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Abstract. For a triangular operator A : X × Y → X × Y , A = (B,C), where B : X → X and
C : X ×Y → Y we study in which conditions on operators B : X → X and C : X ×Y → Y we have

that:

(1) the fixed point problem for triangular operator A = (B,C) is well posed
(2) the operator A = (B,C) has the Ostrowski property

(3) the fixed point equation (x, y) = A (x, y) is generalized Ulam-Hyers stable.
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1. Introduction

In this paper we shall use the terminologies and notations from [21] and [27]. For
the convenience of the reader we shall recall some of them.

Let (X,→) be an L-space and f : X → X an operator. We denote by f0 := 1X ,
f1 := f , fn+1 := f ◦ fn, n ∈ N the iterate operators of the operator A. Also:

P (X) := {Y ⊆ X | Y 6= ∅} and Ff := {x ∈ X | f(x) = x}

By (X,→) we will denote an L-space. Actually, an L-space is any set endowed with
a structure implying a notion of convergence for sequences. For examples of L-spaces
see Fréchet [10], Blumenthal [7] and I. A. Rus [21].

Let (X,→) be an L-space.

Definition 1.1. f : X → X is said to be a weakly Picard operator (briefly WPO) if
the sequence (fn(x))n∈N converges for all x ∈ X and the limit (which may depend on
x) is a fixed point of f . If additionally, Ff = {x∗}, then f is called a Picard operator
(PO).

If f : X → X is a WPO, then we may define the operator f∞ : X → X by

f∞(x) := lim
n→∞

fn(x).
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Obviously f∞(X) = Ff . Moreover, if f is a PO and we denote by x∗ its unique fixed
point, then f∞(x) = x∗, for each x ∈ X.

Let (X, d) be a metric space.

Definition 1.2. (F.S. De Blasi and J. Myjak (see [28] p.42, see also [26]))The fixed
point problem for an operator f : X → X is well posed iff:

(a) Ff = {x∗};
(b) if xn ∈ X, n ∈ N and d (xn, f (xn)) → 0 as n → +∞, then d (xn, x

∗) → 0 as
n→ +∞.

Definition 1.3. An operator f : X → X has the Ostrowski property iff:

(a) Ff = {x∗};
(b) xn ∈ X, n ∈ N, and d (xn+1, f (xn))→ 0 as n→∞ imply that d (xn, x

∗)→ 0
as n→∞.

Some authors refer to the above property as the ”limit shadowing property” (see
[15] and the references in, [11], [20], [14], [12], [17], [29], ...).

An important result used in the proof of the Ostrowski property, also in the proof
of fiber contraction principle, is the Cauchy Lemma. For details and generalizations
see [16], [30].

Lemma 1.1. (Cauchy Lemma). Let an, bn ∈ R+, n ∈ N. We suppose that:

(i)
∞∑
k=0

ak < +∞;

(ii) bn → 0 as n→∞.

Then
n∑
k=0

an−kbk → 0 as n→∞.

Definition 1.4. Let (X, d) be a metric space and f : X → X such that Ff = {x∗}.
By definition, f is an l-quasicontraction iff l ∈ [0; 1[ and

d (f (x) , x∗) ≤ ld (x, x∗) , ∀x ∈ X.

Theorem 1.1. Let (X, d) be a metric space and f : X → X be such that Ff = {x∗}.
If the operator f is an l-quasicontraction then f has the Ostrowski property.

Proof. Let (xn)n∈N ⊂ X such that d(xn+1, f(xn))→ 0 as n→ +∞. Then, we have:

d(xn+1, x
∗) ≤ d(xn+1, f(xn)) + d(f(xn), x∗)

≤ d(xn+1, f(xn)) + ld(xn, x
∗) ≤ ...

≤
n∑
j=0

lj · d(xn+1−j , f(xn−j)) + ln · d(x0, x
∗).

Making n → ∞ and applying the Cauchy Lemma 1.1 for an = ln and bn =
d(xn+1, f(xn)) we get the conclusion. �

Let (X, d) be a metric space, f : X → X and we consider the fixed point equation

x = f(x). (1.1)
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Definition 1.5. By definition, the fixed point equation (1.1) is Ulam-Hyers stable if
there exists a constant cf > 0 such that: for each ε > 0 and each solution y∗ ∈ X of
the inequation

d(y, f(y)) ≤ ε (1.2)

there exists a solution x∗ of the equation (1.1) such that

d(y∗, x∗) ≤ cfε.

Definition 1.6. By definition, the equation (1.1) is generalized Ulam-Hyers stable if
there exists θ : R+ → R+ increasing and continuous in 0 with θ(0) = 0 such that: for
each ε > 0 and for each solution y∗ of (1.2) there exists a solution x∗ of (1.1) such
that

d(y∗, x∗) ≤ θ(ε).

Definition 1.7 ([6]). Let (X, d) be a metric space and f : X → X be an operator so
that its fixed point set Ff is nonempty. Let r : X → Ff be a set retraction. Then,
by definition, f satisfies the (ψ, r) retraction-displacement condition (ψ-condition in
[9], (ψ, r)-operator in [5], ψ-weakly Picard operator in the case of Picard iterations in
[21], the collage condition in [3]) if:

(i) ψ : R+ → R+ is increasing, continuous at 0 and ψ(0) = 0;
(ii) d(x, r(x)) ≤ ψ(d(x, f(x)), for every x ∈ X.

Remark 1.1. If Ff = {x∗}, then the (ψ, r) retraction-displacement condition takes
the following form:

(i) ψ : R+ → R+ is increasing, continuous at 0 and ψ(0) = 0;
(ii) d(x, x∗) ≤ ψ(d(x, f(x)), for every x ∈ X.

We will call it the (x∗, ψ) retraction-displacement condition.

Remark 1.2. Let (X, d) be a metric space and f : X → X such that Ff = {x∗}. If
the operator f is an l-quasicontraction then f satisfies (x∗, ψ) retraction-displacement
condition with ψ : R+ → R+ given by ψ (t) = 1

1−l t.

Proof. For all x ∈ X we have:

d(x, x∗) ≤ d(x, f (x)) + d(f (x) , x∗)

≤ d(x, f (x)) + l · d(x, x∗). �

Theorem 1.2. Let (X, d) be a metric space and f : X → X such that Ff = {x∗}.
If the operator f satisfies an (x∗, ψ) retraction-displacement condition, then the fixed
point problem for f is well-posed.

Proof. Let (xn)n∈N ⊂ X such that d(xn, f(xn))→ 0 as n→ +∞. Then, we have:

d(xn, x
∗) ≤ ψ(d(xn, f(xn))→ 0 as n→∞. �

Theorem 1.3. Let (X, d) be a metric space and f : X → X such that Ff = {x∗}.
If f satisfies a (x∗, ψ) retraction-displacement condition, then the equation (1.1) is
generalized Ulam-Hyers stable.
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Proof. Let y∗ ∈ X be a solution of (1.2). Since f satisfies the (r, ψ) retraction-
displacement condition we have:

d(y∗, x∗) ≤ ψ(d(y∗, f(y∗)) ≤ ψ(ε). �

For more considerations on Ulam stability see I.A. Rus [24].

2. Fibre contraction principle

Let (X, dX) and (Y, dY ) be two metric spaces. We consider on X×Y the following
metric

d∞ : X × Y → R+

d∞ ((x1, y1) , (x2, y2)) = max {dX (x1, x2) , dY (y1, y2)}
Let B : X → X and C : X × Y → Y be two operators and the triangular operator

A : X × Y → X × Y be defined by

A (x, y) := (B (x) , C (x, y)) .

We have the following result:

Theorem 2.1 (Fibre contraction principle). ([31], [18], [19]) We suppose that:

(i) (Y, dY ) is a complete metric space;
(ii) B is a WPO;

(iii) C (x, ·) : Y → Y is α− contraction for every x ∈ X;
(iv) C : X × Y → Y is continuous.

Then

(a) A is a WPO;
(b) If B is a PO then A is a PO.

For other generalizations of fibre contraction principle see S. Andrász [1], C. Bacoţiu
[2], I.A. Rus [16], [18], [19], M.A. Şerban [33], [34].

Following the result of I. A. Rus in [25], saturated contraction principle, the aim
of this paper is to give the Fibre contraction principle with a generous conclusions.

We have:

Theorem 2.2 (Saturated fibre contraction principle). We suppose that:

(i) (Y, ρ) is a complete metric space;
(ii) B is a PO, FB = {x∗};

(iii) C (x, ·) : Y → Y is α− contraction for every x ∈ X;
(iv) C (·, y) : X → X is L− lipschitz for every y ∈ Y .

Then:

(a) A is a PO;
(b) FA = FAn = {(x∗, y∗)}, where {y∗} = FC(x∗,·);
(c) If, in addition, B satisfies the (x∗, ψB) retraction-displacement condition then:

(c1) A satisfies the ((x∗, y∗) , ψA) retraction-displacement condition, where

ψA : R+ → R+, ψA (t) = max

{
ψB (t) ,

1

1− α
[t+ LψB (t)]

}
;
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(c2) the fixed point problem for A is well posed;
(c3) the fixed point equation for A is generalized Ulam-Hyers stable;

(d) If , in addition, B is an lB-quasicontraction then:
(d1) A is an lA-quasicontraction in (X × Y, ρ∞), where

ρ∞ ((x1, y1) , (x2, y2)) = max {r · dX (x1, x2) , dY (y1, y2)} ,

with r >
L

1− α
and lA = max

{
lB ,

L

r
+ α

}
;

(d2) A has the Ostrowski property.

Proof. (a) Let x0 ∈ X and y0 ∈ Y . B is a PO then FB = {x∗} and B∞ (x) = x∗ for
all x ∈ X. From conditions (i) and (iii) we obtain that the operator C (x∗, ·) has a
unique fixed point y∗ ∈ Y , thus FA = {(x∗, y∗)} . We show that

An (x0, y0)→ (x∗, y∗) as n→ +∞.

It is easy to check that

An (x0, y0) = (xn, yn)

where xn = Bn (x0)→ x∗as n→∞ and yn = C (xn−1, yn−1), n ∈ N. We have:

dY (yn+1, y
∗) ≤ dY (C (xn, yn) , C (xn, y

∗)) + dY (C (xn, y
∗) , y∗)

≤ α · dY (yn, y
∗) + dY (C (xn, y

∗) , y∗)

≤ α2 · dY (yn−1, y
∗) + α · dY (C (xn−1, y

∗) , y∗) + dY (C (xn, y
∗) , y∗)

≤ ... ≤
≤ αn+1dY (y0, y

∗) + αndY (C (x0, y
∗) , y∗) + ...+ dY (C (xn, y

∗) , y∗) .

If we take bn = dY (C (xn, y
∗) , y∗), from (iv) we deduce that bn → 0 as n→∞, and

the conclusion is obtained from Cauchy Lemma 1.1 for an = αn and bn.
(b) Follows from the fact that A is a PO, FA = {(x∗, y∗)}, and any PO has no

periodic point with period p > 1.
(c1) Let (x, y) ∈ X × Y . If B is a PO and satisfies the (x∗, ψB) retraction-

displacement condition then

dX (x, x∗) ≤ ψB (dX (x,B (x))) , ∀x ∈ X,

where ψB : R+ → R+ is increasing, continuous at 0 with ψB(0) = 0. From (a) we
have that A is a PO and FA = {(x∗, y∗)}, where {y∗} = FC(x∗,·). From (iii) and (iv)
we get

dY (y, y∗) ≤ dY (y, C (x, y)) + dY (C (x, y) , y∗)

≤ dY (y, C (x, y)) + LdX (x, x∗) + αdY (y, y∗) ,

so

dY (y, y∗) ≤ 1

1− α
[dY (y, C (x, y)) + LdX (x, x∗)]

≤ 1

1− α
[dY (y, C (x, y)) + LψB (dX (x,B (x)))] .
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This implies that

d∞ ((x, y) , (x∗, y∗)) ≤ max

{
ψB (d (x,B (x))) ,

1

1− α
[dY (y, C (x, y)) + LψB (dX (x,B (x)))]

}
≤ ψA (d∞ ((x, y) , A (x, y))) ,

where ψA : R+ → R+

ψA (t) = max

{
ψB (t) ,

1

1− α
[t+ LψB (t)]

}
.

It is easy to check that ψA : R+ → R+ is increasing, continuous at 0 with ψA(0) = 0.
(c2) Follows from Theorem 1.2.
(c3) Follows from Theorem 1.3.
(d1) Let (x, y) ∈ X × Y and r > L

1−α . If B is an lB-quasicontraction then

r · dX (B (x) , x∗) ≤ lB · r · dX (x, x∗)

≤ lB · ρ∞ ((x, y) , (x∗, y∗)) , ∀ (x, y) ∈ X × Y,

r > L
1−α ⇐⇒

L
r + α < 1 and from (iii) and (iv) we have

dY (C (x, y) , y∗) ≤ L

r
· r · dX (x, x∗) + α · dY (y, y∗)

≤
(
L

r
+ α

)
ρ∞ ((x, y) , (x∗, y∗)) , ∀ (x, y) ∈ X × Y

so

ρ∞ (A (x, y) , (x∗, y∗)) = max {r · dX (B (x) , x∗) , dY (C (x, y) , y∗)}

≤ max

{
lB ,

L

r
+ α

}
· ρ∞ ((x, y) , (x∗, y∗)) , ∀ (x, y) ∈ X × Y.

(d2) Follows from Theorem 1.1 and from the fact that d∞ and ρ∞ are metric
equivalent. �

3. Applications

3.1. System of integral equation. In what follow we apply fibre contraction prin-
ciple to study the following system of integral equations:

x (t) =
t∫
a

K (t, s, x (s)) ds+ k (t) , t ∈ [a; b]

y (t) =
b∫
a

P (t, s, x (s)) ds+
t∫
a

Q (t, s, x (s) , y (s)) ds+ h (t) , t ∈ [a; b]

(3.1)

The system (3.1) is equivalent with the following fixed point problem:

(x, y) = A (x, y) , (3.2)

where

A (x, y) (t) = (B (x) (t) , C (x, y) (t)) , (3.3)
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B (x) (t) =

t∫
a

K (t, s, x (s)) ds+ k (t) ,

C (x, y) (t) =

b∫
a

P (t, s, x (s)) ds+

t∫
a

Q (t, s, x (s) , y (s)) ds+ h (t) .

In addition, we consider the following hypothesis:

(H1) K, P , Q ∈ C ([a; b]× [a; b]× R) and k, h ∈ C[a; b];
(H2) there exists LK > 0 such that

|K (t, s, u1)−K (t, s, u2)| ≤ LK · |u1 − u2|
for all t, s ∈ [a; b] and u1, u2 ∈ R;

(H3) there exists LQ > 0, such that

|Q (t, s, u, v1)−Q (t, s, u, v2)| ≤ LQ · |v1 − v2| ,
for all t, s ∈ [a; b] and u, v1, v2 ∈ R;

(H3)’ there exist LP > 0, lQ > 0, LQ > 0, such that

|P (t, s, u1)− P (t, s, u2)| ≤ LP · |u1 − u2| ,
|Q (t, s, u1, v1)−Q (t, s, u2, v2)| ≤ lQ · |u1 − u2|+ LHi

· |v1 − v2| ,
for all t, s ∈ [a; b] and u1, u2, v1, v2 ∈ R, i = 1, 2.

We have:

Theorem 3.1.1. If conditions (H1)− (H3) hold then the system (3.1) has a unique
solution (x∗, y∗) ∈ C

(
[a; b],R2

)
.

Proof. Let X = Y := C[a; b] and Y = C[a; b]. We consider on X the Bielecki norm

‖x‖τ = max
t∈[a;b]

(∣∣∣x (t) · e−τ(t−a)
∣∣∣) , τ > 0.

From the (H1) we have that A, defined by (3.3), satisfies A : X ×X → X ×X.
From (H2) we have that

‖B (x1)−B (x2)‖τ ≤
LK
τ
‖x1 − x2‖τ , ∀x1, x2 ∈ X

Using condition (H3) we get

‖C (x, y1)− C (x, y2)‖τ ≤
LQ
τ
‖y1 − y2‖τ

for all x, y1, y2 ∈ X. For a suitable choice of τ > max {LK , LQ} we have that B :

X → X is an αB-contraction, with αB = LK

τ , C (x, ·) : X → X is an α-contraction,

with α =
LQ

τ , for all x ∈ X. From fibre contraction principle, Theorem 2.1, we have
that A is PO and FA = {(x∗, y∗)}. �

Theorem 3.1.2. If conditions (H1), (H2) and (H3)
′

hold then:

(a) the equation (3.2), is well posed;
(b) the equation (3.2), is Ulam-Hyers stable;
(c) the operator A, defined by (3.3), has the Ostrowski property.
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Proof. (a)− (c) From (H1)− (H2) we have B is an αB-contraction, with αB = LK

τ ,

then B is lB-quasicontraction, with lB = 1
1−αB

. Using condition (H3)
′

we get

|C (x1, y1) (t)− C (x2, y2) (t)| ≤
(
LP (b− a) +

lQ
τ

)
‖x1 − x2‖τ e

τ(t−a)+
LQ
τ
‖y1 − y2‖τ e

τ(t−a),

so

‖C (x1, y1)− C (x2, y2)‖τ ≤
(
LP (b− a) +

lQ
τ

)
‖x1 − x2‖τ +

LQ
τ
‖y1 − y2‖τ .

Choosing τ > max {LK , LQ} we have that C (x, ·) : X → X is an α-contraction,

with α =
LQ

τ and C (·, y) : X → X is L-lipschitz with L =
(
LP (b− a) +

lQ
τ

)
. The

conclusion follows from the saturated fibre contraction principle, Theorem 2.2. �

3.2. Differentiability of nonlocal initial value problem solution with respect
to a parameter. We consider the following nonlocal initial value problem for the
first order differential equation x′ (t) = f (t, x (t) , λ) , t ∈ [0; 1]

x (0) +
m∑
k=1

akx (tk) = 0,
(3.4)

where λ ∈ J , J ⊆ R a closed interval, tk are given points with 0 ≤ t1 ≤ t2 ≤ ... ≤
tm < 1 and ak are real numbers with 1 +

m∑
k=1

ak 6= 0.

We consider the following hypothesis:

(H1) f ∈ C ([0; 1]× R×J) ;
(H2) there exist l1 > 0, l2 > 0 such that

|f (t, u1, λ)− f (t, u2, λ)| ≤
{
l1 |u1 − u2| , t ∈ [0; tm]
l2 |u1 − u2| , t ∈ [tm; 1]

for all t ∈ [0; 1], u1, u2 ∈ R, λ ∈ J ;
(H3) f ∈ C1 ([0; 1]× R×J) ;

(H4)
∣∣∣∂f∂u (t, u, λ)

∣∣∣ ≤ l1, for all (t, u, λ) ∈ [0; tm] × R×J and
∣∣∣∂f∂u (t, u, λ)

∣∣∣ ≤ l2, for

all (t, u, λ) ∈ [tm; 1]× R×J ;

(H5) l1 · tm ·
(

1 + |a| ·
m∑
k=1

|ak|
)
< 1, where a =

(
1 +

m∑
k=1

ak

)−1

;

Theorem 3.2.1. If conditions (H1), (H2) and (H5) hold then the problem (3.4) has
a unique solution x∗ ∈ C ([0; 1]× J).

Proof. Let X = (C ([0; 1]×J) , ‖·‖) where

‖x‖ = max {‖x‖∞ , ‖x‖τ} , (3.5)

‖x‖∞ = max
(t,λ)∈[0;tm]×J

|x (t, λ)| and ‖x‖τ = max
(t,λ)∈[tm;1]×J

|x (t, λ)| e−τ(x−tm).

Following the technique from [8] and [13], the problem (3.4) is equivalent with the
following fixed point problem

x (t, λ) = B (x) (t, λ) , (3.6)
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where B : X → X

B (x) (t, λ) = −a
m∑
k=1

ak

tk∫
0

f (s, x (s, λ) , λ) ds+

t∫
0

f (s, x (s, λ) , λ) ds. (3.7)

Actually, the operator B appears as sum of two integral operators, one of Fredholm,
whose values depend only on the restrictions of functions to [0; tm] and second of a
Volterra type depending on the restrictions of functions to [tm; 1]

B = BF +BV ,

where

BF (x) (t, λ) =


−a

m∑
k=1

ak
tk∫
0

f (s, x (s, λ) , λ) ds+
t∫

0

f (s, x (s, λ) , λ) ds, t ∈ [0; tm]

−a
m∑
k=1

ak
tk∫
0

f (s, x (s, λ) , λ) ds+
tm∫
0

f (s, x (s, λ) , λ) ds, t ∈ [tm; 1]

(3.8)
and

BV (x) (t, λ) =


0, t ∈ [0; tm]
t∫
tm

f (s, x (s, λ) , λ) ds, t ∈ [tm; 1]
. (3.9)

For t ∈ [0; tm], we have

|B (x1) (t, λ)−B (x2) (t, λ)| = |BF (x1) (t, λ)−BF (x2) (t, λ)|

≤ |a| ·
m∑
k=1

|ak|
tk∫

0

|f (s, x1 (s, λ) , λ)− f (s, x2 (s, λ) , λ)| ds

+

t∫
0

|f (s, x1 (s, λ) , λ)− f (s, x2 (s, λ) , λ)| ds

≤

(
1 + |a| ·

m∑
k=1

|ak|

) tm∫
0

|f (s, x1 (s, λ) , λ)− f (s, x2 (s, λ) , λ)| ds

≤ l1 · tm ·

(
1 + |a| ·

m∑
k=1

|ak|

)
‖x1 − x2‖∞ ,

therefore

‖B (x1)−B (x2)‖∞ ≤ l1 ·

(
1 + |a| ·

m∑
k=1

|ak|

)
‖x1 − x2‖∞ . (3.10)

For t ∈ [tm; 1], we have
|B (x1) (t, λ)−B (x2) (t, λ)|

≤ |a| ·
m∑
k=1

|ak|
tk∫

0

|f (s, x1 (s, λ) , λ)− f (s, x2 (s, λ) , λ)| ds
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+

tm∫
0

|f (s, x1 (s, λ) , λ)− f (s, x2 (s, λ) , λ)| ds

+

t∫
tm

|f (s, x1 (s, λ) , λ)− f (s, x2 (s, λ) , λ)| ds

≤ l1 · tm ·

(
1 + |a| ·

m∑
k=1

|ak|

)
‖x1 − x2‖∞ +

l2
τ
‖x1 − x2‖τ e

τ(t−tm),

therefore

‖B (x1)−B (x2)‖τ ≤ l1 · tm ·

(
1 + |a| ·

m∑
k=1

|ak|

)
‖x1 − x2‖∞+

l2
τ
‖x1 − x2‖τ . (3.11)

From (3.10) and (3.11) we get tat ‖B (x1)−B (x2)‖ ≤ αB ‖x1 − x2‖ , with αB =

l1 · tm ·
(

1 + |a| ·
m∑
k=1

|ak|
)

+ l2
τ . According to (H5), we can choose τ > 0 large enough

such that αB < 1. Hence B is an αB-contraction, so we obtain the conclusion. �

Theorem 3.2.2. If conditions(H1), (H3)− (H5) hold then the problem (3.4) has a
unique solution x∗ ∈ C1 ([0; 1]× J).

Proof. Let X = (C ([0; 1]×J) , ‖·‖) with the norm defined by (3.5). Condition (H4)
implies (H2), thus from Theorem 3.2.1 we have B, defined by (3.7), is an αB-
contraction and FB = {x∗}. It is clear that if f (·, u, λ) ∈ C1 [0; 1] for all (u, λ) ∈ R×J
then x∗ (·, λ) ∈ C1 [0; 1] for all λ ∈ J .

If we formally derivate the fixed point equation (3.6) with respect to λ we get

∂x

∂λ
(t, λ) = −a

m∑
k=1

ak

tk∫
0

∂f

∂u
(s, x (s, λ) , λ)

∂x

∂λ
(t, λ) ds− a

m∑
k=1

ak

tk∫
0

∂f

∂λ
(s, x (s, λ) , λ) ds

+

t∫
0

∂f

∂u
(s, x (s, λ) , λ)

∂x

∂λ
(t, λ) ds+

t∫
0

∂f

∂λ
(s, x (s, λ) , λ) ds.

This suggest us to consider the operator C : X × X → X with (x, y) 7−→ C (x, y) ,
where

C (x, y) (t, λ) = −a
m∑
k=1

ak

tk∫
0

∂f

∂u
(s, x (s, λ) , λ) y (t, λ) ds− a

m∑
k=1

ak

tk∫
0

∂f

∂λ
(s, x (s, λ) , λ) ds

+

t∫
0

∂f

∂u
(s, x (s, λ) , λ) y (t, λ) ds+

t∫
0

∂f

∂λ
(s, x (s, λ) , λ) ds.
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The operator C appears as a sum of two operators C = CF + CV , one of Fredholm
type

CF (x, y) (t, λ) =



−a
m∑
k=1

ak
tk∫
0

∂f
∂u (s, x (s, λ) , λ) y (t, λ) ds− a

m∑
k=1

ak
tk∫
0

∂f
∂λ (s, x (s, λ) , λ) ds+

+
t∫

0

∂f
∂u (s, x (s, λ) , λ) y (t, λ) ds+

t∫
0

∂f
∂λ (s, x (s, λ) , λ) ds, t ∈ [0; tm]

−a
m∑
k=1

ak
tk∫
0

∂f
∂u (s, x (s, λ) , λ) y (t, λ) ds− a

m∑
k=1

ak
tk∫
0

∂f
∂λ (s, x (s, λ) , λ) ds+

+
tm∫
0

∂f
∂u (s, x (s, λ) , λ) y (t, λ) ds+

tm∫
0

∂f
∂λ (s, x (s, λ) , λ) ds, t ∈ [tm; 1]

and second of Volterra type

CV (x, y) (t, λ) =


0, t ∈ [0; tm]
t∫
tm

∂f
∂u (s, x (s, λ) , λ) y (t, λ) ds+

t∫
tm

∂f
∂λ (s, x (s, λ) , λ) ds, t ∈ [tm; 1]

.

In the same manner as for B we get that ‖C (x, y1)− C (x, y2)‖ ≤ αC ‖y1 − y2‖ ,

for all x, y1, y2 ∈ X, where αC = αB = l1 · tm ·
(

1 + |a| ·
m∑
k=1

|ak|
)

+ l2
τ . Thus

C (x, ·) : X → X is an αC-contraction, for all x ∈ X. By Theorem 2.1, we get that
the operator A : X ×X → X ×X

A (x, y) = (B (x) , C (x, y)) (3.12)

is a PO with FA = {(x∗, y∗)} and the sequence (xn, yn), given by

xn+1 = B (xn) , yn+1 = C (xn, yn)

converge uniformly to (x∗, y∗) for any starting point (x0, y0) ∈ X ×X.
If we take (x0, y0) ∈ X ×X such that y0 = ∂x0

∂λ then we prove by induction that

yn = ∂xn

∂λ , for all n ∈ N. Thus,

xn
unif−→ x∗ and

∂xn
∂λ

unif−→ y∗ as n→ +∞.

From the above convergences it follows that there exists ∂x∗

∂λ and ∂x∗

∂λ = y∗. �
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Bolyai Math., 51(2006), no. 3, 115-121.

[21] I.A. Rus, Picard operators and applications, Sci. Math. Jpn., 58(2003), 191-219.

[22] I.A. Rus, Picard operators and well-posedness of fixed point problems, Stud. Univ. Babeş-Bolyai
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