Fixed Point Theory, 18(2017), No. 2, 523-544 DOI 10.24193/fpt-ro.2017.2.41 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

A CONTRACTION PRINCIPLE ON GAUGE SPACES WITH GRAPHS AND APPLICATION TO INFINITE GRAPH-DIRECTED ITERATED FUNCTION SYSTEMS

T. DINEVARI AND M. FRIGON

Département de Mathématiques et de Statistique Université de Montréal Montréal, H3C 3J7, Canada E-mail: frigon@dms.umontreal.ca and toktam@dms.umontreal.ca

Abstract. We consider multi-valued maps defined on a complete gauge space endowed with a directed graph. We establish a fixed point result for maps which send connected points into connected points and satisfy a generalized contraction condition. Then, we study infinite graph-directed iterated function systems (H-IIFS). We give conditions insuring the existence of a unique attractor to an H-IIFS. Finally, we apply our fixed point result for multi-valued contractions on gauge spaces endowed with a graph to obtain more information on the attractor of an H-IIFS. More precisely, we construct a suitable gauge space endowed with a graph G and a suitable multi-valued G-contraction such that its fixed points are sub-attractors of the H-IIFS.

Key Words and Phrases: Fixed point, multi-valued map, contraction, graph, graph-directed iterated function system, infinite system, attractor gauge space.

2010 Mathematics Subject Classification: 47H10, 47H04, 47H09, 28A80, 54E15.

1. INTRODUCTION

In 2008, Jachymski [13] introduced the notion of single-valued G-contraction defined on a complete metric space endowed with a graph, which is a map preserving the graph and satisfying a contraction condition only between points related by an edge. He proved some generalizations of the Banach contraction principle to single-valued G-contractions. In particular, he generalized many contractions results in partially ordered sets, see [16, 17, 18, 19].

In [4], Dinevari and Frigon generalized Jachymski's fixed point results to multivalued maps by introducing the notions of multi-valued G-contraction and weak G-contraction on a complete metric space endowed with a graph. Other generalizations of Jachymski's results to multi-valued maps were obtained in [15].

In 1982, Gheorgiu [10] presented a fixed point result for general single-valued contractions in complete gauge spaces. In [2], Chiş and Precup extended this result and they presented a continuation principle for such contractions. Another approach to obtain fixed point results was developed in [7] for single-valued contractions and in [8] for multi-valued contractions on complete gauge spaces, (see also [9] for a survey of results on that subject).

In this paper, we consider a complete gauge space X endowed with a directed graph G. We introduce the notions of multi-valued G-contraction and G-Lipschitz multi-valued map in the sense of Gheorgiu on X. Then, we establish a fixed point result for such multi-valued maps. This result generalizes fixed point results for singlevalued and multi-valued contractions on complete metric spaces endowed with a graph obtained in [13] and [4] respectively. It is worthwhile to notice that our fixed point result is new even in the particular case where the map is single-valued and defined on X.

In this paper, we are also interested to apply our fixed point result to infinite iterated function systems.

An iterated function system (IFS) is a finite set of self-maps $\{T_i : i = 1, ..., n\}$ defined on a complete metric space (M, d). Using the Banach contraction principle, Hutchinson [12] proved that if each T_i is a contraction, then there exists a unique nonempty compact set $K \subset M$, called the attractor of the IFS, such that

$$K = \bigcup_{i=1}^{n} T_i(K).$$

This result was popularized by Barnsley [1] as the main method of constructing fractals.

Geometric graph-directed constructions are generalizations of iterated function systems. Mauldin and Williams [14] were the firsts who introduced the notion of graphdirected constructions in \mathbb{R}^m governed by a finite directed graph H and similarity maps $T_{i,j}$ which are labeled by the edges of the graph. They established that each geometric graph-directed construction has a unique attractor. Graph-directed constructions have been studied and generalized by many authors, see for example [3, 6, 11] and the references therein.

Recently, Dinevari and Frigon [5] applied their fixed point results for multi-valued G-contractions established in [4] to obtain more information on the attractor K of a graph-directed iterated function system governed by a finite directed graph and a finite family of contractions $\{T_{i,j}\}$ defined on complete metric spaces and labeled by the edges of the graph. To this aim, they defined a complete metric space, a suitable directed graph G on this space, and an appropriate multi-valued G-contraction. Using the fixed points of this G-contraction, they studied certain subsets of the attractor K and the relations between these sub-attractors.

In this paper, we consider a directed graph H = (V(H), E(H)) such that V(H)the set of vertices and E(H) the set of edges are countably infinite sets. We study infinite graph-directed iterated function systems over the graph H (H-IIFS). Such an H-IIFS contains a family of contractions $\{T_{i,j}\}_{(i,j)\in E(H)}$ on complete metric spaces. We give conditions insuring the existence of a unique attractor to this H-IIFS. Our result relies on a generalization of Gheorgiu's fixed point theorem on gauge spaces due to Chiş and Precup [2].

Then, under an extra assumption on the H-IIFS, we apply our fixed point result for multi-valued contractions on complete gauge spaces endowed with graphs to obtain more information on the attractor of this H-IIFS. Those results are obtained in Section 6. In order to prove those results, taking into account the H-IIFS, we construct a suitable complete gauge space on which we define an appropriate directed graph G in Section 4. In Section 5, we define a multi-valued map on this gauge space and we show that it is a G-contraction.

2. Main results

In this section, we introduce the notions of infinite MW-graph H and infinite graph iterated function system over the graph H. We give conditions insuring the existence of a unique attractor to an infinite graph iterated function system over the graph H.

Definition 2.1. A directed graph H = (V(H), E(H)) is called an *infinite MW-direc*ted graph if

- (i) V(H) is countable;
- (ii) H has no parallel edges;
- (iii) $1 \leq \text{outdeg}(i) < \infty$ for every $i \in V(H)$, where outdeg(i) is the number of outward directed edges emanating from vertex i.

Definition 2.2. Let H = (V(H), E(H)) be an infinite MW-directed graph. An *infi*nite graph iterated function system over the graph H (H-IIFS) is a family of nonempty complete metric spaces, $\{M_i : i \in V(H)\}$, and, for each $(i, j) \in E(H)$, a single-valued contraction $T_{i,j} : M_j \to M_i$ with constant of contraction $\lambda_{i,j}$. An H-IIFS is denoted by $\{T_{i,j}\}_{H}$.

An attractor of an *H*-IIFS is defined as follows.

Definition 2.3. Let $\{T_{i,j}\}_H$ be an *H*-IIFS. An attractor *K* of this *H*-IIFS is a family of nonempty compact sets $K = (K_i)_{i \in V(H)}$ such that $K_i \subset M_i$ and

$$K_i = \bigcup_{(i,j)\in E(H)} T_{i,j}(K_j) \quad \forall i \in V(H).$$

In order to establish the existence of an attractor to some H-IIFS, we will use the following generalization of Gheorghiu's fixed point result due to Chiş and Precup [2] that we recall for sake of completeness.

Theorem 2.4 ([2]). Let $(X, \{q_s\}_{s \in S})$ be a complete gauge space, and $f : X \to X$ a single-valued map. Assume that

(i) there exist a function $\psi: S \to S$ and $k = (k_s)_{s \in S}$ such that $k_s \ge 0$ for all $s \in S$,

$$q_s(f(x), f(y)) \le k_s q_{\psi(s)}(x, y) \quad \forall s \in S, \ \forall x, y \in X,$$

$$(2.1)$$

and

$$\sum_{n=1}^{\infty} k_s k_{\psi(s)} \cdots k_{\psi^{n-1}(s)} q_{\psi^n(s)}(x,y) < \infty \quad \forall s \in S, \ \forall x, y \in X,$$

where ψ^n is the n-th iteration of ψ ;

(ii) for every $x_0 \in X$, if $\{f^n(x_0)\}$ converges to some $x \in X$, then x = f(x). Then f has a unique fixed point.

inch j has a anique fixed point.

We need to introduce some notations. In what follows, H is an infinite MW-directed graph and $\{T_{i,j}\}_H$ is an H-IIFS.

Let

$$\Gamma_0 = \left\{ I = \{i_1, \dots, i_n\} \subset V(H) : n \in \mathbb{N} \right\}.$$

$$(2.2)$$

We denote

$$k_I = \max \{\lambda_{i,j} : (i,j) \in E(H) \text{ and } i \in I\} \quad \forall I \in \Gamma_0,$$

and we define the map $\varphi: \Gamma_0 \to \Gamma_0$ by

$$\varphi(I) = I \cup \left\{ j \in V(H) : \exists i \in I \text{ such that } (i,j) \in E(H) \right\}.$$
(2.3)

We consider the space

$$\mathcal{Y} = \left\{ Y = (Y_i)_{i \in V(H)} : \emptyset \neq Y_i \subset M_i \text{ is compact} \right\}.$$
(2.4)

For every $I \in \Gamma_0$ and $Y, \hat{Y} \in \mathcal{Y}$, let

$$p_I(Y, \hat{Y}) = \max \{ D_i(Y_i, \hat{Y}_i) : i \in I \},$$
(2.5)

where D_i is the Hausdorff metric on M_i . It is easy to see that $(\mathcal{Y}, \{p_I\}_{I \in \Gamma_0})$ is a complete gauge space.

We are ready to establish the existence of an attractor of the H-IIFS.

Theorem 2.5. Let $\{T_{i,j}\}_H$ be an *H*-IIFS. Assume that

$$\sum_{n=1}^{\infty} k_I k_{\varphi(I)} \cdots k_{\varphi^{n-1}(I)} p_{\varphi^n(I)}(Y, \hat{Y}) < \infty \quad \forall I \in \Gamma_0, \ \forall Y, \hat{Y} \in \mathcal{Y}.$$
 (2.6)

Then $\{T_{i,j}\}_H$ has a unique attractor K.

Proof. Let us define $f : \mathcal{Y} \to \mathcal{Y}$ by

$$f_i(Y) = \bigcup_{(i,j) \in E(H)} T_{i,j}(Y_j).$$

Using the fact that every $T_{i,j}$ is a contraction in the classical sense, we prove that

$$p_I(f(Y), f(Y)) \le k_I p_{\varphi(I)}(Y, Y) \quad \forall I \in \Gamma_0, \ \forall Y, Y \in \mathcal{Y}.$$

527

Indeed,

$$p_{I}(f(Y), f(\hat{Y})) = \max \left\{ D_{i}(f_{i}(Y), f_{i}(\hat{Y})) : i \in I \right\}$$

$$= \max \left\{ D_{i} \left(\bigcup_{(i,j) \in E(H)} T_{i,j}(Y_{j}), \bigcup_{(i,j) \in E(H)} T_{i,j}(\hat{Y}_{j}) \right) : i \in I \right\}$$

$$\leq \max \left\{ \max_{(i,j) \in E(H)} D_{i}(T_{i,j}(Y_{j}), T_{i,j}(\hat{Y}_{j})) : i \in I \right\}$$

$$\leq \max \left\{ \max_{(i,j) \in E(H)} \lambda_{i,j} D_{j}(Y_{j}, \hat{Y}_{j}) : i \in I \right\}$$

$$\leq k_{I} \max \left\{ D_{i}(Y_{i}, \hat{Y}_{i}) : i \in \varphi(I) \right\}$$

$$= k_{I} p_{\varphi(I)}(Y, \hat{Y}).$$

We claim that (ii) of Theorem 2.4 is satisfied. Indeed, let us assume that $Y^0 \in \mathcal{Y}$ is such that $\{f^n(Y^0)\}$ converges to some $Y \in \mathcal{Y}$. If $Y \neq f(Y)$, there exists $i \in V(H)$ such that

$$D_i(Y_i, f(Y)_i) = r > 0.$$

Let $N \in \mathbb{N}$ be such that

$$p_{\varphi(\{i\})}(f^n(Y^0), Y) < \frac{r}{2} \quad \forall n \ge N.$$

So,

$$\begin{split} r &= p_{\{i\}}(Y, f(Y)) \leq p_{\{i\}}\left(Y, f^{N+1}(Y^0)\right) + p_{\{i\}}\left(f^{N+1}(Y^0), f(Y)\right) \\ &\leq p_{\varphi(\{i\})}\left(Y, f^{N+1}(Y^0)\right) + k_{\{i\}}p_{\varphi(\{i\})}\left(f^N(Y^0), Y\right) < r. \end{split}$$

Contradiction.

It follows from Theorem 2.4 that f has a unique fixed point $K \in \mathcal{Y}$, and hence, K is an attractor of $\{T_{i,j}\}_H$.

Remark 2.6. Observe that (2.6) is satisfied if:

$$\sup\{\lambda_{i,j}: (i,j) \in E(H)\} < 1 \quad \text{and} \quad \sup\{\operatorname{diam}(M_i): i \in V(H)\} < \infty.$$
(2.7)

So, every H-IIFS satisfying (2.7) has a unique attractor.

Example 2.7. Let H = (V(H), E(H)) (see Figure 2.1) be given by

 $V(H) = \mathbb{Z}$ and $E(H) = \{(n, n+1), (n, n+2) : n \in \mathbb{Z}\}.$

FIGURE 2.1. The MW-directed graph H of Example 2.7.

For $n \in \mathbb{Z}$, let $M_n = [n, n+1]$ and $T_{n,n+1} : M_{n+1} \to M_n$, $T_{n,n+2} : X_{n+2} \to X_n$ contractions with constants of contraction $\lambda_{n,n+1} < 1$ and $\lambda_{n,n+2} < 1$ respectively. We define

$$\lambda_n = \max\{\lambda_{n,n+1}, \lambda_{n,n+2}\}.$$

We assume that $n \mapsto \lambda_n$ is nonincreasing.

It follows from Theorem 2.5 that the *H*-IIFS, $\{T_{i,j}\}_H$, has a unique attractor *K*. Indeed, one has

$$\begin{split} &\Gamma_0 = \{I \subset \mathbb{Z} : 0 < \operatorname{card}(I) < \infty\}, \\ &\mathcal{Y} = \{Y = (Y_n)_{n \in \mathbb{Z}} : \emptyset \neq Y_n \subset [n, n+1] \text{ closed } \forall n \in \mathbb{Z}\}, \\ &p_I(Y, \widehat{Y}) = \max\{D(Y_i, \widehat{Y}_i) : i \in I\} \quad \forall Y, \widehat{Y} \in \mathcal{Y}, \forall I \in \Gamma_0, \\ &\varphi : \Gamma_0 \to \Gamma_0 \quad \text{given by} \quad \varphi(I) = I \cup \{i+1, i+2 : i \in I\}. \end{split}$$

Observe that

 $k_I = \max\{\lambda_{i,j} : (i,j) \in E(H) \text{ and } i \in I\} = \lambda_{i_0}, \text{ where } i_0 = \min I,$

and $k_I = k_{\varphi(I)}$ for every $I \in \Gamma_0$. Therefore,

$$\begin{split} \sum_{n=1}^{\infty} k_I k_{\varphi(I)} \cdots k_{\varphi^{n-1}}(I) p_{\varphi^n(I)}(Y, \widehat{Y}) &\leq \sum_{n=1}^{\infty} \lambda_{i_0}^n p_{\varphi^n(I)}(Y, \widehat{Y}) \\ &\leq \sum_{n=1}^{\infty} \lambda_{i_0}^n < \infty \quad \forall Y, \widehat{Y} \in \mathcal{Y} \end{split}$$

Hence, $\{T_{i,j}\}_H$ satisfies the assumptions of Theorem 2.5.

3. Multi-valued contraction on gauge spaces endowed with a graph

In this section, we consider $(X, \{q_s\}_{s \in S})$ a complete gauge space endowed with a directed graph G = (V(G), E(G)) such that the set of vertices V(G) = X and the set of edges E(G) has no parallel edges and it contains the diagonal. We generalize Theorem 2.4 to multi-valued map $F : X \to X$ satisfying a condition analogous to (2.1) only for $x, y \in X$ related by an edge $(x, y) \in E(G)$.

Definition 3.1. Let $F: X \to X$ be a multi-valued map with nonempty values. We say that F is a *G*-Lipschitz map in the sense of Gheorghiu with map $\psi : S \to S$ and constant $\lambda = (\lambda_s)_{s \in S}$ such that $\lambda_s \ge 0$ for all $s \in S$, if, for every $(x, y) \in E(G)$ and every $u \in F(x)$, there exists $v \in F(y)$ such that $(u, v) \in E(G)$ and

$$q_s(u,v) \le \lambda_s q_{\psi(s)}(x,y) \quad \forall s \in S.$$
(3.1)

The map F is called a G-contraction if it is a G-Lipschitz map with $\lambda_s < 1$ for every $s \in S$.

We consider suitable trajectories in X.

Definition 3.2. Let $F : X \to X$ be a multi-valued mapping and $x_0 \in X$. We say that a sequence $\{x_n\}$ is a *G*-Picard trajectory from x_0 , if $x_n \in F(x_{n-1})$ and $(x_{n-1}, x_n) \in E(G)$ for all $n \in \mathbb{N}$. The set of all such *G*-Picard trajectories from x_0 is denoted by $T(F, G, x_0)$.

Here is our main fixed point result for multi-valued contractions in the sense of Gheorgiu on the gauge space X endowed with a directed graph G.

Theorem 3.3. Let $F : X \to X$ be a multi-valued *G*-Lipschitz map with constant $\lambda = (\lambda_s)_{s \in S}$ and map $\psi : S \to S$. Assume that there exists $(x_0, x_1) \in E(G)$ such that $x_1 \in F(x_0)$ and

$$\sum_{n=1}^{\infty} \lambda_s \lambda_{\psi(s)} \cdots \lambda_{\psi^{(n-1)}(s)} q_{\psi^n(s)}(x_0, x_1) < \infty \quad \forall s \in S.$$
(3.2)

Then, there exists a G-Picard trajectory from x_0 converging to some $\hat{x} \in X$. In addition, assume that one of the following conditions holds:

- (i) F is G-Picard continuous from x₀, i.e. the limit of any convergent G-Picard trajectory {x_n} ∈ T(F,G,x₀) is a fixed point of F;
- (ii) F has closed values and, for every $\{x_n\}$ in $T(F, G, x_0)$ converging to some $x \in X$, there exists a subsequence $\{x_{n_k}\}$ such that $(x_{n_k}, x) \in E(G)$ for all $k \in \mathbb{N}$.

Then, \hat{x} is a fixed point of F. Moreover, every converging G-Picard trajectory from x_0 converges to a fixed point of F.

Proof. Let x_0 and $x_1 \in F(x_0)$ be given by assumption. Since F is a G-Lipschitz map, one can choose a sequence $\{x_n\}$ such that $x_{n+1} \in F(x_n), (x_n, x_{n+1}) \in E(G)$ and

$$q_s(x_n, x_{n+1}) \leq \lambda_s q_{\psi(s)}(x_{n-1}, x_n) \leq \ldots \leq \lambda_s \lambda_{\psi(s)} \ldots \lambda_{\psi^{n-1}(s)} q_{\psi^n(s)}(x_0, x_1),$$

for every $s \in S$ and $n \in \mathbb{N}$. Moreover, for every $m \in \mathbb{N}$,

$$q_s(x_n, x_{n+m}) \le \sum_{i=n}^{n+m-1} q_s(x_i, x_{i+1}) \le \sum_{i=n}^{n+m-1} \lambda_s \lambda_{\psi(s)} \dots \lambda_{\psi^{i-1}(s)} q_{\psi^i(s)}(x_0, x_1).$$

Therefore, $\{x_n\}$ is a Cauchy sequence and hence converges to some $\hat{x} \in X$.

If the condition (i) is satisfied, then clearly \hat{x} is a fixed point of F.

On the other hand, if the condition (ii) is satisfied, then there exists a subsequence $\{x_{n_k}\}$ such that $(x_{n_k}, \hat{x}) \in E(G)$ for every $k \in \mathbb{N}$. Since F is a G-Lipschitz map, for each $k \in \mathbb{N}$, there exists $y_{n_k+1} \in F(\hat{x})$ such that $(x_{n_k+1}, y_{n_k+1}) \in E(G)$ and

$$q_s(x_{n_k+1}, y_{n_k+1}) \le \lambda_s q_{\psi(s)}(x_{n_k}, \hat{x}) \quad \forall s \in S.$$

Therefore, for every $s \in S$,

$$q_s(y_{n_k+1}, \hat{x}) \leq q_s(y_{n_k+1}, x_{n_k+1}) + q_s(x_{n_k+1}, \hat{x}) \leq \lambda_s q_{\psi(s)}(x_{n_k}, \hat{x}) + q_s(x_{n_k+1}, \hat{x}).$$

Consequently, $y_{n_k+1} \to \hat{x}$, and hence $\hat{x} \in F(\hat{x})$ since F has closed values. \Box

Remark 3.4. We could have formulated a more general result by considering two families of gauges as it is done in [2, 10]. We preferred not to do so for sake a simplicity.

In the particular case where X is a metric space, the previous result generalizes a fixed point result for multi-valued contraction obtained in [4]. If, in addition Fis single-valued, the fixed point result for G-contraction due to Jachymski [13] is generalized by the following result.

Corollary 3.5. Let $f : X \to X$ be a single-valued map such that there exist $\psi : S \to S$ and $\lambda = (\lambda_s)_{s \in S}$ such that $\lambda_s \ge 0$ for all $s \in S$, and for every $(x, y) \in E(G)$

$$(f(x), f(y)) \in E(G) \quad and \quad q_s(f(x), f(y)) \le \lambda_s q_{\psi(s)}(x, y) \quad \forall s \in S.$$

$$(3.3)$$

Assume that there exists $x_0 \in X$ such that $(x_0, f(x_0)) \in E(G)$ and

$$\sum_{n=1}^{\infty} \lambda_s \lambda_{\psi(s)} \cdots \lambda_{\psi^{(n-1)}(s)} q_{\psi^n(s)}(x_0, f(x_0)) < \infty \quad \forall s \in S.$$
(3.4)

Then, the sequence $\{f^n(x_0)\}$ converges to some $\hat{x} \in X$. In addition, assume that one of the following conditions holds:

- (i) $f(f^n(x_0)) \to f(\hat{x});$
- (ii) there exists a subsequence $\{f^{n_k}(x_0)\}$ such that $(f^{n_k}(x_0), \hat{x}) \in E(G)$ for all $k \in \mathbb{N}$.

Then, \hat{x} is a fixed point of f.

It is worthwhile to point out that in Theorem 3.3, we did not assume the continuity of the G-Lipschitz map F. The following lemma could be useful to deduce that the limit of a convergent G-Picard trajectory is a fixed point of F.

Lemma 3.6. Let $F : X \to X$ be a multi-valued *G*-Lipschitz map with constant $\lambda = (\lambda_s)_{s \in S}$ and map $\psi : S \to S$. Assume that there exists $x_0 \in X$ and a *G*-Picard trajectory $\{x_n\}$ from x_0 converging to some $\hat{x} \in X$. In addition, assume that there exists $\hat{u} \in F(\hat{x})$ such that, for every $s \in S$, the following conditions hold:

(i) there exists a subsequence {x_{nk}} such that there exists {x̂_{nk}} a sequence in X satisfying

 $(\hat{x}, \hat{x}_{n_k}) \in E(G) \ \forall k \in \mathbb{N}, \quad and \quad q_{\psi(s)}(x_{n_k}, \hat{x}_{n_k}) \to 0;$

(ii) for every $k \in \mathbb{N}$, one can choose $u_{n_k} \in F(\hat{x}_{n_k})$ such that

$$(\hat{u}, u_{n_k}) \in E(G)$$
 and $q_s(\hat{u}, u_{n_k}) \leq \lambda_s q_{\psi(s)}(\hat{x}, \hat{x}_{n_k}),$

satisfying

$$q_s(u_{n_k}, x_{n_k+1}) \to 0 \quad as \ k \to \infty.$$

Then, $\hat{x} = \hat{u} \in F(\hat{x})$.

Proof. Let us suppose that $\hat{x} \neq \hat{u}$. Then, there exists $s \in S$ such that

$$q_s(\hat{u}, \hat{x}) = r > 0.$$

531

Observe that

$$\begin{aligned} q_s(\hat{u}, \hat{x}) &\leq q_s(\hat{u}, u_{n_k}) + q_s(u_{n_k}, x_{n_k+1}) + q_s(x_{n_k+1}, \hat{x}) \\ &\leq \lambda_s q_{\psi(s)}(\hat{x}, \hat{x}_{n_k}) + q_s(u_{n_k}, x_{n_k+1}) + q_s(x_{n_k+1}, \hat{x}) \\ &\leq \lambda_s q_{\psi(s)}(\hat{x}, x_{n_k}) + \lambda_s q_{\psi(s)}(x_{n_k}, \hat{x}_{n_k}) + q_s(u_{n_k}, x_{n_k+1}) + q_s(x_{n_k+1}, \hat{x}) \\ &\to 0. \end{aligned}$$

Contradiction. So, $\hat{x} = \hat{u} \in F(\hat{x})$.

4. A SUITABLE GAUGE SPACE ENDOWED WITH A DIRECTED GRAPH

In order to get more information on the attractor to the H-IIFS, we will apply our main fixed point result for multi-valued G-contraction. In this section, we will define a suitable complete gauge space.

First, we need to introduce some notations. For a graph H = (V(H), E(H)), we denote an *N*-directed path in *H* from i_0 to i_N by $[i_n]_{n=0}^N$, and we denote the set of vertices from which there is a directed path in *H* reaching $i \in H$ by

$$[i]_{\leftarrow} = \{j \in V(H) : \text{ there is a directed path from } j \text{ to } i \text{ in } H\}.$$
 (4.1)

We say that a subgraph C = (V(C), E(C)) of H is connected if for every $i, j \in V(C)$ there exists a directed path from i to j in C. A connected component of H is a maximal connected subgraph of H. A subgraph C = (V(C), E(C)) of H is weakly connected if the undirected graph induced by C is connected. Let C and \hat{C} be two connected components of H. We write

$$C \preceq \widehat{C} \quad \Longleftrightarrow \quad \text{there is a directed path from } C \text{ to } \widehat{C}.$$

Also, we write $C \prec \widehat{C}$ if $C \preceq \widehat{C}$ and $C \neq \widehat{C}$. We say that C and \widehat{C} are *incomparable* if $C \not\preceq \widehat{C}$ and $\widehat{C} \not\preceq C$.

Let H be an infinite MW-directed graph and $\{T_{i,j}\}_H$ an H-IIFS with M_i a complete metric space for every $i \in V(H)$. We denote the set of all connected components of H by

$$C(H) = \{C : C \text{ is a connected component of } H\}.$$
(4.2)

In what follows, we will make the following assumption:

- (H) H is an infinite MW-directed graph and $\{T_{i,j}\}_H$ is an H-IIFS such that
 - (H1) H is weakly connected and

$$V(H) = \bigcup_{C \in C(H)} V(C);$$

(H2) for every $i, j \in V(H)$, the length of directed paths from i to j is bounded, i.e.

 $\sup \left\{ N : \exists [i_n]_{n=0}^N \text{ from } i = i_0 \text{ to } j = i_N \text{ containing no cycle} \right\} < \infty;$

(H3) the metric spaces M_i are bounded and

$$R = \sup\{diam(M_i) : i \in V(H)\} < \infty.$$

It follows from Definition 2.1 that C(H) is countable. Let

$$\Gamma = \left\{ I \subset V(H) : 0 < \operatorname{card}(I) < \infty, \text{ and} \right\}$$

$$V(C) \subset I \ \forall C \in C(H) \text{ such that } V(C) \cap I \neq \emptyset \big\}.$$
(4.3)

We define the map $\phi: \Gamma \to \Gamma$ by

$$\phi(I) = I \cup \{k \in V(H) : \text{ there exist } (i, j) \in E(H) \text{ and } C \in C(H) \}$$

such that
$$i \in I$$
 and $j, k \in V(C)$. (4.4)

We are ready to define our suitable gauge space.

- (X) Let \mathcal{X} be the space of elements $X = (X_i)_{i \in V(H)}$ satisfying the following properties:
 - (X1) X_i is a compact subset of M_i for every $i \in V(H)$;
 - (X2) there exists $i \in V(H)$ such that $X_i \neq \emptyset$;
 - (X3) if $X_i \neq \emptyset$ for some $i \in V(C)$ and $C \in C(H)$, then $X_j \neq \emptyset$ for all $j \in V(C)$.

Taking into account the graph H, we endow \mathcal{X} with a directed graph defined as follows.

- (G) Let G = (V(G), E(G)) be the directed graph such that $V(G) = \mathcal{X}$ and, for $X, Y \in \mathcal{X}, (X, Y) \in E(G)$ if and only if, for every $i \in V(H)$, one of the following properties holds:
 - (Ga) $X_i = Y_i = \emptyset$, or $X_i \neq \emptyset$ and $Y_i \neq \emptyset$;
 - (Gb) $X_i = \emptyset$, $Y_i \neq \emptyset$ and, for $C \in C(H)$ such that $i \in V(C)$, there exist $k \in V(C)$ and $j \in V(H) \setminus V(C)$ such that $(k, j) \in E(H)$ and $X_j \neq \emptyset$.

We endow \mathcal{X} with the family of gauges $\{d_I\}_{I\in\Gamma}$, where

$$d_I(X,Y) = \max\left\{\overline{D}_i(X_i,Y_i) : i \in I\right\},\tag{4.5}$$

with

$$\overline{D}_{i}(X_{i}, Y_{i}) = \begin{cases} D_{i}(X_{i}, Y_{i}), & \text{if } X_{i} \neq \emptyset, Y_{i} \neq \emptyset, \\ 0, & \text{if } X_{i} = \emptyset = Y_{i}, \\ R_{i}, & \text{otherwise}, \end{cases}$$
(4.6)

where D_i the Hausdorff metric in M_i and

(R) the family of constants $(R_i)_{i \in V(H)}$ is such that

- (R1) for every $i \in V(H), R_i > R;$
- (R2) for every $C \in C(H)$, $R_i = R_j$ for all $i, j \in V(C)$;
- (R3) for every $i, j \in V(H)$, if $R_i < R_j$, then $j \notin [i]_{\leftarrow}$;
- (R4) for every $I \in \Gamma$, one has $R_i < R_j$ for every $i \in I$ and $j \in \phi(I) \setminus I$.

It is clear that $(\mathcal{X}, \{d_I\}_{I \in \Gamma})$ is a complete gauge space.

Now, we show that we can easily find $(R_i)_{i \in V(H)}$ satisfying (R).

Lemma 4.1. Let H be an infinite MW-directed graph and $\{T_{i,j}\}_H$ an H-IIFS satisfying (H). Then, there exists $\{V_{\mu} : \mu \in L\}$ a family of non empty disjoint subsets with $L \subset \mathbb{Z}$ countable such that

- (1) $V(H) = \bigcup_{\mu \in L} V_{\mu};$
- (2) for every $C \in C(H)$, if $V(C) \cap V_{\mu} \neq \emptyset$ for some $\mu \in L$, one has $V(C) \subset V_{\mu}$;
- (3) for every $C, \widehat{C} \in C(H)$ such that $C \prec \widehat{C}, V(C) \subset V_{\mu}$ and $V(\widehat{C}) \subset V_{\nu}$, one has $\mu < \nu$;
- (4) if $\mu < \nu$ in L, then $j \notin [i]_{\leftarrow}$ for all $i \in V_{\mu}$ and $j \in V_{\nu}$.

Moreover, for every strictly increasing map $\sigma : L \to]1, \infty[$, the family of constants $(R_i)_{i \in V(H)}$ defined by

$$R_i = \sigma(\mu) R \quad if \ i \in V_\mu,$$

satisfies (R).

Proof. Let $S_0 \subset C(H)$ be such that $\{C : C \in S_0\}$ is a maximal set of incomparable connected components of H. We denote

$$\mathcal{S}_0^+ = \{ C \in C(H) : \exists \widehat{C} \in \mathcal{S}_0 \text{ such that } \widehat{C} \prec C \}; \\ \mathcal{S}_0^- = \{ C \in C(H) : \exists \widehat{C} \in \mathcal{S}_0 \text{ such that } C \prec \widehat{C} \}.$$

It follows from (H1) that $C(H) = S_0 \cup S_0^+ \cup S_0^-$. We denote

$$\mathcal{S}_1 = \big\{ C \in \mathcal{S}_0^+ : \not\exists \widehat{C} \in \mathcal{S}_0^+ \text{ such that } \widehat{C} \prec C \big\},\$$

and we define inductively for each $n \in \mathbb{N}$,

$$\mathcal{S}_{n+1} = \left\{ C \in \mathcal{S}_0^+ \setminus \bigcup_{k=1}^n \mathcal{S}_k : \nexists \widehat{C} \in \mathcal{S}_0^+ \setminus \bigcup_{k=1}^n \mathcal{S}_k \text{ such that } \widehat{C} \prec C \right\}.$$

Similarly, we denote

$$\mathcal{S}_{-1} = \left\{ C \in \mathcal{S}_0^- : \not\exists \widehat{C} \in \mathcal{S}_0^- \text{ such that } C \prec \widehat{C} \right\},\$$

and we define inductively for each $n \in \mathbb{N}$,

$$\mathcal{S}_{-(n+1)} = \left\{ C \in \mathcal{S}_0^- \setminus \bigcup_{k=1}^n \mathcal{S}_{-k} : \exists \widehat{C} \in \mathcal{S}_0^- \setminus \bigcup_{k=1}^n \mathcal{S}_{-k} \text{ such that } C \prec \widehat{C} \right\}.$$

Let $L = \{\mu \in \mathbb{Z} : S_{\mu} \neq \emptyset\}$ endowed with the natural order. We define

$$V_{\mu} = \bigcup_{C \in \mathcal{S}_{\mu}} V(C) \quad \forall \mu \in L.$$

Therefore, by (H),

$$V(H) = \bigcup_{\mu \in L} V_{\mu}.$$

By construction, (2), (3) and (4) are satisfied.

Let $\sigma : L \to]1, \infty[$ be a strictly increasing map, and the family of constants $(R_i)_{i \in V(H)}$ defined by

$$R_i = \sigma(\mu)R$$
 for $i \in V_{\mu}$.

The property (R) follows directly from (1)–(4) and the fact that $\sigma(L) \subset [1, \infty[$. \Box

T. DINEVARI AND M. FRIGON

5. A suitable G-contraction

We consider H an infinite MW-directed graph and $\{T_{i,j}\}_H$ an H-IIFS satisfying the condition (H). In this section, we will define an appropriate multi-valued G-contraction on \mathcal{X} , where \mathcal{X} is the space endowed with the family of gauges $\{d_I\}_{I \in \Gamma}$ and endowed with the directed graph G defined in the previous section. This G-contraction will be used to get more information on the attractor of this infinite H-IIFS.

Let $X \in \mathcal{X}$. If $j \in V(H)$ is such that $X_j \neq \emptyset$, then $T_{i,j}(X_j) \neq \emptyset$ for all *i* such that $(i, j) \in E(H)$. So, it is important to distinguish all those edges. To this aim, we introduce the following notation. For $C \in C(H)$,

$$E_C(X) = \{(k,j) \in E(H) : k \in V(C), j \notin V(C), X_j \neq \emptyset\}.$$
(5.1)

Let us notice that the cardinality of $E_C(X)$ is finite since outdeg(i) is finite for every $i \in V(H)$.

For $C \in C(H)$ and $i, k \in V(C)$, we define $T_{i \to k} : M_k \to M_i$ by

$$T_{i \to k}(x) = \left\{ T_{i_0, i_1} \circ \dots \circ T_{i_{N-1}, i_N}(x) : [i_n]_{n=0}^N \in \{i \xrightarrow{C} k\} \right\},$$
(5.2)

where

$$\{i \xrightarrow{C} k\} = \{[i_n]_{n=0}^N : [i_n]_{n=0}^N \text{ is an } N \text{-directed path in } C$$

from $i = i_0$ to $k = i_N$ containing no cycle}. (5.3)

For $i \in V(C)$ with $C \in C(H)$, we define the following subsets of M_i :

$$O_i(X, P) = \begin{cases} \emptyset, & \text{if } P = \emptyset, \\ \bigcup_{(k,j) \in P} T_{i \to k} \circ T_{k,j}(X_j), & \text{if } \emptyset \neq P \subset E_C(X); \end{cases}$$
(5.4)

and

$$W_i(X) = \begin{cases} \emptyset, & \text{if } X_i = \emptyset, \\ \bigcup_{(i,j) \in E(C)} T_{i,j}(X_j), & \text{if } X_i \neq \emptyset, \end{cases}$$
(5.5)

where $E(C) = \{(k, j) \in E(H) : k, j \in V(C)\}.$

We have all the ingredients to introduce a suitable multi-valued map. We define $F:\mathcal{X}\to\mathcal{X}$ by

$$F(X) = \left\{ U = (U_i)_{i \in V(H)} \in \mathcal{X} : U_i \in F_i(X) \ \forall i \in V(H) \right\},\tag{5.6}$$

where, for $i \in V(C)$ for some $C \in C(H)$, $F_i(X)$ is defined as follows:

$$F_i(X) = \begin{cases} \emptyset, & \text{if } X_i = \emptyset \text{ and } E_C(X) = \emptyset, \\ \{O_i(X, P) : \emptyset \neq P \subset E_C(X)\}, & \text{if } X_i = \emptyset \text{ and } E_C(X) \neq \emptyset, \\ \{W_i(X) \cup O_i(X, P) : P \subset E_C(X)\}, & \text{if } X_i \neq \emptyset. \end{cases}$$
(5.7)

It is easy to see that F is well defined and has finite, and hence closed values.

We show that F is a multi-valued G-contraction.

Proposition 5.1. Let H be an infinite MW-directed graph and $\{T_{i,j}\}_H$ an H-IIFS satisfying (H). Let $(R_i)_{i \in V(H)}$ be a family of constants satisfying (R). Then, the multi-valued map defined as above, $F : \mathcal{X} \to \mathcal{X}$ is a G-contraction.

Proof. We show that F is a G-contraction with constant of contraction $\lambda = (\lambda_I)_{I \in \Gamma}$, where

$$\lambda_{I} = \max\left\{\max\{\lambda_{i,j} : i \in I, (i,j) \in E(H)\}, \max\left\{\frac{R}{R_{i}} : i \in I\right\}, \\ \max\left\{\frac{R_{i}}{R_{j}} : i \in I, j \in \phi(I) \setminus I\right\}\right\}, \quad (5.8)$$

where ϕ is defined in (4.4).

For $i, k \in V(C)$ for some $C \in C(H)$, we denote

$$\lambda_{i \to k} = \max\left\{\lambda_{i_0, i_1} \cdots \lambda_{i_{N-1}, i_N} : [i_n]_{n=0}^N \in \{i \xrightarrow{C} k\}\right\},\tag{5.9}$$

where $\{i \xrightarrow{C} k\}$ is given in (5.3). Observe that $\lambda_{i \to k} \leq \lambda_I$ for all $I \in \Gamma$ such that $i \in I$.

Let $X, Y \in \mathcal{X}$ be such that $(X, Y) \in E(G)$ and $U \in F(X)$. We look for $\widetilde{U} \in F(Y)$ such that $(U, \widetilde{U}) \in E(G)$ and $d_I(U, \widetilde{U}) \leq \lambda_I d_{\phi(I)}(X, Y)$ for every $I \in \Gamma$.

Step 1: For $I \subset \Gamma$, different cases of U_i for $i \in I$:

Let $C \in C(H)$ be such that $i \in V(C) \subset I$.

Case 1: $U_i = \emptyset$ and $\widetilde{U}_i \neq \emptyset$ for every $\widetilde{U} \in F(Y)$.

In this case, $X_i = E_C(X) = \emptyset$ and $Y_i \cup E_C(Y) \neq \emptyset$ by (5.7).

If $Y_i \neq \emptyset$, since $(X,Y) \in E(G)$, by condition (Gb), there exist $k \in V(C)$ and $j \in V(H) \setminus V(C)$ such that $(k,j) \in E(H)$ and $X_j \neq \emptyset$. So, $(k,j) \in E_C(X)$. This contradicts the fact that $E_C(X) = \emptyset$.

If $E_C(Y) \neq \emptyset$, by (5.1), there exist $k \in V(C)$ and $j \in V(\widehat{C})$ such that $(k, j) \in E(H)$, $Y_j \neq \emptyset$ and $\widehat{C} \neq C$. One has $j \in \phi(I) \setminus I$ and $R_i < R_j$. Since $E_C(X) = \emptyset$, one has $X_j = \emptyset$. By condition (Gb), there exist $m \in V(\widehat{C})$, $l \in V(H) \setminus V(\widehat{C})$ such that $(m, l) \in E(H)$ and $X_l \neq \emptyset$. So, $E_{\widehat{C}}(X) \neq \emptyset$ and $U_j \neq \emptyset$ by (5.7). So, we obtain

$$U_i = \emptyset, \ U_i \neq \emptyset \quad \text{and} \quad U_j \neq \emptyset \text{ for some } (k, j) \in E_C(Y)$$

$$(5.10)$$

with
$$k \in V(C)$$
 and $j \in \phi(I) \setminus I$. (5.11)

Moreover, by (4.5), (4.6) and (5.8),

$$\overline{D}_i(U_i, \widetilde{U}_i) = R_i = \frac{R_i}{R_j} \overline{D}_j(X_j, Y_j) \le \lambda_I d_{\phi(I)}(X, Y) \quad \forall \widetilde{U} \in F(Y).$$
(5.12)

Case 2: $U_i \neq \emptyset$ and $\widetilde{U}_i = \emptyset$ for every $\widetilde{U} \in F(Y)$.

In this case, $X_i \cup E_C(X) \neq \emptyset$ and $Y_i \cup E_C(Y) = \emptyset$ by (5.7). Since $(X, Y) \in E(G)$, we deduce that $X_i = Y_i = \emptyset$ and hence $E_C(X) \neq \emptyset$. Let $(k, j) \in E_C(X)$. One has

 $X_j \neq \emptyset$ and $Y_j = \emptyset$, since $(k, j) \notin E_C(Y)$. This contradicts $(X, Y) \in E(G)$ (see condition (Ga)). Thus,

$$U_i \neq \emptyset$$
 and $\widetilde{U}_i = \emptyset$ for every $\widetilde{U} \in F(Y)$ is impossible. (5.13)

Case 3: $U_i \neq \emptyset$ and $\widetilde{U}_i \neq \emptyset$ for every $\widetilde{U} \in F(Y)$

In this case, $X_i \cup E_C(X) \neq \emptyset$ and $Y_i \cup E_C(Y) \neq \emptyset$ by (5.7).

If $X_i \neq \emptyset$, by condition (Ga), $Y_i \neq \emptyset$. So $W_i(X) \neq \emptyset$, $W_i(Y) \neq \emptyset$, and by (4.5), (5.5), and (5.8),

$$D_{i}(W_{i}(X), W_{i}(Y)) = D_{i} \left(\bigcup_{(i,j) \in E(C)} T_{i,j}(X_{j}), \bigcup_{(i,j) \in E(C)} T_{i,j}(Y_{j}) \right)$$

$$\leq \max_{(i,j) \in E(C)} D_{i} \left(T_{i,j}(X_{j}), T_{i,j}(Y_{j}) \right)$$

$$\leq \max_{(i,j) \in E(C)} \lambda_{i,j} D_{j}(X_{j}, Y_{j})$$

$$\leq \lambda_{I} \max_{(i,j) \in E(C)} D_{j}(X_{j}, Y_{j})$$

$$\leq \lambda_{I} d_{\phi(I)}(X, Y).$$
(5.14)

If $X_i = \emptyset$ and $Y_i \neq \emptyset$, then, for every $\widetilde{U}_i \in F_i(Y_i)$, one has by (4.6) and (5.8),

$$D_i(U_i, \widetilde{U}_i) \le R = \frac{R}{R_i} \overline{D}_i(X_i, Y_i) \le \lambda_I d_{\phi(I)}(X, Y).$$
(5.15)

If $E_C(X) \neq \emptyset$, for $\emptyset \neq P \subset E_C(X)$ such that $P \subset E_C(Y)$, for every $(k, j) \in P$, one has $j \in \phi(I)$, and, by (4.5), (5.2), (5.4), (5.8) and (5.9),

$$D_{i}(O_{i}(X,P),O_{i}(Y,P)) = D_{i}\left(\bigcup_{(k,j)\in P} T_{i\to k} \circ T_{k,j}(X_{j}), \bigcup_{(k,j)\in P} T_{i\to k} \circ T_{k,j}(Y_{j})\right)$$

$$\leq \max_{(k,j)\in P} \lambda_{i\to k} D_{k}(T_{k,j}(X_{j}), T_{k,j}(Y_{j}))$$

$$\leq \max_{(k,j)\in P} \lambda_{i\to k} \lambda_{k,j} D_{j}(X_{j}, Y_{j})$$

$$\leq \lambda_{I} \max_{(k,j)\in P} D_{j}(X_{j}, Y_{j})$$

$$\leq \lambda_{I} d_{\phi(I)}(X,Y).$$
(5.16)

If $P \subset E_C(X)$ and $P \not\subset E_C(Y)$, then there exists $(k, j) \in P$ such that $X_j \neq \emptyset$ and $Y_j = \emptyset$ which is impossible since $(X, Y) \in E(G)$.

Combining (5.7), (5.14), (5.15) and (5.16), we choose $\widetilde{U}_i \in F_i(Y)$ such that

$$\widetilde{U}_{i} = \begin{cases} W_{i}(Y), & \text{if } U_{i} = W_{i}(X), \\ O_{i}(Y, P), & \text{if } Y_{i} = \emptyset, \text{ and } U_{i} = O_{i}(X, P) \\ & \text{for } \emptyset \neq P \subset E_{C}(X) \cap E_{C}(Y), \\ W_{i}(Y) \cup O_{i}(Y, P), & \text{if } Y_{i} \neq \emptyset, \text{ and} \\ & U_{i} \in \{O_{i}(X, P), W_{i}(X) \cup O_{i}(X, P)\} \\ & \text{for } \emptyset \neq P \subset E_{C}(X) \cap E_{C}(Y); \end{cases}$$
(5.17)

and we get

$$\overline{D}_i(U_i, \widetilde{U}_i) \le \lambda_I d_{\phi(I)}(X, Y).$$
(5.18)

Step 2: Choice of an appropriate $\widetilde{\mathbf{U}} \in \mathbf{F}(\mathbf{Y})$:

Finally, we choose $\widetilde{U} = (\widetilde{U}_i)_{i \in V(H)} \in F(Y)$ as follows:

$$\widetilde{U}_{i} = \begin{cases} \emptyset, & \text{if } i \in V(C), \ U_{i} = \emptyset, \ Y_{i} \cup E_{C}(Y) = \emptyset, \\ \text{some } \widetilde{U}_{i} \in F_{i}(Y), & \text{if } i \in V(C), \ U_{i} = \emptyset, \ Y_{i} \cup E_{C}(Y) \neq \emptyset, \\ \widetilde{U}_{i} \text{ given by (5.17), } & \text{if } i \in V(C), \ U_{i} \neq \emptyset, \ Y_{i} \cup E_{C}(Y) \neq \emptyset. \end{cases}$$
(5.19)

It follows from (5.10) and (5.17) that

$$(U, \widetilde{U}) \in E(G).$$

Finally, from (5.12) and (5.18), we deduce that

$$d_I(U, \widetilde{U}) \le \lambda_I d_{\phi(I)}(X, Y) \quad \forall I \in \Gamma.$$

Therefore, F is a G-contraction.

Remark 5.2. From the proof of the previous proposition, we already know that for $(X, Y) \in E(G)$ and $U \in F(X)$, the choice of $\widetilde{U} \in F(Y)$ such that $(U, \widetilde{U}) \in E(G)$ and $d_I(U, \widetilde{U}) \leq \lambda_I d_{\phi(I)}(X, Y)$ for all $I \in \Gamma$ is not necessarily unique. Moreover, if for some $C \in C(H)$, one has $E_C(X) \neq \emptyset$, then, from the previous proof, we deduce that $E_C(X) \subset E_C(Y)$. So, for

$$\emptyset \neq P \subsetneq \widetilde{P}, \quad \text{with } P \subset E_C(X), \widetilde{P} \subset E_C(Y),$$

$$(5.20)$$

there exists $(k, j) \in \widetilde{P} \setminus P$ with $X_j = \emptyset$ and $Y_j \neq \emptyset$. So, $j \in \phi(I) \setminus I$. By (4.5), (4.6) and (5.8),

$$\overline{D}_i(O_i(X,P),O_i(Y,\widetilde{P})) \le R_i = \frac{R_i}{R_j}\overline{D}_j(X_j,Y_j) \le \lambda_I d_{\phi(I)}(X,Y) \quad \forall i \in I.$$

537

Therefore, for $i \in V(C) \subset I$, \widetilde{U}_i can be chosen as follows

$$\widetilde{U}_{i} = \begin{cases} W_{i}(Y), & \text{if } U_{i} = W_{i}(X), \\ O_{i}(Y,\widetilde{P}), & \text{if } Y_{i} = \emptyset \text{ and } U_{i} = O_{i}(X,P) \\ & \text{with } \widetilde{P} \text{ as in } (5.20), \\ W_{i}(Y) \cup O_{i}(Y,\widetilde{P}), & \text{if } Y_{i} \neq \emptyset, \text{ and} \\ & U_{i} \in \{O_{i}(X,P), W_{i}(X) \cup O_{i}(X,P)\} \\ & \text{with } \widetilde{P} \text{ as in } (5.20). \end{cases}$$

6. Some properties of the attractor of an infinite H-IIFS

For H = (V(H), E(H)) an infinite MW-directed graph, and $\{T_{i,j}\}_H$ an infinite graph-directed iterated function system over the graph H. Theorem 2.5 gave conditions insuring the existence of K an attractor of this H-IIFS. We want to get more information on K by taking into account the connected components of H. To this aim, we will consider $F : \mathcal{X} \to \mathcal{X}$ the G-contraction defined on the gauge space \mathcal{X} endowed with the graph G introduced in sections 4 and 5.

Theorem 6.1. Let H = (V(H), E(H)) be an infinite MW-directed graph and $\{T_{i,j}\}_H$ an H-IIFS satisfying (H). Let $(R_i)_{i \in V(H)}$ be a family of constants satisfying (R). Assume that $X^0 \in \mathcal{X}$ and $X^1 \in F(X^0)$ are such that

$$\sum_{n=1}^{\infty} \lambda_I \lambda_{\phi(I)} \cdots \lambda_{\phi^{n-1}(I)} d_{\phi^n(I)}(X^0, X^1) < \infty \quad \forall I \in \Gamma,$$
(6.1)

where λ_I is defined in (5.8). Then, there exists $K(X^0) \in \mathcal{X}$ such that

- (1) $K_i(X^0) \neq \emptyset$ for every $i \in V(H)$ such that $X_i^0 \neq \emptyset$;
- (2) $K_i(X^0) \neq \emptyset$ if and only if $i \in [j]_{\leftarrow}$, for some $j \in V(H)$ such that $X_i^0 \neq \emptyset$;
- (3) $K(X^0)$ is a fixed point of the multi-valued map F;
- (4) if $\{T_{i,j}\}_H$ has an attractor K, then $K(X^0) \subset K$.

Proof. Let $F : \mathcal{X} \to \mathcal{X}$ be the multi-valued map defined in (5.6) and (5.7). We know that F is a G-contraction by Proposition 5.1. Also, if $\{T_{i,j}\}_H$ has an attractor K, the definition of F implies that fixed points of F are included in K.

Let $X^0 \in \mathcal{X}$ and $X^1 \in F(X^0)$ be such that (6.1) is satisfied. We want to show that there exists $K(X^0)$ a fixed point of F satisfying the required properties.

For $n \in \mathbb{N}$, we choose inductively

$$X^{n+1} \in F(X^n)$$
 the biggest element of $F(X^n)$, (6.2)

that is $X^{n+1} = (X_i^{n+1})_{i \in V(H)} \in F(X^n)$ is chosen as follows. For $i \in V(C)$ for some $C \in C(H)$,

$$X_i^{n+1} = \begin{cases} \emptyset, & \text{if } X_i^n = E_C(X^n) = \emptyset; \\ O_i(X^n, E_C(X^n)), & \text{if } X_i^n = \emptyset, E_C(X^n) \neq \emptyset; \\ W_i(X^n) \cup O_i(X^n, E_C(X^n)), & \text{if } X_i^n \neq \emptyset; \end{cases}$$
(6.3)

where E_C , O_i and W_i are defined in (5.1), (5.4) and (5.5) respectively.

Arguing as in the proof of Proposition 5.1 and by Remark 5.2, one has that $(X^{n-1}, X^n) \in E(G)$ and

$$d_I(X^n, X^{n+1}) \le \lambda_I d_{\phi(I)}(X^{n-1}, X^n) \quad \forall I \in \Gamma.$$

By the proof of Theorem 3.3, the sequence $\{X^n\}$ is a *G*-Picard trajectory converging to some $K(X^0) \in \mathcal{X}$.

Observe that for every $i \in V(H)$ such that $X_i^0 \neq \emptyset$, one has $X_i^n \neq \emptyset$ for every $n \in \mathbb{N}$. Therefore, $K(X^0)$ satisfies (1).

By construction, for $i \in V(C)$ for $C \in C(H)$, if there is a directed path $[i_n]_{n=0}^N$ in H from $i = i_0$ to $j = i_N$ such that $X_j^0 \neq \emptyset$, then $X_i^n \neq \emptyset$ for every n > N. Therefore, $K(X^0)_i \neq \emptyset$. On the other hand, if $i \notin [j]_{\leftarrow}$, for all $j \in V(H)$ such that $X_j^0 \neq \emptyset$, then $X_i^n = \emptyset$ for every $n \in \mathbb{N}$, and hence $K(X^0)_i = \emptyset$. So, $K(X^0)$ satisfies (2).

To conclude, we have to show that $K(X^0)$ is a fixed point of F. This will imply that $K(X^0) \subset K$ if the attractor K of $\{T_{i,j}\}_H$ exists.

Let us denote

$$V(X^0) = \{ i \in V(H) : i \in [j]_{\leftarrow} \text{ for some } j \in V(H) \text{ such that } X_j^0 \neq \emptyset \}.$$
(6.4)

It follows from (2) that

if
$$i \in V(X^0)$$
, $K(X^0)_i \neq \emptyset$,
if $i \notin V(X^0)$, $K(X^0)_i = E_C(K(X^0)) = \emptyset$. (6.5)

Let $\widehat{U} = (\widehat{U})_{i \in V(H)} \in \mathcal{X}$ be defined by

$$\widehat{U}_{i} = \begin{cases} \emptyset, & \text{if } i \in V(H) \setminus V(X^{0}), \\ W_{i}(K(X^{0})) \cup O_{i}(K(X^{0}), E_{C}(K(X^{0}))), & \text{if } i \in V(X^{0}) \cap V(C) \\ & \text{for } C \in C(H). \end{cases}$$
(6.6)

So, by (6.5) and the definition of F (see (5.7)),

$$\widehat{U} \in F(K(X^0)). \tag{6.7}$$

We claim that $K(X^0) = \widehat{U}$.

Let $\hat{I} \in \Gamma$. For every $C \in C(H)$ such that $V(C) \subset \hat{I}$, we denote

$$N_C = \begin{cases} \sup \left\{ \inf\{n : X_j^n \neq \emptyset\} : (k,j) \in E_C(K(X^0)) \right\}, & \text{if } E_C(K(X^0)) \neq \emptyset, \\ 0, & \text{otherwise.} \end{cases}$$

From the fact that $outdeg(k) < \infty$ for every $k \in V(C)$ and by (H), we deduce that $N_C < \infty$. Let

$$N = \max\left\{N_C : V(C) \subset \hat{I}\right\}.$$
(6.8)

So,

$$E_C(K(X^0)) = E_C(X^n) \quad \forall V(C) \subset \hat{I}, \ \forall n > N.$$
(6.9)

T. DINEVARI AND M. FRIGON

For n > N, let us define $\widehat{X}^n = (\widehat{X}^n_i)_{i \in V(H)}, \ \widehat{U}^n = (\widehat{U}^n_i)_{i \in V(H)} \in \mathcal{X}$ by $\widehat{X}_i^n = \begin{cases} X_i^n, & \text{if } i \in \phi(\widehat{I}), \\ K(X^0)_i, & \text{otherwise}; \end{cases}$

and

$$\widehat{U}_i^n = \begin{cases} \emptyset, & \text{if } i \in V(H) \setminus V(X^0), \\ W_i(\widehat{X}^n) \cup O_i(\widehat{X}^n, E_C(\widehat{X}^n)), & \text{if } i \in V(X^0) \cap V(C) \text{ for } C \in C(H). \end{cases}$$

It follows from (6.9) and the definitions of E(G) and F (see (5.6)) that

$$(K(X^0), \widehat{X}^n) \in E(G), \quad (\widehat{U}, \widehat{U}^n) \in E(G) \text{ and } \widehat{U}^n \in F(\widehat{X}^n).$$
 (6.10)

Arguing as in the proof of Proposition 5.1, we can show that

1

$$d_{\hat{I}}(\widehat{U}^n, \widehat{U}) \le \lambda_{\hat{I}} d_{\phi(\hat{I})}(\widehat{X}^n, K(X^0)).$$
(6.11)

Observe that, for every n > N,

$$\widehat{X}_i^n = X_i^n \quad \forall i \in \phi(\widehat{I}) \quad \text{and} \quad \widehat{U}_i^n = X_i^{n+1} \quad \forall i \in \widehat{I}.$$
(6.12)

So,

$$d_{\phi(\hat{I})}(\hat{X}^{N+k}, X^{N+k}) \to 0 \quad \text{and} \quad d_{\hat{I}}(\hat{U}^{N+k}, X^{N+k+1}) \to 0 \quad \text{as } k \to \infty.$$
(6.13)

Combining (6.7), (6.10), (6.11), and (6.13), it follows from Lemma 3.6 that

$$K(X^0) = U \in F(K(X^0)).$$

Theorem 6.2. Let H = (V(H), E(H)) be an infinite MW-directed graph and $\{T_{i,j}\}_H$ an H-IIFS satisfying (H). Let $(R_i)_{i \in V(H)}$ be a family of constants satisfying (R). Assume that, for $X^0, Y^0 \in \mathcal{X}$, (6.1) is satisfied with (X^0, X^1) and (Y^0, Y^1) , where X^1 and Y^1 are the biggest elements of $F(X^0)$ and $F(Y^0)$ respectively. Then the following statements hold:

- If X⁰, Y⁰ are such that {i ∈ V(H) : X⁰_i ≠ Ø} = {i ∈ V(H) : Y⁰_i ≠ Ø} and X⁰_i ⊂ Y⁰_i for every i ∈ V(H), then K(X⁰) = K(Y⁰).
 If X⁰, Y⁰ are such that {i ∈ V(H) : X⁰_i ≠ Ø} ⊂ {i ∈ V(H) : Y⁰_i ≠ Ø}, then
- $K(X^0)_i \subset K(Y^0)_i$ for every $i \in V(H)$.
- (3) If there is $N \in \mathbb{N}$ such that $\{i \in V(H) : X_i^0 \neq \emptyset\} \subset \{[j]_{\leftarrow}^N : Y_j^0 \neq \emptyset\},\$ then $K(X^0)_i \subset K(Y^0)_i$ for every $i \in V(H)$, where $[j]_{\leftarrow}^N = \{k \in V(H) :$ there is a directed path $[i_n]_{n=0}^{N_k}$ in H from $k = i_0$ to $j = i_{N_k}$ with $N_k \leq N\}$.

Proof. (1) Let $\{X^n\}$ and $\{Y^n\}$ be the G-Picard trajectories defined inductively by (6.2) and such that $X^n \to K(X^0)$ and $Y^n \to K(Y^0)$. Observe that $(X^n, Y^n) \in$ E(G) for every $n \in \{0\} \cup \mathbb{N}$. Arguing as in the proof of Proposition 5.1, we deduce that

$$d_I(X^n, Y^n) \le \lambda_I d_{\phi(I)}(X^{n-1}, Y^{n-1}) \quad \forall n \in \mathbb{N}, \ \forall I \in \Gamma.$$

Therefore, $\{X^n\}$ and $\{Y^n\}$ have the same limit; that is $K(X^0) = K(Y^0)$.

(2) Let $Z^0 = (Z_i^0)_{i \in V(H)} \in \mathcal{X}$ be defined by $Z_i^0 = X_i^0 \cup Y_i^0$. Let Z^1 be the biggest element of $F(Z^0)$. One can check that

$$\overline{D}_i(Z_i^0,Z_i^1) \leq \overline{D}_i(X_i^0,X_i^1) + \overline{D}_i(Y_i^0,Y_i^1) \quad \forall i \in V(H),$$

and hence

$$d_I(Z^0, Z^1) \le d_I(X^0, X^1) + d_I(Y^0, Y^1) \quad \forall I \in \Gamma.$$

Thus, (Z^0, Z^1) satisfies (6.1). So, Y^0 and Z^0 verify the assumptions of (1). Therefore,

$$K(Y^0) = K(Z^0).$$

Let $\{X^n\}$ and $\{Z^n\}$ be the *G*-Picard trajectories defined inductively by (6.2) and such that $X^n \to K(X^0)$ and $Z^n \to K(Z^0)$. Since $X_i^0 \subset Z_i^0$, one has $X_i^n \subset Z_i^n$ for every $i \in V(H)$ and every $n \in \mathbb{N}$. Thus,

$$K(X^0)_i \subset K(Z^0)_i = K(Y^0)_i \quad \forall i \in V(H).$$

(3) Let $\{X^n\}$ and $\{Y^n\}$ be the *G*-Picard trajectories defined inductively by (6.2) and such that $X^n \to K(X^0)$ and $Y^n \to K(Y^0)$. The assumption implies that

$$\{i \in V(H) : X_i^0 \neq \emptyset\} \subset \{i \in V(H) : Y_i^N \neq \emptyset\}.$$

From the proof of Proposition 5.1,

$$d_I(Y^N, Y^{N+1}) \le \lambda_I \cdots \lambda_{\phi^{N-1}(I)} d_{\phi^N(I)}(Y^0, Y^1) \quad \forall I \in \Gamma.$$

Therefore, (Y^N, Y^{N+1}) satisfies (6.1). It follows from (2) that

$$K(X^0)_i \subset K(Y^N)_i \quad \forall i \in V(H).$$

Since

$$K(Y^N) = \lim_{k \to \infty} Y^{N+k} = \lim_{n \to \infty} Y^n = K(Y^0),$$

one has

$$K(X^0)_i \subset K(Y^0)_i \quad \forall i \in V(H).$$

Example 6.3. Let H = (V(H), E(H)) be given by $V(H) = \mathbb{Z} \times \{0, 1\}$ and

$$E(H) = \left\{ ((0,0), (1,1)), ((0,1), (1,0)) \right\}$$
$$\cup \left\{ ((i,a), (i+1,a)), ((3i,a), (3i-2,a)) : i \in \mathbb{Z}, a = 0, 1 \right\}.$$

For a = 0, 1, and $i \in \mathbb{Z}$, let $M_{(i,a)} = [i, i+1] \times [a, a+1]$ be endowed with the norm $||(x, y)|| = \max\{|x|, |y|\}$. For $(i, j) = ((i_1, a), (j_1, b)) \in E(H)$, let $T_{i,j} : M_j \to M_i$ be a contraction with constant of contraction $\lambda_{i,j} < 1$. We assume that

$$k_n := \frac{1+e^n}{1+e^{n+1}} \ge \max\left\{\lambda_{i,j} : (i,j) \in E(H), i = (i_1,a) \text{ for } a \in \{0,1\} \text{ and} \\ i_1 \in \{3n-1, 3n-2, 3n\}\right\}.$$
(6.14)

We observe that $n \mapsto k_n$ is nonincreasing. Arguing as in Example 2.7, it can be shown that Theorem 2.5 implies that this *H*-IIFS, $\{T_{i,j}\}_H$, has a unique attractor *K*.

Moreover, for this *H*-IIFS, one has for $n \in \mathbb{Z}$ and a = 0, 1, the connected component of H, $C_n^a = (V(C_n^a), E(C_n^a))$, given by

$$\begin{split} V(C_n^a) &= \{(3n-2,a), (3n-1,a), (3n,a)\}, \\ E(C_n^a) &= \Big\{ \big((3n-2,a), (3n-1,a)\big), \big((3n-1,a), (3n,a)\big), \big((3n,a), (3n-2,a)\big) \Big\}. \end{split}$$

So, as shown in Figure 6.1, the set of all connected components of H is

$$C(H) = \{C_n^a : n \in \mathbb{Z}, a = 0, 1\}$$

Observe that

$$C^a_m \preceq C^b_n \quad \Longleftrightarrow \quad (a = b \text{ and } m \le n) \text{ or } (a \neq b \text{ and } m \le 0 < n)$$

FIGURE 6.1. The set of connected components C(H).

Let Γ and $\phi: \Gamma \to \Gamma$ be given by

$$\begin{split} \Gamma &= \{ I \subset \mathbb{Z} \times \{0,1\} : 0 < \operatorname{card}(I) < \infty, \text{ and } V(C_n^a) \subset I \ \forall V(C_n^a) \cap I \neq \emptyset \},\\ \phi(I) &= I \cup \{(i+1,a), (i+2,a), (i+3,a) : (i,a) \in I \} \\ &\cup \{(1,1), (2,1), (3,1) : \operatorname{if}(0,0) \in I \} \\ &\cup \{(1,0), (2,0), (3,0) : \operatorname{if}(0,1) \in I \}. \end{split}$$

Also, let

$$\mathcal{X} = \left\{ X = \left(X_{(i,a)} \right)_{(i,a) \in V(H)} : X_{(i,a)} \subset M_{(i,a)} \text{ closed } \forall (i,a) \in V(H), \\ \text{if } X_{(i,a)} \neq \emptyset \text{ for } (i,a) \in C_n^a, \text{ then } X_{(j,a)} \neq \emptyset \forall (j,a) \in C_n^a, \\ \text{ card}\{(i,a) : X_{(i,a)} \neq \emptyset\} \neq 0 \right\}.$$

We fix R = 1 and $(R_{(i,a)})_{(i,a) \in V(H)}$ given by

$$R_{(i,a)} = 1 + e^n \quad \text{for } (i,a) \in C_n^a$$

This permits to define $\{d_I\}_{I\in\Gamma}$ by

$$d_I(X,\widehat{X}) = \max\left\{\overline{D}_{(i,a)}(X_{(i,a)},\widehat{X}_{(i,a)}) : (i,a) \in I\right\},\$$

where

$$\overline{D}_{(i,a)}(X_{(i,a)}, \widehat{X}_{(i,a)}) = \begin{cases} D(X_{(i,a)}, \widehat{X}_{(i,a)}), & \text{if } X_{(i,a)} \neq \emptyset, \widehat{X}_{(i,a)} \neq \emptyset, \\ 0, & \text{if } X_{(i,a)} = \emptyset, \widehat{X}_{(i,a)} = \emptyset, \\ R_{(i,a)}, & \text{otherwise.} \end{cases}$$

Observe that

$$\lambda_{I} = \max\left\{ \max\left\{ \lambda_{(i,a),(j,b)} : \left((i,a),(j,b)\right) \in E(H) \right\}, \max\left\{ \frac{1}{R_{(i,a)}} : (i,a) \in I \right\}, \\ \max\left\{ \frac{R_{(i,a)}}{R_{(j,b)}} : (i,a) \in I, (j,b) \in \phi(I) \setminus I \right\} \right\}$$

 $\leq k_{n_0},$

where k_n is defined in (6.14) and

$$n_0 = \min\{n : I \cap C_n^0 \neq \emptyset \text{ or } I \cap C_n^1 \neq \emptyset\}.$$

Also $\lambda_I = \lambda_{\phi(I)}$ for every $I \in \Gamma$. Therefore,

$$\sum_{n=1}^{\infty} \lambda_I \lambda_{\phi(I)} \cdots \lambda_{\phi^{n-1}}(I) d_{\phi^n(I)}(X, \widehat{X}) \le \sum_{n=1}^{\infty} k_{n_0}^n d_{\phi^n(I)}(X, \widehat{X}) \quad \forall X, \widehat{X} \in \mathcal{X}.$$

This sum is finite in particular for every $X = X^0 \in \mathcal{X}$ and every $\widehat{X} = X^1 \in F(X^0)$ such that $\sup\{i : X_{(i,a)}^0 \neq \emptyset\} \neq \sup\{i : X_{(i,a)}^0 = \emptyset\}$, where $F : \mathcal{X} \to \mathcal{X}$ is defined in (5.6). Therefore, this *H*-IIFS, $\{T_{i,j}\}_H$, satisfies all the assumptions of Theorems 6.1 and 6.2. In particular, for such $X^0 \in \mathcal{X}$, there exists a subattractor $K(X^0) \subset K$ satisfying all the properties stated in those theorems.

References

- [1] M.F. Barnsley, Fractals Everywhere, Academic Press Inc., Boston, 1988.
- [2] A. Chiş, R. Precup, Continuation theory for general contractions in gauge spaces, Fixed Point Theory Appl., 3(2004), 173-185.
- [3] M. Das, Contraction ratios for graph-directed iterated constructions, Proc. Amer. Math. Soc., 134(2006), 435–442.
- [4] T. Dinevari, M. Frigon, Fixed point results for multivalued contractions on a metric space with a graph, J. Math. Anal. Appl., 405(2013), 507–517.
- [5] T. Dinevari, M. Frigon, Applications of multivalued contractions on graphs to graph-directed iterated function systems, Abstr. Appl. Anal., 2015 (2015), Art. ID 345856, 16 pp.
- [6] G.A. Edgar, Measure, Topology, and Fractal Geometry, Springer-Verlag, New York, 1990.
- [7] M. Frigon, Fixed point results for generalized contractions in gauge spaces and applications, Proc. Amer. Math. Soc., 128(2000), 2957–2965.
- [8] M. Frigon, Fixed point results for multivalued contractions on gauge spaces, Set Valued Mapping with Applications in Nonlinear Analysis, Ser. Math. Anal. Appl., 4, Taylor & Francis, London, 2002, 175–181.
- M. Frigon, Fixed point and continuation results for contractions in metric and in gauge spaces, Fixed Point Theory and its Applications, Banach Center Publ., Polish Acad. Sci., Warzaw, 77(2007), 89–114.

T. DINEVARI AND M. FRIGON

- [10] N. Gheorghiu, Fixed point theorems in uniform spaces, An. St. Univ. Al. I. Cuza Iaşi, 28(1982), 17-18.
- [11] G. Gwóźdź-Łukawska, J. Jachymski, IFS on a metric space with a graph structure and extensions of the Kelisky-Rivlin theorem, J. Math. Anal. Appl., 356(2009), 453–463.
- [12] J.E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30(1981), 713-747.
- [13] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136(2008), 1359–1373.
- [14] R.D. Mauldin, S.C. Williams, Hausdorff dimension in graph directed constructions, Trans. Amer. Math. Soc., 309(1988), 811–829.
- [15] A. Nicolae, D. O'Regan, A. Petruşel, Fixed point theorems for singlevalued and multivalued generalized contractions in metric spaces endowed with a graph, Georgian Math. J., 18(2011), 307–327.
- [16] J.J. Nieto, R.L. Pouso, R. Rodríguez-López, Fixed point theorems in ordered abstract spaces, Proc. Amer. Math. Soc., 135(2007), 2505–2517.
- [17] J.J. Nieto, R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22(2005), 223–239.
- [18] A. Petruşel, I. Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc., 134(2006), 411–418.
- [19] A.C.M. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 132(2004), 1435–1443.

Received: April 23, 2014; Accepted: January 23, 2016.