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Abstract. We consider multi-valued maps defined on a complete gauge space endowed with a
directed graph. We establish a fixed point result for maps which send connected points into connected
points and satisfy a generalized contraction condition. Then, we study infinite graph-directed iterated
function systems (H-IIFS). We give conditions insuring the existence of a unique attractor to an
H-1IFS. Finally, we apply our fixed point result for multi-valued contractions on gauge spaces
endowed with a graph to obtain more information on the attractor of an H-IIFS. More precisely, we
construct a suitable gauge space endowed with a graph G and a suitable multi-valued G-contraction
such that its fixed points are sub-attractors of the H-IIFS.
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1. INTRODUCTION

In 2008, Jachymski [13] introduced the notion of single-valued G-contraction de-
fined on a complete metric space endowed with a graph, which is a map preserving the
graph and satisfying a contraction condition only between points related by an edge.
He proved some generalizations of the Banach contraction principle to single-valued
G-contractions. In particular, he generalized many contractions results in partially
ordered sets, see [16, 17, 18, 19].

In [4], Dinevari and Frigon generalized Jachymski’s fixed point results to multi-
valued maps by introducing the notions of multi-valued G-contraction and weak
G-contraction on a complete metric space endowed with a graph. Other general-
izations of Jachymski’s results to multi-valued maps were obtained in [15].

In 1982, Gheorgiu [10] presented a fixed point result for general single-valued con-
tractions in complete gauge spaces. In [2], Chig and Precup extended this result and
they presented a continuation principle for such contractions. Another approach to
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obtain fixed point results was developed in [7] for single-valued contractions and in [8]
for multi-valued contractions on complete gauge spaces, (see also [9] for a survey of
results on that subject).

In this paper, we consider a complete gauge space X endowed with a directed
graph G. We introduce the notions of multi-valued G-contraction and G-Lipschitz
multi-valued map in the sense of Gheorgiu on X. Then, we establish a fixed point
result for such multi-valued maps. This result generalizes fixed point results for single-
valued and multi-valued contractions on complete metric spaces endowed with a graph
obtained in [13] and [4] respectively. It is worthwhile to notice that our fixed point
result is new even in the particular case where the map is single-valued and defined
on X.

In this paper, we are also interested to apply our fixed point result to infinite
iterated function systems.

An iterated function system (IFS) is a finite set of self-maps {T; : i = 1,...,n}
defined on a complete metric space (M,d). Using the Banach contraction principle,
Hutchinson [12] proved that if each T; is a contraction, then there exists a unique
nonempty compact set K C M, called the attractor of the IFS, such that

This result was popularized by Barnsley [1] as the main method of constructing frac-
tals.

Geometric graph-directed constructions are generalizations of iterated function sys-
tems. Mauldin and Williams [14] were the firsts who introduced the notion of graph-
directed constructions in R™ governed by a finite directed graph H and similarity
maps T; ; which are labeled by the edges of the graph. They established that each geo-
metric graph-directed construction has a unique attractor. Graph-directed construc-
tions have been studied and generalized by many authors, see for example [3, 6, 11]
and the references therein.

Recently, Dinevari and Frigon [5] applied their fixed point results for multi-valued
G-contractions established in [4] to obtain more information on the attractor K of
a graph-directed iterated function system governed by a finite directed graph and a
finite family of contractions {T; ;} defined on complete metric spaces and labeled by
the edges of the graph. To this aim, they defined a complete metric space, a suitable
directed graph G on this space, and an appropriate multi-valued G-contraction. Using
the fixed points of this G-contraction, they studied certain subsets of the attractor K
and the relations between these sub-attractors.

In this paper, we consider a directed graph H = (V(H), E(H)) such that V(H)
the set of vertices and F(H) the set of edges are countably infinite sets. We study
infinite graph-directed iterated function systems over the graph H (H-IIFS). Such an
H-TIFS contains a family of contractions {7 ;}(; j)e () on complete metric spaces.
We give conditions insuring the existence of a unique attractor to this H-ITFS. Our
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result relies on a generalization of Gheorgiu’s fixed point theorem on gauge spaces
due to Chis and Precup [2].

Then, under an extra assumption on the H-IIFS, we apply our fixed point result
for multi-valued contractions on complete gauge spaces endowed with graphs to ob-
tain more information on the attractor of this H-IIFS. Those results are obtained
in Section 6. In order to prove those results, taking into account the H-IIFS, we
construct a suitable complete gauge space on which we define an appropriate directed
graph G in Section 4. In Section 5, we define a multi-valued map on this gauge space
and we show that it is a G-contraction.

2. MAIN RESULTS

In this section, we introduce the notions of infinite MW-graph H and infinite graph
iterated function system over the graph H. We give conditions insuring the existence
of a unique attractor to an infinite graph iterated function system over the graph H.

Definition 2.1. A directed graph H = (V(H), E(H)) is called an infinite MW-direc-
ted graph if
(i) V(H) is countable;
(ii) H has no parallel edges;
(iii) 1 < outdeg(i) < oo for every i € V(H), where outdeg(i) is the number of
outward directed edges emanating from vertex i.

Definition 2.2. Let H = (V(H), E(H)) be an infinite MW-directed graph. An infi-
nite graph iterated function system over the graph H (H-IIFS) is a family of nonempty
complete metric spaces, {M; : i € V(H)}, and, for each (i,7) € E(H), a single-valued
contraction T; ; : M; — M; with constant of contraction ); ;. An H-IIFS is denoted
by {Tij}a-

An attractor of an H-IIFS is defined as follows.

Definition 2.3. Let {7} ;} 5 be an H-IIFS. An attractor K of this H-IIFS is a family
of nonempty compact sets K = (K;);cv (m) such that K; C M; and

K= |J T,K;) vieV(H).
(4,5)€E(H)
In order to establish the existence of an attractor to some H-IIFS, we will use the

following generalization of Gheorghiu’s fixed point result due to Chig and Precup [2]
that we recall for sake of completeness.

Theorem 2.4 ([2]). Let (X,{qs}ses) be a complete gauge space, and f : X — X a
single-valued map. Assume that
(i) there exist a function ¢ : S — S and k = (ks)ses such that ks > 0 for all
se s,

q&(f(‘r)7 f(y)> < ksqw(s)(may) Vs €5, Va,y € X, (2'1>
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and
Z ksky(s) = byn—1(s)Qyn(s)(T,y) <00 Vs €8, Vr,y € X,
n=1

where Y™ is the n-th iteration of ¥;
(i) for every xo € X, if {f™(x0)} converges to some x € X, then x = f(z).

Then f has a unique fixed point.

We need to introduce some notations. In what follows, H is an infinite MW-directed
graph and {7} ; } g is an H-IIFS.
Let

Lo ={I={i1,...,in} CV(H):neN}. (2.2)
We denote
kr =max {X;;: (i,j) € E(H) andi€ I} VIeTy,
and we define the map ¢ : I'g — I'g by
o(I)=ITU{j € V(H):3ielsuch that (i,j) € E(H)}. (2.3)
We consider the space
V=AY = Yiievu : 0 #Y; C M, is compact} . (2.4)
For every I € T’y and Y, Y e Y, let
pr(Y,Y) = max {D;(Y;,Y;) :i € I}, (2.5)

where D; is the Hausdorff metric on M;. It is easy to see that (Y, {ps}rer,) is a
complete gauge space.
We are ready to establish the existence of an attractor of the H-IIFS.

Theorem 2.5. Let {T; ;}u be an H-IIFS. Assume that
° A A
D krko) kg1 (P (YY) < 0o VI €T, VY, Y € V. (2.6)
n=1

Then {T; ;}u has a unique attractor K.

Proof. Let us define f: )Y — )Y by

= U T

(.)€ E(H)

Using the fact that every Tj ; is a contraction in the classical sense, we prove that

pr(f(Y), f(Y)) < kipoy(Y,Y) VI €T, VV,Y € ).
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Indeed,
pr(f(Y), f(V)) = max {Di(fi(Y), f:(Y)) :i € I}

—max{ D |J Tu0h), U Tu)siel
(.)€ E(H) (i.4) € E(H)

< Di(Ti;(Y;), Tij(Yy) s €T
_max{(mr)ré%)%m (T3,;(Y;), Ti;(Y;)) s i € }

<max{ max N\ ,D;(Y;,Y)):iel
<mac{ max AD,Y; V) sie 1)

< krmax {D;(Y;,Y;) i € o(I)}
= kIpr(I) (Y7 Y)
We claim that (ii) of Theorem 2.4 is satisfied. Indeed, let us assume that Y° € Y
is such that {f"(Y°)} converges to some Y € Y. If Y # f(Y), there exists i € V(H)
such that
Di(Yi, f(Y)i) =7 > 0.
Let N € N be such that
n r
e (f"(Y7),Y) <5 Vnz N.

So,

r=py (Y, (V) <oy (Y, FYTHYO) 4+ ppy (Y THEYO), £(Y))
< Poriany (Vs FYHHY) + kpypocan (SN (YD), Y) <7

Contradiction.
It follows from Theorem 2.4 that f has a unique fixed point K € ), and hence, K
is an attractor of {1} ;} . O

Remark 2.6. Observe that (2.6) is satisfied if:
sup{Ai;: (4,7) € E(H)} <1 and sup{diam(}M;):ie€ V(H)} < . (2.7)
So, every H-IIFS satisfying (2.7) has a unique attractor.
Example 2.7. Let H = (V(H), E(H)) (see Figure 2.1) be given by
V(H)=Z and EH)={(n,n+1),(n,n+2):n€Z}.

FI1GURE 2.1. The MW-directed graph H of Example 2.7.
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For n € Z, let M,, = [n,n+ 1] and T}, i1 : Mpy1 = My, Thnyo  Xnto = X
contractions with constants of contraction A, ,4+1 < 1 and A, 42 < 1 respectively.
We define

)\n = max{)\n,n-i-h >\n,n+2}~

We assume that n +— A, is nonincreasing.
It follows from Theorem 2.5 that the H-IIFS, {T; ;} g, has a unique attractor K.
Indeed, one has

I'o={ICZ:0< card(I) < oo},
V=AY = Yo)nez:0#Y, C [n,n+1] closed Vn € Z},
p1(Y,Y) =max{D(Y;,Y;) :i € I} VY,Y € Y,VIcT,,
p:Tog—=Ty givenby o)=TU{i+1,i+2:i€l}.
Observe that
kr =max{\;; : (i,j) € E(H) and i € I} = \;;, where iy =minl,
and k; = k() for every I € I'g. Therefore,

Z klktp(f) T kga”—l (I)pap"(l) (Y, Y) < Z )‘Zpgo"(l) (Yv Y)
n=1

n=1

<) A <o WY €.
n=1
Hence, {T; ;} i satisfies the assumptions of Theorem 2.5.

3. MULTI-VALUED CONTRACTION ON GAUGE SPACES ENDOWED WITH A GRAPH

In this section, we consider (X , {qs}ses) a complete gauge space endowed with a
directed graph G = (V(G), E(G)) such that the set of vertices V(G) = X and the
set of edges E(G) has no parallel edges and it contains the diagonal. We generalize
Theorem 2.4 to multi-valued map F : X — X satisfying a condition analogous to (2.1)
only for z,y € X related by an edge (z,y) € E(G).

Definition 3.1. Let F': X — X be a multi-valued map with nonempty values. We
say that F' is a G-Lipschitz map in the sense of Gheorghiu with map ¢ : S — S
and constant A = (\g)ses such that Ag > 0 for all s € S, if, for every (z,y) € E(G)
and every u € F(x), there exists v € F(y) such that (u,v) € E(G) and

QS(uvv) < Asqw(s)(may) Vs € 5. (31)

The map F is called a G-contraction if it is a G-Lipschitz map with Ay < 1 for every
seS.

We consider suitable trajectories in X.
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Definition 3.2. Let F' : X — X be a multi-valued mapping and o € X. We
say that a sequence {z,} is a G-Picard trajectory from xg, if z, € F(z,—1) and
(n-1,%,) € E(G) for all n € N. The set of all such G-Picard trajectories from z is
denoted by T'(F, G, xo).

Here is our main fixed point result for multi-valued contractions in the sense of
Gheorgiu on the gauge space X endowed with a directed graph G.

Theorem 3.3. Let F : X — X be a multi-valued G-Lipschitz map with constant
A= (As)ses and map ¢ : S — S. Assume that there exists (xg,x1) € E(G) such that
x1 € F(x0) and

00
Z /\s/\w(s) s /\w(nq)(s)qwn(s)(a?o, 331) <oo VseS. (3.2)
n=1

Then, there exists a G-Picard trajectory from xy converging to some & € X. In
addition, assume that one of the following conditions holds:
(i) F is G-Picard continuous from xg, i.e. the limit of any convergent G-Picard
trajectory {x,} € T(F,G,x0) is a fized point of F;
(ii) F has closed values and, for every {z,} in T(F,G,xy) converging to some
r € X, there exists a subsequence {xn,} such that (z,,,x) € E(G) for all
ke N.
Then, T is a fized point of F. Moreover, every converging G-Picard trajectory from
xo converges to a fived point of F'.

Proof. Let xg and 21 € F(xg) be given by assumption. Since F is a G-Lipschitz map,
one can choose a sequence {z,} such that x,11 € F(z,), (Tn,Znt1) € E(G) and

QS(xnv xn-i—l) < )\sqw(s) (-Tn—la xn) < ... < )\s)\qp(s) v )‘wTL*I(s)qw”(s) (an ml)a

for every s € S and n € N. Moreover, for every m € N,

n+m—1 n+m—1

qs(xnv xn-l—m) < Z QS(l'iv xi-i—l) < Z AsAw(s) re . )‘1/1"*1(5)%/1"(5) (-1:07 xl)-

i=n i=n
Therefore, {x,} is a Cauchy sequence and hence converges to some & € X.

If the condition (i) is satisfied, then clearly Z is a fixed point of F.

On the other hand, if the condition (ii) is satisfied, then there exists a subsequence
{zn,} such that (z,,,%) € E(G) for every k € N. Since F is a G-Lipschitz map, for
each k € N, there exists yp, +1 € F(&) such that (2, +1,Yn,+1) € E(G) and

qs(«’ﬂnk+1,ynk+1) < )\s(Jw(S) (xnkvi') Vs € S.
Therefore, for every s € .S,

ds (ynk—&-la z) < q$(ynk+17 xnk—&-l) + q$($7zk+1a z) < /\sqw(s) (l‘nk,i‘) +qs (xnk+17 ).

Consequently, y,,+1 — &, and hence & € F(Z) since F' has closed values. O

Remark 3.4. We could have formulated a more general result by considering two
families of gauges as it is done in [2, 10]. We preferred not to do so for sake a simplicity.
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In the particular case where X is a metric space, the previous result generalizes
a fixed point result for multi-valued contraction obtained in [4]. If, in addition F
is single-valued, the fixed point result for G-contraction due to Jachymski [13] is
generalized by the following result.

Corollary 3.5. Let f : X — X be a single-valued map such that there exist : S — S
and A = (As)ses such that As >0 for all s € S, and for every (z,y) € E(G)
(f(2), f(y) € E(G) and  qs(f(2), f(y)) < Asqy(s)(2,y) Vs €S (3.3)

Assume that there exists xo € X such that (zo, f(z0)) € E(G) and
(o)
Z )\sAw(s) s )\w(n—l)(s)qwn(s)(ﬂjo7 f(xo)) <oo Vseb. (3.4)
n=1

Then, the sequence {f™(x0)} converges to some & € X. In addition, assume that one
of the following conditions holds:

(i) f(f"(x0)) = f(2);
(i) there exists a subsequence {f™ (xo)} such that (f™ (x),Z) € E(G) for all
ke N.

Then, T is a fized point of f.
It is worthwhile to point out that in Theorem 3.3, we did not assume the continuity

of the G-Lipschitz map F. The following lemma could be useful to deduce that the
limit of a convergent G-Picard trajectory is a fixed point of F.

Lemma 3.6. Let FF : X — X be a multi-valued G-Lipschitz map with constant
A= (As)ses and map @ : S — S. Assume that there exists xg € X and a G-Picard
trajectory {x,} from xy converging to some & € X. In addition, assume that there
exists 4 € F(Z) such that, for every s € S, the following conditions hold:

(i) there exists a subsequence {xy,} such that there exists {&y,} a sequence in X
satisfying

(T, %n,) € E(G)VE €N, and qy)(Tn,, Tn,) = 0;
(ii) for every k € N, one can choose uy, € F(&y,) such that
(@, uny) € E(G) and  qs(t, uny, ) < AsQy(s) (2, Tny.),
satisfying
qs(Uny, Tnpt1) = 0 as k — oo.
Then, & =1 € F(Z).
Proof. Let us suppose that & # 4. Then, there exists s € S such that

qs(t, &) =r > 0.
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Observe that

qs(ﬂ,:fc) < QS(avunk) + qg(unkyl'nkJrl) + QS(mnkJrl»:%)
S Asqw(s) (jv j:nk) + qs (Unkaxnk+1) + q:;(znk-&-la j)
S Asqlb(s) (i‘v xnk) + )‘s%[)(s)(l'nkvjnk) + QS(unkaznk—&-l) + Qs(%zk+17 :E)
— 0.

Contradiction. So, & =4 € F(Z). O

4. A SUITABLE GAUGE SPACE ENDOWED WITH A DIRECTED GRAPH

In order to get more information on the attractor to the H-IIFS, we will apply our
main fixed point result for multi-valued G-contraction. In this section, we will define
a suitable complete gauge space.

First, we need to introduce some notations. For a graph H = (V(H), E(H)), we
denote an N-directed path in H from ig to iy by [in]Y_o, and we denote the set of
vertices from which there is a directed path in H reaching ¢ € H by

[i]ee ={j € V(H) : there is a directed path from j to ¢ in H}. (4.1)

We say that a subgraph C' = (V(C), E(C)) of H is connected if for every i, j € V(C)
there exists a directed path from i to j in C'. A connected component of H is a maximal
connected subgraph of H. A subgraph C' = (V(C), E(C)) of H is weakly connected
if the undirected graph induced by C'is connected. Let C' and C be two connected
components of H. We write

C = C there is a directed path from C to C.
Also, we write C' < CifC<C and C #+ C. We say that C' and C are incomparable
ifCACand C AC.

Let H be an infinite MW-directed graph and {7} ; } 7 an H-IIFS with M; a complete
metric space for every i € V(H). We denote the set of all connected components of
H by

C(H)={C: C is a connected component of H}. (4.2)

In what follows, we will make the following assumption:

(H) H is an infinite MW-directed graph and {T; ;} is an H-IIFS such that
(H1) H is weakly connected and

VH) = ] V()
CeC(H)

(H2) for every i,7 € V(H), the length of directed paths from i to j is bounded,
i.e.

sup { N : 3[in]n_, from i =iy to j = iy containing no cycle} < oo;
(H3) the metric spaces M; are bounded and
R = sup{diam(M;) :i € V(H)} < oc.
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It follows from Definition 2.1 that C(H) is countable. Let
I'={ICV(H):0 < card(I) < oo, and
V(C)C IVC € C(H) such that V(C)NI #0}. (4.3)
We define the map ¢ : I' — I by
¢(I)=TU{k € V(H): there exist (i,j) € E(H) and C € C(H)
such that ¢ € I and j,k € V(C)}. (4.4)

We are ready to define our suitable gauge space.

(X) Let X be the space of elements X = (Xj)jev(m) satisfying the following

properties:

(X1) X; is a compact subset of M; for every i € V(H);

(X2) there exists i € V(H) such that X; # 0;

(X3) if X; # 0 for some i € V(C) and C € C(H), then X; # 0 for all
je V().

Taking into account the graph H, we endow X with a directed graph defined as

follows.

(G) Let G = (V(G), E(@)) be the directed graph such that V(G) = X and, for
X, Y € X, (X,Y) € E(G) if and only if, for every ¢ € V(H), one of the
following properties holds:

(Ga) X; =Y, =0, or X; # 0 and Y; # 0;
(Gb) X; =0, Y; # 0 and, for C € C(H) such that i € V(C), there exist
ke V(C)and j € V(H)\V(C) such that (k,j) € E(H) and X; # 0.
We endow X with the family of gauges {d;}rer, where

di(X,Y) = max {Dy(X,;,Y;) :i € I}, (4.5)
with
Di(X;,Y;), if X; #0,Y; #0,
Di(X,Y;) =10, if X; =0=Y, (4.6)
R;, otherwise,

where D; the Hausdorff metric in M; and
(R) the family of constants (R;);ev () is such that
(R1) for every i € V(H), R; > R;
(R2) for every C € C(H), R; = R; for all 4,5 € V(C);
(R3) for every i,j € V(H), if R; < R;, then j ¢ [i]—;
(R4) for every I € T', one has R; < R; for every ¢ € I and j € ¢(I)\I.
It is clear that (X, {dr}ser) is a complete gauge space.
Now, we show that we can easily find (R;);cv(m) satisfying (R).

Lemma 4.1. Let H be an infinite MW-directed graph and {T; ;j}u an H-IIFS satis-
fying (H). Then, there exists {V,, : p € L} a family of non empty disjoint subsets with
L C Z countable such that
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(1) V(H) =U,er Vas
(2) for every C EAC’(H), if V(C)NV, # 0 for some p € L, one has V(C) C V,,;

~

(3) for every C,C € C(H) such that C < C, V(C) C V., and V(C) C V,, one
has p < v;
(4) if p <wvin L, then j & [i|— for alli €V, and j € V,,.
Moreover, for every strictly increasing map o : L — ]1,00[, the family of constants
(Ri)iev (m) defined by
Ri=0(p)R ifieV,,

satisfies (R).

Proof. Let Sp C C(H) be such that {C : C € Sy} is a maximal set of incomparable
connected components of H. We denote

S§ ={CeC(H):3C € S such that C < C};
Sy ={CeC(H): 3C € S, such that C' < 6}
It follows from (H1) that C(H) = Sy U S US; . We denote
S ={CeS8; :AC e S; such that C < C},

and we define inductively for each n € N,

Sni1 = {c e Sy\ | Sk :AC € 87\ | Sk such that C < C} .
k=1 k=1

Similarly, we denote
S.1={CeS8; :AC € S; such that C < C},

and we define inductively for each n € N,

S_(ni1) = {C €S\ |J Sk 1 AC € S5\ | J 8-k such that C' < 6} .

k=1 k=1
Let L={p€Z:S, # 0} endowed with the natural order. We define

V.= |J V() VuelL
Ces,
Therefore, by (H),
V(H) =] V..
neL
By construction, (2), (3) and (4) are satisfied.
Let 0 : L — |1,00] be a strictly increasing map, and the family of constants
(Ri)iEV(H) defined by
R, =0(p)R for i€V,
The property (R) follows directly from (1)—(4) and the fact that o(L) C |1,00[. O
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5. A SUITABLE G-CONTRACTION

We consider H an infinite MW-directed graph and {7} ;}y an H-IIFS satisfy-
ing the condition (H). In this section, we will define an appropriate multi-valued
G-contraction on X, where X is the space endowed with the family of gauges {d;}rer
and endowed with the directed graph G defined in the previous section. This
G-contraction will be used to get more information on the attractor of this infinite
H-TIFS.

Let X € X. If j € V(H) is such that X; # 0, then T; ;(X,) # 0 for all ¢ such
that (i,7) € E(H). So, it is important to distinguish all those edges. To this aim, we
introduce the following notation. For C' € C(H),

Ec(X) ={(k,j) € E(H) : k € V(C),j ¢ V(C), X; # 0}. (5.1)
Let us notice that the cardinality of E¢(X) is finite since outdeg(i) is finite for every
i€ V(H).
For C € C(H) and i,k € V(C), we define T;_,, : My, — M; by
. . C
Tob(@) = {Tigis 0+ 0 Ty (@) inlio € {0 5 R} }, (5:2)
where

{i <, E} = {[in]N_p : [in]Y_, is an N-directed path in C
from i = ig to k = in containing no cycle}. (5.3)

For i € V(C) with C € C(H), we define the following subsets of M;:

0, if P =1,
OiX,P) =9 | ) TimroTuj(X;), if0# P C Ec(X); (5.4)
(k,j)eP
and
0, if X; =10,
Wi(X) = U  Ts(Xy), if Xi #0, (5.5)
(i,4)€E(C)

where E(C) ={(k,j) € E(H) : k,j € V(C)}.
We have all the ingredients to introduce a suitable multi-valued map. We define
F:X— X by

F(X) = {U = (Ui)iEV(H) eX:U; e FZ(X) Vi € V(H)}, (56)
where, for i € V(C') for some C € C(H), F;(X) is defined as follows:
@, iin:Q)and Ec(X):[Z),
Fy(X) ={ {04X,P): 0 # P C Ec(X)}, if X; =0 and Ec(X)#£0, (5.7)

{Wi(X)UO;(X,P): PCEc(X)}, if X;#0.

It is easy to see that F' is well defined and has finite, and hence closed values.
We show that F' is a multi-valued G-contraction.
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Proposition 5.1. Let H be an infinite MW-directed graph and {T; ;}u an H-IIF'S
satisfying (H). Let (R;);cv (r) be a family of constants satisfying (R). Then, the multi-
valued map defined as above, F : X — X is a G-contraction.

Proof. We show that F is a G-contraction with constant of contraction A = (Ag)er,

where
. . R .
A\ = max{max{)\i,j 21 el (i,g) € E(H)},max{ﬁ (i€ I},
R,
max {R— vielje ¢>(I)\I}}, (5.8)
J
where ¢ is defined in (4.4).
For i,k € V(C) for some C € C(H), we denote
Mook = max { g i, - Ao _rin © [in)Ng € {i S K}, (5.9)

where {i <, k} is given in (5.3). Observe that A\;—; < A; for all I € T such that
1€l

Let X,Y € X be such that (X,Y) € E(G) and U € F(X). We look for U € F(Y)
such that (U,U) € E(G) and d;(U,U) < Ardgy(X,Y) for every I € T'.

Step 1: For I C T', different cases of U; for i € I:

Let C € C(H) be such that i € V(C) C I.

Case 1: U; =0 and U; # 0 for every U € F(Y).

In this case, X; = E¢(X) =0 and Y; U Ec(Y) # 0 by (5.7).

If Y; # 0, since (X,Y) € E(G), by condition (Gb), there exist k € V(C) and
j € V(H)\V(C) such that (k,j) € E(H) and X; # 0. So, (k,j) € Ec(X). This
contradicts the fact that Fo(X) = 0.

If Ec(Y) # 0, by (5.1), there exist k € V(C) and j € V(C) such that (k, j) € E(H),
Y; # 0 and C # C. One has j € ¢(I)\I and R; < R;. Since Ec(X) = 0, one has
X; = 0. By condition (Gb), there exist m € V(C), 1 € V(H)\V(C) such that
(m,l) € E(H) and X; # 0. So, E5(X) # () and U; # () by (5.7). So, we obtain

U=0,U;#0 and U; # 0 for some (k,j) € Ec(Y) (5.10)
with k € V(C) and j € ¢(I)\I. (5.11)

Moreover, by (4.5), (4.6) and (5.8),
D;(Us,U;) = R; = %Ej(xj, Y;) < Ardgny(X,Y) VU € F(Y). (5.12)

j
Case 2: U; # 0 and U; =0 for every U € F(Y).

In this case, X; U Ec(X) # 0 and Y; U Ec(Y) = 0 by (5.7). Since (X,Y) € E(G),
we deduce that X; = Y; = 0 and hence Ec(X) # 0. Let (k,j) € Ec(X). One has
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X; # 0 and Y; = 0, since (k,j) ¢ Ec(Y). This contradicts (X,Y) € E(G) (see
condition (Ga)). Thus,

U; # 0 and U; = 0 for every U € F(Y) is impossible. (5.13)

Case 3: U; # 0 and U; # 0 for every U € FY)

In this case, X; UEc(X) #0 and Y; UEc(Y) # 0 by (5.7).

If X; # 0, by condition (Ga), ¥; # 0. So Wi(X) # 0, W;(Y) # 0, and
by (4.5), (5.5), and (5.8),

Di(Wi(X),Wi(Y)) = D; U 7, U 7,0
(1,7)€E(C) (1,5)€E(C)
< max  Dy(T,;(X;),T;;(Y;
< (e DT (%) T (15)) (5.14)

)\i D X7Y
= ()EB(C) i(X5.Y5)

<Ar max D;(X; Y,
SA S P 1)

< Ardg(n) (X, Y).

N

)

If X; =0 and Y; # 0, then, for every U; € F;(Y;), one has by (4.6) and (5.8),

Di(U;,U;) <R = gﬁi(xi, Vi) < Ardgn (X, Y). (5.15)

If E¢(X) # 0, for  # P C Ec(X) such that P C E¢(Y), for every (k, j) € P, one
has j € ¢(I), and, by (4.5), (5.2), (5.4), (5.8) and (5.9),

Di(0:(X,P),0;(Y,P)) =D; | |J TimkoThj(X;), |J TioroTei(¥))

(k,j)eP (k,j)eP
< o Xisk D (T j(X5), Tr 5 (Y5))
< e Aimsk Ak, Dj(X;, Y5)

<A1 nax, D;(X;.Y;)

< Ardg(n (X, Y).

(5.16)

If PC Ec(X) and P ¢ Ec(Y), then there exists (k, j) € P such that X; # 0 and
Y; = 0 which is impossible since (X,Y) € E(G).
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Combining (5.7), (5.14), (5.15) and (5.16), we choose U; € F;(Y) such that

wWi(Y), if U; = Wi(X),
OZ(Y,P), lfY;ZQ, and UZ:Ol(X,P)
ﬁi _ for  # P C Ec(X)NEc(Y), (5.17)

W,(Y)UOy(Y, P), ifY; 40, and
U; € {O4(X, P),Wi(X) U O4(X, P)}
for ) £ P C Ec(X)NEc(Y);

and we get

DU, Ui) < Aidy(r (X, Y). (5.18)

Step 2: Choice of an appropriate Ue F(Y):
Finally, we choose U = (Uj) € F(Y) as follows:

i€V (H)
0, ifieV(C),U;=0,Y;UEx(Y) =0,
U; = some U; € Fy(Y), ifieV(C), U;=0,Y;UEx(Y) %0, (5.19)
U; given by (5.17), ifi e V(C), U; # 0, Y; U Ec(Y) # 0.

It follows from (5.10) and (5.17) that
(U,U) € E(G).
Finally, from (5.12) and (5.18), we deduce that
dr(U,U) < A\dgry(X,Y) VI€T.
Therefore, F' is a G-contraction. O

Remark 5.2. From the proof of the previous proposition, we already know that for
(X,Y) € E(G) and U € F(X), the choice of U € F(Y) such that (U,U) € E(G)
and dj (U, 17) < Ardg(r)(X,Y) for all I € T is not necessarily unique. Moreover, if for
some C € C(H), one has Ec(X) # 0, then, from the previous proof, we deduce that
Ec(X) C Ec(Y). So, for

0+£PGP, withPCExX),PcCEc(Y), (5.20)

there exists (k,j) € P\P with X; = () and Y; # 0. So, j € ¢(I)\I. By (4.5), (4.6)
and (5.8),

=y

Di(04(X, P),0;(Y, P)) < R; =

ZEJ(va}/J) < Ardyn(X,Y) Viel.

J

=
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Therefore, for i € V(C) C I, U; can be chosen as follows

Wi(Y), if U; = Wy(X),
Oi(Y. P), if Y; = 0 and U; = O,(X, P)
=~ with P as in (5.20),
W;(Y)UO;(Y,P), ifY; #0, and
U; € {0:(X, P),Wi(X) U Oi(X, P)}
with P as in (5.20).

&
[

6. SOME PROPERTIES OF THE ATTRACTOR OF AN INFINITE H-IIFS

For H = (V(H),E(H)) an infinite MW-directed graph, and {7; ;}x an infinite
graph-directed iterated function system over the graph H. Theorem 2.5 gave condi-
tions insuring the existence of K an attractor of this H-IIFS. We want to get more
information on K by taking into account the connected components of H. To this
aim, we will consider F' : X — X the G-contraction defined on the gauge space X
endowed with the graph G introduced in sections 4 and 5.

Theorem 6.1. Let H = (V(H), E(H)) be an infinite MW-directed graph and {T; ;} i
an H-IIFS satisfying (H). Let (R;)icv(my be a family of constants satisfying (R).
Assume that X° € X and X' € F(X°) are such that

Z )‘I)\¢>(I) s /\¢n71(1)d¢n(1)(X0,X1) <oo VIET, (61)
n=1

where \j is defined in (5.8). Then, there exists K(X°) € X such that
(1) K;(X°) #0 for every i € V(H) such that X? # 0;
(2) K;(X°) #0 if and only if i € [j]._, for some j € V(H) such that X]Q #0;
(3) K(X°) is a fived point of the multi-valued map F';
(4) if {Ti ;} i has an attractor K, then K(X°) C K.

Proof. Let F : X — X be the multi-valued map defined in (5.6) and (5.7). We know
that F' is a G-contraction by Proposition 5.1. Also, if {T; ;} » has an attractor K,
the definition of F' implies that fixed points of F' are included in K.

Let X° € X and X! € F(X?) be such that (6.1) is satisfied. We want to show
that there exists K (X?) a fixed point of F' satisfying the required properties.

For n € N, we choose inductively

X" ¢ F(X™) the biggest element of F(X™), (6.2)
that is X"+ = (XZ-"H)ieV(H) € F(X™) is chosen as follows. For i € V(C) for some
CeC(H),

0, if X" = Ec(X™) =0

X[ = 0i(X", Ec(X™)), it X' =0, Eo(X™) # 0; (6.3)

Wi(X™) U O0i(X™, Ec(X™)), if X[ #0;
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where E¢, O; and W; are defined in (5.1), (5.4) and (5.5) respectively.
Arguing as in the proof of Proposition 5.1 and by Remark 5.2, one has that
(X"~1 X") € E(G) and

dr (X", X" < Apdgry (X", X™) VI ET.

By the proof of Theorem 3.3, the sequence {X"} is a G-Picard trajectory converging
to some K (XY) € X.

Observe that for every i € V(H) such that X? # ), one has X # () for every
n € N. Therefore, K(X°) satisfies (1).

By construction, for i € V(C) for C € C(H), if there is a directed path [i,]Y_, in
H from i =iy to j = in such that XJQ # (), then X" # () for every n > N. Therefore,
K(X%); # 0. On the other hand, if i & [j]., for all j € V(H) such that X} # (), then
X = () for every n € N, and hence K(X°); = 0. So, K(X?°) satisfies (2).

To conclude, we have to show that K(X?) is a fixed point of F. This will imply
that K(X°) C K if the attractor K of {T; ;} g exists.

Let us denote

V(X%) ={ieV(H):i€[j]l— forsome j € V(H) such that X] # 0}. (6.4)

It follows from (2) that

ifi e V(X°), K(X°),;+#0,
o (6.5)
ifi ¢ V(X?), K(X°);=Ec(K(X")=0.
Let U = (U)icy (s € X be defined by
0, if i € V(H)\V(X9),
Ui = A Wi(E(X) UO; (K(X°), Ec(K(X))), ifieV(X)NV(C)  (6.6)
for C € C(H).
So, by (6.5) and the definition of F' (see (5.7)),
U e F(K(X%)). (6.7)

We claim that K (X°) = U.
Let I € T. For every C' € C'(H) such that V(C) C I, we denote
N s {inf{n: X} #0}: (k,j) € Ec(K(X°)}, if Ec(K(X"))#0,
¢ 0, otherwise.

From the fact that outdeg(k) < oo for every k € V(C) and by (H), we deduce that
No < 0. Let

N =max {N¢:V(C) C I}. (6.8)
So,
Ec(K(X°) = Ec(X™) vV(C)c I, Vn> N. (6.9)
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For n > N, let us define X" = ()?i”),»ev(H), Ur = (ﬁi")iev(H) € X by

" | K(X9);, otherwise;

and
B _ {(Z), . A e VI\V(XO),
’ Wi(X")UO;(X™, Ec(X™)), ifie V(X% NV(C) for C e C(H).
It follows from (6.9) and the definitions of E(G) and F (see (5.6)) that
(K(X°),X") € E(G), (U,U™) e E(G) and U"™e F(X™). (6.10)
Arguing as in the proof of Proposition 5.1, we can show that
dp(U™,U) < Ajdy (X", K(X?)). (6.11)
Observe that, for every n > N,
X=X Vieg() and UP =X Viel. (6.12)
So,
dypy(XNTE XNTE) 50 and  dp(UNTF XNEM) 50 ask o0, (6.13)

Combining (6.7), (6.10), (6.11), and (6.13), it follows from Lemma 3.6 that
K(X%) =U e F(K(X")).
O
Theorem 6.2. Let H = (V(H),E(H)) be an infinite MW-directed graph and {T; ;}
an H-IIFS satisfying (H). Let (R;)icv(my be a family of constants satisfying (R).
Assume that, for X°, Y € X, (6.1) is satisfied with (X°, X1) and (Y°, Y1), where

X! and Y are the biggest elements of F(X°) and F(Y°) respectively. Then the
following statements hold:

(1) If X°,Y° are such that {i € V(H) : #0}={i e V(H) : Y? # 0} and
X2 cYP for everyi € V(H), then K(XO) = K(Y?).
(2) If X°,Y° are such that {i € V(H) : £0y c{ie V(H): Y # 0}, then

K(X%),; c K(Y°); for everyi e V(H )

(3) If there is N € N such that {i € V(H) : X # 0} c {[jI¥ : Y} # 0},
then K(X°);, c K(Y°); for every i € V(H), where [j|¥ = {k € V(H) :
there is a directed path [i,|NEy in H from k =ig to j =iy, with Ny < N}.

Proof. (1) Let {X™} and {Y™} be the G-Picard trajectories defined inductively
by (6.2) and such that X” — K(X°) and Y™ — K(Y?). Observe that (X", Y™") €
E(G) for every n € {0} UN. Arguing as in the proof of Proposition 5.1, we deduce
that

di(X",Y"™) < Ardyy (X" Y") vneN, VIeT.
Therefore, {X™} and {Y"} have the same limit; that is K(X°) = K(Y?).
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(2) Let Z° = (Z9)iev () € X be defined by Z{ = XY UY. Let Z' be the biggest
element of F(Z°). One can check that
Di(Z}. Z}) < Di(X}, X)) + Di(Y.Y}!) VieV(H),
and hence

dr(Z2°,Z") < dp(X°, X +d; (YO, V') VIeT.
Thus, (Z9, Z1) satisfies (6.1). So, Y and Z° verify the assumptions of (1). Therefore,
K" = K(2°.

Let {X™} and {Z"} be the G-Picard trajectories defined inductively by (6.2) and
such that X" — K(XY) and Z" — K(Z°). Since X? C Z?, one has X C Z for
every i € V(H) and every n € N. Thus,

K(X%; c K(Z; = K(Y"); ViecV(H).

(3) Let {X"} and {Y"} be the G-Picard trajectories defined inductively by (6.2)
and such that X™ — K(X°) and Y™ — K(Y?). The assumption implies that

(eV(H): X?#£0}clieV(H): YN #0}.
From the proof of Proposition 5.1,
dr (YN YN < Ap- Mgy ndgn (n (YO, Y) VI ET.
Therefore, (Y, YN*1) satisfies (6.1). It follows from (2) that
K(X%; c K(YN), VieV(H).
Since

KYM) = lim Y™ = lim Y" = K(YY),

k—o0 n—00
one has

K(X%;, c K(Y%); VieV(H).

Example 6.3. Let H = (V(H), E(H)) be given by V(H) = Z x {0,1} and

E(H) = {((0,0), (1,1)), ((0,1),(1,0)) }
U {((i,a), (i +1,a)), ((3i,a), (3i — 2,a)) :i € Z,a =0, 1}.

For a = 0,1, and i € Z, let M; q) = [i,i + 1] x [a,a + 1] be endowed with the norm
Iz Il = max{[z],lyl}. For (i,)) = ((ir,a), (jr,b)) € E(H), let Th,; : My — M; be a
contraction with constant of contraction A; ; < 1. We assume that

1+e" o . )
ky = To ot >max {\;; : (i,§) € E(H),i= (i1,a) for a € {0,1} and

i1 € {3n—1,3n—2,3n}}. (6.14)
We observe that n +— k,, is nonincreasing. Arguing as in Example 2.7, it can be shown
that Theorem 2.5 implies that this H-IIFS, {7} ;} i, has a unique attractor K.
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Moreover, for this H-IIFS, one has for n € Z and a = 0, 1, the connected component
of H, C? = (V(C2),E(C%)), given by

V(Ce) ={(Bn —2,a),(3n — 1,a),(3n,a)},

ECYH = {((Bn —2,a),(3n — l,a)), ((3n —1,a), (3n7a)), ((3n,a), (3n —2, a))}.
So, as shown in Figure 6.1, the set of all connected components of H is

C(H)={Cl:n€Z,a=0,1}.

Observe that

Cl<C" <« (a=bandm<n) or (a#bandm<0<n).

Ly ct cl
—_———0——> *———>0—— *—— 00—
(_571) (_471) (_371) (_271) (_171) (07 (271) (371) (471) (571) (671)
c°, Y

*——>0—> *——0—— *——> *——>0—
(—5,0) (—4,0) (-=3,0) (—2,0) (—1,0) (0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0)

FIGURE 6.1. The set of connected components C(H).

Let I'and ¢ : I' — I be given by
I'={ICcZx{0,1}:0 < card(I) < oo, and V(C2) C I YV(C%) NI+ 0},
p(I)=TU{(i+1,a),(i+2,a),(i+3,a): (i,a) € I}
Also, let
X = {X = (X60) (ayevian) * Xiia) © Miia) closed V(i,a) € V(H),
if X(;,q0) # 0 for (i,a) € Cy,, then X(; o) # 0 V(j,a) € C;,,
card{(i,a) : X q) # 0} # O}.
We fix R =1 and (R(;q))(,a)ev(m) given by
Riqy =1+¢€" for (i,a) € Cy.
This permits to define {d;}rer by
dI(Xa)?) = mmax {E(i,a) (X(i,a)7)?(i7a)) : (Za CL) € I}7
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where

B ~ D(X(i,a)755(i,a))a if X(j,0) # 0, Xia) # 0,
Do) (X(ia), X(i,a)) = 4 0, if X0y =0,X0,0) =0,

R q), otherwise.

Observe that

1
Ar = max{ max Ay, ib) ¢ ((4,0),(4,0)) € E(H) ¢, max{ ——— : (i,a) € I ¢,
(e {7 j
Ria) . .
max {7  (i,a) € 1, (j,b) € ¢(I)\I}
(4,b)
< kng,
where k,, is defined in (6.14) and
ng =min{n: INCY # @ or INCL £ 0}.
Also A1 = Ay for every I € I'. Therefore,
ST Ae(1)  Agn-1 (D (1) (X, X) <Yk dgn(ry (X, X) VX, X € X.
n=1 n=1

This sum is finite in particular for every X = X% € X and every X=X'e F(X9)
such that sup{s : X?i o # 0} # sup{i : X0 o =0}, where F : X — X is defined

in (5.6). Therefore, this H-IIFS, {T; ;} i, satisfies all the assumptions of Theorems 6.1
and 6.2. In particular, for such X% € X, there exists a subattractor K(X°) ¢ K
satisfying all the properties stated in those theorems.
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