A CONTRACTION PRINCIPLE ON GAUGE SPACES WITH GRAPHS AND APPLICATION TO INFINITE GRAPH-DIRECTED ITERATED FUNCTION SYSTEMS

T. DINEVARI AND M. FRIGON

Département de Mathématiques et de Statistique Université de Montréal Montréal, H3C 3J7, Canada
E-mail: frigon@dms.umontreal.ca and toktam@dms.umontreal.ca

Abstract

We consider multi-valued maps defined on a complete gauge space endowed with a directed graph. We establish a fixed point result for maps which send connected points into connected points and satisfy a generalized contraction condition. Then, we study infinite graph-directed iterated function systems (H-IIFS). We give conditions insuring the existence of a unique attractor to an H-IIFS. Finally, we apply our fixed point result for multi-valued contractions on gauge spaces endowed with a graph to obtain more information on the attractor of an H-IIFS. More precisely, we construct a suitable gauge space endowed with a graph G and a suitable multi-valued G-contraction such that its fixed points are sub-attractors of the H-IIFS.

Key Words and Phrases: Fixed point, multi-valued map, contraction, graph, graph-directed iterated function system, infinite system, attractor gauge space.

2010 Mathematics Subject Classification: $47 \mathrm{H} 10,47 \mathrm{H} 04,47 \mathrm{H} 09,28 \mathrm{~A} 80,54 \mathrm{E} 15$.

1. Introduction

In 2008, Jachymski [13] introduced the notion of single-valued G-contraction defined on a complete metric space endowed with a graph, which is a map preserving the graph and satisfying a contraction condition only between points related by an edge. He proved some generalizations of the Banach contraction principle to single-valued G-contractions. In particular, he generalized many contractions results in partially ordered sets, see $[16,17,18,19]$.

In [4], Dinevari and Frigon generalized Jachymski's fixed point results to multivalued maps by introducing the notions of multi-valued G-contraction and weak G-contraction on a complete metric space endowed with a graph. Other generalizations of Jachymski's results to multi-valued maps were obtained in [15].

In 1982, Gheorgiu [10] presented a fixed point result for general single-valued contractions in complete gauge spaces. In [2], Chiş and Precup extended this result and they presented a continuation principle for such contractions. Another approach to
obtain fixed point results was developed in [7] for single-valued contractions and in [8] for multi-valued contractions on complete gauge spaces, (see also [9] for a survey of results on that subject).

In this paper, we consider a complete gauge space X endowed with a directed graph G. We introduce the notions of multi-valued G-contraction and G-Lipschitz multi-valued map in the sense of Gheorgiu on X. Then, we establish a fixed point result for such multi-valued maps. This result generalizes fixed point results for singlevalued and multi-valued contractions on complete metric spaces endowed with a graph obtained in [13] and [4] respectively. It is worthwhile to notice that our fixed point result is new even in the particular case where the map is single-valued and defined on X.

In this paper, we are also interested to apply our fixed point result to infinite iterated function systems.

An iterated function system (IFS) is a finite set of self-maps $\left\{T_{i}: i=1, \ldots, n\right\}$ defined on a complete metric space (M, d). Using the Banach contraction principle, Hutchinson [12] proved that if each T_{i} is a contraction, then there exists a unique nonempty compact set $K \subset M$, called the attractor of the IFS, such that

$$
K=\bigcup_{i=1}^{n} T_{i}(K)
$$

This result was popularized by Barnsley [1] as the main method of constructing fractals.

Geometric graph-directed constructions are generalizations of iterated function systems. Mauldin and Williams [14] were the firsts who introduced the notion of graphdirected constructions in \mathbb{R}^{m} governed by a finite directed graph H and similarity maps $T_{i, j}$ which are labeled by the edges of the graph. They established that each geometric graph-directed construction has a unique attractor. Graph-directed constructions have been studied and generalized by many authors, see for example $[3,6,11]$ and the references therein.

Recently, Dinevari and Frigon [5] applied their fixed point results for multi-valued G-contractions established in [4] to obtain more information on the attractor K of a graph-directed iterated function system governed by a finite directed graph and a finite family of contractions $\left\{T_{i, j}\right\}$ defined on complete metric spaces and labeled by the edges of the graph. To this aim, they defined a complete metric space, a suitable directed graph G on this space, and an appropriate multi-valued G-contraction. Using the fixed points of this G-contraction, they studied certain subsets of the attractor K and the relations between these sub-attractors.

In this paper, we consider a directed graph $H=(V(H), E(H))$ such that $V(H)$ the set of vertices and $E(H)$ the set of edges are countably infinite sets. We study infinite graph-directed iterated function systems over the graph H (H-IIFS). Such an H-IIFS contains a family of contractions $\left\{T_{i, j}\right\}_{(i, j) \in E(H)}$ on complete metric spaces. We give conditions insuring the existence of a unique attractor to this H-IIFS. Our
result relies on a generalization of Gheorgiu's fixed point theorem on gauge spaces due to Chiş and Precup [2].

Then, under an extra assumption on the H-IIFS, we apply our fixed point result for multi-valued contractions on complete gauge spaces endowed with graphs to obtain more information on the attractor of this H-IIFS. Those results are obtained in Section 6. In order to prove those results, taking into account the H-IIFS, we construct a suitable complete gauge space on which we define an appropriate directed graph G in Section 4. In Section 5, we define a multi-valued map on this gauge space and we show that it is a G-contraction.

2. Main Results

In this section, we introduce the notions of infinite MW-graph H and infinite graph iterated function system over the graph H. We give conditions insuring the existence of a unique attractor to an infinite graph iterated function system over the graph H.

Definition 2.1. A directed graph $H=(V(H), E(H))$ is called an infinite $M W$-directed graph if
(i) $V(H)$ is countable;
(ii) H has no parallel edges;
(iii) $1 \leq \operatorname{outdeg}(i)<\infty$ for every $i \in V(H)$, where $\operatorname{outdeg}(i)$ is the number of outward directed edges emanating from vertex i.

Definition 2.2. Let $H=(V(H), E(H))$ be an infinite MW-directed graph. An infinite graph iterated function system over the graph H (H-IIFS) is a family of nonempty complete metric spaces, $\left\{M_{i}: i \in V(H)\right\}$, and, for each $(i, j) \in E(H)$, a single-valued contraction $T_{i, j}: M_{j} \rightarrow M_{i}$ with constant of contraction $\lambda_{i, j}$. An H-IIFS is denoted by $\left\{T_{i, j}\right\}_{H}$.

An attractor of an H-IIFS is defined as follows.
Definition 2.3. Let $\left\{T_{i, j}\right\}_{H}$ be an H-IIFS. An attractor K of this H-IIFS is a family of nonempty compact sets $K=\left(K_{i}\right)_{i \in V(H)}$ such that $K_{i} \subset M_{i}$ and

$$
K_{i}=\bigcup_{(i, j) \in E(H)} T_{i, j}\left(K_{j}\right) \quad \forall i \in V(H)
$$

In order to establish the existence of an attractor to some H-IIFS, we will use the following generalization of Gheorghiu's fixed point result due to Chiş and Precup [2] that we recall for sake of completeness.

Theorem $2.4([2])$. Let $\left(X,\left\{q_{s}\right\}_{s \in S}\right)$ be a complete gauge space, and $f: X \rightarrow X a$ single-valued map. Assume that
(i) there exist a function $\psi: S \rightarrow S$ and $k=\left(k_{s}\right)_{s \in S}$ such that $k_{s} \geq 0$ for all $s \in S$,

$$
\begin{equation*}
q_{s}(f(x), f(y)) \leq k_{s} q_{\psi(s)}(x, y) \quad \forall s \in S, \forall x, y \in X \tag{2.1}
\end{equation*}
$$

and

$$
\sum_{n=1}^{\infty} k_{s} k_{\psi(s)} \cdots k_{\psi^{n-1}(s)} q_{\psi^{n}(s)}(x, y)<\infty \quad \forall s \in S, \forall x, y \in X
$$

where ψ^{n} is the n-th iteration of ψ;
(ii) for every $x_{0} \in X$, if $\left\{f^{n}\left(x_{0}\right)\right\}$ converges to some $x \in X$, then $x=f(x)$.

Then f has a unique fixed point.
We need to introduce some notations. In what follows, H is an infinite MW-directed graph and $\left\{T_{i, j}\right\}_{H}$ is an H-IIFS.

Let

$$
\begin{equation*}
\Gamma_{0}=\left\{I=\left\{i_{1}, \ldots, i_{n}\right\} \subset V(H): n \in \mathbb{N}\right\} \tag{2.2}
\end{equation*}
$$

We denote

$$
k_{I}=\max \left\{\lambda_{i, j}:(i, j) \in E(H) \text { and } i \in I\right\} \quad \forall I \in \Gamma_{0},
$$

and we define the map $\varphi: \Gamma_{0} \rightarrow \Gamma_{0}$ by

$$
\begin{equation*}
\varphi(I)=I \cup\{j \in V(H): \exists i \in I \text { such that }(i, j) \in E(H)\} \tag{2.3}
\end{equation*}
$$

We consider the space

$$
\begin{equation*}
\mathcal{Y}=\left\{Y=\left(Y_{i}\right)_{i \in V(H)}: \emptyset \neq Y_{i} \subset M_{i} \text { is compact }\right\} \tag{2.4}
\end{equation*}
$$

For every $I \in \Gamma_{0}$ and $Y, \hat{Y} \in \mathcal{Y}$, let

$$
\begin{equation*}
p_{I}(Y, \hat{Y})=\max \left\{D_{i}\left(Y_{i}, \hat{Y}_{i}\right): i \in I\right\} \tag{2.5}
\end{equation*}
$$

where D_{i} is the Hausdorff metric on M_{i}. It is easy to see that $\left(\mathcal{Y},\left\{p_{I}\right\}_{I \in \Gamma_{0}}\right)$ is a complete gauge space.

We are ready to establish the existence of an attractor of the H-IIFS.
Theorem 2.5. Let $\left\{T_{i, j}\right\}_{H}$ be an H-IIFS. Assume that

$$
\begin{equation*}
\sum_{n=1}^{\infty} k_{I} k_{\varphi(I)} \cdots k_{\varphi^{n-1}(I)} p_{\varphi^{n}(I)}(Y, \hat{Y})<\infty \quad \forall I \in \Gamma_{0}, \forall Y, \hat{Y} \in \mathcal{Y} . \tag{2.6}
\end{equation*}
$$

Then $\left\{T_{i, j}\right\}_{H}$ has a unique attractor K.
Proof. Let us define $f: \mathcal{Y} \rightarrow \mathcal{Y}$ by

$$
f_{i}(Y)=\bigcup_{(i, j) \in E(H)} T_{i, j}\left(Y_{j}\right)
$$

Using the fact that every $T_{i, j}$ is a contraction in the classical sense, we prove that

$$
p_{I}(f(Y), f(\hat{Y})) \leq k_{I} p_{\varphi(I)}(Y, \hat{Y}) \quad \forall I \in \Gamma_{0}, \forall Y, \hat{Y} \in \mathcal{Y}
$$

Indeed,

$$
\begin{aligned}
p_{I}(f(Y), f(\hat{Y})) & =\max \left\{D_{i}\left(f_{i}(Y), f_{i}(\hat{Y})\right): i \in I\right\} \\
& =\max \left\{D_{i}\left(\bigcup_{(i, j) \in E(H)} T_{i, j}\left(Y_{j}\right), \bigcup_{(i, j) \in E(H)} T_{i, j}\left(\hat{Y}_{j}\right)\right): i \in I\right\} \\
& \leq \max \left\{\max _{(i, j) \in E(H)} D_{i}\left(T_{i, j}\left(Y_{j}\right), T_{i, j}\left(\hat{Y}_{j}\right)\right): i \in I\right\} \\
& \leq \max \left\{\max _{(i, j) \in E(H)} \lambda_{i, j} D_{j}\left(Y_{j}, \hat{Y}_{j}\right): i \in I\right\} \\
& \leq k_{I} \max \left\{D_{i}\left(Y_{i}, \hat{Y}_{i}\right): i \in \varphi(I)\right\} \\
& =k_{I} p_{\varphi(I)}(Y, \hat{Y})
\end{aligned}
$$

We claim that (ii) of Theorem 2.4 is satisfied. Indeed, let us assume that $Y^{0} \in \mathcal{Y}$ is such that $\left\{f^{n}\left(Y^{0}\right)\right\}$ converges to some $Y \in \mathcal{Y}$. If $Y \neq f(Y)$, there exists $i \in V(H)$ such that

$$
D_{i}\left(Y_{i}, f(Y)_{i}\right)=r>0
$$

Let $N \in \mathbb{N}$ be such that

$$
p_{\varphi(\{i\})}\left(f^{n}\left(Y^{0}\right), Y\right)<\frac{r}{2} \quad \forall n \geq N
$$

So,

$$
\begin{aligned}
r=p_{\{i\}}(Y, f(Y)) \leq p_{\{i\}}(& \left.Y, f^{N+1}\left(Y^{0}\right)\right)+p_{\{i\}}\left(f^{N+1}\left(Y^{0}\right), f(Y)\right) \\
& \leq p_{\varphi(\{i\})}\left(Y, f^{N+1}\left(Y^{0}\right)\right)+k_{\{i\}} p_{\varphi(\{i\})}\left(f^{N}\left(Y^{0}\right), Y\right)<r
\end{aligned}
$$

Contradiction.
It follows from Theorem 2.4 that f has a unique fixed point $K \in \mathcal{Y}$, and hence, K is an attractor of $\left\{T_{i, j}\right\}_{H}$.

Remark 2.6. Observe that (2.6) is satisfied if:

$$
\begin{equation*}
\sup \left\{\lambda_{i, j}:(i, j) \in E(H)\right\}<1 \quad \text { and } \quad \sup \left\{\operatorname{diam}\left(M_{i}\right): i \in V(H)\right\}<\infty \tag{2.7}
\end{equation*}
$$

So, every H-IIFS satisfying (2.7) has a unique attractor.
Example 2.7. Let $H=(V(H), E(H))$ (see Figure 2.1) be given by $V(H)=\mathbb{Z} \quad$ and $\quad E(H)=\{(n, n+1),(n, n+2): n \in \mathbb{Z}\}$.

Figure 2.1. The MW-directed graph H of Example 2.7.

For $n \in \mathbb{Z}$, let $M_{n}=[n, n+1]$ and $T_{n, n+1}: M_{n+1} \rightarrow M_{n}, T_{n, n+2}: X_{n+2} \rightarrow X_{n}$ contractions with constants of contraction $\lambda_{n, n+1}<1$ and $\lambda_{n, n+2}<1$ respectively. We define

$$
\lambda_{n}=\max \left\{\lambda_{n, n+1}, \lambda_{n, n+2}\right\}
$$

We assume that $n \mapsto \lambda_{n}$ is nonincreasing.
It follows from Theorem 2.5 that the H-IIFS, $\left\{T_{i, j}\right\}_{H}$, has a unique attractor K. Indeed, one has

$$
\begin{aligned}
& \Gamma_{0}=\{I \subset \mathbb{Z}: 0<\operatorname{card}(I)<\infty\} \\
& \mathcal{Y}=\left\{Y=\left(Y_{n}\right)_{n \in \mathbb{Z}}: \emptyset \neq Y_{n} \subset[n, n+1] \text { closed } \forall n \in \mathbb{Z}\right\} \\
& p_{I}(Y, \widehat{Y})=\max \left\{D\left(Y_{i} \widehat{Y}_{i}\right): i \in I\right\} \quad \forall Y, \widehat{Y} \in \mathcal{Y}, \forall I \in \Gamma_{0} \\
& \varphi: \Gamma_{0} \rightarrow \Gamma_{0} \quad \text { given by } \quad \varphi(I)=I \cup\{i+1, i+2: i \in I\}
\end{aligned}
$$

Observe that

$$
k_{I}=\max \left\{\lambda_{i, j}:(i, j) \in E(H) \text { and } i \in I\right\}=\lambda_{i_{0}}, \quad \text { where } \quad i_{0}=\min I
$$

and $k_{I}=k_{\varphi(I)}$ for every $I \in \Gamma_{0}$. Therefore,

$$
\begin{aligned}
\sum_{n=1}^{\infty} k_{I} k_{\varphi(I)} \cdots k_{\varphi^{n-1}}(I) p_{\varphi^{n}(I)}(Y, \widehat{Y}) & \leq \sum_{n=1}^{\infty} \lambda_{i_{0}}^{n} p_{\varphi^{n}(I)}(Y, \widehat{Y}) \\
& \leq \sum_{n=1}^{\infty} \lambda_{i_{0}}^{n}<\infty \quad \forall Y, \widehat{Y} \in \mathcal{Y}
\end{aligned}
$$

Hence, $\left\{T_{i, j}\right\}_{H}$ satisfies the assumptions of Theorem 2.5.

3. Multi-Valued contraction on gauge spaces endowed with a graph

In this section, we consider $\left(X,\left\{q_{s}\right\}_{s \in S}\right)$ a complete gauge space endowed with a directed graph $G=(V(G), E(G))$ such that the set of vertices $V(G)=X$ and the set of edges $E(G)$ has no parallel edges and it contains the diagonal. We generalize Theorem 2.4 to multi-valued map $F: X \rightarrow X$ satisfying a condition analogous to (2.1) only for $x, y \in X$ related by an edge $(x, y) \in E(G)$.

Definition 3.1. Let $F: X \rightarrow X$ be a multi-valued map with nonempty values. We say that F is a G-Lipschitz map in the sense of Gheorghiu with map $\psi: S \rightarrow S$ and constant $\lambda=\left(\lambda_{s}\right)_{s \in S}$ such that $\lambda_{s} \geq 0$ for all $s \in S$, if, for every $(x, y) \in E(G)$ and every $u \in F(x)$, there exists $v \in F(y)$ such that $(u, v) \in E(G)$ and

$$
\begin{equation*}
q_{s}(u, v) \leq \lambda_{s} q_{\psi(s)}(x, y) \quad \forall s \in S \tag{3.1}
\end{equation*}
$$

The map F is called a G-contraction if it is a G-Lipschitz map with $\lambda_{s}<1$ for every $s \in S$.

We consider suitable trajectories in X.

Definition 3.2. Let $F: X \rightarrow X$ be a multi-valued mapping and $x_{0} \in X$. We say that a sequence $\left\{x_{n}\right\}$ is a G-Picard trajectory from x_{0}, if $x_{n} \in F\left(x_{n-1}\right)$ and $\left(x_{n-1}, x_{n}\right) \in E(G)$ for all $n \in \mathbb{N}$. The set of all such G-Picard trajectories from x_{0} is denoted by $T\left(F, G, x_{0}\right)$.

Here is our main fixed point result for multi-valued contractions in the sense of Gheorgiu on the gauge space X endowed with a directed graph G.

Theorem 3.3. Let $F: X \rightarrow X$ be a multi-valued G-Lipschitz map with constant $\lambda=\left(\lambda_{s}\right)_{s \in S}$ and map $\psi: S \rightarrow S$. Assume that there exists $\left(x_{0}, x_{1}\right) \in E(G)$ such that $x_{1} \in F\left(x_{0}\right)$ and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda_{s} \lambda_{\psi(s)} \cdots \lambda_{\psi^{(n-1)}(s)} q_{\psi^{n}(s)}\left(x_{0}, x_{1}\right)<\infty \quad \forall s \in S \tag{3.2}
\end{equation*}
$$

Then, there exists a G-Picard trajectory from x_{0} converging to some $\hat{x} \in X$. In addition, assume that one of the following conditions holds:
(i) F is G-Picard continuous from x_{0}, i.e. the limit of any convergent G-Picard trajectory $\left\{x_{n}\right\} \in T\left(F, G, x_{0}\right)$ is a fixed point of F;
(ii) F has closed values and, for every $\left\{x_{n}\right\}$ in $T\left(F, G, x_{0}\right)$ converging to some $x \in X$, there exists a subsequence $\left\{x_{n_{k}}\right\}$ such that $\left(x_{n_{k}}, x\right) \in E(G)$ for all $k \in \mathbb{N}$.

Then, \hat{x} is a fixed point of F. Moreover, every converging G-Picard trajectory from x_{0} converges to a fixed point of F.
Proof. Let x_{0} and $x_{1} \in F\left(x_{0}\right)$ be given by assumption. Since F is a G-Lipschitz map, one can choose a sequence $\left\{x_{n}\right\}$ such that $x_{n+1} \in F\left(x_{n}\right),\left(x_{n}, x_{n+1}\right) \in E(G)$ and

$$
q_{s}\left(x_{n}, x_{n+1}\right) \leq \lambda_{s} q_{\psi(s)}\left(x_{n-1}, x_{n}\right) \leq \ldots \leq \lambda_{s} \lambda_{\psi(s)} \ldots \lambda_{\psi^{n-1}(s)} q_{\psi^{n}(s)}\left(x_{0}, x_{1}\right)
$$

for every $s \in S$ and $n \in \mathbb{N}$. Moreover, for every $m \in \mathbb{N}$,

$$
q_{s}\left(x_{n}, x_{n+m}\right) \leq \sum_{i=n}^{n+m-1} q_{s}\left(x_{i}, x_{i+1}\right) \leq \sum_{i=n}^{n+m-1} \lambda_{s} \lambda_{\psi(s)} \ldots \lambda_{\psi^{i-1}(s)} q_{\psi^{i}(s)}\left(x_{0}, x_{1}\right)
$$

Therefore, $\left\{x_{n}\right\}$ is a Cauchy sequence and hence converges to some $\hat{x} \in X$.
If the condition (i) is satisfied, then clearly \hat{x} is a fixed point of F.
On the other hand, if the condition (ii) is satisfied, then there exists a subsequence $\left\{x_{n_{k}}\right\}$ such that $\left(x_{n_{k}}, \hat{x}\right) \in E(G)$ for every $k \in \mathbb{N}$. Since F is a G-Lipschitz map, for each $k \in \mathbb{N}$, there exists $y_{n_{k}+1} \in F(\hat{x})$ such that $\left(x_{n_{k}+1}, y_{n_{k}+1}\right) \in E(G)$ and

$$
q_{s}\left(x_{n_{k}+1}, y_{n_{k}+1}\right) \leq \lambda_{s} q_{\psi(s)}\left(x_{n_{k}}, \hat{x}\right) \quad \forall s \in S
$$

Therefore, for every $s \in S$,

$$
q_{s}\left(y_{n_{k}+1}, \hat{x}\right) \leq q_{s}\left(y_{n_{k}+1}, x_{n_{k}+1}\right)+q_{s}\left(x_{n_{k}+1}, \hat{x}\right) \leq \lambda_{s} q_{\psi(s)}\left(x_{n_{k}}, \hat{x}\right)+q_{s}\left(x_{n_{k}+1}, \hat{x}\right)
$$

Consequently, $y_{n_{k}+1} \rightarrow \hat{x}$, and hence $\hat{x} \in F(\hat{x})$ since F has closed values.
Remark 3.4. We could have formulated a more general result by considering two families of gauges as it is done in $[2,10]$. We preferred not to do so for sake a simplicity.

In the particular case where X is a metric space, the previous result generalizes a fixed point result for multi-valued contraction obtained in [4]. If, in addition F is single-valued, the fixed point result for G-contraction due to Jachymski [13] is generalized by the following result.

Corollary 3.5. Let $f: X \rightarrow X$ be a single-valued map such that there exist $\psi: S \rightarrow S$ and $\lambda=\left(\lambda_{s}\right)_{s \in S}$ such that $\lambda_{s} \geq 0$ for all $s \in S$, and for every $(x, y) \in E(G)$

$$
\begin{equation*}
(f(x), f(y)) \in E(G) \quad \text { and } \quad q_{s}(f(x), f(y)) \leq \lambda_{s} q_{\psi(s)}(x, y) \quad \forall s \in S \tag{3.3}
\end{equation*}
$$

Assume that there exists $x_{0} \in X$ such that $\left(x_{0}, f\left(x_{0}\right)\right) \in E(G)$ and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda_{s} \lambda_{\psi(s)} \cdots \lambda_{\psi^{(n-1)}(s)} q_{\psi^{n}(s)}\left(x_{0}, f\left(x_{0}\right)\right)<\infty \quad \forall s \in S \tag{3.4}
\end{equation*}
$$

Then, the sequence $\left\{f^{n}\left(x_{0}\right)\right\}$ converges to some $\hat{x} \in X$. In addition, assume that one of the following conditions holds:
(i) $f\left(f^{n}\left(x_{0}\right)\right) \rightarrow f(\hat{x})$;
(ii) there exists a subsequence $\left\{f^{n_{k}}\left(x_{0}\right)\right\}$ such that $\left(f^{n_{k}}\left(x_{0}\right), \hat{x}\right) \in E(G)$ for all $k \in \mathbb{N}$.
Then, \hat{x} is a fixed point of f.
It is worthwhile to point out that in Theorem 3.3, we did not assume the continuity of the G-Lipschitz map F. The following lemma could be useful to deduce that the limit of a convergent G-Picard trajectory is a fixed point of F.

Lemma 3.6. Let $F: X \rightarrow X$ be a multi-valued G-Lipschitz map with constant $\lambda=\left(\lambda_{s}\right)_{s \in S}$ and map $\psi: S \rightarrow S$. Assume that there exists $x_{0} \in X$ and a G-Picard trajectory $\left\{x_{n}\right\}$ from x_{0} converging to some $\hat{x} \in X$. In addition, assume that there exists $\hat{u} \in F(\hat{x})$ such that, for every $s \in S$, the following conditions hold:
(i) there exists a subsequence $\left\{x_{n_{k}}\right\}$ such that there exists $\left\{\hat{x}_{n_{k}}\right\}$ a sequence in X satisfying

$$
\left(\hat{x}, \hat{x}_{n_{k}}\right) \in E(G) \forall k \in \mathbb{N}, \quad \text { and } \quad q_{\psi(s)}\left(x_{n_{k}}, \hat{x}_{n_{k}}\right) \rightarrow 0
$$

(ii) for every $k \in \mathbb{N}$, one can choose $u_{n_{k}} \in F\left(\hat{x}_{n_{k}}\right)$ such that

$$
\left(\hat{u}, u_{n_{k}}\right) \in E(G) \quad \text { and } \quad q_{s}\left(\hat{u}, u_{n_{k}}\right) \leq \lambda_{s} q_{\psi(s)}\left(\hat{x}, \hat{x}_{n_{k}}\right)
$$

satisfying

$$
q_{s}\left(u_{n_{k}}, x_{n_{k}+1}\right) \rightarrow 0 \quad \text { as } k \rightarrow \infty
$$

Then, $\hat{x}=\hat{u} \in F(\hat{x})$.
Proof. Let us suppose that $\hat{x} \neq \hat{u}$. Then, there exists $s \in S$ such that

$$
q_{s}(\hat{u}, \hat{x})=r>0
$$

Observe that

$$
\begin{aligned}
q_{s}(\hat{u}, \hat{x}) & \leq q_{s}\left(\hat{u}, u_{n_{k}}\right)+q_{s}\left(u_{n_{k}}, x_{n_{k}+1}\right)+q_{s}\left(x_{n_{k}+1}, \hat{x}\right) \\
& \leq \lambda_{s} q_{\psi(s)}\left(\hat{x}, \hat{x}_{n_{k}}\right)+q_{s}\left(u_{n_{k}}, x_{n_{k}+1}\right)+q_{s}\left(x_{n_{k}+1}, \hat{x}\right) \\
& \leq \lambda_{s} q_{\psi(s)}\left(\hat{x}, x_{n_{k}}\right)+\lambda_{s} q_{\psi(s)}\left(x_{n_{k}}, \hat{x}_{n_{k}}\right)+q_{s}\left(u_{n_{k}}, x_{n_{k}+1}\right)+q_{s}\left(x_{n_{k}+1}, \hat{x}\right) \\
& \rightarrow 0 .
\end{aligned}
$$

Contradiction. So, $\hat{x}=\hat{u} \in F(\hat{x})$.

4. A suitable gauge space endowed with a directed graph

In order to get more information on the attractor to the H-IIFS, we will apply our main fixed point result for multi-valued G-contraction. In this section, we will define a suitable complete gauge space.

First, we need to introduce some notations. For a graph $H=(V(H), E(H))$, we denote an N-directed path in H from i_{0} to i_{N} by $\left[i_{n}\right]_{n=0}^{N}$, and we denote the set of vertices from which there is a directed path in H reaching $i \in H$ by

$$
\begin{equation*}
[i]_{\leftarrow}=\{j \in V(H): \text { there is a directed path from } j \text { to } i \text { in } H\} . \tag{4.1}
\end{equation*}
$$

We say that a subgraph $C=(V(C), E(C))$ of H is connected if for every $i, j \in V(C)$ there exists a directed path from i to j in C. A connected component of H is a maximal connected subgraph of H. A subgraph $C=(V(C), E(C))$ of H is weakly connected if the undirected graph induced by C is connected. Let C and \widehat{C} be two connected components of H. We write

$$
C \preceq \widehat{C} \Longleftrightarrow \quad \text { there is a directed path from } C \text { to } \widehat{C}
$$

Also, we write $C \prec \widehat{C}$ if $C \preceq \widehat{C}$ and $C \neq \widehat{C}$. We say that C and \widehat{C} are incomparable if $C \npreceq \widehat{C}$ and $\widehat{C} \npreceq C$.

Let H be an infinite MW-directed graph and $\left\{T_{i, j}\right\}_{H}$ an H-IIFS with M_{i} a complete metric space for every $i \in V(H)$. We denote the set of all connected components of H by

$$
\begin{equation*}
C(H)=\{C: C \text { is a connected component of } H\} \tag{4.2}
\end{equation*}
$$

In what follows, we will make the following assumption:
(H) H is an infinite MW-directed graph and $\left\{T_{i, j}\right\}_{H}$ is an H-IIFS such that
(H1) H is weakly connected and

$$
V(H)=\bigcup_{C \in C(H)} V(C)
$$

(H2) for every $i, j \in V(H)$, the length of directed paths from i to j is bounded,
i.e.

$$
\sup \left\{N: \exists\left[i_{n}\right]_{n=0}^{N} \text { from } i=i_{0} \text { to } j=i_{N} \text { containing no cycle }\right\}<\infty ;
$$

(H3) the metric spaces M_{i} are bounded and

$$
R=\sup \left\{\operatorname{diam}\left(M_{i}\right): i \in V(H)\right\}<\infty .
$$

It follows from Definition 2.1 that $C(H)$ is countable. Let

$$
\begin{align*}
& \Gamma=\{I \subset V(H): 0<\operatorname{card}(I)<\infty, \text { and } \\
& \qquad V(C) \subset I \forall C \in C(H) \text { such that } V(C) \cap I \neq \emptyset\} . \tag{4.3}
\end{align*}
$$

We define the map $\phi: \Gamma \rightarrow \Gamma$ by

$$
\begin{align*}
\phi(I)=I \cup\{k \in V(H): \text { there exist }(i, j) & \in E(H) \text { and } C \in C(H) \\
& \text { such that } i \in I \text { and } j, k \in V(C)\} . \tag{4.4}
\end{align*}
$$

We are ready to define our suitable gauge space.
(X) Let \mathcal{X} be the space of elements $X=\left(X_{i}\right)_{i \in V(H)}$ satisfying the following properties:
(X1) X_{i} is a compact subset of M_{i} for every $i \in V(H)$;
(X2) there exists $i \in V(H)$ such that $X_{i} \neq \emptyset$;
(X3) if $X_{i} \neq \emptyset$ for some $i \in V(C)$ and $C \in C(H)$, then $X_{j} \neq \emptyset$ for all $j \in V(C)$.
Taking into account the graph H, we endow \mathcal{X} with a directed graph defined as follows.
(G) Let $G=(V(G), E(G))$ be the directed graph such that $V(G)=\mathcal{X}$ and, for $X, Y \in \mathcal{X},(X, Y) \in E(G)$ if and only if, for every $i \in V(H)$, one of the following properties holds:
(Ga) $X_{i}=Y_{i}=\emptyset$, or $X_{i} \neq \emptyset$ and $Y_{i} \neq \emptyset$;
(Gb) $X_{i}=\emptyset, Y_{i} \neq \emptyset$ and, for $C \in C(H)$ such that $i \in V(C)$, there exist $k \in V(C)$ and $j \in V(H) \backslash V(C)$ such that $(k, j) \in E(H)$ and $X_{j} \neq \emptyset$.
We endow \mathcal{X} with the family of gauges $\left\{d_{I}\right\}_{I \in \Gamma}$, where

$$
\begin{equation*}
d_{I}(X, Y)=\max \left\{\bar{D}_{i}\left(X_{i}, Y_{i}\right): i \in I\right\} \tag{4.5}
\end{equation*}
$$

with

$$
\bar{D}_{i}\left(X_{i}, Y_{i}\right)= \begin{cases}D_{i}\left(X_{i}, Y_{i}\right), & \text { if } X_{i} \neq \emptyset, Y_{i} \neq \emptyset \tag{4.6}\\ 0, & \text { if } X_{i}=\emptyset=Y_{i} \\ R_{i}, & \text { otherwise }\end{cases}
$$

where D_{i} the Hausdorff metric in M_{i} and
(R) the family of constants $\left(R_{i}\right)_{i \in V(H)}$ is such that
(R1) for every $i \in V(H), R_{i}>R$;
(R2) for every $C \in C(H), R_{i}=R_{j}$ for all $i, j \in V(C)$;
(R3) for every $i, j \in V(H)$, if $R_{i}<R_{j}$, then $j \notin[i]_{\leftarrow}$;
(R4) for every $I \in \Gamma$, one has $R_{i}<R_{j}$ for every $i \in I$ and $j \in \phi(I) \backslash I$.
It is clear that $\left(\mathcal{X},\left\{d_{I}\right\}_{I \in \Gamma}\right)$ is a complete gauge space.
Now, we show that we can easily find $\left(R_{i}\right)_{i \in V(H)}$ satisfying (R).
Lemma 4.1. Let H be an infinite $M W$-directed graph and $\left\{T_{i, j}\right\}_{H}$ an H-IIFS satisfying (H). Then, there exists $\left\{V_{\mu}: \mu \in L\right\}$ a family of non empty disjoint subsets with $L \subset \mathbb{Z}$ countable such that
(1) $V(H)=\bigcup_{\mu \in L} V_{\mu}$;
(2) for every $C \in C(H)$, if $V(C) \cap V_{\mu} \neq \emptyset$ for some $\mu \in L$, one has $V(C) \subset V_{\mu}$;
(3) for every $C, \widehat{C} \in C(H)$ such that $C \prec \widehat{C}, V(C) \subset V_{\mu}$ and $V(\widehat{C}) \subset V_{\nu}$, one has $\mu<\nu$;
(4) if $\mu<\nu$ in L, then $j \notin[i]_{\leftarrow}$ for all $i \in V_{\mu}$ and $j \in V_{\nu}$.

Moreover, for every strictly increasing map $\sigma: L \rightarrow$]1, ∞ [, the family of constants $\left(R_{i}\right)_{i \in V(H)}$ defined by

$$
R_{i}=\sigma(\mu) R \quad \text { if } i \in V_{\mu}
$$

satisfies (R).
Proof. Let $\mathcal{S}_{0} \subset C(H)$ be such that $\left\{C: C \in \mathcal{S}_{0}\right\}$ is a maximal set of incomparable connected components of H. We denote

$$
\begin{aligned}
& \mathcal{S}_{0}^{+}=\left\{C \in C(H): \exists \widehat{C} \in \mathcal{S}_{0} \text { such that } \widehat{C} \prec C\right\} \\
& \mathcal{S}_{0}^{-}=\left\{C \in C(H): \exists \widehat{C} \in \mathcal{S}_{0} \text { such that } C \prec \widehat{C}\right\} .
\end{aligned}
$$

It follows from $(\mathrm{H} 1)$ that $C(H)=\mathcal{S}_{0} \cup \mathcal{S}_{0}^{+} \cup \mathcal{S}_{0}^{-}$. We denote

$$
\mathcal{S}_{1}=\left\{C \in \mathcal{S}_{0}^{+}: \nexists \widehat{C} \in \mathcal{S}_{0}^{+} \text {such that } \widehat{C} \prec C\right\}
$$

and we define inductively for each $n \in \mathbb{N}$,

$$
\mathcal{S}_{n+1}=\left\{C \in \mathcal{S}_{0}^{+} \backslash \bigcup_{k=1}^{n} \mathcal{S}_{k}: \nexists \widehat{C} \in \mathcal{S}_{0}^{+} \backslash \bigcup_{k=1}^{n} \mathcal{S}_{k} \text { such that } \widehat{C} \prec C\right\} .
$$

Similarly, we denote

$$
\mathcal{S}_{-1}=\left\{C \in \mathcal{S}_{0}^{-}: \nexists \widehat{C} \in \mathcal{S}_{0}^{-} \text {such that } C \prec \widehat{C}\right\}
$$

and we define inductively for each $n \in \mathbb{N}$,

$$
\mathcal{S}_{-(n+1)}=\left\{C \in \mathcal{S}_{0}^{-} \backslash \bigcup_{k=1}^{n} \mathcal{S}_{-k}: \nexists \widehat{C} \in \mathcal{S}_{0}^{-} \backslash \bigcup_{k=1}^{n} \mathcal{S}_{-k} \text { such that } C \prec \widehat{C}\right\}
$$

Let $L=\left\{\mu \in \mathbb{Z}: \mathcal{S}_{\mu} \neq \emptyset\right\}$ endowed with the natural order. We define

$$
V_{\mu}=\bigcup_{C \in \mathcal{S}_{\mu}} V(C) \quad \forall \mu \in L
$$

Therefore, by (H),

$$
V(H)=\bigcup_{\mu \in L} V_{\mu}
$$

By construction, (2), (3) and (4) are satisfied.
Let $\sigma: L \rightarrow] 1, \infty[$ be a strictly increasing map, and the family of constants $\left(R_{i}\right)_{i \in V(H)}$ defined by

$$
R_{i}=\sigma(\mu) R \quad \text { for } \quad i \in V_{\mu}
$$

The property (R) follows directly from (1)-(4) and the fact that $\sigma(L) \subset] 1, \infty[$.

5. A suitable G-COntraction

We consider H an infinite MW-directed graph and $\left\{T_{i, j}\right\}_{H}$ an H-IIFS satisfying the condition (H). In this section, we will define an appropriate multi-valued G-contraction on \mathcal{X}, where \mathcal{X} is the space endowed with the family of gauges $\left\{d_{I}\right\}_{I \in \Gamma}$ and endowed with the directed graph G defined in the previous section. This G-contraction will be used to get more information on the attractor of this infinite H-IIFS.

Let $X \in \mathcal{X}$. If $j \in V(H)$ is such that $X_{j} \neq \emptyset$, then $T_{i, j}\left(X_{j}\right) \neq \emptyset$ for all i such that $(i, j) \in E(H)$. So, it is important to distinguish all those edges. To this aim, we introduce the following notation. For $C \in C(H)$,

$$
\begin{equation*}
E_{C}(X)=\left\{(k, j) \in E(H): k \in V(C), j \notin V(C), X_{j} \neq \emptyset\right\} . \tag{5.1}
\end{equation*}
$$

Let us notice that the cardinality of $E_{C}(X)$ is finite since outdeg (i) is finite for every $i \in V(H)$.

For $C \in C(H)$ and $i, k \in V(C)$, we define $T_{i \rightarrow k}: M_{k} \rightarrow M_{i}$ by

$$
\begin{equation*}
T_{i \rightarrow k}(x)=\left\{T_{i_{0}, i_{1}} \circ \cdots \circ T_{i_{N-1}, i_{N}}(x):\left[i_{n}\right]_{n=0}^{N} \in\{i \xrightarrow{C} k\}\right\}, \tag{5.2}
\end{equation*}
$$

where

$$
\begin{align*}
&\{i \xrightarrow{C} k\}=\left\{\left[i_{n}\right]_{n=0}^{N}:\left[i_{n}\right]_{n=0}^{N} \text { is an } N \text {-directed path in } C\right. \\
&\text { from } \left.i=i_{0} \text { to } k=i_{N} \text { containing no cycle }\right\} . \tag{5.3}
\end{align*}
$$

For $i \in V(C)$ with $C \in C(H)$, we define the following subsets of M_{i} :

$$
O_{i}(X, P)=\left\{\begin{array}{cl}
\emptyset, & \text { if } P=\emptyset, \tag{5.4}\\
\bigcup_{(k, j) \in P}^{\emptyset} T_{i \rightarrow k} \circ T_{k, j}\left(X_{j}\right), & \text { if } \emptyset \neq P \subset E_{C}(X) ;
\end{array}\right.
$$

and

$$
W_{i}(X)=\left\{\begin{array}{cl}
\emptyset, & \text { if } X_{i}=\emptyset \tag{5.5}\\
\bigcup_{(i, j) \in E(C)} T_{i, j}\left(X_{j}\right), & \text { if } X_{i} \neq \emptyset
\end{array}\right.
$$

where $E(C)=\{(k, j) \in E(H): k, j \in V(C)\}$.
We have all the ingredients to introduce a suitable multi-valued map. We define $F: \mathcal{X} \rightarrow \mathcal{X}$ by

$$
\begin{equation*}
F(X)=\left\{U=\left(U_{i}\right)_{i \in V(H)} \in \mathcal{X}: U_{i} \in F_{i}(X) \forall i \in V(H)\right\}, \tag{5.6}
\end{equation*}
$$

where, for $i \in V(C)$ for some $C \in C(H), F_{i}(X)$ is defined as follows:

$$
F_{i}(X)= \begin{cases}\emptyset, & \text { if } X_{i}=\emptyset \text { and } E_{C}(X)=\emptyset, \tag{5.7}\\ \left\{O_{i}(X, P): \emptyset \neq P \subset E_{C}(X)\right\}, & \text { if } X_{i}=\emptyset \text { and } E_{C}(X) \neq \emptyset, \\ \left\{W_{i}(X) \cup O_{i}(X, P): P \subset E_{C}(X)\right\}, & \text { if } X_{i} \neq \emptyset .\end{cases}
$$

It is easy to see that F is well defined and has finite, and hence closed values.
We show that F is a multi-valued G-contraction.

Proposition 5.1. Let H be an infinite $M W$-directed graph and $\left\{T_{i, j}\right\}_{H}$ an H-IIFS satisfying (H). Let $\left(R_{i}\right)_{i \in V(H)}$ be a family of constants satisfying (R). Then, the multivalued map defined as above, $F: \mathcal{X} \rightarrow \mathcal{X}$ is a G-contraction.

Proof. We show that F is a G-contraction with constant of contraction $\lambda=\left(\lambda_{I}\right)_{I \in \Gamma}$, where

$$
\begin{align*}
\lambda_{I}=\max \left\{\max \left\{\lambda_{i, j}: i \in I,(i, j) \in E(H)\right\}\right. & , \max \left\{\frac{R}{R_{i}}: i \in I\right\} \\
& \left.\max \left\{\frac{R_{i}}{R_{j}}: i \in I, j \in \phi(I) \backslash I\right\}\right\} \tag{5.8}
\end{align*}
$$

where ϕ is defined in (4.4).
For $i, k \in V(C)$ for some $C \in C(H)$, we denote

$$
\begin{equation*}
\lambda_{i \rightarrow k}=\max \left\{\lambda_{i_{0}, i_{1}} \cdots \lambda_{i_{N-1}, i_{N}}:\left[i_{n}\right]_{n=0}^{N} \in\{i \xrightarrow{C} k\}\right\}, \tag{5.9}
\end{equation*}
$$

where $\{i \xrightarrow{C} k\}$ is given in (5.3). Observe that $\lambda_{i \rightarrow k} \leq \lambda_{I}$ for all $I \in \Gamma$ such that $i \in I$.

Let $X, Y \in \underset{\sim}{\mathcal{X}}$ be such that $(X, Y) \in E(G)$ and $U \in F(X)$. We look for $\widetilde{U} \in F(Y)$ such that $(U, \widetilde{U}) \in E(G)$ and $d_{I}(U, \widetilde{U}) \leq \lambda_{I} d_{\phi(I)}(X, Y)$ for every $I \in \Gamma$.
Step 1: For $\mathbf{I} \subset \Gamma$, different cases of U_{i} for $\mathbf{i} \in \mathbf{I}$:
Let $C \in C(H)$ be such that $i \in V(C) \subset I$.
Case 1: $U_{i}=\emptyset$ and $\widetilde{U}_{i} \neq \emptyset$ for every $\widetilde{U} \in F(Y)$.
In this case, $X_{i}=E_{C}(X)=\emptyset$ and $Y_{i} \cup E_{C}(Y) \neq \emptyset$ by (5.7).
If $Y_{i} \neq \emptyset$, since $(X, Y) \in E(G)$, by condition (Gb), there exist $k \in V(C)$ and $j \in V(H) \backslash V(C)$ such that $(k, j) \in E(H)$ and $X_{j} \neq \emptyset$. So, $(k, j) \in E_{C}(X)$. This contradicts the fact that $E_{C}(X)=\emptyset$.

If $E_{C}(Y) \neq \emptyset$, by (5.1), there exist $k \in V(C)$ and $j \in V(\widehat{C})$ such that $(k, j) \in E(H)$, $Y_{j} \neq \emptyset$ and $\widehat{C} \neq C$. One has $j \in \phi(I) \backslash I$ and $R_{i}<R_{j}$. Since $E_{C}(X)=\emptyset$, one has $X_{j}=\emptyset$. By condition (Gb), there exist $m \in V(\widehat{C}), l \in V(H) \backslash V(\widehat{C})$ such that $(m, l) \in E(H)$ and $X_{l} \neq \emptyset$. So, $E_{\widehat{C}}(X) \neq \emptyset$ and $U_{j} \neq \emptyset$ by (5.7). So, we obtain

$$
\begin{align*}
U_{i}=\emptyset, \widetilde{U}_{i} \neq \emptyset \quad \text { and } \quad U_{j} \neq \emptyset & \text { for some }(k, j) \in E_{C}(Y) \tag{5.10}\\
& \text { with } k \in V(C) \text { and } j \in \phi(I) \backslash I . \tag{5.11}
\end{align*}
$$

Moreover, by (4.5), (4.6) and (5.8),

$$
\begin{equation*}
\bar{D}_{i}\left(U_{i}, \widetilde{U}_{i}\right)=R_{i}=\frac{R_{i}}{R_{j}} \bar{D}_{j}\left(X_{j}, Y_{j}\right) \leq \lambda_{I} d_{\phi(I)}(X, Y) \quad \forall \widetilde{U} \in F(Y) \tag{5.12}
\end{equation*}
$$

Case 2: $U_{i} \neq \emptyset$ and $\widetilde{U}_{i}=\emptyset$ for every $\widetilde{U} \in F(Y)$.
In this case, $X_{i} \cup E_{C}(X) \neq \emptyset$ and $Y_{i} \cup E_{C}(Y)=\emptyset$ by (5.7). Since $(X, Y) \in E(G)$, we deduce that $X_{i}=Y_{i}=\emptyset$ and hence $E_{C}(X) \neq \emptyset$. Let $(k, j) \in E_{C}(X)$. One has
$X_{j} \neq \emptyset$ and $Y_{j}=\emptyset$, since $(k, j) \notin E_{C}(Y)$. This contradicts $(X, Y) \in E(G)$ (see condition (Ga)). Thus,

$$
\begin{equation*}
U_{i} \neq \emptyset \text { and } \widetilde{U}_{i}=\emptyset \text { for every } \widetilde{U} \in F(Y) \text { is impossible. } \tag{5.13}
\end{equation*}
$$

Case 3: $U_{i} \neq \emptyset$ and $\widetilde{U}_{i} \neq \emptyset$ for every $\widetilde{U} \in F(Y)$
In this case, $X_{i} \cup E_{C}(X) \neq \emptyset$ and $Y_{i} \cup E_{C}(Y) \neq \emptyset$ by (5.7).
If $X_{i} \neq \emptyset$, by condition (Ga), $Y_{i} \neq \emptyset$. So $W_{i}(X) \neq \emptyset, W_{i}(Y) \neq \emptyset$, and by (4.5), (5.5), and (5.8),

$$
\begin{align*}
D_{i}\left(W_{i}(X), W_{i}(Y)\right) & =D_{i}\left(\bigcup_{(i, j) \in E(C)} T_{i, j}\left(X_{j}\right), \bigcup_{(i, j) \in E(C)} T_{i, j}\left(Y_{j}\right)\right) \\
& \leq \max _{(i, j) \in E(C)} D_{i}\left(T_{i, j}\left(X_{j}\right), T_{i, j}\left(Y_{j}\right)\right) \\
& \leq \max _{(i, j) \in E(C)} \lambda_{i, j} D_{j}\left(X_{j}, Y_{j}\right) \tag{5.14}\\
& \leq \lambda_{I} \max _{(i, j) \in E(C)} D_{j}\left(X_{j}, Y_{j}\right) \\
& \leq \lambda_{I} d_{\phi(I)}(X, Y) .
\end{align*}
$$

If $X_{i}=\emptyset$ and $Y_{i} \neq \emptyset$, then, for every $\widetilde{U}_{i} \in F_{i}\left(Y_{i}\right)$, one has by (4.6) and (5.8),

$$
\begin{equation*}
D_{i}\left(U_{i}, \widetilde{U}_{i}\right) \leq R=\frac{R}{R_{i}} \bar{D}_{i}\left(X_{i}, Y_{i}\right) \leq \lambda_{I} d_{\phi(I)}(X, Y) \tag{5.15}
\end{equation*}
$$

If $E_{C}(X) \neq \emptyset$, for $\emptyset \neq P \subset E_{C}(X)$ such that $P \subset E_{C}(Y)$, for every $(k, j) \in P$, one has $j \in \phi(I)$, and, by (4.5), (5.2), (5.4), (5.8) and (5.9),

$$
\begin{align*}
D_{i}\left(O_{i}(X, P), O_{i}(Y, P)\right) & =D_{i}\left(\bigcup_{(k, j) \in P} T_{i \rightarrow k} \circ T_{k, j}\left(X_{j}\right), \bigcup_{(k, j) \in P} T_{i \rightarrow k} \circ T_{k, j}\left(Y_{j}\right)\right) \\
& \leq \max _{(k, j) \in P} \lambda_{i \rightarrow k} D_{k}\left(T_{k, j}\left(X_{j}\right), T_{k, j}\left(Y_{j}\right)\right) \\
& \leq \max _{(k, j) \in P} \lambda_{i \rightarrow k} \lambda_{k, j} D_{j}\left(X_{j}, Y_{j}\right) \\
& \leq \lambda_{I} \max _{(k, j) \in P} D_{j}\left(X_{j}, Y_{j}\right) \\
& \leq \lambda_{I} d_{\phi(I)}(X, Y) . \tag{5.16}
\end{align*}
$$

If $P \subset E_{C}(X)$ and $P \not \subset E_{C}(Y)$, then there exists $(k, j) \in P$ such that $X_{j} \neq \emptyset$ and $Y_{j}=\emptyset$ which is impossible since $(X, Y) \in E(G)$.

Combining $(5.7),(5.14),(5.15)$ and (5.16), we choose $\widetilde{U}_{i} \in F_{i}(Y)$ such that

$$
\widetilde{U}_{i}= \begin{cases}W_{i}(Y), & \text { if } U_{i}=W_{i}(X), \tag{5.17}\\ O_{i}(Y, P), & \text { if } Y_{i}=\emptyset, \text { and } U_{i}=O_{i}(X, P) \\ & \text { for } \emptyset \neq P \subset E_{C}(X) \cap E_{C}(Y), \\ W_{i}(Y) \cup O_{i}(Y, P), & \text { if } Y_{i} \neq \emptyset, \text { and } \\ & U_{i} \in\left\{O_{i}(X, P), W_{i}(X) \cup O_{i}(X, P)\right\} \\ & \text { for } \emptyset \neq P \subset E_{C}(X) \cap E_{C}(Y) ;\end{cases}
$$

and we get

$$
\begin{equation*}
\bar{D}_{i}\left(U_{i}, \widetilde{U}_{i}\right) \leq \lambda_{I} d_{\phi(I)}(X, Y) \tag{5.18}
\end{equation*}
$$

Step 2: Choice of an appropriate $\widetilde{\mathbf{U}} \in \mathbf{F}(\mathbf{Y})$:
Finally, we choose $\widetilde{U}=\left(\widetilde{U}_{i}\right)_{i \in V(H)} \in F(Y)$ as follows:

$$
\widetilde{U}_{i}= \begin{cases}\emptyset, & \text { if } i \in V(C), U_{i}=\emptyset, Y_{i} \cup E_{C}(Y)=\emptyset \tag{5.19}\\ \text { some } \widetilde{U}_{i} \in F_{i}(Y), & \text { if } i \in V(C), U_{i}=\emptyset, Y_{i} \cup E_{C}(Y) \neq \emptyset \\ \widetilde{U}_{i} \text { given by }(5.17), & \text { if } i \in V(C), U_{i} \neq \emptyset, Y_{i} \cup E_{C}(Y) \neq \emptyset\end{cases}
$$

It follows from (5.10) and (5.17) that

$$
(U, \widetilde{U}) \in E(G)
$$

Finally, from (5.12) and (5.18), we deduce that

$$
d_{I}(U, \widetilde{U}) \leq \lambda_{I} d_{\phi(I)}(X, Y) \quad \forall I \in \Gamma
$$

Therefore, F is a G-contraction.
Remark 5.2. From the proof of the previous proposition, we already know that for $(X, Y) \in E(G)$ and $U \in F(X)$, the choice of $\widetilde{U} \in F(Y)$ such that $(U, \widetilde{U}) \in E(G)$ and $d_{I}(U, \widetilde{U}) \leq \lambda_{I} d_{\phi(I)}(X, Y)$ for all $I \in \Gamma$ is not necessarily unique. Moreover, if for some $C \in C(H)$, one has $E_{C}(X) \neq \emptyset$, then, from the previous proof, we deduce that $E_{C}(X) \subset E_{C}(Y)$. So, for

$$
\begin{equation*}
\emptyset \neq P \nsubseteq \widetilde{P}, \quad \text { with } P \subset E_{C}(X), \widetilde{P} \subset E_{C}(Y) \tag{5.20}
\end{equation*}
$$

there exists $(k, j) \in \widetilde{P} \backslash P$ with $X_{j}=\emptyset$ and $Y_{j} \neq \emptyset$. So, $j \in \phi(I) \backslash I$. By (4.5), (4.6) and (5.8),

$$
\bar{D}_{i}\left(O_{i}(X, P), O_{i}(Y, \widetilde{P})\right) \leq R_{i}=\frac{R_{i}}{R_{j}} \bar{D}_{j}\left(X_{j}, Y_{j}\right) \leq \lambda_{I} d_{\phi(I)}(X, Y) \quad \forall i \in I
$$

Therefore, for $i \in V(C) \subset I, \widetilde{U}_{i}$ can be chosen as follows

$$
\widetilde{U}_{i}= \begin{cases}W_{i}(Y), & \text { if } U_{i}=W_{i}(X) \\ O_{i}(Y, \widetilde{P}), & \text { if } Y_{i}=\emptyset \text { and } U_{i}=O_{i}(X, P) \\ & \text { with } \widetilde{P} \text { as in }(5.20) \\ W_{i}(Y) \cup O_{i}(Y, \widetilde{P}), & \text { if } Y_{i} \neq \emptyset, \text { and } \\ & U_{i} \in\left\{O_{i}(X, P), W_{i}(X) \cup O_{i}(X, P)\right\} \\ & \text { with } \widetilde{P} \text { as in }(5.20) .\end{cases}
$$

6. Some properties of the attractor of an infinite H-IIFS

For $H=(V(H), E(H))$ an infinite MW-directed graph, and $\left\{T_{i, j}\right\}_{H}$ an infinite graph-directed iterated function system over the graph H. Theorem 2.5 gave conditions insuring the existence of K an attractor of this H-IIFS. We want to get more information on K by taking into account the connected components of H. To this aim, we will consider $F: \mathcal{X} \rightarrow \mathcal{X}$ the G-contraction defined on the gauge space \mathcal{X} endowed with the graph G introduced in sections 4 and 5.

Theorem 6.1. Let $H=(V(H), E(H))$ be an infinite $M W$-directed graph and $\left\{T_{i, j}\right\}_{H}$ an H-IIFS satisfying (H). Let $\left(R_{i}\right)_{i \in V(H)}$ be a family of constants satisfying (R). Assume that $X^{0} \in \mathcal{X}$ and $X^{1} \in F\left(X^{0}\right)$ are such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda_{I} \lambda_{\phi(I)} \cdots \lambda_{\phi^{n-1}(I)} d_{\phi^{n}(I)}\left(X^{0}, X^{1}\right)<\infty \quad \forall I \in \Gamma \tag{6.1}
\end{equation*}
$$

where λ_{I} is defined in (5.8). Then, there exists $K\left(X^{0}\right) \in \mathcal{X}$ such that
(1) $K_{i}\left(X^{0}\right) \neq \emptyset$ for every $i \in V(H)$ such that $X_{i}^{0} \neq \emptyset$;
(2) $K_{i}\left(X^{0}\right) \neq \emptyset$ if and only if $i \in[j]_{\leftarrow}$, for some $j \in V(H)$ such that $X_{j}^{0} \neq \emptyset$;
(3) $K\left(X^{0}\right)$ is a fixed point of the multi-valued map F;
(4) if $\left\{T_{i, j}\right\}_{H}$ has an attractor K, then $K\left(X^{0}\right) \subset K$.

Proof. Let $F: \mathcal{X} \rightarrow \mathcal{X}$ be the multi-valued map defined in (5.6) and (5.7). We know that F is a G-contraction by Proposition 5.1. Also, if $\left\{T_{i, j}\right\}_{H}$ has an attractor K, the definition of F implies that fixed points of F are included in K.

Let $X^{0} \in \mathcal{X}$ and $X^{1} \in F\left(X^{0}\right)$ be such that (6.1) is satisfied. We want to show that there exists $K\left(X^{0}\right)$ a fixed point of F satisfying the required properties.

For $n \in \mathbb{N}$, we choose inductively

$$
\begin{equation*}
X^{n+1} \in F\left(X^{n}\right) \quad \text { the biggest element of } F\left(X^{n}\right) \tag{6.2}
\end{equation*}
$$

that is $X^{n+1}=\left(X_{i}^{n+1}\right)_{i \in V(H)} \in F\left(X^{n}\right)$ is chosen as follows. For $i \in V(C)$ for some $C \in C(H)$,

$$
X_{i}^{n+1}= \begin{cases}\emptyset, & \text { if } X_{i}^{n}=E_{C}\left(X^{n}\right)=\emptyset \tag{6.3}\\ O_{i}\left(X^{n}, E_{C}\left(X^{n}\right)\right), & \text { if } X_{i}^{n}=\emptyset, E_{C}\left(X^{n}\right) \neq \emptyset \\ W_{i}\left(X^{n}\right) \cup O_{i}\left(X^{n}, E_{C}\left(X^{n}\right)\right), & \text { if } X_{i}^{n} \neq \emptyset\end{cases}
$$

where E_{C}, O_{i} and W_{i} are defined in (5.1), (5.4) and (5.5) respectively.
Arguing as in the proof of Proposition 5.1 and by Remark 5.2, one has that $\left(X^{n-1}, X^{n}\right) \in E(G)$ and

$$
d_{I}\left(X^{n}, X^{n+1}\right) \leq \lambda_{I} d_{\phi(I)}\left(X^{n-1}, X^{n}\right) \quad \forall I \in \Gamma
$$

By the proof of Theorem 3.3, the sequence $\left\{X^{n}\right\}$ is a G-Picard trajectory converging to some $K\left(X^{0}\right) \in \mathcal{X}$.

Observe that for every $i \in V(H)$ such that $X_{i}^{0} \neq \emptyset$, one has $X_{i}^{n} \neq \emptyset$ for every $n \in \mathbb{N}$. Therefore, $K\left(X^{0}\right)$ satisfies (1).

By construction, for $i \in V(C)$ for $C \in C(H)$, if there is a directed path $\left[i_{n}\right]_{n=0}^{N}$ in H from $i=i_{0}$ to $j=i_{N}$ such that $X_{j}^{0} \neq \emptyset$, then $X_{i}^{n} \neq \emptyset$ for every $n>N$. Therefore, $K\left(X^{0}\right)_{i} \neq \emptyset$. On the other hand, if $i \notin[j]_{\leftarrow}$, for all $j \in V(H)$ such that $X_{j}^{0} \neq \emptyset$, then $X_{i}^{n}=\emptyset$ for every $n \in \mathbb{N}$, and hence $K\left(X^{0}\right)_{i}=\emptyset$. So, $K\left(X^{0}\right)$ satisfies (2).

To conclude, we have to show that $K\left(X^{0}\right)$ is a fixed point of F. This will imply that $K\left(X^{0}\right) \subset K$ if the attractor K of $\left\{T_{i, j}\right\}_{H}$ exists.

Let us denote

$$
\begin{equation*}
V\left(X^{0}\right)=\left\{i \in V(H): i \in[j]_{\leftarrow} \text { for some } j \in V(H) \text { such that } X_{j}^{0} \neq \emptyset\right\} \tag{6.4}
\end{equation*}
$$

It follows from (2) that

$$
\begin{array}{ll}
\text { if } i \in V\left(X^{0}\right), & K\left(X^{0}\right)_{i} \neq \emptyset \\
\text { if } i \notin V\left(X^{0}\right), & K\left(X^{0}\right)_{i}=E_{C}\left(K\left(X^{0}\right)\right)=\emptyset \tag{6.5}
\end{array}
$$

Let $\widehat{U}=(\widehat{U})_{i \in V(H)} \in \mathcal{X}$ be defined by

$$
\widehat{U}_{i}=\left\{\begin{array}{lc}
\emptyset, & \text { if } i \in V(H) \backslash V\left(X^{0}\right) \tag{6.6}\\
W_{i}\left(K\left(X^{0}\right)\right) \cup O_{i}\left(K\left(X^{0}\right), E_{C}\left(K\left(X^{0}\right)\right)\right), & \text { if } i \in V\left(X^{0}\right) \cap V(C) \\
& \text { for } C \in C(H)
\end{array}\right.
$$

So, by (6.5) and the definition of F (see (5.7)),

$$
\begin{equation*}
\widehat{U} \in F\left(K\left(X^{0}\right)\right) \tag{6.7}
\end{equation*}
$$

We claim that $K\left(X^{0}\right)=\widehat{U}$.
Let $\hat{I} \in \Gamma$. For every $C \in C(H)$ such that $V(C) \subset \hat{I}$, we denote

$$
N_{C}= \begin{cases}\sup \left\{\inf \left\{n: X_{j}^{n} \neq \emptyset\right\}:(k, j) \in E_{C}\left(K\left(X^{0}\right)\right)\right\}, & \text { if } E_{C}\left(K\left(X^{0}\right)\right) \neq \emptyset \\ 0, & \text { otherwise }\end{cases}
$$

From the fact that $\operatorname{outdeg}(k)<\infty$ for every $k \in V(C)$ and by (H), we deduce that $N_{C}<\infty$. Let

$$
\begin{equation*}
N=\max \left\{N_{C}: V(C) \subset \hat{I}\right\} \tag{6.8}
\end{equation*}
$$

So,

$$
\begin{equation*}
E_{C}\left(K\left(X^{0}\right)\right)=E_{C}\left(X^{n}\right) \quad \forall V(C) \subset \hat{I}, \forall n>N \tag{6.9}
\end{equation*}
$$

For $n>N$, let us define $\widehat{X}^{n}=\left(\widehat{X}_{i}^{n}\right)_{i \in V(H)}, \widehat{U}^{n}=\left(\widehat{U}_{i}^{n}\right)_{i \in V(H)} \in \mathcal{X}$ by

$$
\widehat{X}_{i}^{n}= \begin{cases}X_{i}^{n}, & \text { if } i \in \phi(\hat{I}) \\ K\left(X^{0}\right)_{i}, & \text { otherwise }\end{cases}
$$

and

$$
\widehat{U}_{i}^{n}= \begin{cases}\emptyset, & \text { if } i \in V(H) \backslash V\left(X^{0}\right), \\ W_{i}\left(\widehat{X}^{n}\right) \cup O_{i}\left(\widehat{X}^{n}, E_{C}\left(\widehat{X}^{n}\right)\right), & \text { if } i \in V\left(X^{0}\right) \cap V(C) \text { for } C \in C(H)\end{cases}
$$

It follows from (6.9) and the definitions of $E(G)$ and F (see (5.6)) that

$$
\begin{equation*}
\left(K\left(X^{0}\right), \widehat{X}^{n}\right) \in E(G), \quad\left(\widehat{U}, \widehat{U}^{n}\right) \in E(G) \quad \text { and } \quad \widehat{U}^{n} \in F\left(\widehat{X}^{n}\right) \tag{6.10}
\end{equation*}
$$

Arguing as in the proof of Proposition 5.1, we can show that

$$
\begin{equation*}
d_{\hat{I}}\left(\widehat{U}^{n}, \widehat{U}\right) \leq \lambda_{\hat{I}} d_{\phi(\hat{I})}\left(\widehat{X}^{n}, K\left(X^{0}\right)\right) \tag{6.11}
\end{equation*}
$$

Observe that, for every $n>N$,

$$
\begin{equation*}
\widehat{X}_{i}^{n}=X_{i}^{n} \quad \forall i \in \phi(\hat{I}) \quad \text { and } \quad \widehat{U}_{i}^{n}=X_{i}^{n+1} \quad \forall i \in \hat{I} \tag{6.12}
\end{equation*}
$$

So,

$$
\begin{equation*}
d_{\phi(\hat{I})}\left(\widehat{X}^{N+k}, X^{N+k}\right) \rightarrow 0 \quad \text { and } \quad d_{\hat{I}}\left(\widehat{U}^{N+k}, X^{N+k+1}\right) \rightarrow 0 \quad \text { as } k \rightarrow \infty \tag{6.13}
\end{equation*}
$$

Combining (6.7), (6.10), (6.11), and (6.13), it follows from Lemma 3.6 that

$$
K\left(X^{0}\right)=\widehat{U} \in F\left(K\left(X^{0}\right)\right)
$$

Theorem 6.2. Let $H=(V(H), E(H))$ be an infinite $M W$-directed graph and $\left\{T_{i, j}\right\}_{H}$ an H-IIFS satisfying (H). Let $\left(R_{i}\right)_{i \in V(H)}$ be a family of constants satisfying (R). Assume that, for $X^{0}, Y^{0} \in \mathcal{X},(6.1)$ is satisfied with $\left(X^{0}, X^{1}\right)$ and $\left(Y^{0}, Y^{1}\right)$, where X^{1} and Y^{1} are the biggest elements of $F\left(X^{0}\right)$ and $F\left(Y^{0}\right)$ respectively. Then the following statements hold:
(1) If X^{0}, Y^{0} are such that $\left\{i \in V(H): X_{i}^{0} \neq \emptyset\right\}=\left\{i \in V(H): Y_{i}^{0} \neq \emptyset\right\}$ and $X_{i}^{0} \subset Y_{i}^{0}$ for every $i \in V(H)$, then $K\left(X^{0}\right)=K\left(Y^{0}\right)$.
(2) If X^{0}, Y^{0} are such that $\left\{i \in V(H): X_{i}^{0} \neq \emptyset\right\} \subset\left\{i \in V(H): Y_{i}^{0} \neq \emptyset\right\}$, then $K\left(X^{0}\right)_{i} \subset K\left(Y^{0}\right)_{i}$ for every $i \in V(H)$.
(3) If there is $N \in \mathbb{N}$ such that $\left\{i \in V(H): X_{i}^{0} \neq \emptyset\right\} \subset\left\{[j]_{\leftarrow}^{N}: Y_{j}^{0} \neq \emptyset\right\}$, then $K\left(X^{0}\right)_{i} \subset K\left(Y^{0}\right)_{i}$ for every $i \in V(H)$, where $[j]_{\leftarrow}^{N}=\{k \in V(H)$: there is a directed path $\left[i_{n}\right]_{n=0}^{N_{k}}$ in H from $k=i_{0}$ to $j=i_{N_{k}}$ with $\left.N_{k} \leq N\right\}$.
Proof. (1) Let $\left\{X^{n}\right\}$ and $\left\{Y^{n}\right\}$ be the G-Picard trajectories defined inductively by (6.2) and such that $X^{n} \rightarrow K\left(X^{0}\right)$ and $Y^{n} \rightarrow K\left(Y^{0}\right)$. Observe that $\left(X^{n}, Y^{n}\right) \in$ $E(G)$ for every $n \in\{0\} \cup \mathbb{N}$. Arguing as in the proof of Proposition 5.1, we deduce that

$$
d_{I}\left(X^{n}, Y^{n}\right) \leq \lambda_{I} d_{\phi(I)}\left(X^{n-1}, Y^{n-1}\right) \quad \forall n \in \mathbb{N}, \forall I \in \Gamma
$$

Therefore, $\left\{X^{n}\right\}$ and $\left\{Y^{n}\right\}$ have the same limit; that is $K\left(X^{0}\right)=K\left(Y^{0}\right)$.
(2) Let $Z^{0}=\left(Z_{i}^{0}\right)_{i \in V(H)} \in \mathcal{X}$ be defined by $Z_{i}^{0}=X_{i}^{0} \cup Y_{i}^{0}$. Let Z^{1} be the biggest element of $F\left(Z^{0}\right)$. One can check that

$$
\bar{D}_{i}\left(Z_{i}^{0}, Z_{i}^{1}\right) \leq \bar{D}_{i}\left(X_{i}^{0}, X_{i}^{1}\right)+\bar{D}_{i}\left(Y_{i}^{0}, Y_{i}^{1}\right) \quad \forall i \in V(H)
$$

and hence

$$
d_{I}\left(Z^{0}, Z^{1}\right) \leq d_{I}\left(X^{0}, X^{1}\right)+d_{I}\left(Y^{0}, Y^{1}\right) \quad \forall I \in \Gamma
$$

Thus, $\left(Z^{0}, Z^{1}\right)$ satisfies (6.1). So, Y^{0} and Z^{0} verify the assumptions of (1). Therefore,

$$
K\left(Y^{0}\right)=K\left(Z^{0}\right)
$$

Let $\left\{X^{n}\right\}$ and $\left\{Z^{n}\right\}$ be the G-Picard trajectories defined inductively by (6.2) and such that $X^{n} \rightarrow K\left(X^{0}\right)$ and $Z^{n} \rightarrow K\left(Z^{0}\right)$. Since $X_{i}^{0} \subset Z_{i}^{0}$, one has $X_{i}^{n} \subset Z_{i}^{n}$ for every $i \in V(H)$ and every $n \in \mathbb{N}$. Thus,

$$
K\left(X^{0}\right)_{i} \subset K\left(Z^{0}\right)_{i}=K\left(Y^{0}\right)_{i} \quad \forall i \in V(H)
$$

(3) Let $\left\{X^{n}\right\}$ and $\left\{Y^{n}\right\}$ be the G-Picard trajectories defined inductively by (6.2) and such that $X^{n} \rightarrow K\left(X^{0}\right)$ and $Y^{n} \rightarrow K\left(Y^{0}\right)$. The assumption implies that

$$
\left\{i \in V(H): X_{i}^{0} \neq \emptyset\right\} \subset\left\{i \in V(H): Y_{i}^{N} \neq \emptyset\right\}
$$

From the proof of Proposition 5.1,

$$
d_{I}\left(Y^{N}, Y^{N+1}\right) \leq \lambda_{I} \cdots \lambda_{\phi^{N-1}(I)} d_{\phi^{N}(I)}\left(Y^{0}, Y^{1}\right) \quad \forall I \in \Gamma
$$

Therefore, $\left(Y^{N}, Y^{N+1}\right)$ satisfies (6.1). It follows from (2) that

$$
K\left(X^{0}\right)_{i} \subset K\left(Y^{N}\right)_{i} \quad \forall i \in V(H)
$$

Since

$$
K\left(Y^{N}\right)=\lim _{k \rightarrow \infty} Y^{N+k}=\lim _{n \rightarrow \infty} Y^{n}=K\left(Y^{0}\right)
$$

one has

$$
K\left(X^{0}\right)_{i} \subset K\left(Y^{0}\right)_{i} \quad \forall i \in V(H)
$$

Example 6.3. Let $H=(V(H), E(H))$ be given by $V(H)=\mathbb{Z} \times\{0,1\}$ and

$$
\begin{aligned}
E(H)=\{((0,0),(1,1)) & ,((0,1),(1,0))\} \\
& \cup\{((i, a),(i+1, a)),((3 i, a),(3 i-2, a)): i \in \mathbb{Z}, a=0,1\}
\end{aligned}
$$

For $a=0,1$, and $i \in \mathbb{Z}$, let $M_{(i, a)}=[i, i+1] \times[a, a+1]$ be endowed with the norm $\|(x, y)\|=\max \{|x|,|y|\}$. For $(i, j)=\left(\left(i_{1}, a\right),\left(j_{1}, b\right)\right) \in E(H)$, let $T_{i, j}: M_{j} \rightarrow M_{i}$ be a contraction with constant of contraction $\lambda_{i, j}<1$. We assume that

$$
\begin{align*}
k_{n}:=\frac{1+e^{n}}{1+e^{n+1}} \geq \max \left\{\lambda_{i, j}:(i, j) \in E(H), i=\right. & \left(i_{1}, a\right) \text { for } a \in\{0,1\} \text { and } \\
& \left.i_{1} \in\{3 n-1,3 n-2,3 n\}\right\} \tag{6.14}
\end{align*}
$$

We observe that $n \mapsto k_{n}$ is nonincreasing. Arguing as in Example 2.7, it can be shown that Theorem 2.5 implies that this H-IIFS, $\left\{T_{i, j}\right\}_{H}$, has a unique attractor K.

Moreover, for this H-IIFS, one has for $n \in \mathbb{Z}$ and $a=0,1$, the connected component of $H, C_{n}^{a}=\left(V\left(C_{n}^{a}\right), E\left(C_{n}^{a}\right)\right)$, given by

$$
\begin{aligned}
V\left(C_{n}^{a}\right) & =\{(3 n-2, a),(3 n-1, a),(3 n, a)\} \\
E\left(C_{n}^{a}\right) & =\{((3 n-2, a),(3 n-1, a)),((3 n-1, a),(3 n, a)),((3 n, a),(3 n-2, a))\} .
\end{aligned}
$$

So, as shown in Figure 6.1, the set of all connected components of H is

$$
C(H)=\left\{C_{n}^{a}: n \in \mathbb{Z}, a=0,1\right\}
$$

Observe that

$$
C_{m}^{a} \preceq C_{n}^{b} \quad \Longleftrightarrow \quad(a=b \text { and } m \leq n) \text { or }(a \neq b \text { and } m \leq 0<n)
$$

Figure 6.1. The set of connected components $C(H)$.

Let Γ and $\phi: \Gamma \rightarrow \Gamma$ be given by

$$
\begin{aligned}
& \Gamma=\{ \left\{\subset \mathbb{Z} \times\{0,1\}: 0<\operatorname{card}(I)<\infty, \text { and } V\left(C_{n}^{a}\right) \subset I \quad \forall V\left(C_{n}^{a}\right) \cap I \neq \emptyset\right\} \\
& \phi(I)=I \cup\{(i+1, a),(i+2, a),(i+3, a):(i, a) \in I\} \\
& \cup\{(1,1),(2,1),(3,1): \text { if }(0,0) \in I\} \\
& \cup\{(1,0),(2,0),(3,0): \text { if }(0,1) \in I\} .
\end{aligned}
$$

Also, let

$$
\begin{aligned}
\mathcal{X}=\{X= & \left(X_{(i, a)}\right)_{(i, a) \in V(H)}: X_{(i, a)} \subset M_{(i, a)} \text { closed } \forall(i, a) \in V(H), \\
& \text { if } X_{(i, a)} \neq \emptyset \text { for }(i, a) \in C_{n}^{a}, \text { then } X_{(j, a)} \neq \emptyset \forall(j, a) \in C_{n}^{a} \\
& \left.\operatorname{card}\left\{(i, a): X_{(i, a)} \neq \emptyset\right\} \neq 0\right\} .
\end{aligned}
$$

We fix $R=1$ and $\left(R_{(i, a)}\right)_{(i, a) \in V(H)}$ given by

$$
R_{(i, a)}=1+e^{n} \quad \text { for }(i, a) \in C_{n}^{a}
$$

This permits to define $\left\{d_{I}\right\}_{I \in \Gamma}$ by

$$
d_{I}(X, \widehat{X})=\max \left\{\bar{D}_{(i, a)}\left(X_{(i, a)}, \widehat{X}_{(i, a)}\right):(i, a) \in I\right\},
$$

where

$$
\bar{D}_{(i, a)}\left(X_{(i, a)}, \widehat{X}_{(i, a)}\right)= \begin{cases}D\left(X_{(i, a)}, \widehat{X}_{(i, a)}\right), & \text { if } X_{(i, a)} \neq \emptyset, \widehat{X}_{(i, a)} \neq \emptyset \\ 0, & \text { if } X_{(i, a)}=\emptyset, \widehat{X}_{(i, a)}=\emptyset \\ R_{(i, a)}, & \text { otherwise }\end{cases}
$$

Observe that

$$
\begin{aligned}
& \lambda_{I}= \max \left\{\max \left\{\lambda_{(i, a),(j, b)}:((i, a),(j, b)) \in E(H)\right\}, \max \left\{\frac{1}{R_{(i, a)}}:(i, a) \in I\right\}\right. \\
&\left.\max \left\{\frac{R_{(i, a)}}{R_{(j, b)}}:(i, a) \in I,(j, b) \in \phi(I) \backslash I\right\}\right\} \\
& \leq k_{n_{0}}
\end{aligned}
$$

where k_{n} is defined in (6.14) and

$$
n_{0}=\min \left\{n: I \cap C_{n}^{0} \neq \emptyset \text { or } I \cap C_{n}^{1} \neq \emptyset\right\}
$$

Also $\lambda_{I}=\lambda_{\phi(I)}$ for every $I \in \Gamma$. Therefore,

$$
\sum_{n=1}^{\infty} \lambda_{I} \lambda_{\phi(I)} \cdots \lambda_{\phi^{n-1}}(I) d_{\phi^{n}(I)}(X, \widehat{X}) \leq \sum_{n=1}^{\infty} k_{n_{0}}^{n} d_{\phi^{n}(I)}(X, \widehat{X}) \quad \forall X, \widehat{X} \in \mathcal{X} .
$$

This sum is finite in particular for every $X=X^{0} \in \mathcal{X}$ and every $\widehat{X}=X^{1} \in F\left(X^{0}\right)$ such that $\sup \left\{i: X_{(i, a)}^{0} \neq \emptyset\right\} \neq \sup \left\{i: X_{(i, a)}^{0}=\emptyset\right\}$, where $F: \mathcal{X} \rightarrow \mathcal{X}$ is defined in (5.6). Therefore, this H-IIFS, $\left\{T_{i, j}\right\}_{H}$, satisfies all the assumptions of Theorems 6.1 and 6.2. In particular, for such $X^{0} \in \mathcal{X}$, there exists a subattractor $K\left(X^{0}\right) \subset K$ satisfying all the properties stated in those theorems.

References

[1] M.F. Barnsley, Fractals Everywhere, Academic Press Inc., Boston, 1988.
[2] A. Chiş, R. Precup, Continuation theory for general contractions in gauge spaces, Fixed Point Theory Appl., 3(2004), 173-185.
[3] M. Das, Contraction ratios for graph-directed iterated constructions, Proc. Amer. Math. Soc., 134(2006), 435-442.
[4] T. Dinevari, M. Frigon, Fixed point results for multivalued contractions on a metric space with a graph, J. Math. Anal. Appl., 405(2013), 507-517.
[5] T. Dinevari, M. Frigon, Applications of multivalued contractions on graphs to graph-directed iterated function systems, Abstr. Appl. Anal., 2015 (2015), Art. ID 345856, 16 pp.
[6] G.A. Edgar, Measure, Topology, and Fractal Geometry, Springer-Verlag, New York, 1990.
[7] M. Frigon, Fixed point results for generalized contractions in gauge spaces and applications, Proc. Amer. Math. Soc., 128(2000), 2957-2965.
[8] M. Frigon, Fixed point results for multivalued contractions on gauge spaces, Set Valued Mapping with Applications in Nonlinear Analysis, Ser. Math. Anal. Appl., 4, Taylor \& Francis, London, 2002, 175-181.
[9] M. Frigon, Fixed point and continuation results for contractions in metric and in gauge spaces, Fixed Point Theory and its Applications, Banach Center Publ., Polish Acad. Sci., Warzaw, 77(2007), 89-114.
[10] N. Gheorghiu, Fixed point theorems in uniform spaces, An. St. Univ. Al. I. Cuza Iaşi, 28(1982), 17-18.
[11] G. Gwóźdź-Łukawska, J. Jachymski, IFS on a metric space with a graph structure and extensions of the Kelisky-Rivlin theorem, J. Math. Anal. Appl., 356(2009), 453-463.
[12] J.E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30(1981), 713-747.
[13] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136(2008), 1359-1373.
[14] R.D. Mauldin, S.C. Williams, Hausdorff dimension in graph directed constructions, Trans. Amer. Math. Soc., 309(1988), 811-829.
[15] A. Nicolae, D. O'Regan, A. Petruşel, Fixed point theorems for singlevalued and multivalued generalized contractions in metric spaces endowed with a graph, Georgian Math. J., 18(2011), 307-327.
[16] J.J. Nieto, R.L. Pouso, R. Rodríguez-López, Fixed point theorems in ordered abstract spaces, Proc. Amer. Math. Soc., 135(2007), 2505-2517.
[17] J.J. Nieto, R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22(2005), 223-239.
[18] A. Petruşel, I. Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc., 134(2006), 411-418.
[19] A.C.M. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 132(2004), 1435-1443.

Received: April 23, 2014; Accepted: January 23, 2016.

