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Abstract. We consider multi-valued maps defined on a complete gauge space endowed with a

directed graph. We establish a fixed point result for maps which send connected points into connected

points and satisfy a generalized contraction condition. Then, we study infinite graph-directed iterated

function systems (H-IIFS). We give conditions insuring the existence of a unique attractor to an

H-IIFS. Finally, we apply our fixed point result for multi-valued contractions on gauge spaces

endowed with a graph to obtain more information on the attractor of an H-IIFS. More precisely, we

construct a suitable gauge space endowed with a graph G and a suitable multi-valued G-contraction

such that its fixed points are sub-attractors of the H-IIFS.
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1. Introduction

In 2008, Jachymski [13] introduced the notion of single-valued G-contraction de-

fined on a complete metric space endowed with a graph, which is a map preserving the

graph and satisfying a contraction condition only between points related by an edge.

He proved some generalizations of the Banach contraction principle to single-valued

G-contractions. In particular, he generalized many contractions results in partially

ordered sets, see [16, 17, 18, 19].

In [4], Dinevari and Frigon generalized Jachymski’s fixed point results to multi-

valued maps by introducing the notions of multi-valued G-contraction and weak

G-contraction on a complete metric space endowed with a graph. Other general-

izations of Jachymski’s results to multi-valued maps were obtained in [15].

In 1982, Gheorgiu [10] presented a fixed point result for general single-valued con-

tractions in complete gauge spaces. In [2], Chiş and Precup extended this result and

they presented a continuation principle for such contractions. Another approach to
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obtain fixed point results was developed in [7] for single-valued contractions and in [8]

for multi-valued contractions on complete gauge spaces, (see also [9] for a survey of

results on that subject).

In this paper, we consider a complete gauge space X endowed with a directed

graph G. We introduce the notions of multi-valued G-contraction and G-Lipschitz

multi-valued map in the sense of Gheorgiu on X. Then, we establish a fixed point

result for such multi-valued maps. This result generalizes fixed point results for single-

valued and multi-valued contractions on complete metric spaces endowed with a graph

obtained in [13] and [4] respectively. It is worthwhile to notice that our fixed point

result is new even in the particular case where the map is single-valued and defined

on X.

In this paper, we are also interested to apply our fixed point result to infinite

iterated function systems.

An iterated function system (IFS) is a finite set of self-maps {Ti : i = 1, . . . , n}
defined on a complete metric space (M,d). Using the Banach contraction principle,

Hutchinson [12] proved that if each Ti is a contraction, then there exists a unique

nonempty compact set K ⊂M , called the attractor of the IFS, such that

K =

n⋃
i=1

Ti(K).

This result was popularized by Barnsley [1] as the main method of constructing frac-

tals.

Geometric graph-directed constructions are generalizations of iterated function sys-

tems. Mauldin and Williams [14] were the firsts who introduced the notion of graph-

directed constructions in Rm governed by a finite directed graph H and similarity

maps Ti,j which are labeled by the edges of the graph. They established that each geo-

metric graph-directed construction has a unique attractor. Graph-directed construc-

tions have been studied and generalized by many authors, see for example [3, 6, 11]

and the references therein.

Recently, Dinevari and Frigon [5] applied their fixed point results for multi-valued

G-contractions established in [4] to obtain more information on the attractor K of

a graph-directed iterated function system governed by a finite directed graph and a

finite family of contractions {Ti,j} defined on complete metric spaces and labeled by

the edges of the graph. To this aim, they defined a complete metric space, a suitable

directed graph G on this space, and an appropriate multi-valued G-contraction. Using

the fixed points of this G-contraction, they studied certain subsets of the attractor K

and the relations between these sub-attractors.

In this paper, we consider a directed graph H = (V (H), E(H)) such that V (H)

the set of vertices and E(H) the set of edges are countably infinite sets. We study

infinite graph-directed iterated function systems over the graph H (H-IIFS). Such an

H-IIFS contains a family of contractions {Ti,j}(i,j)∈E(H) on complete metric spaces.

We give conditions insuring the existence of a unique attractor to this H-IIFS. Our
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result relies on a generalization of Gheorgiu’s fixed point theorem on gauge spaces

due to Chiş and Precup [2].

Then, under an extra assumption on the H-IIFS, we apply our fixed point result

for multi-valued contractions on complete gauge spaces endowed with graphs to ob-

tain more information on the attractor of this H-IIFS. Those results are obtained

in Section 6. In order to prove those results, taking into account the H-IIFS, we

construct a suitable complete gauge space on which we define an appropriate directed

graph G in Section 4. In Section 5, we define a multi-valued map on this gauge space

and we show that it is a G-contraction.

2. Main results

In this section, we introduce the notions of infinite MW-graph H and infinite graph

iterated function system over the graph H. We give conditions insuring the existence

of a unique attractor to an infinite graph iterated function system over the graph H.

Definition 2.1. A directed graph H = (V (H), E(H)) is called an infinite MW-direc-

ted graph if

(i) V (H) is countable;

(ii) H has no parallel edges;

(iii) 1 ≤ outdeg(i) < ∞ for every i ∈ V (H), where outdeg(i) is the number of

outward directed edges emanating from vertex i.

Definition 2.2. Let H = (V (H), E(H)) be an infinite MW-directed graph. An infi-

nite graph iterated function system over the graph H (H-IIFS) is a family of nonempty

complete metric spaces, {Mi : i ∈ V (H)}, and, for each (i, j) ∈ E(H), a single-valued

contraction Ti,j : Mj → Mi with constant of contraction λi,j . An H-IIFS is denoted

by {Ti,j}H .

An attractor of an H-IIFS is defined as follows.

Definition 2.3. Let {Ti,j}H be an H-IIFS. An attractor K of this H-IIFS is a family

of nonempty compact sets K = (Ki)i∈V (H) such that Ki ⊂Mi and

Ki =
⋃

(i,j)∈E(H)

Ti,j(Kj) ∀i ∈ V (H).

In order to establish the existence of an attractor to some H-IIFS, we will use the

following generalization of Gheorghiu’s fixed point result due to Chiş and Precup [2]

that we recall for sake of completeness.

Theorem 2.4 ([2]). Let (X, {qs}s∈S) be a complete gauge space, and f : X → X a

single-valued map. Assume that

(i) there exist a function ψ : S → S and k = (ks)s∈S such that ks ≥ 0 for all

s ∈ S,

qs
(
f(x), f(y)

)
≤ ksqψ(s)(x, y) ∀s ∈ S, ∀x, y ∈ X, (2.1)
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and

∞∑
n=1

kskψ(s) · · · kψn−1(s)qψn(s)(x, y) <∞ ∀s ∈ S, ∀x, y ∈ X,

where ψn is the n-th iteration of ψ;

(ii) for every x0 ∈ X, if {fn(x0)} converges to some x ∈ X, then x = f(x).

Then f has a unique fixed point.

We need to introduce some notations. In what follows, H is an infinite MW-directed

graph and {Ti,j}H is an H-IIFS.

Let

Γ0 =
{
I = {i1, . . . , in} ⊂ V (H) : n ∈ N

}
. (2.2)

We denote

kI = max
{
λi,j : (i, j) ∈ E(H) and i ∈ I

}
∀I ∈ Γ0,

and we define the map ϕ : Γ0 → Γ0 by

ϕ(I) = I ∪
{
j ∈ V (H) : ∃i ∈ I such that (i, j) ∈ E(H)

}
. (2.3)

We consider the space

Y =
{
Y = (Yi)i∈V (H) : ∅ 6= Yi ⊂Mi is compact

}
. (2.4)

For every I ∈ Γ0 and Y, Ŷ ∈ Y, let

pI(Y, Ŷ ) = max
{
Di(Yi, Ŷi) : i ∈ I

}
, (2.5)

where Di is the Hausdorff metric on Mi. It is easy to see that (Y, {pI}I∈Γ0
) is a

complete gauge space.

We are ready to establish the existence of an attractor of the H-IIFS.

Theorem 2.5. Let {Ti,j}H be an H-IIFS. Assume that

∞∑
n=1

kIkϕ(I) · · · kϕn−1(I)pϕn(I)(Y, Ŷ ) <∞ ∀I ∈ Γ0, ∀Y, Ŷ ∈ Y. (2.6)

Then {Ti,j}H has a unique attractor K.

Proof. Let us define f : Y → Y by

fi(Y ) =
⋃

(i,j)∈E(H)

Ti,j(Yj).

Using the fact that every Ti,j is a contraction in the classical sense, we prove that

pI(f(Y ), f(Ŷ )) ≤ kIpϕ(I)(Y, Ŷ ) ∀I ∈ Γ0, ∀Y, Ŷ ∈ Y.
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Indeed,

pI(f(Y ), f(Ŷ )) = max
{
Di(fi(Y ), fi(Ŷ )) : i ∈ I

}
= max

Di

( ⋃
(i,j)∈E(H)

Ti,j(Yj),
⋃

(i,j)∈E(H)

Ti,j(Ŷj)
)

: i ∈ I


≤ max

{
max

(i,j)∈E(H)
Di(Ti,j(Yj), Ti,j(Ŷj)) : i ∈ I

}
≤ max

{
max

(i,j)∈E(H)
λi,jDj(Yj , Ŷj) : i ∈ I

}
≤ kI max

{
Di(Yi, Ŷi) : i ∈ ϕ(I)

}
= kIpϕ(I)(Y, Ŷ ).

We claim that (ii) of Theorem 2.4 is satisfied. Indeed, let us assume that Y 0 ∈ Y
is such that {fn(Y 0)} converges to some Y ∈ Y. If Y 6= f(Y ), there exists i ∈ V (H)

such that

Di(Yi, f(Y )i) = r > 0.

Let N ∈ N be such that

pϕ({i})
(
fn(Y 0), Y

)
<
r

2
∀n ≥ N.

So,

r = p{i}(Y, f(Y )) ≤ p{i}
(
Y, fN+1(Y 0)

)
+ p{i}

(
fN+1(Y 0), f(Y )

)
≤ pϕ({i})

(
Y, fN+1(Y 0)

)
+ k{i}pϕ({i})

(
fN (Y 0), Y

)
< r.

Contradiction.

It follows from Theorem 2.4 that f has a unique fixed point K ∈ Y, and hence, K

is an attractor of {Ti,j}H . �

Remark 2.6. Observe that (2.6) is satisfied if:

sup{λi,j : (i, j) ∈ E(H)} < 1 and sup{diam(Mi) : i ∈ V (H)} <∞. (2.7)

So, every H-IIFS satisfying (2.7) has a unique attractor.

Example 2.7. Let H = (V (H), E(H)) (see Figure 2.1) be given by

V (H) = Z and E(H) = {(n, n+ 1), (n, n+ 2) : n ∈ Z}.

−2 −1 0 1 2 3

Figure 2.1. The MW-directed graph H of Example 2.7.
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For n ∈ Z, let Mn = [n, n + 1] and Tn,n+1 : Mn+1 → Mn, Tn,n+2 : Xn+2 → Xn

contractions with constants of contraction λn,n+1 < 1 and λn,n+2 < 1 respectively.

We define

λn = max{λn,n+1, λn,n+2}.

We assume that n 7→ λn is nonincreasing.

It follows from Theorem 2.5 that the H-IIFS, {Ti,j}H , has a unique attractor K.

Indeed, one has

Γ0 = {I ⊂ Z : 0 < card(I) <∞},
Y = {Y = (Yn)n∈Z : ∅ 6= Yn ⊂ [n, n+ 1] closed ∀n ∈ Z},

pI(Y, Ŷ ) = max{D(Yi, Ŷi) : i ∈ I} ∀Y, Ŷ ∈ Y,∀I ∈ Γ0,

ϕ : Γ0 → Γ0 given by ϕ(I) = I ∪ {i+ 1, i+ 2 : i ∈ I}.

Observe that

kI = max{λi,j : (i, j) ∈ E(H) and i ∈ I} = λi0 , where i0 = min I,

and kI = kϕ(I) for every I ∈ Γ0. Therefore,

∞∑
n=1

kIkϕ(I) · · · kϕn−1(I)pϕn(I)(Y, Ŷ ) ≤
∞∑
n=1

λni0pϕn(I)(Y, Ŷ )

≤
∞∑
n=1

λni0 <∞ ∀Y, Ŷ ∈ Y.

Hence, {Ti,j}H satisfies the assumptions of Theorem 2.5.

3. Multi-valued contraction on gauge spaces endowed with a graph

In this section, we consider
(
X, {qs}s∈S

)
a complete gauge space endowed with a

directed graph G = (V (G), E(G)) such that the set of vertices V (G) = X and the

set of edges E(G) has no parallel edges and it contains the diagonal. We generalize

Theorem 2.4 to multi-valued map F : X → X satisfying a condition analogous to (2.1)

only for x, y ∈ X related by an edge (x, y) ∈ E(G).

Definition 3.1. Let F : X → X be a multi-valued map with nonempty values. We

say that F is a G-Lipschitz map in the sense of Gheorghiu with map ψ : S → S

and constant λ = (λs)s∈S such that λs ≥ 0 for all s ∈ S, if, for every (x, y) ∈ E(G)

and every u ∈ F (x), there exists v ∈ F (y) such that (u, v) ∈ E(G) and

qs(u, v) ≤ λsqψ(s)(x, y) ∀s ∈ S. (3.1)

The map F is called a G-contraction if it is a G-Lipschitz map with λs < 1 for every

s ∈ S.

We consider suitable trajectories in X.
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Definition 3.2. Let F : X → X be a multi-valued mapping and x0 ∈ X. We

say that a sequence {xn} is a G-Picard trajectory from x0, if xn ∈ F (xn−1) and

(xn−1, xn) ∈ E(G) for all n ∈ N. The set of all such G-Picard trajectories from x0 is

denoted by T (F,G, x0).

Here is our main fixed point result for multi-valued contractions in the sense of

Gheorgiu on the gauge space X endowed with a directed graph G.

Theorem 3.3. Let F : X → X be a multi-valued G-Lipschitz map with constant

λ = (λs)s∈S and map ψ : S → S. Assume that there exists (x0, x1) ∈ E(G) such that

x1 ∈ F (x0) and
∞∑
n=1

λsλψ(s) · · ·λψ(n−1)(s)qψn(s)(x0, x1) <∞ ∀s ∈ S. (3.2)

Then, there exists a G-Picard trajectory from x0 converging to some x̂ ∈ X. In

addition, assume that one of the following conditions holds:

(i) F is G-Picard continuous from x0, i.e. the limit of any convergent G-Picard

trajectory {xn} ∈ T (F,G, x0) is a fixed point of F ;

(ii) F has closed values and, for every {xn} in T (F,G, x0) converging to some

x ∈ X, there exists a subsequence {xnk} such that (xnk , x) ∈ E(G) for all

k ∈ N.

Then, x̂ is a fixed point of F . Moreover, every converging G-Picard trajectory from

x0 converges to a fixed point of F .

Proof. Let x0 and x1 ∈ F (x0) be given by assumption. Since F is a G-Lipschitz map,

one can choose a sequence {xn} such that xn+1 ∈ F (xn), (xn, xn+1) ∈ E(G) and

qs(xn, xn+1) ≤ λsqψ(s)(xn−1, xn) ≤ . . . ≤ λsλψ(s) . . . λψn−1(s)qψn(s)(x0, x1),

for every s ∈ S and n ∈ N. Moreover, for every m ∈ N,

qs(xn, xn+m) ≤
n+m−1∑
i=n

qs(xi, xi+1) ≤
n+m−1∑
i=n

λsλψ(s) . . . λψi−1(s)qψi(s)(x0, x1).

Therefore, {xn} is a Cauchy sequence and hence converges to some x̂ ∈ X.

If the condition (i) is satisfied, then clearly x̂ is a fixed point of F .

On the other hand, if the condition (ii) is satisfied, then there exists a subsequence

{xnk} such that (xnk , x̂) ∈ E(G) for every k ∈ N. Since F is a G-Lipschitz map, for

each k ∈ N, there exists ynk+1 ∈ F (x̂) such that (xnk+1, ynk+1) ∈ E(G) and

qs(xnk+1, ynk+1) ≤ λsqψ(s)(xnk , x̂) ∀s ∈ S.
Therefore, for every s ∈ S,

qs(ynk+1, x̂) ≤ qs(ynk+1, xnk+1) + qs(xnk+1, x̂) ≤ λsqψ(s)(xnk , x̂) + qs(xnk+1, x̂).

Consequently, ynk+1 → x̂, and hence x̂ ∈ F (x̂) since F has closed values. �

Remark 3.4. We could have formulated a more general result by considering two

families of gauges as it is done in [2, 10]. We preferred not to do so for sake a simplicity.
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In the particular case where X is a metric space, the previous result generalizes

a fixed point result for multi-valued contraction obtained in [4]. If, in addition F

is single-valued, the fixed point result for G-contraction due to Jachymski [13] is

generalized by the following result.

Corollary 3.5. Let f : X → X be a single-valued map such that there exist ψ : S → S

and λ = (λs)s∈S such that λs ≥ 0 for all s ∈ S, and for every (x, y) ∈ E(G)

(f(x), f(y)) ∈ E(G) and qs(f(x), f(y)) ≤ λsqψ(s)(x, y) ∀s ∈ S. (3.3)

Assume that there exists x0 ∈ X such that (x0, f(x0)) ∈ E(G) and

∞∑
n=1

λsλψ(s) · · ·λψ(n−1)(s)qψn(s)(x0, f(x0)) <∞ ∀s ∈ S. (3.4)

Then, the sequence {fn(x0)} converges to some x̂ ∈ X. In addition, assume that one

of the following conditions holds:

(i) f
(
fn(x0)

)
→ f(x̂);

(ii) there exists a subsequence {fnk(x0)} such that (fnk(x0), x̂) ∈ E(G) for all

k ∈ N.

Then, x̂ is a fixed point of f .

It is worthwhile to point out that in Theorem 3.3, we did not assume the continuity

of the G-Lipschitz map F . The following lemma could be useful to deduce that the

limit of a convergent G-Picard trajectory is a fixed point of F .

Lemma 3.6. Let F : X → X be a multi-valued G-Lipschitz map with constant

λ = (λs)s∈S and map ψ : S → S. Assume that there exists x0 ∈ X and a G-Picard

trajectory {xn} from x0 converging to some x̂ ∈ X. In addition, assume that there

exists û ∈ F (x̂) such that, for every s ∈ S, the following conditions hold:

(i) there exists a subsequence {xnk} such that there exists {x̂nk} a sequence in X

satisfying

(x̂, x̂nk) ∈ E(G) ∀k ∈ N, and qψ(s)(xnk , x̂nk)→ 0;

(ii) for every k ∈ N, one can choose unk ∈ F (x̂nk) such that

(û, unk) ∈ E(G) and qs(û, unk) ≤ λsqψ(s)(x̂, x̂nk),

satisfying

qs(unk , xnk+1)→ 0 as k →∞.

Then, x̂ = û ∈ F (x̂).

Proof. Let us suppose that x̂ 6= û. Then, there exists s ∈ S such that

qs(û, x̂) = r > 0.
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Observe that

qs(û, x̂) ≤ qs(û, unk) + qs(unk , xnk+1) + qs(xnk+1, x̂)

≤ λsqψ(s)(x̂, x̂nk) + qs(unk , xnk+1) + qs(xnk+1, x̂)

≤ λsqψ(s)(x̂, xnk) + λsqψ(s)(xnk , x̂nk) + qs(unk , xnk+1) + qs(xnk+1, x̂)

→ 0.

Contradiction. So, x̂ = û ∈ F (x̂). �

4. A suitable gauge space endowed with a directed graph

In order to get more information on the attractor to the H-IIFS, we will apply our

main fixed point result for multi-valued G-contraction. In this section, we will define

a suitable complete gauge space.

First, we need to introduce some notations. For a graph H = (V (H), E(H)), we

denote an N -directed path in H from i0 to iN by [in]Nn=0, and we denote the set of

vertices from which there is a directed path in H reaching i ∈ H by

[i]← = {j ∈ V (H) : there is a directed path from j to i in H}. (4.1)

We say that a subgraph C = (V (C), E(C)) ofH is connected if for every i, j ∈ V (C)

there exists a directed path from i to j in C. A connected component of H is a maximal

connected subgraph of H. A subgraph C = (V (C), E(C)) of H is weakly connected

if the undirected graph induced by C is connected. Let C and Ĉ be two connected

components of H. We write

C � Ĉ ⇐⇒ there is a directed path from C to Ĉ.

Also, we write C ≺ Ĉ if C � Ĉ and C 6= Ĉ. We say that C and Ĉ are incomparable

if C 6� Ĉ and Ĉ 6� C.

LetH be an infinite MW-directed graph and {Ti,j}H anH-IIFS withMi a complete

metric space for every i ∈ V (H). We denote the set of all connected components of

H by

C(H) = {C : C is a connected component of H}. (4.2)

In what follows, we will make the following assumption:

(H) H is an infinite MW-directed graph and {Ti,j}H is an H-IIFS such that

(H1) H is weakly connected and

V (H) =
⋃

C∈C(H)

V (C);

(H2) for every i, j ∈ V (H), the length of directed paths from i to j is bounded,

i.e.

sup
{
N : ∃[in]Nn=0 from i = i0 to j = iN containing no cycle

}
<∞;

(H3) the metric spaces Mi are bounded and

R = sup{diam(Mi) : i ∈ V (H)} <∞.
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It follows from Definition 2.1 that C(H) is countable. Let

Γ =
{
I ⊂ V (H) : 0 < card(I) <∞, and

V (C) ⊂ I ∀C ∈ C(H) such that V (C) ∩ I 6= ∅
}
. (4.3)

We define the map φ : Γ→ Γ by

φ(I) = I ∪
{
k ∈ V (H) : there exist (i, j) ∈ E(H) and C ∈ C(H)

such that i ∈ I and j, k ∈ V (C)
}
. (4.4)

We are ready to define our suitable gauge space.

(X) Let X be the space of elements X = (Xi)i∈V (H) satisfying the following

properties:

(X1) Xi is a compact subset of Mi for every i ∈ V (H);

(X2) there exists i ∈ V (H) such that Xi 6= ∅;
(X3) if Xi 6= ∅ for some i ∈ V (C) and C ∈ C(H), then Xj 6= ∅ for all

j ∈ V (C).

Taking into account the graph H, we endow X with a directed graph defined as

follows.

(G) Let G = (V (G), E(G)) be the directed graph such that V (G) = X and, for

X,Y ∈ X , (X,Y ) ∈ E(G) if and only if, for every i ∈ V (H), one of the

following properties holds:

(Ga) Xi = Yi = ∅, or Xi 6= ∅ and Yi 6= ∅;
(Gb) Xi = ∅, Yi 6= ∅ and, for C ∈ C(H) such that i ∈ V (C), there exist

k ∈ V (C) and j ∈ V (H)\V (C) such that (k, j) ∈ E(H) and Xj 6= ∅.
We endow X with the family of gauges {dI}I∈Γ, where

dI(X,Y ) = max
{
Di(Xi, Yi) : i ∈ I

}
, (4.5)

with

Di(Xi, Yi) =


Di(Xi, Yi), if Xi 6= ∅, Yi 6= ∅,
0, if Xi = ∅ = Yi,

Ri, otherwise,

(4.6)

where Di the Hausdorff metric in Mi and

(R) the family of constants (Ri)i∈V (H) is such that

(R1) for every i ∈ V (H), Ri > R;

(R2) for every C ∈ C(H), Ri = Rj for all i, j ∈ V (C);

(R3) for every i, j ∈ V (H), if Ri < Rj , then j /∈ [i]←;

(R4) for every I ∈ Γ, one has Ri < Rj for every i ∈ I and j ∈ φ(I)\I.

It is clear that (X , {dI}I∈Γ) is a complete gauge space.

Now, we show that we can easily find (Ri)i∈V (H) satisfying (R).

Lemma 4.1. Let H be an infinite MW-directed graph and {Ti,j}H an H-IIFS satis-

fying (H). Then, there exists {Vµ : µ ∈ L} a family of non empty disjoint subsets with

L ⊂ Z countable such that
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(1) V (H) =
⋃
µ∈L Vµ;

(2) for every C ∈ C(H), if V (C) ∩ Vµ 6= ∅ for some µ ∈ L, one has V (C) ⊂ Vµ;

(3) for every C, Ĉ ∈ C(H) such that C ≺ Ĉ, V (C) ⊂ Vµ and V (Ĉ) ⊂ Vν , one

has µ < ν;

(4) if µ < ν in L, then j /∈ [i]← for all i ∈ Vµ and j ∈ Vν .

Moreover, for every strictly increasing map σ : L → ]1,∞[, the family of constants

(Ri)i∈V (H) defined by

Ri = σ(µ)R if i ∈ Vµ,
satisfies (R).

Proof. Let S0 ⊂ C(H) be such that {C : C ∈ S0} is a maximal set of incomparable

connected components of H. We denote

S+
0 =

{
C ∈ C(H) : ∃Ĉ ∈ S0 such that Ĉ ≺ C

}
;

S−0 =
{
C ∈ C(H) : ∃Ĉ ∈ S0 such that C ≺ Ĉ

}
.

It follows from (H1) that C(H) = S0 ∪ S+
0 ∪ S

−
0 . We denote

S1 =
{
C ∈ S+

0 :6 ∃Ĉ ∈ S+
0 such that Ĉ ≺ C

}
,

and we define inductively for each n ∈ N,

Sn+1 =

{
C ∈ S+

0 \
n⋃
k=1

Sk :6 ∃Ĉ ∈ S+
0 \

n⋃
k=1

Sk such that Ĉ ≺ C

}
.

Similarly, we denote

S−1 =
{
C ∈ S−0 :6 ∃Ĉ ∈ S−0 such that C ≺ Ĉ

}
,

and we define inductively for each n ∈ N,

S−(n+1) =

{
C ∈ S−0 \

n⋃
k=1

S−k :6 ∃Ĉ ∈ S−0 \
n⋃
k=1

S−k such that C ≺ Ĉ

}
.

Let L = {µ ∈ Z : Sµ 6= ∅} endowed with the natural order. We define

Vµ =
⋃
C∈Sµ

V (C) ∀µ ∈ L.

Therefore, by (H),

V (H) =
⋃
µ∈L

Vµ.

By construction, (2), (3) and (4) are satisfied.

Let σ : L → ]1,∞[ be a strictly increasing map, and the family of constants

(Ri)i∈V (H) defined by

Ri = σ(µ)R for i ∈ Vµ.
The property (R) follows directly from (1)–(4) and the fact that σ(L) ⊂ ]1,∞[. �
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5. A suitable G-contraction

We consider H an infinite MW-directed graph and {Ti,j}H an H-IIFS satisfy-

ing the condition (H). In this section, we will define an appropriate multi-valued

G-contraction on X , where X is the space endowed with the family of gauges {dI}I∈Γ

and endowed with the directed graph G defined in the previous section. This

G-contraction will be used to get more information on the attractor of this infinite

H-IIFS.

Let X ∈ X . If j ∈ V (H) is such that Xj 6= ∅, then Ti,j(Xj) 6= ∅ for all i such

that (i, j) ∈ E(H). So, it is important to distinguish all those edges. To this aim, we

introduce the following notation. For C ∈ C(H),

EC(X) = {(k, j) ∈ E(H) : k ∈ V (C), j /∈ V (C), Xj 6= ∅}. (5.1)

Let us notice that the cardinality of EC(X) is finite since outdeg(i) is finite for every

i ∈ V (H).

For C ∈ C(H) and i, k ∈ V (C), we define Ti→k : Mk →Mi by

Ti→k(x) =
{
Ti0,i1 ◦ · · · ◦ TiN−1,iN (x) : [in]Nn=0 ∈ {i

C−→ k}
}
, (5.2)

where

{i C−→ k} = {[in]Nn=0 : [in]Nn=0 is an N -directed path in C

from i = i0 to k = iN containing no cycle}. (5.3)

For i ∈ V (C) with C ∈ C(H), we define the following subsets of Mi:

Oi(X,P ) =


∅, if P = ∅,⋃

(k,j)∈P

Ti→k ◦ Tk,j(Xj), if ∅ 6= P ⊂ EC(X); (5.4)

and

Wi(X) =


∅, if Xi = ∅,⋃

(i,j)∈E(C)

Ti,j(Xj), if Xi 6= ∅, (5.5)

where E(C) = {(k, j) ∈ E(H) : k, j ∈ V (C)}.
We have all the ingredients to introduce a suitable multi-valued map. We define

F : X → X by

F (X) =
{
U = (Ui)i∈V (H) ∈ X : Ui ∈ Fi(X) ∀i ∈ V (H)

}
, (5.6)

where, for i ∈ V (C) for some C ∈ C(H), Fi(X) is defined as follows:

Fi(X) =


∅, if Xi = ∅ and EC(X) = ∅,{
Oi(X,P ) : ∅ 6= P ⊂ EC(X)

}
, if Xi = ∅ and EC(X) 6= ∅,{

Wi(X) ∪Oi(X,P ) : P ⊂ EC(X)
}
, if Xi 6= ∅.

(5.7)

It is easy to see that F is well defined and has finite, and hence closed values.

We show that F is a multi-valued G-contraction.
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Proposition 5.1. Let H be an infinite MW-directed graph and {Ti,j}H an H-IIFS

satisfying (H). Let (Ri)i∈V (H) be a family of constants satisfying (R). Then, the multi-

valued map defined as above, F : X → X is a G-contraction.

Proof. We show that F is a G-contraction with constant of contraction λ = (λI)I∈Γ,

where

λI = max

{
max{λi,j : i ∈ I, (i, j) ∈ E(H)},max

{ R
Ri

: i ∈ I
}
,

max
{Ri
Rj

: i ∈ I, j ∈ φ(I)\I
}}

, (5.8)

where φ is defined in (4.4).

For i, k ∈ V (C) for some C ∈ C(H), we denote

λi→k = max
{
λi0,i1 · · ·λiN−1,iN : [in]Nn=0 ∈ {i

C−→ k}
}
, (5.9)

where {i C−→ k} is given in (5.3). Observe that λi→k ≤ λI for all I ∈ Γ such that

i ∈ I.

Let X,Y ∈ X be such that (X,Y ) ∈ E(G) and U ∈ F (X). We look for Ũ ∈ F (Y )

such that (U, Ũ) ∈ E(G) and dI(U, Ũ) ≤ λIdφ(I)(X,Y ) for every I ∈ Γ.

Step 1: For I ⊂ Γ, different cases of Ui for i ∈ I:

Let C ∈ C(H) be such that i ∈ V (C) ⊂ I.

Case 1: Ui = ∅ and Ũi 6= ∅ for every Ũ ∈ F (Y ).

In this case, Xi = EC(X) = ∅ and Yi ∪ EC(Y ) 6= ∅ by (5.7).

If Yi 6= ∅, since (X,Y ) ∈ E(G), by condition (Gb), there exist k ∈ V (C) and

j ∈ V (H)\V (C) such that (k, j) ∈ E(H) and Xj 6= ∅. So, (k, j) ∈ EC(X). This

contradicts the fact that EC(X) = ∅.
If EC(Y ) 6= ∅, by (5.1), there exist k ∈ V (C) and j ∈ V (Ĉ) such that (k, j) ∈ E(H),

Yj 6= ∅ and Ĉ 6= C. One has j ∈ φ(I)\I and Ri < Rj . Since EC(X) = ∅, one has

Xj = ∅. By condition (Gb), there exist m ∈ V (Ĉ), l ∈ V (H)\V (Ĉ) such that

(m, l) ∈ E(H) and Xl 6= ∅. So, EĈ(X) 6= ∅ and Uj 6= ∅ by (5.7). So, we obtain

Ui = ∅, Ũi 6= ∅ and Uj 6= ∅ for some (k, j) ∈ EC(Y ) (5.10)

with k ∈ V (C) and j ∈ φ(I)\I. (5.11)

Moreover, by (4.5), (4.6) and (5.8),

Di(Ui, Ũi) = Ri =
Ri
Rj
Dj(Xj , Yj) ≤ λIdφ(I)(X,Y ) ∀Ũ ∈ F (Y ). (5.12)

Case 2: Ui 6= ∅ and Ũi = ∅ for every Ũ ∈ F (Y ).

In this case, Xi ∪ EC(X) 6= ∅ and Yi ∪ EC(Y ) = ∅ by (5.7). Since (X,Y ) ∈ E(G),

we deduce that Xi = Yi = ∅ and hence EC(X) 6= ∅. Let (k, j) ∈ EC(X). One has



536 T. DINEVARI AND M. FRIGON

Xj 6= ∅ and Yj = ∅, since (k, j) 6∈ EC(Y ). This contradicts (X,Y ) ∈ E(G) (see

condition (Ga)). Thus,

Ui 6= ∅ and Ũi = ∅ for every Ũ ∈ F (Y ) is impossible. (5.13)

Case 3: Ui 6= ∅ and Ũi 6= ∅ for every Ũ ∈ F (Y )

In this case, Xi ∪ EC(X) 6= ∅ and Yi ∪ EC(Y ) 6= ∅ by (5.7).

If Xi 6= ∅, by condition (Ga), Yi 6= ∅. So Wi(X) 6= ∅, Wi(Y ) 6= ∅, and

by (4.5), (5.5), and (5.8),

Di(Wi(X),Wi(Y )) = Di

 ⋃
(i,j)∈E(C)

Ti,j(Xj),
⋃

(i,j)∈E(C)

Ti,j(Yj)


≤ max

(i,j)∈E(C)
Di

(
Ti,j(Xj), Ti,j(Yj)

)
≤ max

(i,j)∈E(C)
λi,jDj(Xj , Yj)

≤ λI max
(i,j)∈E(C)

Dj(Xj , Yj)

≤ λIdφ(I)(X,Y ).

(5.14)

If Xi = ∅ and Yi 6= ∅, then, for every Ũi ∈ Fi(Yi), one has by (4.6) and (5.8),

Di(Ui, Ũi) ≤ R =
R

Ri
Di(Xi, Yi) ≤ λIdφ(I)(X,Y ). (5.15)

If EC(X) 6= ∅, for ∅ 6= P ⊂ EC(X) such that P ⊂ EC(Y ), for every (k, j) ∈ P , one

has j ∈ φ(I), and, by (4.5), (5.2), (5.4), (5.8) and (5.9),

Di(Oi(X,P ), Oi(Y, P )) = Di

 ⋃
(k,j)∈P

Ti→k ◦ Tk,j(Xj),
⋃

(k,j)∈P

Ti→k ◦ Tk,j(Yj)


≤ max

(k,j)∈P
λi→kDk

(
Tk,j(Xj), Tk,j(Yj)

)
≤ max

(k,j)∈P
λi→kλk,jDj(Xj , Yj)

≤ λI max
(k,j)∈P

Dj(Xj , Yj)

≤ λIdφ(I)(X,Y ).

(5.16)

If P ⊂ EC(X) and P 6⊂ EC(Y ), then there exists (k, j) ∈ P such that Xj 6= ∅ and

Yj = ∅ which is impossible since (X,Y ) ∈ E(G).
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Combining (5.7), (5.14), (5.15) and (5.16), we choose Ũi ∈ Fi(Y ) such that

Ũi =



Wi(Y ), if Ui = Wi(X),

Oi(Y, P ), if Yi = ∅, and Ui = Oi(X,P )

for ∅ 6= P ⊂ EC(X) ∩ EC(Y ),

Wi(Y ) ∪Oi(Y, P ), if Yi 6= ∅, and

Ui ∈ {Oi(X,P ),Wi(X) ∪Oi(X,P )}
for ∅ 6= P ⊂ EC(X) ∩ EC(Y );

(5.17)

and we get

Di(Ui, Ũi) ≤ λIdφ(I)(X,Y ). (5.18)

Step 2: Choice of an appropriate Ũ ∈ F(Y):

Finally, we choose Ũ =
(
Ũi
)
i∈V (H)

∈ F (Y ) as follows:

Ũi =


∅, if i ∈ V (C), Ui = ∅, Yi ∪ EC(Y ) = ∅,
some Ũi ∈ Fi(Y ), if i ∈ V (C), Ui = ∅, Yi ∪ EC(Y ) 6= ∅,
Ũi given by (5.17), if i ∈ V (C), Ui 6= ∅, Yi ∪ EC(Y ) 6= ∅.

(5.19)

It follows from (5.10) and (5.17) that

(U, Ũ) ∈ E(G).

Finally, from (5.12) and (5.18), we deduce that

dI(U, Ũ) ≤ λIdφ(I)(X,Y ) ∀I ∈ Γ.

Therefore, F is a G-contraction. �

Remark 5.2. From the proof of the previous proposition, we already know that for

(X,Y ) ∈ E(G) and U ∈ F (X), the choice of Ũ ∈ F (Y ) such that (U, Ũ) ∈ E(G)

and dI(U, Ũ) ≤ λIdφ(I)(X,Y ) for all I ∈ Γ is not necessarily unique. Moreover, if for

some C ∈ C(H), one has EC(X) 6= ∅, then, from the previous proof, we deduce that

EC(X) ⊂ EC(Y ). So, for

∅ 6= P  P̃ , with P ⊂ EC(X), P̃ ⊂ EC(Y ), (5.20)

there exists (k, j) ∈ P̃\P with Xj = ∅ and Yj 6= ∅. So, j ∈ φ(I)\I. By (4.5), (4.6)

and (5.8),

Di(Oi(X,P ), Oi(Y, P̃ )) ≤ Ri =
Ri
Rj
Dj(Xj , Yj) ≤ λIdφ(I)(X,Y ) ∀i ∈ I.
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Therefore, for i ∈ V (C) ⊂ I, Ũi can be chosen as follows

Ũi =



Wi(Y ), if Ui = Wi(X),

Oi(Y, P̃ ), if Yi = ∅ and Ui = Oi(X,P )

with P̃ as in (5.20),

Wi(Y ) ∪Oi(Y, P̃ ), if Yi 6= ∅, and

Ui ∈ {Oi(X,P ),Wi(X) ∪Oi(X,P )}
with P̃ as in (5.20).

6. Some properties of the attractor of an infinite H-IIFS

For H = (V (H), E(H)) an infinite MW-directed graph, and {Ti,j}H an infinite

graph-directed iterated function system over the graph H. Theorem 2.5 gave condi-

tions insuring the existence of K an attractor of this H-IIFS. We want to get more

information on K by taking into account the connected components of H. To this

aim, we will consider F : X → X the G-contraction defined on the gauge space X
endowed with the graph G introduced in sections 4 and 5.

Theorem 6.1. Let H = (V (H), E(H)) be an infinite MW-directed graph and {Ti,j}H
an H-IIFS satisfying (H). Let (Ri)i∈V (H) be a family of constants satisfying (R).

Assume that X0 ∈ X and X1 ∈ F (X0) are such that

∞∑
n=1

λIλφ(I) · · ·λφn−1(I)dφn(I)(X
0, X1) <∞ ∀I ∈ Γ, (6.1)

where λI is defined in (5.8). Then, there exists K(X0) ∈ X such that

(1) Ki(X
0) 6= ∅ for every i ∈ V (H) such that X0

i 6= ∅;
(2) Ki(X

0) 6= ∅ if and only if i ∈ [j]←, for some j ∈ V (H) such that X0
j 6= ∅;

(3) K(X0) is a fixed point of the multi-valued map F ;

(4) if {Ti,j}H has an attractor K, then K(X0) ⊂ K.

Proof. Let F : X → X be the multi-valued map defined in (5.6) and (5.7). We know

that F is a G-contraction by Proposition 5.1. Also, if {Ti,j}H has an attractor K,

the definition of F implies that fixed points of F are included in K.

Let X0 ∈ X and X1 ∈ F (X0) be such that (6.1) is satisfied. We want to show

that there exists K(X0) a fixed point of F satisfying the required properties.

For n ∈ N, we choose inductively

Xn+1 ∈ F (Xn) the biggest element of F (Xn), (6.2)

that is Xn+1 = (Xn+1
i )i∈V (H) ∈ F (Xn) is chosen as follows. For i ∈ V (C) for some

C ∈ C(H),

Xn+1
i =


∅, if Xn

i = EC(Xn) = ∅;
Oi
(
Xn, EC(Xn)

)
, if Xn

i = ∅, EC(Xn) 6= ∅;
Wi(X

n) ∪Oi
(
Xn, EC(Xn)

)
, if Xn

i 6= ∅;
(6.3)
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where EC , Oi and Wi are defined in (5.1), (5.4) and (5.5) respectively.

Arguing as in the proof of Proposition 5.1 and by Remark 5.2, one has that

(Xn−1, Xn) ∈ E(G) and

dI(X
n, Xn+1) ≤ λIdφ(I)(X

n−1, Xn) ∀I ∈ Γ.

By the proof of Theorem 3.3, the sequence {Xn} is a G-Picard trajectory converging

to some K(X0) ∈ X .

Observe that for every i ∈ V (H) such that X0
i 6= ∅, one has Xn

i 6= ∅ for every

n ∈ N. Therefore, K(X0) satisfies (1).

By construction, for i ∈ V (C) for C ∈ C(H), if there is a directed path [in]Nn=0 in

H from i = i0 to j = iN such that X0
j 6= ∅, then Xn

i 6= ∅ for every n > N . Therefore,

K(X0)i 6= ∅. On the other hand, if i 6∈ [j]←, for all j ∈ V (H) such that X0
j 6= ∅, then

Xn
i = ∅ for every n ∈ N, and hence K(X0)i = ∅. So, K(X0) satisfies (2).

To conclude, we have to show that K(X0) is a fixed point of F . This will imply

that K(X0) ⊂ K if the attractor K of {Ti,j}H exists.

Let us denote

V (X0) = {i ∈ V (H) : i ∈ [j]← for some j ∈ V (H) such that X0
j 6= ∅}. (6.4)

It follows from (2) that

if i ∈ V (X0), K(X0)i 6= ∅,
if i 6∈ V (X0), K(X0)i = EC(K(X0)) = ∅.

(6.5)

Let Û = (Û)i∈V (H) ∈ X be defined by

Ûi =


∅, if i ∈ V (H)\V (X0),

Wi(K(X0)) ∪Oi
(
K(X0), EC(K(X0))

)
, if i ∈ V (X0) ∩ V (C)

for C ∈ C(H).

(6.6)

So, by (6.5) and the definition of F (see (5.7)),

Û ∈ F (K(X0)). (6.7)

We claim that K(X0) = Û .

Let Î ∈ Γ. For every C ∈ C(H) such that V (C) ⊂ Î, we denote

NC =

{
sup

{
inf{n : Xn

j 6= ∅} : (k, j) ∈ EC(K(X0))
}
, if EC(K(X0)) 6= ∅,

0, otherwise.

From the fact that outdeg(k) < ∞ for every k ∈ V (C) and by (H), we deduce that

NC <∞. Let

N = max
{
NC : V (C) ⊂ Î

}
. (6.8)

So,

EC(K(X0)) = EC(Xn) ∀V (C) ⊂ Î , ∀n > N. (6.9)
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For n > N , let us define X̂n = (X̂n
i )i∈V (H), Û

n = (Ûni )i∈V (H) ∈ X by

X̂n
i =

{
Xn
i , if i ∈ φ(Î),

K(X0)i, otherwise;

and

Ûni =

{
∅, if i ∈ V (H)\V (X0),

Wi(X̂
n) ∪Oi

(
X̂n, EC(X̂n)

)
, if i ∈ V (X0) ∩ V (C) for C ∈ C(H).

It follows from (6.9) and the definitions of E(G) and F (see (5.6)) that

(K(X0), X̂n) ∈ E(G), (Û , Ûn) ∈ E(G) and Ûn ∈ F (X̂n). (6.10)

Arguing as in the proof of Proposition 5.1, we can show that

dÎ(Û
n, Û) ≤ λÎdφ(Î)(X̂

n,K(X0)). (6.11)

Observe that, for every n > N ,

X̂n
i = Xn

i ∀i ∈ φ(Î) and Ûni = Xn+1
i ∀i ∈ Î . (6.12)

So,

dφ(Î)(X̂
N+k, XN+k)→ 0 and dÎ(Û

N+k, XN+k+1)→ 0 as k →∞. (6.13)

Combining (6.7), (6.10), (6.11), and (6.13), it follows from Lemma 3.6 that

K(X0) = Û ∈ F (K(X0)).

�

Theorem 6.2. Let H = (V (H), E(H)) be an infinite MW-directed graph and {Ti,j}H
an H-IIFS satisfying (H). Let (Ri)i∈V (H) be a family of constants satisfying (R).

Assume that, for X0, Y 0 ∈ X , (6.1) is satisfied with (X0, X1) and (Y 0, Y 1), where

X1 and Y 1 are the biggest elements of F (X0) and F (Y 0) respectively. Then the

following statements hold:

(1) If X0, Y 0 are such that {i ∈ V (H) : X0
i 6= ∅} = {i ∈ V (H) : Y 0

i 6= ∅} and

X0
i ⊂ Y 0

i for every i ∈ V (H), then K(X0) = K(Y 0).

(2) If X0, Y 0 are such that {i ∈ V (H) : X0
i 6= ∅} ⊂ {i ∈ V (H) : Y 0

i 6= ∅}, then

K(X0)i ⊂ K(Y 0)i for every i ∈ V (H).

(3) If there is N ∈ N such that {i ∈ V (H) : X0
i 6= ∅} ⊂ {[j]N← : Y 0

j 6= ∅},
then K(X0)i ⊂ K(Y 0)i for every i ∈ V (H), where [j]N← = {k ∈ V (H) :

there is a directed path [in]Nkn=0 in H from k = i0 to j = iNk with Nk ≤ N}.

Proof. (1) Let {Xn} and {Y n} be the G-Picard trajectories defined inductively

by (6.2) and such that Xn → K(X0) and Y n → K(Y 0). Observe that (Xn, Y n) ∈
E(G) for every n ∈ {0} ∪ N. Arguing as in the proof of Proposition 5.1, we deduce

that

dI(X
n, Y n) ≤ λIdφ(I)(X

n−1, Y n−1) ∀n ∈ N, ∀I ∈ Γ.

Therefore, {Xn} and {Y n} have the same limit; that is K(X0) = K(Y 0).
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(2) Let Z0 = (Z0
i )i∈V (H) ∈ X be defined by Z0

i = X0
i ∪ Y 0

i . Let Z1 be the biggest

element of F (Z0). One can check that

Di(Z
0
i , Z

1
i ) ≤ Di(X

0
i , X

1
i ) +Di(Y

0
i , Y

1
i ) ∀i ∈ V (H),

and hence

dI(Z
0, Z1) ≤ dI(X0, X1) + dI(Y

0, Y 1) ∀I ∈ Γ.

Thus, (Z0, Z1) satisfies (6.1). So, Y 0 and Z0 verify the assumptions of (1). Therefore,

K(Y 0) = K(Z0).

Let {Xn} and {Zn} be the G-Picard trajectories defined inductively by (6.2) and

such that Xn → K(X0) and Zn → K(Z0). Since X0
i ⊂ Z0

i , one has Xn
i ⊂ Zni for

every i ∈ V (H) and every n ∈ N. Thus,

K(X0)i ⊂ K(Z0)i = K(Y 0)i ∀i ∈ V (H).

(3) Let {Xn} and {Y n} be the G-Picard trajectories defined inductively by (6.2)

and such that Xn → K(X0) and Y n → K(Y 0). The assumption implies that

{i ∈ V (H) : X0
i 6= ∅} ⊂ {i ∈ V (H) : Y Ni 6= ∅}.

From the proof of Proposition 5.1,

dI(Y
N , Y N+1) ≤ λI · · ·λφN−1(I)dφN (I)(Y

0, Y 1) ∀I ∈ Γ.

Therefore, (Y N , Y N+1) satisfies (6.1). It follows from (2) that

K(X0)i ⊂ K(Y N )i ∀i ∈ V (H).

Since

K(Y N ) = lim
k→∞

Y N+k = lim
n→∞

Y n = K(Y 0),

one has

K(X0)i ⊂ K(Y 0)i ∀i ∈ V (H).

�

Example 6.3. Let H = (V (H), E(H)) be given by V (H) = Z× {0, 1} and

E(H) =
{(

(0, 0), (1, 1)
)
,
(
(0, 1), (1, 0)

)}
∪
{(

(i, a), (i+ 1, a)
)
,
(
(3i, a), (3i− 2, a)

)
: i ∈ Z, a = 0, 1

}
.

For a = 0, 1, and i ∈ Z, let M(i,a) = [i, i + 1] × [a, a + 1] be endowed with the norm

‖(x, y)‖ = max{|x|, |y|}. For (i, j) =
(
(i1, a), (j1, b)

)
∈ E(H), let Ti,j : Mj →Mi be a

contraction with constant of contraction λi,j < 1. We assume that

kn :=
1 + en

1 + en+1
≥ max

{
λi,j : (i, j) ∈ E(H), i = (i1, a) for a ∈ {0, 1} and

i1 ∈ {3n− 1, 3n− 2, 3n}
}
. (6.14)

We observe that n 7→ kn is nonincreasing. Arguing as in Example 2.7, it can be shown

that Theorem 2.5 implies that this H-IIFS, {Ti,j}H , has a unique attractor K.
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Moreover, for thisH-IIFS, one has for n ∈ Z and a = 0, 1, the connected component

of H, Can =
(
V (Can), E(Can)

)
, given by

V (Can) = {(3n− 2, a), (3n− 1, a), (3n, a)},

E(Can) =
{(

(3n− 2, a), (3n− 1, a)
)
,
(
(3n− 1, a), (3n, a)

)
,
(
(3n, a), (3n− 2, a)

)}
.

So, as shown in Figure 6.1, the set of all connected components of H is

C(H) =
{
Can : n ∈ Z, a = 0, 1

}
.

Observe that

Cam � Cbn ⇐⇒ (a = b and m ≤ n) or (a 6= b and m ≤ 0 < n).

(−5, 0) (−4, 0) (−3, 0) (−2, 0) (−1, 0) (0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (5, 0) (6, 0)

(−5, 1) (−4, 1) (−3, 1) (−2, 1) (−1, 1) (0, 1) (1, 1) (2, 1) (3, 1) (4, 1) (5, 1) (6, 1)

C0
−1 C0

0 C0
1 C0

2

C1
−1 C1

0 C1
1 C1

2

Figure 6.1. The set of connected components C(H).

Let Γ and φ : Γ→ Γ be given by

Γ = {I ⊂ Z× {0, 1} : 0 < card(I) <∞, and V (Can) ⊂ I ∀V (Can) ∩ I 6= ∅},
φ(I) = I ∪ {(i+ 1, a), (i+ 2, a), (i+ 3, a) : (i, a) ∈ I}

∪ {(1, 1), (2, 1), (3, 1) : if (0, 0) ∈ I}
∪ {(1, 0), (2, 0), (3, 0) : if (0, 1) ∈ I}.

Also, let

X =
{
X =

(
X(i,a)

)
(i,a)∈V (H)

: X(i,a) ⊂M(i,a) closed ∀(i, a) ∈ V (H),

if X(i,a) 6= ∅ for (i, a) ∈ Can, then X(j,a) 6= ∅ ∀(j, a) ∈ Can,

card{(i, a) : X(i,a) 6= ∅} 6= 0
}
.

We fix R = 1 and (R(i,a))(i,a)∈V (H) given by

R(i,a) = 1 + en for (i, a) ∈ Can.

This permits to define {dI}I∈Γ by

dI(X, X̂) = max
{
D(i,a)

(
X(i,a), X̂(i,a)

)
: (i, a) ∈ I

}
,
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where

D(i,a)

(
X(i,a), X̂(i,a)

)
=


D
(
X(i,a), X̂(i,a)

)
, if X(i,a) 6= ∅, X̂(i,a) 6= ∅,

0, if X(i,a) = ∅, X̂(i,a) = ∅,
R(i,a), otherwise.

Observe that

λI = max

{
max

{
λ(i,a),(j,b) :

(
(i, a), (j, b)

)
∈ E(H)

}
,max

{ 1

R(i,a)
: (i, a) ∈ I

}
,

max
{R(i,a)

R(j,b)
: (i, a) ∈ I, (j, b) ∈ φ(I)\I

}}
≤ kn0

,

where kn is defined in (6.14) and

n0 = min{n : I ∩ C0
n 6= ∅ or I ∩ C1

n 6= ∅}.

Also λI = λφ(I) for every I ∈ Γ. Therefore,

∞∑
n=1

λIλφ(I) · · ·λφn−1(I)dφn(I)(X, X̂) ≤
∞∑
n=1

knn0
dφn(I)(X, X̂) ∀X, X̂ ∈ X .

This sum is finite in particular for every X = X0 ∈ X and every X̂ = X1 ∈ F (X0)

such that sup{i : X0
(i,a) 6= ∅} 6= sup{i : X0

(i,a) = ∅}, where F : X → X is defined

in (5.6). Therefore, this H-IIFS, {Ti,j}H , satisfies all the assumptions of Theorems 6.1

and 6.2. In particular, for such X0 ∈ X , there exists a subattractor K(X0) ⊂ K

satisfying all the properties stated in those theorems.
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