SATURATED FIBRE CONTRACTION PRINCIPLE

MARCEL-ADRIAN SERBAN
Department of Mathematics, Babeş-Bolyai University of Cluj-Napoca
M. Kogălniceanu Str., no. 1, 400048 Cluj-Napoca, Romania
E-mail: mserban@math.ubbcluj.ro

Abstract

For a triangular operator $A: X \times Y \rightarrow X \times Y, A=(B, C)$, where $B: X \rightarrow X$ and $C: X \times Y \rightarrow Y$ we study in which conditions on operators $B: X \rightarrow X$ and $C: X \times Y \rightarrow Y$ we have that: (1) the fixed point problem for triangular operator $A=(B, C)$ is well posed (2) the operator $A=(B, C)$ has the Ostrowski property (3) the fixed point equation $(x, y)=A(x, y)$ is generalized Ulam-Hyers stable.

Key Words and Phrases: Cauchy lemma, fixed point, fibre contraction principle, well-posedness of the fixed point problem, Ostrowski property, Ulam-Hyers stability, generalized Ulam-Hyers stability. 2010 Mathematics Subject Classification: 47H10, 54H25, 65J15, 34A34, 34A12, 45G10.

1. Introduction

In this paper we shall use the terminologies and notations from [21] and [27]. For the convenience of the reader we shall recall some of them.

Let (X, \rightarrow) be an L-space and $f: X \rightarrow X$ an operator. We denote by $f^{0}:=1_{X}$, $f^{1}:=f, f^{n+1}:=f \circ f^{n}, n \in \mathbb{N}$ the iterate operators of the operator A. Also:

$$
P(X):=\{Y \subseteq X \quad \mid Y \neq \emptyset\} \text { and } F_{f}:=\{x \in X \quad \mid \quad f(x)=x\}
$$

By (X, \rightarrow) we will denote an L-space. Actually, an L-space is any set endowed with a structure implying a notion of convergence for sequences. For examples of L-spaces see Fréchet [10], Blumenthal [7] and I. A. Rus [21].

Let (X, \rightarrow) be an L-space.
Definition 1.1. $f: X \rightarrow X$ is said to be a weakly Picard operator (briefly WPO) if the sequence $\left(f^{n}(x)\right)_{n \in N}$ converges for all $x \in X$ and the limit (which may depend on $x)$ is a fixed point of f. If additionally, $F_{f}=\left\{x^{*}\right\}$, then f is called a Picard operator (PO).

If $f: X \rightarrow X$ is a WPO, then we may define the operator $f^{\infty}: X \rightarrow X$ by

$$
f^{\infty}(x):=\lim _{n \rightarrow \infty} f^{n}(x)
$$

Obviously $f^{\infty}(X)=F_{f}$. Moreover, if f is a PO and we denote by x^{*} its unique fixed point, then $f^{\infty}(x)=x^{*}$, for each $x \in X$.

Let (X, d) be a metric space.
Definition 1.2. (F.S. De Blasi and J. Myjak (see [28] p.42, see also [26]))The fixed point problem for an operator $f: X \rightarrow X$ is well posed iff:
(a) $F_{f}=\left\{x^{*}\right\}$;
(b) if $x_{n} \in X, n \in \mathbb{N}$ and $d\left(x_{n}, f\left(x_{n}\right)\right) \rightarrow 0$ as $n \rightarrow+\infty$, then $d\left(x_{n}, x^{*}\right) \rightarrow 0$ as $n \rightarrow+\infty$.

Definition 1.3. An operator $f: X \rightarrow X$ has the Ostrowski property iff:
(a) $F_{f}=\left\{x^{*}\right\}$;
(b) $x_{n} \in X, n \in \mathbb{N}$, and $d\left(x_{n+1}, f\left(x_{n}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$ imply that $d\left(x_{n}, x^{*}\right) \rightarrow 0$ as $n \rightarrow \infty$.
Some authors refer to the above property as the "limit shadowing property" (see [15] and the references in, [11], [20], [14], [12], [17], [29], ...).

An important result used in the proof of the Ostrowski property, also in the proof of fiber contraction principle, is the Cauchy Lemma. For details and generalizations see [16], [30].
Lemma 1.1. (Cauchy Lemma). Let $a_{n}, b_{n} \in \mathbb{R}_{+}, n \in \mathbb{N}$. We suppose that:
(i) $\sum_{k=0}^{\infty} a_{k}<+\infty$;
(ii) $b_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Then

$$
\sum_{k=0}^{n} a_{n-k} b_{k} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Definition 1.4. Let (X, d) be a metric space and $f: X \rightarrow X$ such that $F_{f}=\left\{x^{*}\right\}$. By definition, f is an l-quasicontraction iff $l \in[0 ; 1[$ and

$$
d\left(f(x), x^{*}\right) \leq l d\left(x, x^{*}\right), \forall x \in X
$$

Theorem 1.1. Let (X, d) be a metric space and $f: X \rightarrow X$ be such that $F_{f}=\left\{x^{*}\right\}$. If the operator f is an l-quasicontraction then f has the Ostrowski property.
Proof. Let $\left(x_{n}\right)_{n \in \mathbb{N}} \subset X$ such that $d\left(x_{n+1}, f\left(x_{n}\right)\right) \rightarrow 0$ as $n \rightarrow+\infty$. Then, we have:

$$
\begin{aligned}
d\left(x_{n+1}, x^{*}\right) & \leq d\left(x_{n+1}, f\left(x_{n}\right)\right)+d\left(f\left(x_{n}\right), x^{*}\right) \\
& \leq d\left(x_{n+1}, f\left(x_{n}\right)\right)+l d\left(x_{n}, x^{*}\right) \leq \ldots \\
& \leq \sum_{j=0}^{n} l^{j} \cdot d\left(x_{n+1-j}, f\left(x_{n-j}\right)\right)+l^{n} \cdot d\left(x_{0}, x^{*}\right)
\end{aligned}
$$

Making $n \rightarrow \infty$ and applying the Cauchy Lemma 1.1 for $a_{n}=l^{n}$ and $b_{n}=$ $d\left(x_{n+1}, f\left(x_{n}\right)\right)$ we get the conclusion.

Let (X, d) be a metric space, $f: X \rightarrow X$ and we consider the fixed point equation

$$
\begin{equation*}
x=f(x) . \tag{1.1}
\end{equation*}
$$

Definition 1.5. By definition, the fixed point equation (1.1) is Ulam-Hyers stable if there exists a constant $c_{f}>0$ such that: for each $\varepsilon>0$ and each solution $y^{*} \in X$ of the inequation

$$
\begin{equation*}
d(y, f(y)) \leq \varepsilon \tag{1.2}
\end{equation*}
$$

there exists a solution x^{*} of the equation (1.1) such that

$$
d\left(y^{*}, x^{*}\right) \leq c_{f} \varepsilon
$$

Definition 1.6. By definition, the equation (1.1) is generalized Ulam-Hyers stable if there exists $\theta: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$increasing and continuous in 0 with $\theta(0)=0$ such that: for each $\varepsilon>0$ and for each solution y^{*} of (1.2) there exists a solution x^{*} of (1.1) such that

$$
d\left(y^{*}, x^{*}\right) \leq \theta(\varepsilon)
$$

Definition $1.7([6])$. Let (X, d) be a metric space and $f: X \rightarrow X$ be an operator so that its fixed point set F_{f} is nonempty. Let $r: X \rightarrow F_{f}$ be a set retraction. Then, by definition, f satisfies the (ψ, r) retraction-displacement condition (ψ-condition in [9], (ψ, r)-operator in [5], ψ-weakly Picard operator in the case of Picard iterations in [21], the collage condition in [3]) if:
(i) $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is increasing, continuous at 0 and $\psi(0)=0$;
(ii) $d(x, r(x)) \leq \psi(d(x, f(x))$, for every $x \in X$.

Remark 1.1. If $F_{f}=\left\{x^{*}\right\}$, then the (ψ, r) retraction-displacement condition takes the following form:
(i) $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is increasing, continuous at 0 and $\psi(0)=0$;
(ii) $d\left(x, x^{*}\right) \leq \psi(d(x, f(x))$, for every $x \in X$.

We will call it the $\left(x^{*}, \psi\right)$ retraction-displacement condition.
Remark 1.2. Let (X, d) be a metric space and $f: X \rightarrow X$ such that $F_{f}=\left\{x^{*}\right\}$. If the operator f is an l-quasicontraction then f satisfies $\left(x^{*}, \psi\right)$ retraction-displacement condition with $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$given by $\psi(t)=\frac{1}{1-l} t$.
Proof. For all $x \in X$ we have:

$$
\begin{aligned}
d\left(x, x^{*}\right) & \leq d(x, f(x))+d\left(f(x), x^{*}\right) \\
& \leq d(x, f(x))+l \cdot d\left(x, x^{*}\right)
\end{aligned}
$$

Theorem 1.2. Let (X, d) be a metric space and $f: X \rightarrow X$ such that $F_{f}=\left\{x^{*}\right\}$. If the operator f satisfies an $\left(x^{*}, \psi\right)$ retraction-displacement condition, then the fixed point problem for f is well-posed.

Proof. Let $\left(x_{n}\right)_{n \in \mathbb{N}} \subset X$ such that $d\left(x_{n}, f\left(x_{n}\right)\right) \rightarrow 0$ as $n \rightarrow+\infty$. Then, we have:

$$
d\left(x_{n}, x^{*}\right) \leq \psi\left(d\left(x_{n}, f\left(x_{n}\right)\right) \rightarrow 0 \text { as } n \rightarrow \infty\right.
$$

Theorem 1.3. Let (X, d) be a metric space and $f: X \rightarrow X$ such that $F_{f}=\left\{x^{*}\right\}$. If f satisfies $a\left(x^{*}, \psi\right)$ retraction-displacement condition, then the equation (1.1) is generalized Ulam-Hyers stable.

Proof. Let $y^{*} \in X$ be a solution of (1.2). Since f satisfies the (r, ψ) retractiondisplacement condition we have:

$$
d\left(y^{*}, x^{*}\right) \leq \psi\left(d\left(y^{*}, f\left(y^{*}\right)\right) \leq \psi(\varepsilon)\right.
$$

For more considerations on Ulam stability see I.A. Rus [24].

2. Fibre contraction principle

Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be two metric spaces. We consider on $X \times Y$ the following metric

$$
\begin{gathered}
d_{\infty}: X \times Y \rightarrow \mathbb{R}_{+} \\
d_{\infty}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\max \left\{d_{X}\left(x_{1}, x_{2}\right), d_{Y}\left(y_{1}, y_{2}\right)\right\}
\end{gathered}
$$

Let $B: X \rightarrow X$ and $C: X \times Y \rightarrow Y$ be two operators and the triangular operator $A: X \times Y \rightarrow X \times Y$ be defined by

$$
A(x, y):=(B(x), C(x, y))
$$

We have the following result:
Theorem 2.1 (Fibre contraction principle). ([31], [18], [19]) We suppose that:
(i) $\left(Y, d_{Y}\right)$ is a complete metric space;
(ii) B is a WPO;
(iii) $C(x, \cdot): Y \rightarrow Y$ is $\alpha-$ contraction for every $x \in X$;
(iv) $C: X \times Y \rightarrow Y$ is continuous.

Then
(a) A is a WPO;
(b) If B is a $P O$ then A is a $P O$.

For other generalizations of fibre contraction principle see S. Andrász [1], C. Bacoţiu [2], I.A. Rus [16], [18], [19], M.A. Şerban [33], [34].

Following the result of I. A. Rus in [25], saturated contraction principle, the aim of this paper is to give the Fibre contraction principle with a generous conclusions.

We have:
Theorem 2.2 (Saturated fibre contraction principle). We suppose that:
(i) (Y, ρ) is a complete metric space;
(ii) B is a $P O, F_{B}=\left\{x^{*}\right\}$;
(iii) $C(x, \cdot): Y \rightarrow Y$ is $\alpha-$ contraction for every $x \in X$;
(iv) $C(\cdot, y): X \rightarrow X$ is $L-$ lipschitz for every $y \in Y$.

Then:
(a) A is a $P O$;
(b) $F_{A}=F_{A^{n}}=\left\{\left(x^{*}, y^{*}\right)\right\}$, where $\left\{y^{*}\right\}=F_{C\left(x^{*}, \cdot\right)}$;
(c) If, in addition, B satisfies the $\left(x^{*}, \psi_{B}\right)$ retraction-displacement condition then: $\left(\mathrm{c}_{1}\right)$ A satisfies the $\left(\left(x^{*}, y^{*}\right), \psi_{A}\right)$ retraction-displacement condition, where

$$
\psi_{A}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}, \psi_{A}(t)=\max \left\{\psi_{B}(t), \frac{1}{1-\alpha}\left[t+L \psi_{B}(t)\right]\right\}
$$

$\left(c_{2}\right)$ the fixed point problem for A is well posed;
(c_{3}) the fixed point equation for A is generalized Ulam-Hyers stable;
(d) If , in addition, B is an l_{B}-quasicontraction then:
$\left(\mathrm{d}_{1}\right) A$ is an l_{A}-quasicontraction in $\left(X \times Y, \rho_{\infty}\right)$, where

$$
\begin{aligned}
& \rho_{\infty}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\max \left\{r \cdot d_{X}\left(x_{1}, x_{2}\right), d_{Y}\left(y_{1}, y_{2}\right)\right\}, \\
& \text { with } r>\frac{L}{1-\alpha} \text { and } l_{A}=\max \left\{l_{B}, \frac{L}{r}+\alpha\right\}
\end{aligned}
$$

$\left(\mathrm{d}_{2}\right)$ A has the Ostrowski property.
Proof. (a) Let $x_{0} \in X$ and $y_{0} \in Y . B$ is a PO then $F_{B}=\left\{x^{*}\right\}$ and $B^{\infty}(x)=x^{*}$ for all $x \in X$. From conditions (i) and (iii) we obtain that the operator $C\left(x^{*}, \cdot\right)$ has a unique fixed point $y^{*} \in Y$, thus $F_{A}=\left\{\left(x^{*}, y^{*}\right)\right\}$. We show that

$$
A^{n}\left(x_{0}, y_{0}\right) \rightarrow\left(x^{*}, y^{*}\right) \text { as } n \rightarrow+\infty .
$$

It is easy to check that

$$
A^{n}\left(x_{0}, y_{0}\right)=\left(x_{n}, y_{n}\right)
$$

where $x_{n}=B^{n}\left(x_{0}\right) \rightarrow x^{*}$ as $n \rightarrow \infty$ and $y_{n}=C\left(x_{n-1}, y_{n-1}\right), n \in \mathbb{N}$. We have:

$$
\begin{aligned}
d_{Y}\left(y_{n+1}, y^{*}\right) & \leq d_{Y}\left(C\left(x_{n}, y_{n}\right), C\left(x_{n}, y^{*}\right)\right)+d_{Y}\left(C\left(x_{n}, y^{*}\right), y^{*}\right) \\
& \leq \alpha \cdot d_{Y}\left(y_{n}, y^{*}\right)+d_{Y}\left(C\left(x_{n}, y^{*}\right), y^{*}\right) \\
& \leq \alpha^{2} \cdot d_{Y}\left(y_{n-1}, y^{*}\right)+\alpha \cdot d_{Y}\left(C\left(x_{n-1}, y^{*}\right), y^{*}\right)+d_{Y}\left(C\left(x_{n}, y^{*}\right), y^{*}\right) \\
& \leq \ldots \leq \\
& \leq \alpha^{n+1} d_{Y}\left(y_{0}, y^{*}\right)+\alpha^{n} d_{Y}\left(C\left(x_{0}, y^{*}\right), y^{*}\right)+\ldots+d_{Y}\left(C\left(x_{n}, y^{*}\right), y^{*}\right) .
\end{aligned}
$$

If we take $b_{n}=d_{Y}\left(C\left(x_{n}, y^{*}\right), y^{*}\right)$, from (iv) we deduce that $b_{n} \rightarrow 0$ as $n \rightarrow \infty$, and the conclusion is obtained from Cauchy Lemma 1.1 for $a_{n}=\alpha^{n}$ and b_{n}.
(b) Follows from the fact that A is a PO, $F_{A}=\left\{\left(x^{*}, y^{*}\right)\right\}$, and any PO has no periodic point with period $p>1$.
$\left(c_{1}\right)$ Let $(x, y) \in X \times Y$. If B is a PO and satisfies the $\left(x^{*}, \psi_{B}\right)$ retractiondisplacement condition then

$$
d_{X}\left(x, x^{*}\right) \leq \psi_{B}\left(d_{X}(x, B(x))\right), \forall x \in X
$$

where $\psi_{B}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is increasing, continuous at 0 with $\psi_{B}(0)=0$. From (a) we have that A is a PO and $F_{A}=\left\{\left(x^{*}, y^{*}\right)\right\}$, where $\left\{y^{*}\right\}=F_{C\left(x^{*}, \cdot\right)}$. From (iii) and (iv) we get

$$
\begin{aligned}
d_{Y}\left(y, y^{*}\right) & \leq d_{Y}(y, C(x, y))+d_{Y}\left(C(x, y), y^{*}\right) \\
& \leq d_{Y}(y, C(x, y))+L d_{X}\left(x, x^{*}\right)+\alpha d_{Y}\left(y, y^{*}\right)
\end{aligned}
$$

so

$$
\begin{aligned}
d_{Y}\left(y, y^{*}\right) & \leq \frac{1}{1-\alpha}\left[d_{Y}(y, C(x, y))+L d_{X}\left(x, x^{*}\right)\right] \\
& \leq \frac{1}{1-\alpha}\left[d_{Y}(y, C(x, y))+L \psi_{B}\left(d_{X}(x, B(x))\right)\right]
\end{aligned}
$$

This implies that

$$
\begin{aligned}
d_{\infty}\left((x, y),\left(x^{*}, y^{*}\right)\right) & \leq \max \left\{\psi_{B}(d(x, B(x))), \frac{1}{1-\alpha}\left[d_{Y}(y, C(x, y))+L \psi_{B}\left(d_{X}(x, B(x))\right)\right]\right\} \\
& \leq \psi_{A}\left(d_{\infty}((x, y), A(x, y))\right)
\end{aligned}
$$

where $\psi_{A}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$

$$
\psi_{A}(t)=\max \left\{\psi_{B}(t), \frac{1}{1-\alpha}\left[t+L \psi_{B}(t)\right]\right\}
$$

It is easy to check that $\psi_{A}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is increasing, continuous at 0 with $\psi_{A}(0)=0$.
$\left(c_{2}\right)$ Follows from Theorem 1.2.
$\left(c_{3}\right)$ Follows from Theorem 1.3.
$\left(d_{1}\right)$ Let $(x, y) \in X \times Y$ and $r>\frac{L}{1-\alpha}$. If B is an l_{B}-quasicontraction then

$$
\begin{aligned}
r \cdot d_{X}\left(B(x), x^{*}\right) & \leq l_{B} \cdot r \cdot d_{X}\left(x, x^{*}\right) \\
& \leq l_{B} \cdot \rho_{\infty}\left((x, y),\left(x^{*}, y^{*}\right)\right), \forall(x, y) \in X \times Y
\end{aligned}
$$

$r>\frac{L}{1-\alpha} \Longleftrightarrow \frac{L}{r}+\alpha<1$ and from (iii) and (iv) we have

$$
\begin{aligned}
d_{Y}\left(C(x, y), y^{*}\right) & \leq \frac{L}{r} \cdot r \cdot d_{X}\left(x, x^{*}\right)+\alpha \cdot d_{Y}\left(y, y^{*}\right) \\
& \leq\left(\frac{L}{r}+\alpha\right) \rho_{\infty}\left((x, y),\left(x^{*}, y^{*}\right)\right), \forall(x, y) \in X \times Y
\end{aligned}
$$

so

$$
\begin{aligned}
\rho_{\infty}\left(A(x, y),\left(x^{*}, y^{*}\right)\right) & =\max \left\{r \cdot d_{X}\left(B(x), x^{*}\right), d_{Y}\left(C(x, y), y^{*}\right)\right\} \\
& \leq \max \left\{l_{B}, \frac{L}{r}+\alpha\right\} \cdot \rho_{\infty}\left((x, y),\left(x^{*}, y^{*}\right)\right), \forall(x, y) \in X \times Y .
\end{aligned}
$$

$\left(d_{2}\right)$ Follows from Theorem 1.1 and from the fact that d_{∞} and ρ_{∞} are metric equivalent.

3. Applications

3.1. System of integral equation. In what follow we apply fibre contraction principle to study the following system of integral equations:

$$
\begin{cases}x(t)=\int_{a}^{t} K(t, s, x(s)) d s+k(t), & t \in[a ; b] \tag{3.1}\\ y(t)=\int_{a}^{b} P(t, s, x(s)) d s+\int_{a}^{t} Q(t, s, x(s), y(s)) d s+h(t), & t \in[a ; b]\end{cases}
$$

The system (3.1) is equivalent with the following fixed point problem:

$$
\begin{equation*}
(x, y)=A(x, y), \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
A(x, y)(t)=(B(x)(t), C(x, y)(t)), \tag{3.3}
\end{equation*}
$$

$$
\begin{gathered}
B(x)(t)=\int_{a}^{t} K(t, s, x(s)) d s+k(t) \\
C(x, y)(t)=\int_{a}^{b} P(t, s, x(s)) d s+\int_{a}^{t} Q(t, s, x(s), y(s)) d s+h(t)
\end{gathered}
$$

In addition, we consider the following hypothesis:
(H1) $K, P, Q \in C([a ; b] \times[a ; b] \times \mathbb{R})$ and $k, h \in C[a ; b]$;
(H2) there exists $L_{K}>0$ such that

$$
\left|K\left(t, s, u_{1}\right)-K\left(t, s, u_{2}\right)\right| \leq L_{K} \cdot\left|u_{1}-u_{2}\right|
$$

for all $t, s \in[a ; b]$ and $u_{1}, u_{2} \in \mathbb{R}$;
(H3) there exists $L_{Q}>0$, such that

$$
\left|Q\left(t, s, u, v_{1}\right)-Q\left(t, s, u, v_{2}\right)\right| \leq L_{Q} \cdot\left|v_{1}-v_{2}\right|,
$$

for all $t, s \in[a ; b]$ and $u, v_{1}, v_{2} \in \mathbb{R}$;
(H3)' there exist $L_{P}>0, l_{Q}>0, L_{Q}>0$, such that

$$
\begin{aligned}
& \qquad\left|P\left(t, s, u_{1}\right)-P\left(t, s, u_{2}\right)\right| \leq L_{P} \cdot\left|u_{1}-u_{2}\right| \\
& \left|Q\left(t, s, u_{1}, v_{1}\right)-Q\left(t, s, u_{2}, v_{2}\right)\right| \leq l_{Q} \cdot\left|u_{1}-u_{2}\right|+L_{H_{i}} \cdot\left|v_{1}-v_{2}\right| \\
& \text { for all } t, s \in[a ; b] \text { and } u_{1}, u_{2}, v_{1}, v_{2} \in \mathbb{R}, i=1,2 \text {. }
\end{aligned}
$$

We have:
Theorem 3.1.1. If conditions $(H 1)-(H 3)$ hold then the system (3.1) has a unique solution $\left(x^{*}, y^{*}\right) \in C\left([a ; b], \mathbb{R}^{2}\right)$.

Proof. Let $X=Y:=C[a ; b]$ and $Y=C[a ; b]$. We consider on X the Bielecki norm

$$
\|x\|_{\tau}=\max _{t \in[a ; b]}\left(\left|x(t) \cdot e^{-\tau(t-a)}\right|\right), \tau>0 .
$$

From the (H1) we have that A, defined by (3.3), satisfies $A: X \times X \rightarrow X \times X$.
From (H2) we have that

$$
\left\|B\left(x_{1}\right)-B\left(x_{2}\right)\right\|_{\tau} \leq \frac{L_{K}}{\tau}\left\|x_{1}-x_{2}\right\|_{\tau}, \forall x_{1}, x_{2} \in X
$$

Using condition (H3) we get

$$
\left\|C\left(x, y_{1}\right)-C\left(x, y_{2}\right)\right\|_{\tau} \leq \frac{L_{Q}}{\tau}\left\|y_{1}-y_{2}\right\|_{\tau}
$$

for all $x, y_{1}, y_{2} \in X$. For a suitable choice of $\tau>\max \left\{L_{K}, L_{Q}\right\}$ we have that B : $X \rightarrow X$ is an α_{B}-contraction, with $\alpha_{B}=\frac{L_{K}}{\tau}, C(x, \cdot): X \rightarrow X$ is an α-contraction, with $\alpha=\frac{L_{Q}}{\tau}$, for all $x \in X$. From fibre contraction principle, Theorem 2.1, we have that A is PO and $F_{A}=\left\{\left(x^{*}, y^{*}\right)\right\}$.

Theorem 3.1.2. If conditions $(H 1)$, $(H 2)$ and $(H 3)^{\prime}$ hold then:
(a) the equation (3.2), is well posed;
(b) the equation (3.2), is Ulam-Hyers stable;
(c) the operator A, defined by (3.3), has the Ostrowski property.

Proof. (a) - (c) From (H1) - (H2) we have B is an α_{B}-contraction, with $\alpha_{B}=\frac{L_{K}}{\tau}$, then B is l_{B}-quasicontraction, with $l_{B}=\frac{1}{1-\alpha_{B}}$. Using condition $(H 3)^{\prime}$ we get
$\left|C\left(x_{1}, y_{1}\right)(t)-C\left(x_{2}, y_{2}\right)(t)\right| \leq\left(L_{P}(b-a)+\frac{l_{Q}}{\tau}\right)\left\|x_{1}-x_{2}\right\|_{\tau} e^{\tau(t-a)}+\frac{L_{Q}}{\tau}\left\|y_{1}-y_{2}\right\|_{\tau} e^{\tau(t-a)}$,
so

$$
\left\|C\left(x_{1}, y_{1}\right)-C\left(x_{2}, y_{2}\right)\right\|_{\tau} \leq\left(L_{P}(b-a)+\frac{l_{Q}}{\tau}\right)\left\|x_{1}-x_{2}\right\|_{\tau}+\frac{L_{Q}}{\tau}\left\|y_{1}-y_{2}\right\|_{\tau}
$$

Choosing $\tau>\max \left\{L_{K}, L_{Q}\right\}$ we have that $C(x, \cdot): X \rightarrow X$ is an α-contraction, with $\alpha=\frac{L_{Q}}{\tau}$ and $C(\cdot, y): X \rightarrow X$ is L-lipschitz with $L=\left(L_{P}(b-a)+\frac{l_{Q}}{\tau}\right)$. The conclusion follows from the saturated fibre contraction principle, Theorem 2.2.
3.2. Differentiability of nonlocal initial value problem solution with respect to a parameter. We consider the following nonlocal initial value problem for the first order differential equation

$$
\left\{\begin{array}{l}
x^{\prime}(t)=f(t, x(t), \lambda), t \in[0 ; 1] \tag{3.4}\\
x(0)+\sum_{k=1}^{m} a_{k} x\left(t_{k}\right)=0
\end{array}\right.
$$

where $\lambda \in J, J \subseteq \mathbb{R}$ a closed interval, t_{k} are given points with $0 \leq t_{1} \leq t_{2} \leq \ldots \leq$ $t_{m}<1$ and a_{k} are real numbers with $1+\sum_{k=1}^{m} a_{k} \neq 0$.

We consider the following hypothesis:
(H1) $f \in C([0 ; 1] \times \mathbb{R} \times J)$;
(H2) there exist $l_{1}>0, l_{2}>0$ such that

$$
\left|f\left(t, u_{1}, \lambda\right)-f\left(t, u_{2}, \lambda\right)\right| \leq \begin{cases}l_{1}\left|u_{1}-u_{2}\right|, & t \in\left[0 ; t_{m}\right] \\ l_{2}\left|u_{1}-u_{2}\right|, & t \in\left[t_{m} ; 1\right]\end{cases}
$$

for all $t \in[0 ; 1], u_{1}, u_{2} \in \mathbb{R}, \lambda \in J ;$
(H3) $f \in C^{1}([0 ; 1] \times \mathbb{R} \times J)$;
(H4) $\left|\frac{\partial f}{\partial u}(t, u, \lambda)\right| \leq l_{1}$, for all $(t, u, \lambda) \in\left[0 ; t_{m}\right] \times \mathbb{R} \times J$ and $\left|\frac{\partial f}{\partial u}(t, u, \lambda)\right| \leq l_{2}$, for all $(t, u, \lambda) \in\left[t_{m} ; 1\right] \times \mathbb{R} \times J ;$
(H5) $l_{1} \cdot t_{m} \cdot\left(1+|a| \cdot \sum_{k=1}^{m}\left|a_{k}\right|\right)<1$, where $a=\left(1+\sum_{k=1}^{m} a_{k}\right)^{-1}$;
Theorem 3.2.1. If conditions (H1), (H2) and (H5) hold then the problem (3.4) has a unique solution $x^{*} \in C([0 ; 1] \times J)$.
Proof. Let $X=(C([0 ; 1] \times J),\|\cdot\|)$ where

$$
\begin{gather*}
\|x\|=\max \left\{\|x\|_{\infty},\|x\|_{\tau}\right\} \tag{3.5}\\
\|x\|_{\infty}=\max _{(t, \lambda) \in\left[0 ; t_{m}\right] \times J}|x(t, \lambda)| \text { and }\|x\|_{\tau}=\max _{(t, \lambda) \in\left[t_{m} ; 1\right] \times J}|x(t, \lambda)| e^{-\tau\left(x-t_{m}\right)} .
\end{gather*}
$$

Following the technique from [8] and [13], the problem (3.4) is equivalent with the following fixed point problem

$$
\begin{equation*}
x(t, \lambda)=B(x)(t, \lambda), \tag{3.6}
\end{equation*}
$$

where $B: X \rightarrow X$

$$
\begin{equation*}
B(x)(t, \lambda)=-a \sum_{k=1}^{m} a_{k} \int_{0}^{t_{k}} f(s, x(s, \lambda), \lambda) d s+\int_{0}^{t} f(s, x(s, \lambda), \lambda) d s \tag{3.7}
\end{equation*}
$$

Actually, the operator B appears as sum of two integral operators, one of Fredholm, whose values depend only on the restrictions of functions to $\left[0 ; t_{m}\right]$ and second of a Volterra type depending on the restrictions of functions to $\left[t_{m} ; 1\right]$

$$
B=B_{F}+B_{V}
$$

where
$B_{F}(x)(t, \lambda)=\left\{\begin{array}{l}-a \sum_{k=1}^{m} a_{k} \int_{0}^{t_{k}} f(s, x(s, \lambda), \lambda) d s+\int_{0}^{t} f(s, x(s, \lambda), \lambda) d s, t \in\left[0 ; t_{m}\right] \\ -a \sum_{k=1}^{m} a_{k} \int_{0}^{t_{k}} f(s, x(s, \lambda), \lambda) d s+\int_{0}^{t_{m}} f(s, x(s, \lambda), \lambda) d s, t \in\left[t_{m} ; 1\right]\end{array}\right.$
and

$$
B_{V}(x)(t, \lambda)=\left\{\begin{array}{ll}
0, & t \in\left[0 ; t_{m}\right] \tag{3.8}\\
\int_{t_{m}}^{t} f(s, x(s, \lambda), \lambda) d s, & t \in\left[t_{m} ; 1\right]
\end{array} .\right.
$$

For $t \in\left[0 ; t_{m}\right]$, we have

$$
\begin{aligned}
&\left|B\left(x_{1}\right)(t, \lambda)-B\left(x_{2}\right)(t, \lambda)\right|=\left|B_{F}\left(x_{1}\right)(t, \lambda)-B_{F}\left(x_{2}\right)(t, \lambda)\right| \\
& \leq|a| \cdot \sum_{k=1}^{m}\left|a_{k}\right| \int_{0}^{t_{k}}\left|f\left(s, x_{1}(s, \lambda), \lambda\right)-f\left(s, x_{2}(s, \lambda), \lambda\right)\right| d s \\
&+\int_{0}^{t}\left|f\left(s, x_{1}(s, \lambda), \lambda\right)-f\left(s, x_{2}(s, \lambda), \lambda\right)\right| d s \\
& \leq\left(1+|a| \cdot \sum_{k=1}^{m}\left|a_{k}\right|\right) \int_{0}^{t_{m}}\left|f\left(s, x_{1}(s, \lambda), \lambda\right)-f\left(s, x_{2}(s, \lambda), \lambda\right)\right| d s \\
& \leq l_{1} \cdot t_{m} \cdot\left(1+|a| \cdot \sum_{k=1}^{m}\left|a_{k}\right|\right)\left\|x_{1}-x_{2}\right\|_{\infty}
\end{aligned}
$$

therefore

$$
\begin{equation*}
\left\|B\left(x_{1}\right)-B\left(x_{2}\right)\right\|_{\infty} \leq l_{1} \cdot\left(1+|a| \cdot \sum_{k=1}^{m}\left|a_{k}\right|\right)\left\|x_{1}-x_{2}\right\|_{\infty} \tag{3.10}
\end{equation*}
$$

For $t \in\left[t_{m} ; 1\right]$, we have

$$
\begin{gathered}
\left|B\left(x_{1}\right)(t, \lambda)-B\left(x_{2}\right)(t, \lambda)\right| \\
\leq|a| \cdot \sum_{k=1}^{m}\left|a_{k}\right| \int_{0}^{t_{k}}\left|f\left(s, x_{1}(s, \lambda), \lambda\right)-f\left(s, x_{2}(s, \lambda), \lambda\right)\right| d s
\end{gathered}
$$

$$
\begin{aligned}
& \quad+\int_{0}^{t_{m}}\left|f\left(s, x_{1}(s, \lambda), \lambda\right)-f\left(s, x_{2}(s, \lambda), \lambda\right)\right| d s \\
& \quad+\int_{t_{m}}^{t}\left|f\left(s, x_{1}(s, \lambda), \lambda\right)-f\left(s, x_{2}(s, \lambda), \lambda\right)\right| d s \\
& \leq l_{1} \cdot t_{m} \cdot\left(1+|a| \cdot \sum_{k=1}^{m}\left|a_{k}\right|\right)\left\|x_{1}-x_{2}\right\|_{\infty}+\frac{l_{2}}{\tau}\left\|x_{1}-x_{2}\right\|_{\tau} e^{\tau\left(t-t_{m}\right)},
\end{aligned}
$$

therefore

$$
\begin{equation*}
\left\|B\left(x_{1}\right)-B\left(x_{2}\right)\right\|_{\tau} \leq l_{1} \cdot t_{m} \cdot\left(1+|a| \cdot \sum_{k=1}^{m}\left|a_{k}\right|\right)\left\|x_{1}-x_{2}\right\|_{\infty}+\frac{l_{2}}{\tau}\left\|x_{1}-x_{2}\right\|_{\tau} . \tag{3.11}
\end{equation*}
$$

From (3.10) and (3.11) we get tat $\left\|B\left(x_{1}\right)-B\left(x_{2}\right)\right\| \leq \alpha_{B}\left\|x_{1}-x_{2}\right\|$, with $\alpha_{B}=$ $l_{1} \cdot t_{m} \cdot\left(1+|a| \cdot \sum_{k=1}^{m}\left|a_{k}\right|\right)+\frac{l_{2}}{\tau}$. According to (H5), we can choose $\tau>0$ large enough such that $\alpha_{B}<1$. Hence B is an α_{B}-contraction, so we obtain the conclusion.

Theorem 3.2.2. If conditions (H1), (H3) - (H5) hold then the problem (3.4) has a unique solution $x^{*} \in C^{1}([0 ; 1] \times J)$.

Proof. Let $X=(C([0 ; 1] \times J),\|\cdot\|)$ with the norm defined by (3.5). Condition $(H 4)$ implies (H2), thus from Theorem 3.2.1 we have B, defined by (3.7), is an $\alpha_{B^{-}}$ contraction and $F_{B}=\left\{x^{*}\right\}$. It is clear that if $f(\cdot, u, \lambda) \in C^{1}[0 ; 1]$ for all $(u, \lambda) \in \mathbb{R} \times J$ then $x^{*}(\cdot, \lambda) \in C^{1}[0 ; 1]$ for all $\lambda \in J$.

If we formally derivate the fixed point equation (3.6) with respect to λ we get

$$
\begin{aligned}
\frac{\partial x}{\partial \lambda}(t, \lambda)= & -a \sum_{k=1}^{m} a_{k} \int_{0}^{t_{k}} \frac{\partial f}{\partial u}(s, x(s, \lambda), \lambda) \frac{\partial x}{\partial \lambda}(t, \lambda) d s-a \sum_{k=1}^{m} a_{k} \int_{0}^{t_{k}} \frac{\partial f}{\partial \lambda}(s, x(s, \lambda), \lambda) d s \\
& +\int_{0}^{t} \frac{\partial f}{\partial u}(s, x(s, \lambda), \lambda) \frac{\partial x}{\partial \lambda}(t, \lambda) d s+\int_{0}^{t} \frac{\partial f}{\partial \lambda}(s, x(s, \lambda), \lambda) d s .
\end{aligned}
$$

This suggest us to consider the operator $C: X \times X \rightarrow X$ with $(x, y) \longmapsto C(x, y)$, where

$$
\begin{aligned}
C(x, y)(t, \lambda)= & -a \sum_{k=1}^{m} a_{k} \int_{0}^{t_{k}} \frac{\partial f}{\partial u}(s, x(s, \lambda), \lambda) y(t, \lambda) d s-a \sum_{k=1}^{m} a_{k} \int_{0}^{t_{k}} \frac{\partial f}{\partial \lambda}(s, x(s, \lambda), \lambda) d s \\
& +\int_{0}^{t} \frac{\partial f}{\partial u}(s, x(s, \lambda), \lambda) y(t, \lambda) d s+\int_{0}^{t} \frac{\partial f}{\partial \lambda}(s, x(s, \lambda), \lambda) d s
\end{aligned}
$$

The operator C appears as a sum of two operators $C=C_{F}+C_{V}$, one of Fredholm type

$$
C_{F}(x, y)(t, \lambda)=\left\{\begin{array}{c}
-a \sum_{k=1}^{m} a_{k} \int_{0}^{t_{k}} \frac{\partial f}{\partial u}(s, x(s, \lambda), \lambda) y(t, \lambda) d s-a \sum_{k=1}^{m} a_{k} \int_{0}^{t_{k}} \frac{\partial f}{\partial \lambda}(s, x(s, \lambda), \lambda) d s+ \\
+\int_{0}^{t} \frac{\partial f}{\partial u}(s, x(s, \lambda), \lambda) y(t, \lambda) d s+\int_{0}^{t} \frac{\partial f}{\partial \lambda}(s, x(s, \lambda), \lambda) d s, \quad t \in\left[0 ; t_{m}\right] \\
-a \sum_{k=1}^{m} a_{k} \int_{0}^{t_{k}} \frac{\partial f}{\partial u}(s, x(s, \lambda), \lambda) y(t, \lambda) d s-a \sum_{k=1}^{m} a_{k} \int_{0}^{t_{k}} \frac{\partial f}{\partial \lambda}(s, x(s, \lambda), \lambda) d s+ \\
\quad+\int_{0}^{t_{m}} \frac{\partial f}{\partial u}(s, x(s, \lambda), \lambda) y(t, \lambda) d s+\int_{0}^{t_{m}} \frac{\partial f}{\partial \lambda}(s, x(s, \lambda), \lambda) d s, \quad t \in\left[t_{m} ; 1\right]
\end{array}\right.
$$

and second of Volterra type
$C_{V}(x, y)(t, \lambda)=\left\{\begin{array}{l}0, t \in\left[0 ; t_{m}\right] \\ \int_{t_{m}}^{t} \frac{\partial f}{\partial u}(s, x(s, \lambda), \lambda) y(t, \lambda) d s+\int_{t_{m}}^{t} \frac{\partial f}{\partial \lambda}(s, x(s, \lambda), \lambda) d s, t \in\left[t_{m} ; 1\right] .\end{array}\right.$
In the same manner as for B we get that $\left\|C\left(x, y_{1}\right)-C\left(x, y_{2}\right)\right\| \leq \alpha_{C}\left\|y_{1}-y_{2}\right\|$, for all $x, y_{1}, y_{2} \in X$, where $\alpha_{C}=\alpha_{B}=l_{1} \cdot t_{m} \cdot\left(1+|a| \cdot \sum_{k=1}^{m}\left|a_{k}\right|\right)+\frac{l_{2}}{\tau}$. Thus $C(x, \cdot): X \rightarrow X$ is an α_{C}-contraction, for all $x \in X$. By Theorem 2.1, we get that the operator $A: X \times X \rightarrow X \times X$

$$
\begin{equation*}
A(x, y)=(B(x), C(x, y)) \tag{3.12}
\end{equation*}
$$

is a PO with $F_{A}=\left\{\left(x^{*}, y^{*}\right)\right\}$ and the sequence $\left(x_{n}, y_{n}\right)$, given by

$$
x_{n+1}=B\left(x_{n}\right), y_{n+1}=C\left(x_{n}, y_{n}\right)
$$

converge uniformly to $\left(x^{*}, y^{*}\right)$ for any starting point $\left(x_{0}, y_{0}\right) \in X \times X$.
If we take $\left(x_{0}, y_{0}\right) \in X \times X$ such that $y_{0}=\frac{\partial x_{0}}{\partial \lambda}$ then we prove by induction that $y_{n}=\frac{\partial x_{n}}{\partial \lambda}$, for all $n \in \mathbb{N}$. Thus,

$$
x_{n} \xrightarrow{\text { unif }} x^{*} \text { and } \frac{\partial x_{n}}{\partial \lambda} \xrightarrow{\text { unif }} y^{*} \text { as } n \rightarrow+\infty .
$$

From the above convergences it follows that there exists $\frac{\partial x^{*}}{\partial \lambda}$ and $\frac{\partial x^{*}}{\partial \lambda}=y^{*}$.

References

[1] S. Andrász, Fibre φ-contraction on generalized metric spaces and applications, Mathematica (Cluj), 45(68)(2003), no. 1, 3-8.
[2] C. Bacoţiu, Fibre Picard operators on generalized metric spaces, Sem. on Fixed Point Theory Cluj-Napoca, 1(2000), 5-8.
[3] M.F. Barnsley, V. Ervin, D. Hardin, J. Lancaster, Solution of an inverse problem for fractals and other sets, Proc. Nat. Acad. Sci. USA, 83(1986), 1975-1976.
[4] V. Berinde, Error estimates in the φ-contractions, Stud. Univ. Babeş-Bolyai Math., 35(1990), no. 2, 86-89.
[5] V. Berinde, M. Păcurar, I.A. Rus, From a Dieudonné theorem concerning the Cauchy problem to an open problem in the theory of weakly Picard operators, Carpathian J. Math., 30(2014), no. 3, 283-292.
[6] V. Berinde, A. Petruşel, I.A. Rus, M.A. Şerban, The retraction-displacement condition in the theory of fixed point equation with a convergent iterative algorithm, In: T. M. Rassias and V. Gupta (eds.), Math. Anal., Approx, Th. and their Appl., Springer, 111(2016), 75-106.
[7] L.M. Blumenthal, Theory and Applications of Distance Geometry, Oxford Univ. Press, 1953.
[8] A. Boucherif, R. Precup, On the nonlocal initial value problem for the first order differential equation, Fixed Point Theory, 4(2003), no. 2, 205-212.
[9] A. Chiş-Novac, R. Precup, I.A. Rus, Data dependence of fixed points for nonself generalized contractions, Fixed Point Theory, 10(2009), 73-87.
[10] M. Fréchet, Les espaces abstraits, Gauthier-Villars, Paris, 1928.
[11] V. Glăvan, V. Guţu, Shadowing in parametrized IFS, Fixed Point Theory, 7(2006), 263-274.
[12] J. Jachymski, An extension of Ostrowski's theorem on the round-off stability of iterations, Aequa. Math., 53(1997), no. 3, 242-253.
[13] O. Nica, R. Precup, On the nonlocal initial value problem for first order differential systems, Stud. Univ. Babeş-Bolyai Math., 56(2011), no. 3, 113-125.
[14] J.M. Ortega, W.C. Rheinboldt, Iterative Solutions of Nonlinear Equation in Several Variables, Academic Press, New York, 1970.
[15] S. Yu. Pilyugin, Shadowing in Dynamical Systems, Springer, Berlin, 1999.
[16] I.A. Rus, A fibre generalized contraction theorem and applications, Mathematica (Cluj), 41(1999), no. 1, 85-90.
[17] I.A. Rus, An abstract point of view on iterative approximation of fixed point equations, Fixed Point Theory, 13(2012), no. 1, 179-192.
[18] I.A. Rus, Fibre Picard operators and applications, Stud. Univ. Babeş-Bolyai Math., 44(1999), 89-98.
[19] I.A. Rus, Fibre Picard operators on generalized metric spaces and applications, Scripta Sci. Math., 1(1999), 326-334.
[20] I.A. Rus, Metric space with fixed point property with respect to contractions, Stud. Univ. BabeşBolyai Math., 51(2006), no. 3, 115-121.
[21] I.A. Rus, Picard operators and applications, Sci. Math. Jpn., 58(2003), 191-219.
[22] I.A. Rus, Picard operators and well-posedness of fixed point problems, Stud. Univ. Babeş-Bolyai Math., 52(2007), no. 3, 147-150.
[23] I.A. Rus, Relevant classes of weakly Picard operators, An. Univ. Vest Timiş. Ser. Mat.-Inform., 54(2016), no. 3, 3-19.
[24] I.A. Rus, Results and problems in Ulam stability of operatorial equations and inclusions, In: T.M. Rassias (ed.), Handbook of Functional Eq. Stability Theory, Springer, 2014, 323-352.
[25] I.A. Rus, Some variants of contraction principle, generalizations and applications, Stud. Univ. Babeş-Bolyai Math., 61(2016), no. 3, 343-358.
[26] I.A. Rus, The generalized retraction methods in fixed point theory for nonself operators, Fixed Point Theory, 15(2014), 559-578.
[27] I.A. Rus, Weakly Picard operators and applications, Seminar on Fixed Point Theory, ClujNapoca, 2(2001), 41-58.
[28] I.A. Rus, A. Petruşel, G. Petruşel, Fixed Point Theory, Cluj University Press, 2008.
[29] I.A. Rus, M.A. Şerban, Basic problems of the metric fixed point theory and the relevance of a metric fixed point theorem, Carpathian J. Math., 29(2013), no. 2, 239-258.
[30] I.A. Rus, M.A. Şerban, Some generalizations of a Cauchy Lemma and Applications, Topics in Math., Computer Sci. Phil. (Şt. Cobzaş-Ed.), Cluj Univ. Press, 2008, 173-181.
[31] J. Sotomayor, Smooth dependence of solutions of differential equations on initial data: a simple proof, Bol. Soc. Bras. Mat., 4(1973), 55-59.
[32] M.A. Şerban, Fibre contraction theorem in generalized metric spaces, Automat. Comput. Appl. Math., 16(2007), no. 1, 139-144.
[33] M.A. Şerban, Fibre φ-contractions, Studia Univ. Babeş-Bolyai Math., 44(1999), no. 3, 99-108.
[34] M.A. Şerban, Fixed Point Theory for Operators on Cartesian Product (in Romanian), Cluj University Press, Cluj-Napoca, 2002.
Received: December 8, 2015; Accepted: November 10, 2016.

