, 2], are the �C-clusters in (P,�C). We can see that (P,�C)
is an inductive preordered set, which is not chain-complete. We define a set-valued
mapping F : P → 2P \{∅} as: for any point (u, v) ∈ Cr, with a given number
r ∈ [0, 1) ∪ (1, 2], let

F (u, v) = C(1+r)/2.

One can check that F satisfies all conditions in Theorem 2.6. (P,�C) is not chain-
complete. It is clearly to see

Cr ∩ F (Cr) = Cr ∩ C(1+r)/2 = ∅, for every r ∈ [0, 1) ∪ (1, 2].

Then from (3.1) in Lemma 3.3, it follows that F does not have order-clustered fixed
point.
Let (P,�) be a preordered set. Define the reversed ordering relation �− of the
preorder order � on P by, for x, y ∈ P ,

x �− y, if and only if , x � y.

Then �− is also a preorder on P and it is called the reversed preorder of �.
A preordered set (P,�) is said to be reversed inductive, simply denoted by re-
inductive, if every totally ordered subset (chain) in P has a lower bound in P (with
respect to the order �). (P,�) is said to be reversed chain-complete, simply denoted
by re-chain-complete, if every totally ordered subset (chain) in P has an infimum (with
respect to the order �). There are some connections between the original preorder �
and its reversed preorder �−:

1.(P,�) is re-inductive, if and only if (P,�−) is inductive;
2. (P,�) is re-chain-complete if and only if (P,�−) is chain-complete;
3. A mapping F : P → 2P \{∅} is �-increasing downward (upward), if and only

if, it is �−-increasing upward (downward).
The above property 3 can be shown as follows. Assume that F : P → 2P \{∅} is

�-increasing downward. Then, for any x, y ∈ P with x � y (if and only if y �− x)
and for any u ∈ F (y), there is w ∈ F (x) such that w � u (if and only if u �− w).
It implies that F : P → 2P \{∅} is �−-increasing upward with respect to the partial
order �−. We can similarly show that F : P → 2P \{∅} is �-increasing upward, if
and only if, it is �−-increasing downward.

Considering that Pareto equilibrium problem is a minimization problem, we modify
Theorem 3.6 based on the above properties of reversed preorders to accomplish a
different version of fixed point theorem with respect to order-minimizing conditions.
It will be applied to solve generalized ordered Pareto equilibrium problems in next
section.
Theorems 3.11. Let (P,�) be a re-chain-complete preordered set and let F : P →
2P \{∅} be a set-valued mapping. Suppose that F satisfies the following three condi-
tions:
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B1. F is order-increasing downward;
B2. (F (x),�) is re-inductive with a finite number of minimal �-clusters, for every

x ∈ P ;
B3. There are elements z∗ in P and u∗ ∈ F (z∗) such that u∗ � z∗.

Then
(i) (FO(F ),�) is a nonempty re-inductive preordered set;
(ii) (FO(F ) ∩ (z∗],�) is a nonempty re-inductive preordered set.

4. The existence of Pareto equilibrium of games
with preordered preferences

We recall the concept of n-person noncooperative strategic games.
Definition 4.1. Let n be a positive integer greater than 1. An n-person noncooper-
ative strategic game with preordered preferences consists of the following elements:

1. A set of n players, which is denoted by N = {1, 2, . . . , n};
2. For every player i = 1, 2, . . . , n, his set of strategies (Si,�i) is a preordered set;
3. An outcome space (U ;�U ) that is a preordered set;
4. For every player i = 1, 2, . . . , n, his utility function (payoff) fi is a mapping

from S1 × S2 × . . .× Sn to (U ;�U ).
As usual, the collection of profiles of strategies is denoted by S = S1×S2× . . .×Sn

and we write the profile function f = {f1, f2, . . . , fn}. This game is denoted by
G = (N,S, f, U).

In an n-person noncooperative strategic game G = (N,S, f, U), the players fol-
low the performing rules: when all n players simultaneously and independently
choose their own strategies x1, x2, . . . , xn, to act, respectively, where xi ∈ Si, for
i = 1, 2, . . . , n, player i will receive his utility (payoff) fi(x1, x2, . . . , xn) ∈ U .

For any x = (x1, x2, . . . , xn) ∈ S, and for every i = 1, 2, . . . , n, as usual, we denote

x−i := (x1, x2, . . . , xi−1, xi+1, . . . , xn),

S−i := S1 × S2 × . . .× Si−1 × Si+1 × . . .× Sn.
Then x ∈ S can be simply written as x = (xi, x−i). Moreover, for all x−i ∈ S−i, we
denote

fi(Si, x−i) := {fi(ti, x−i) : ti ∈ Si}.
For convenience, we write S−0 := S = S1 × S2 × . . .× Sn.

For i = 0, 1, 2, . . . , n, as usual, we denote the component-wise ordering rela-
tion �−i on the product poset S−i = S1 × S2 × . . . × Si−1 × Si+1 × . . . × Sn
as: for any x−i, y−i ∈ S−i with x−i = (x1, x2, . . . , xi−1, xi+1, . . . , xn) and y−i =
(y1, y2, . . . , yi−1, yi+1, . . . , yn)

x−i �−i y−i if and only if xj �j yj , for all j = 1, 2, . . . , i− 1, i+ 1, . . . , n. (4.1)

It can be seen that (S−i,�−i) is a preordered set. Furthermore, if, for every
j = 1, 2, . . . , i − 1, i + 1, . . . , n, the set (Sj ,�j) is a chain complete (an inductive)
preordered set, then (S−i,�−i) is also a chain complete (an inductive) preordered
set. For convenience, (S,�S) is written as (S−0,�−0).
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Now we extend the concept of Pareto equilibrium of noncooperative strategic games
with normal utilities to generalized Pareto equilibrium of noncooperative strategic
games with preordered preferences.
Definition 4.2. In an n-person noncooperative strategic game G = (N,S, f, U) with
preordered preferences, a profile of strategies (x̂1, x̂2, . . . , x̂n) ∈ S1 × S2 × . . .× Sn is
called a Pareto equilibrium of this game if, for every i = 1, 2, . . . , n, there is no zi ∈ Si
such that

fi(zi, ˆx−i) ≺U fi(x̂i, ˆx−i).

Let P(G) denote the collection of all Pareto equilibria of this game G. In [9], it
has been shown that the concept of Pareto equilibrium for n-person noncooperative
strategic game with partially ordered preferences is indeed a significant generalization
of the concept of Pareto equilibrium of noncooperative strategic games with vector
utilities. It is clear to see that Pareto equilibrium for n-person strategic game with
preordered preferences widely generalizes the concept of Pareto equilibrium with par-
tially ordered preferences.

In an n-person noncooperative strategic game G = (N,S, f, U) with preordered
preferences, for all i = 1, . . . , n, we define a set-valued mapping γi : S−i → 2Si by

γi(x−i) = {zi ∈ Si : fi(zi, x−i) is an �U −minimal element of fi(Si, x−i)},

for all x−i ∈ S−i, where γi is called the �S-minimal response function for player i.
In case if γi(x−i) 6= ∅, for all x−i ∈ S−i, then the set-valued mapping γi is

order-increasing downward on S−i. That is, whenever, for any x−i, y−i ∈ S−i with
x−i �−i y−i and for any wi ∈ γi(y−i), there is zi ∈ γi(x−i) such that zi �i wi.
Theorem 4.3. Let G = (N,S, f, U) be an n-person noncooperative strategic game
with preordered preferences such that (Si,�i) is a re-chain-complete preordered set,
for i = 1, 2, . . . , n. Suppose that, for every player i = 1, 2, 3, . . . , n, fi : S → U is an
order indifference single-valued mapping and, for any x ∈ S, the following conditions
hold:

G1. fi(Si, x−i) is a re-inductive subset of (U,�U ), for every x−i ∈ S−i;
G2. γi : S−i → 2Si\{∅} is order-increasing downward on (S−i,�−i) with re-

inductive values that have a finite number of �S-minimal elements;
G3. There are elements a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) in S with

b �S a satisfying bi ∈ γi(a−i), for i = 1, 2, . . . , n.
Then there is an �S-cluster in S in which every element is a Pareto equilibrium

of G. Moreover, we have
(i) (P(G),�S) is a nonempty re-inductive preordered set;
(ii) (P(G) ∩ (a],�S) is a nonempty re-inductive preordered set.

Proof. The first part of the proof is similar to the proof of Corollary 3.2 in [9]. By ap-
plying Zorn’s lemma and condition G1 in this theorem, for every x−i ∈ S−i, fi(Si, x−i)
has at least one minimal element in the set fi(Si, x−i); and therefore, γi(x−i) 6= ∅,
for all x−i ∈ S−i.
For every x = (x1, x2, . . . , xn) ∈ S, and for every i = 1, 2, . . . , n, x can be denoted as
x = (xi, x−i). So the profile space S can be rewritten as S = (Si, S−i). Then, for each
player i, the �S-minimal response function γi : S−i → 2Si\{∅} can be considered as
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a set-valued mapping from S to 2Si\{∅} defined as:

γi(x) = γi(x−i), for any x = (xi, x−i) ∈ S, for every i = 1, 2, . . . , n.

Then we define F : S → 2S\{∅} by F = γ1 × γ2 × . . .× γn; that is,

F (x) = (γ1(x), γ2(x), . . . , γn(x)), for any x ∈ S.

Similarly to the proof of Theorem 3.3 in [9], by the conditions G1, G2 and G3 in this
theorem, we can show that F satisfies all condition B1, B2, and B3 in Theorem 3.11.
Then it follows that F has an order-clustered fixed point, say x̂ = (x̂1, x̂2, . . . , x̂n) ∈ S.
Hence there is t̂ ∈ [x̂], such that t̂ ∈ F (x̂).

We will next show that any order-clustered fixed point x̂ of F is Pareto equilibrium
for this game G = (N,S, f, U). To this end, from t̂ ∈ [x̂] and t̂ ∈ F (x̂), it implies
t̂i ∈ γi(x̂); that is, fi(t̂i, x̂−i) is an �U −minimal element of fi(Si, x̂−i), for every
fixed i = 1, 2, . . . , n.

For every i = 1, 2, 3, . . . , n, it is equivalent to that there is no xi ∈ Si such that

fi(xi, x̂−i) ≺U fi(t̂i, x̂−i). (4.2)

The following is from the definition (4.1) of the product preorder �S on (S,�S):

t̂ ∈ [x̂]⇒ t̂ ∼S x̂⇒ t̂i ∼i x̂i ⇒ (t̂i, x̂−i) ∼S (x̂i, x̂−i) = x̂, for i = 1, 2, . . . , n.

Since the utility function fi : S → U is an order indifference single-valued mapping,
from (t̂i, x̂−i) ∼S (x̂i, x̂−i) and (2.6) in Definition 2.3, it yields that

fi(t̂i, x̂−i) ∼U fi(x̂i, x̂−i). (4.3)

By (4.3) and (4.2), it implies that there is no xi ∈ Si such that

fi(xi, x̂−i) ≺U fi(x̂i, x̂−i). (4.4)

This shows that x̂ = (x̂1, x̂2, . . . , x̂n) is a Pareto equilibrium of this game G. Next
we show [x̂] ⊆ P(G). By applying the order indifference properties of the utility
functions fi and from (4.3), for every y ∈ [x̂], we must have fi(y) ∼U fi(x̂i, x̂−i).

On the other hand, since (xi, y−i) ∼S (xi, x̂−i), it yields

fi(xi, x̂−i) ∼U fi(xi, y−i). (4.5)

From (4.3) - (4.5), it implies that there is no xi ∈ Si such that

fi(xi, y−i) ≺U fi(y). (4.6)

It follows that, for every y ∼S x̂ = (x̂1, x̂2, . . . , x̂n), y is a Pareto equilibrium of this
game G. Then the conclusion immediately follows from Theorem 3.11.
Definition 4.4. In an n-person noncooperative strategic game G = (N,S, f, U), with
preordered preferences, a profile of strategies (x̌1, x̌2, . . . , x̌n) ∈ S1 × S2 × . . .× Sn is
called a generalized Nash equilibrium of this game, if, for every i = 1, 2, 3, . . . , n, the
following order inequality holds

fi(xi, x̌−i) �U fi(x̌i, x̌−i), for all xi ∈ Si.
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The collection of all Nash equilibrium of game G is denoted by N (G). In an n-
person noncooperative strategic game G = (N,S, f, U) with preordered preferences,
for every i = 1, 2, . . . , n, we define a set-valued mapping βi : S−i → 2Siby

βi(x−i) = {zi ∈ Si : fi(zi, x−i) is an �U −maximal element of fi(Si, x−i)},

for all x−i ∈ S−i where βi is called the �S-maximal response function for player i.
Theorem 4.5. Let G = (N,S, f, U) be an n-person noncooperative strategic game
with preordered preferences. Suppose that, for every player i = 1, 2, 3, . . . , n, fi : S →
U is an order indifference single-valued mapping and, for any x ∈ S, the following
conditions hold:

G1. fi(Si, x−i) is an inductive subset of the preordered set (U,�U );
G2. βi : S−i → 2Si\{∅} is order-increasing upward on (S−i,�−i) with inductive

values that have a finite number of �−i-maximal clusters;
G3. There are p = (pi, p−i), q = (qi, q−i) ∈ S with p �S q satisfying qi ∈

βi(p−i), for i = 1, 2, 3, . . . , n.
Then

(i) (N (G),�S) is a nonempty inductive preordered set;
(ii) (N (G) ∩ [p),�S) is a nonempty inductive preordered set.

Proof. Based on the �S-maximal response functions βi, we define a set-valued map-
ping F : S → 2S\{∅} by F (x) = (β1(x), β2(x), . . . , βn(x)), for all x ∈ S. The rest of
the proof is similar to the proof of Theorem 4.3 by applying Theorem 3.6.
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