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Abstract. A new iterative algorithm is proposed for finding a common solution of an equilibrium

problem and a fixed point problem. Then, a strong convergence theorem is proved. As a consequence,
they can be obtained some strong convergence theorems for an equilibrium problem and a split

common fixed point problem. The obtained theorems can be applied to solve an equilibrium problem

and a split common null point problem. The results presented in this paper extend and improve
some corresponding ones in the literature. Finally, a numerical example is given to show the validity

of the algorithm.
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1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖ and let C
be a nonempty closed convex subset of H. A mapping T of C into itself is called
nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C. We use Fix(T ) to denote the
set of fixed points T , i.e., Fix(T ) = {x ∈ C : Tx = x}. Also, a contraction on C is
a self-mapping f of C such that ‖f(x)− f(y)‖ ≤ κ‖x− y‖ for all x, y ∈ C and some
constant κ ∈ [0, 1). In this case f is said to be a κ-contraction.

Consider an equilibrium problem (EP) which is to find a point u ∈ C satisfying
the property:

φ(u, v) ≥ 0 for all v ∈ C, (1.1)

where φ : C × C → R is a bifunction of C. We use EP (φ) to denote the set of
solutions of EP (1.1), that is, EP (φ) = {u ∈ C : (1.1) holds}.

The EP (1.1) includes, as special cases, numerous problems in physics, optimiza-
tion and economics. Some authors (e.g., [22, 24, 28]) have proposed some useful
methods for solving the EP (1.1). Let C and Q be nonempty closed convex subsets
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of real Hilbert spaces H1 and H2, respectively. The split feasibility problem (SFP) is
formulated as finding a point x satisfying the property

x ∈ C such that Ax ∈ Q,

where A : H1 → H2 is a (nonzero) bounded linear operator. Recently, the SFP has
been widely studied by many authors (see [8, 9, 6, 10, 7, 21, 19, 20, 23, 25, 3, 27, 30,
31, 34, 33, 35]), due to its application in signal processing [4].

In 2002, Byrne [3] introduced the so-called CQ algorithm which starts an arbitrary
initial guess x0 ∈ H1 and generates a sequence {xn} via the iteration process

xn+1 = PC(I − γA∗(I − PQ)A)xn, (1.2)

where 0 < γ < 2
ρ(A∗A) , PC and PQ are the projections onto C and Q, respectively,

and ρ(A∗A) is the spectral radius of the operator A∗A, with A∗ the adjoint of A. It
is known that the CQ algorithm converges weakly to a solution of the SFP if such
a solution exists. In the case where both C and Q are the sets of fixed points of
some nonlinear operators, the SFP is known as the split common fixed point problem
(SCFP). More specifically, the SCFP is to find a point x with the property

x ∈ Fix(S) and Ax ∈ Fix(T ), (1.3)

where S : H1 → H1 and T : H2 → H2 are nonlinear mappings. We denote by Γ the
solution set of the SCFP, that is,

Γ := {x ∈ H1 : x ∈ Fix(S) and Ax ∈ Fix(T )}. (1.4)

In 2009, Censor and Segal [5] proposed and proved the convergence of the following
algorithm in the setting of the finite-dimensional spaces when S and T are directed
operators:

xn+1 = S(xn − γA∗(I − T )Axn). (1.5)

Note that the class of directed operators includes the metric projections. Therefore,
the results of Censor and Segal recover Byrne’s CQ algorithm.

In 2010, Moudafi [17] studied the following algorithm:{
un = xn − γA∗(I − T )Axn,

xn+1 = (1− αn)un + αnSun,

where {αn} is a real sequence to solve the SCFP for demicontractive operators and
obtained the weak convergence. It is known that demicontractive operators include
the directed operators. Hence, Moudafi’s algorithm is an extension of the algorithm
(1.5).

In 2012, Zhao and He [37] introduced the following viscosity approximation method
for solving the SCFP:

xn+1 = αnf(xn) + (1− αn)((1− λn)xn + λnUxn),

where f : H1 → H1 is a contraction, U = S(I − γA∗(I − T )A), S and T are two
quasi-nonexpansive operators, αn ∈ (0, 1) and λn ∈ (0, 12 ).
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Recently, Thong [26] proposed the following generalized algorithm:

xn+1 = (1− αn)f(xn) + αnUxn, (1.6)

where f : H → H is a contraction, U : H → H is an α-strongly quasi-nonexpansive
operator and αn ∈ (0, 1). He proved the sequence generated by (1.6) converges
strongly to an element of Fix(U). Then, he obtained some strong convergence the-
orems for solving the SCFP which extended the corresponding results announced by
many others.

In this paper, motivated by the above results, we propose a new iterative algorithm
to solve an equilibrium problem and a fixed point problem in Hilbert spaces. Then,
we obtain some strong convergence theorems for equilibrium problems and the split
common fixed point problems.

2. Preliminaries

Let H be a real Hilbert space. We use ⇀ and → to denote the weak and strong
convergence in H, respectively. The following identity holds:

‖αx+ βy + γz‖2 =α‖x‖2 + β‖y‖2 + γ‖z‖2

− αβ‖x− y‖2 − βγ‖z − y‖2 − αγ‖z − x‖2,

for all x, y, z ∈ H and α, β, γ ∈ [0, 1] such that α+ β + γ = 1.
Let C be a nonempty closed convex subset of H. Then, for any x ∈ H, there exists

a unique nearest point in C, denoted by PC(x), such that

‖x− PC(x)‖ ≤ ‖x− y‖ for all y ∈ C.

PC is called the metric projection of H onto C. It is known that PC is nonexpansive.
Further, for x ∈ H and z ∈ C,

z = PC(x) ⇔ 〈x− z, z − y〉 ≥ 0 for all y ∈ C.

Definition 2.1. A mapping T : H → H is called firmly nonexpansive if for any
x, y ∈ H,

‖Tx− Ty‖2 ≤ 〈Tx− Ty, x− y〉.

We recal that for a real Hilbert space H and all x, y ∈ H,

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉. (2.1)

Lemma 2.2. [2] Let C be a nonempty closed convex subset of H and φ : C ×C → R
be a bifunction satisfying the following conditions:

(A1) φ(x, x) = 0 for all x ∈ C;
(A2) φ is monotone, i.e., φ(x, y) + φ(y, x) ≤ 0, for all x, y ∈ C;
(A3) for each x, y, z ∈ C, limt↓0 φ(tz + (1− t)x, y) ≤ φ(x, y);
(A4) for each x ∈ C, y 7→ φ(x, y) is convex and weakly lower semicontinuous.

Let r > 0 and x ∈ H. Then, there exists z ∈ C such that

φ(z, y) +
1

r
〈y − z, z − x〉 ≥ 0, for all y ∈ C.
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Lemma 2.3. [11] Assume φ : C × C → R satisfies the conditions (A1)-(A4). For
r > 0, define a mapping Qr : H → C by

Qrx := {z ∈ C : φ(z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C} (2.2)

for all x ∈ H. Then, the following hold:

(i) Qr is single-valued;
(ii) Qr is firmly nonexpansive;

(iii) Fix(Qr) = EP (φ);
(iv) EP (φ) is closed and convex.

Definition 2.4. Assume T : H → H is a mapping. Then, I − T is said to be
demiclosed at zero if for any {xn} in H, the following implication holds:

xn ⇀ x and (I − T )xn → 0⇒ x ∈ Fix(T ).

Definition 2.5. Let T : H → H be a mapping with Fix(T ) 6= ∅. Then

(i) T : H → H is called directed if

〈z − Tx, x− Tx〉 ≤ 0, ∀z ∈ Fix(T ), x ∈ H
or equivalently

‖Tx− z‖2 ≤ ‖x− z‖2 − ‖x− Tx‖2, ∀z ∈ Fix(T ), x ∈ H.
[Firmly nonexpansive mappings are directed.]

(ii) T : H → H is called α−strongly quasi-nonexpansive with α > 0 if

‖Tx− z‖2 ≤ ‖x− z‖2 − α‖x− Tx‖2, ∀z ∈ Fix(T ), x ∈ H, (2.3)

or equivalently

〈Tx− x, x− z〉 ≤ −1 + α

2
‖x− Tx‖2, ∀z ∈ Fix(T ), x ∈ H. (2.4)

(iii) T : H → H is called quasi-nonexpansive if

‖Tx− z‖ ≤ ‖x− z‖, ∀z ∈ Fix(T ), x ∈ H. (2.5)

(iv) T : H → H is called β-demicontractive with 0 ≤ β < 1 if

‖Tx− z‖2 ≤ ‖x− z‖2 + β‖x− Tx‖2, ∀z ∈ Fix(T ), x ∈ H. (2.6)

Lemma 2.6. [32] Let T : H → H be an α1-strongly quasi-nonexpansive mapping and
S : H → H be an α2-strongly quasi-nonexpansive mapping with Fix(T ) ∩ Fix(S) 6=
∅. Then, the mapping TS is α1α2

α1+α2
-strongly quasi-nonexpansive and Fix(TS) =

Fix(T ) ∩ Fix(S).

Lemma 2.7. [26] Let T : H → H be a β-demicontractivebe mapping and S : H → H
be an α-strongly quasi-nonexpansive mapping with β < α. Then, mapping TS is
αβ
α−β -demicontractive and Fix(TS) = Fix(T ) ∩ Fix(S).

Lemma 2.8. [26] Let T : H → H be a β-demicontractive mapping with Fix(T ) 6= ∅
and set Tλ = (1 − λ)I + λT , called the λ-relaxation of T , with λ ∈ (0, 1 − β). Then
we have
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(i) Fix(T ) = Fix(Tλ).
(ii) ‖Tλx− z‖2 ≤ ‖x− z‖2 − 1

λ (1− β − λ)‖x− Tλx‖2, ∀z ∈ Fix(T ), x ∈ H.
(iii) Fix(T ) is a closed convex subset of H.

Lemma 2.9. [26] Let A : H1 → H2 be a linear bounded operator with L = ‖A∗A‖
and T : H2 → H2 be a β−demicontractive mapping. For a positive real number γ,
define the mapping V : H1 → H1 by V := I + γA∗(T − I)A. Then

(i) for all x ∈ H1 and z ∈ A−1(Fix(T )),

‖V x− z‖2 ≤ ‖x− z‖2 − 1

γL
(1− β − γL)‖x− V x‖2.

(ii) for all x ∈ H1 and z ∈ A−1(Fix(T )),

‖V x− z‖2 ≤ ‖x− z‖2 − γ(1− β − γL)‖Ax− T (Ax)‖2.

(iii) x ∈ Fix(V ) if Ax ∈ Fix(T ) provided that γ ∈ (0, 1−βL ).

Lemma 2.10. [1] Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− γn)an + γnvn + µn,

where {γn} is a sequence in [0, 1], {µn} a sequence of nonnegative real numbers, and
{vn} a sequence in R such that

∑∞
n=1 γn =∞, lim supn→∞ vn ≤ 0 and

∑∞
n=1 µn <∞.

Then limn→∞ an = 0.

3. Main result

In this section, we introduce an iterative algorithm for finding a common element
of the set of solutions of the equilibrium problem (1.1) and the fixed point set of
a nonexpansive mapping. We will prove strong convergence of the algorithm. As a
consequence, we also obtain two strong convergence theorems for equilibrium problems
and the split common fixed point problems.

Theorem 3.1. Let H be a real Hilbert space, C a nonempty closed convex subset of H,
T : C → C an α-strongly quasi-nonexpansive mapping such that I − T is demiclosed
at zero, φ : H × H → R a bifunction satisfying the conditions (A1)-(A4) of Lemma
2.2, and f : C → C a κ-contraction for some κ ∈ [0, 1). Set F := EP (φ) ∩ Fix(T )
and assume F 6= ∅. Suppose {αn} and {rn} are real sequences satisfying the following
conditions:

(B1) {αn} ⊂ (0, 1), limn→∞ αn = 0 and
∑∞
n=1 αn =∞;

(B2) {rn} ⊂ (a,∞) for some a > 0.

Let {xn} be a sequence generated by the two-layer iteration process{
un = Qrnxn, (3.1a)

xn+1 = αnf(xn) + (1− αn)Tun, n ≥ 1, (3.1b)

where the initial guess x0 ∈ C is arbitrary and Qr is defined by (2.2) for r > 0. Then,
the sequences {xn} and {un} converge strongly to q ∈ F , where q = PF f(q), which
uniquely solves the following variational inequality (VI):

〈(I − f)q, q − x〉 ≤ 0, for all x ∈ F. (3.2)
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Proof. Since PF f is a contraction on F , it has a unique fixed point q ∈ F ; equivalently,
q is the unique solution of VI (3.2).
We first claim that {xn} and {un} are bounded. To see this, taking p ∈ F and
noticing un = Qrnxn and Qrnp = p, we get ‖un − p‖ ≤ ‖xn − p‖, and from (3.1b),

‖xn+1 − p‖ ≤‖αn(f(xn)− p) + (1− αn)(Tun − p)‖
≤αn(‖f(xn)− f(p)‖+ ‖f(p)− p‖) + (1− αn)‖un − p‖
≤(1− αn(1− κ))‖xn − p‖+ αn‖f(p)− p‖
≤max{‖xn − p‖, ‖f(p)− p‖/(1− κ)}.

By induction, we obtain

‖xn − p‖ ≤ max

{
‖x0 − p‖,

‖f(p)− p‖
1− κ

}
(3.3)

for all n ≥ 0. Hence {xn} is bounded, so are {un}, {f(xn)} and {Tun} .
By (3.1b) and (2.1), we derive that

‖xn+1 − q‖2 = ‖αn(f(xn)− q) + (1− αn)(Tun − q)‖2

= ‖(αn(f(xn)− f(q)) + (1− αn)(Tun − q)) + αn(f(q)− q)‖2

≤ ‖αn(f(xn)− f(q)) + (1− αn)(Tun − q)‖2

+ 2αn〈f(q)− q, xn+1 − q〉.

By convexity of ‖ · ‖2, κ-contraction of f , and α-strong quasi-nonexpansivity of T , we
further derive that

‖xn+1 − q‖2 ≤ αn‖f(xn)− f(q)‖2 + (1− αn)‖Tun − q‖2

+ 2αn〈f(q)− q, xn+1 − q〉
≤ αnκ2‖xn − q‖2 + (1− αn)(‖un − q‖2 − α‖Tun − un‖2)

+ 2αn〈f(q)− q, xn+1 − q〉. (3.4)

Since Qr is firmly nonexpansive for each r > 0 and un = Qrnxn, we get (cf. Definition
2.4(i))

‖un − q‖2 ≤ ‖xn − q‖2 − ‖un − xn‖2. (3.5)

Substituting (3.5) into (3.4) we obtain

‖xn+1 − q‖2 ≤ (1− αn(1− κ2))‖xn − q‖2 + 2αn〈f(q)− q, xn+1 − q〉
− (1− αn)(‖un − xn‖2 + α‖Tun − un‖2). (3.6)

Put α̃n := αn(1− κ2) and β̃n := βn/(1− κ2), where

βn := 2〈f(q)− q, xn+1 − q〉 −
1− αn
αn

(‖un − xn‖2 + α‖Tun − un‖2). (3.7)

Then we can rewrite (3.6) as

‖xn+1 − q‖2 ≤ (1− α̃n)‖xn − q‖2 + α̃nβ̃n. (3.8)

In order to prove xn → q in norm via Lemma 2.10, we must verify two conditions:
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(i)
∑∞
n=1 α̃n =∞,

(ii) lim supn→∞ β̃n ≤ 0, equivalently, lim supn→∞ βn ≤ 0.

Condition (i) is guaranteed by Assumption (B1). To verify (ii), we first observe
that {βn} is bounded from above (by 2‖f(q) − q‖(M + ‖q‖) with M ≥ sup{‖xn‖ :
n ≥ 0}). Thus, lim supn→∞ βn exists. Take a subsequence {xnk

} of {xn} such that
limk→∞ βnk

= lim supn→∞ βn. We may also assume that xnk+1 ⇀ p. It then turns
out from the definition of βnk

that

lim
k→∞

1− αnk

αnk

(‖unk
− xnk

‖2 + α‖Tunk
− unk

‖2) (3.9)

exists (which actually equals to 2〈f(q) − q, p − q〉 − limk→∞ βnk
). Since αnk

→ 0, it
turns out from (3.9) that

lim
k→∞

(‖unk
− xnk

‖2 + α‖Tunk
− unk

‖2) = 0. (3.10)

Using (3.1b), we find that ‖xn+1 − Tun‖ = αn‖f(xn)− Tun‖ → 0. Hence, by (3.10),

‖xnk+1 − xnk
‖ ≤ ‖xnk+1 − Tunk

‖+ ‖Tunk
− unk

‖+ ‖unk
− xnk

‖ → 0.

This asserts that xnk
⇀ p and then unk

⇀ p as well.
Since I − T is demiclosed, we derive from the fact ‖Tunk

− unk
‖ → 0 that Tp = p,

namely, p ∈ Fix(T ). We now claim that p ∈ EP (φ) so that p ∈ F = Fix(T )∩EP (φ).
Since unk

= Qrnk
xnk

, we have that for all v ∈ C

φ(unk
, v) +

1

rnk

〈v − unk
, unk

− xnk
〉 ≥ 0.

Using the monotonicity condition (A2), we get

1

rnk

〈v − unk
, unk

− xnk
〉 ≥ φ(v, unk

). (3.11)

Since rnk
≥ a > 0 for all k by (B2), and since limk→∞ ‖xnk

− unk
‖ = 0, it follows

from (3.11) that

lim sup
k→∞

φ(v, unk
) ≤ 0. (3.12)

By the weak lower semicontinuity of φ(v, ·) and the fact unk
⇀ p, we immediately get

φ(v, p) ≤ 0. (3.13)

Next, for each v ∈ C and t ∈ (0, 1), setting vt := tv + (1 − t)p and using properties
(A1) and (A4) we get

0 = φ(vt, vt) = φ(vt, tv + (1− t)p) ≤ tφ(vt, v) + (1− t)φ(vt, p) ≤ tφ(vt, v).

Consequently, φ(vt, v) ≥ 0, which together with the monotonicity (A2) implies that
φ(v, vt) ≤ 0. This implies upon letting t → 0, by the lower semicontinuity property
(A4), that φ(v, p) ≤ 0 for each v ∈ C. Hence, p ∈ EP (φ).
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Now we are ready to verify condition (ii). As a matter of fact, we have

lim sup
n→∞

βn = lim
k→∞

βnk

= lim
k→∞

{
2〈f(q)− q, xnk+1 − q〉

− 1− αnk

αnk

(‖unk
− xnk

‖2 + α‖Tunk
− unk

‖2)

}
≤ lim
k→∞

2〈f(q)− q, xnk+1 − q〉

= 2〈f(q)− q, p− q〉 ≤ 0 (due to VI (3.2) and p ∈ F ).

Finally, conditions (i)-(ii) make Lemma 2.10 applicable to the relation (3.8) and we
obtain that ‖xn − q‖2 → 0, i.e., xn → q in norm as n→∞. �

Remark 3.2. The proof of Theorem 3.1 given here provided a novel way (see also [29])
in proving strong convergence of iterative algorithms for fixed-point and optimization
problems compared with the way of Maingé [14]. Set an := ‖xn − q‖2 for n ≥ 0.
Maingé’s method always distinguishes two cases. The first case assumes that the
sequence {an}∞n=0 is eventually nonincreasing at infinity, which means that, for some
integer n0 ≥ 0, the sequence {an}n≥n0

is nonincreasing; consequently, limn→∞ an
exists. The second case is the opposite to the first case; that is, for any integer n0 ≥ 0,
the sequence {an}n≥n0

is not nonincreasing. Thus there exists a subsequence {nj}
such that anj < anj+1 for all integer j ≥ 0. Define τ(n) := max{j ≤ n : aj < aj+1}
for n ≥ n0. Then τ(n)→∞ as n→∞ and max{aτ(n), an} ≤ aτ(n)+1.

Maingé used his method to prove the strong convergence [14, Theorem 3.1] of
a projected subgradient method for a constrained nonsmooth convex optimization
problem. His method has been followed by many researchers, including Thong [26].
However, it is not necessary to always use Maingé’s technique (i.e., [14, Lemma 3.1]) by
distinguishing two cases (as outlined above). The proof of Theorem 3.1 we gave here
demonstrates an alternative way for proving strong convergence of iterative algorithms
by deliberately estimating ‖xn+1 − q‖2 in terms of ‖xn − q‖2.

Corollary 3.3. Let all the assumptions of Theorem 3.1 hold except that the mapping
T : C → C is now a β-demicontractive mapping for some β ∈ (0, 1). Let {xn} be
generated by the iteration algorithm:{

un = Qrnxn,

xn+1 = αnf(xn) + (1− αn)Tλun,
(3.14)

for n ≥ 0, where the starting point x0 ∈ C is arbitrary and Tλ = (1 − λ)I + λT is
the λ-relaxation of T . Assume λ ∈ (0, 1 − β). Then, the sequences {xn} and {un}
converge strongly to q ∈ F , where q = PF f(q).

Proof. From Lemma 2.8, Tλ is α-strongly quasi-nonexpansive with α := 1
λ (1−β−λ) >

0 for λ ∈ (0, 1 − β). On the other hand, Fix(T ) = Fix(Tλ) and λ(I − T ) = I − Tλ.
Thus I − Tλ is also demiclosed at zero. Consequently, applying Theorem 3.1 to the
mapping Tλ yields the strong convergence of {xn} and {un} defined by the algorithm
(3.14). �
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Remark 3.4. Corollary 3.3 is a generalization of [26, Corollary 3.2].

Remark 3.5. Since every quasi-nonexpansive mapping is β-demicontractive map-
ping, Corollary 3.3 remains true when T is quasi-nonexpansive mapping on H. So,
Corollary 3.3 is a generalization of [16, Theorem 3.1].

The next result is regarding an iteration method for SCFP (1.3).

Theorem 3.6. Let H1 and H2 be real Hilbert spaces, S : H1 → H1 an α̂1-strongly
quasi-nonexpansive mapping and T : H2 → H2 a β-demicontractive mapping. Suppose
that I − S and I − T are demiclosed at zero. Let A : H1 → H2 be a bounded linear
operator, φ : H1×H1 → R a bifunction satisfying the conditions (A1)–(A4) of Lemma
2.2, f a κ-contraction on H1 for some κ ∈ [0, 1). Set F := EP (φ) ∩ Γ and assume
F 6= ∅, where Γ is the solution set (1.4) of SCFP (1.3). Suppose {αn} and {rn} are
real sequences satisfying the following conditions:

(B1) {αn} ⊂ (0, 1), limn→∞ αn = 0 and
∑∞
n=1 αn =∞;

(B2) {rn} ⊂ (a,∞) for some a > 0.

Let {xn} ⊂ H1 be a sequence generated by the iteration process{
φ(un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0, y ∈ H1,

xn+1 = αnf(xn) + (1− αn)S(I + γA∗(T − I)A)un, n ≥ 0,
(3.15)

where x0 ∈ H1 and γ ∈ (0, 1−βL ) with L = ‖A∗A‖. Then, the sequences {xn} and
{un} converge strongly to q ∈ F , where q = PF f(q).

Proof. Set V := I+γA∗(T−I)A for a fixed γ ∈ (0, 1−βL ). Then the algorithm (3.15) is
reduced to the algorithm (3.1) associating with the mapping SV . By Theorem 3.1, it
is suffices to show that F = EP (φ)∩Fix(SV ) and I−SV is demiclosed at zero. From
Lemma 2.9, V is α̂2-strongly quasi-nonexpansive mapping with α̂2 := 1

γL (1−β−γL).

Hence SV is α-strongly quasi-nonexpansive and Fix(S) ∩ Fix(V ) = Fix(SV ) by
Lemma 2.6 where α = α̂1α̂2

α̂1+α̂2
. It follows from Lemma 2.9 that

Γ = {x ∈ H1 : x ∈ Fix(S) and Ax ∈ Fix(T )}
= {x ∈ H1 : x ∈ Fix(S) and x ∈ Fix(V )}
= Fix(S) ∩ Fix(V ) = Fix(SV ).

Now, we show that I − SV is demiclosed at zero. Let {xn} ⊂ H1 be a sequence such
that xn ⇀ x and xn − SV xn → 0. To prove x ∈ Fix(SV ), take z ∈ F and use the
fact that S and V are α̂1- and α̂2-strongly quasi-nonexpansive, respectively, to derive
that

‖SV xn − z‖2 ≤‖V xn − z‖2 − α̂1‖V xn − SV xn‖2

≤‖xn − z‖2 − α̂2‖xn − V xn‖ − α̂1‖V xn − SV xn‖2.
It turns out that, for a certain appropriate constant M > 0

α̂2‖xn − V xn‖+ α̂1‖V xn − SV xn‖2 ≤ ‖xn − z‖2 − ‖SV xn − z‖2

= (‖xn − z‖+ ‖SV xn − z‖)(‖xn − z‖ − ‖SV xn − z‖)
≤M‖xn − SV xn‖ → 0.
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Therefore, ‖xn − V xn‖ → 0 and ‖V xn − SV xn‖ → 0. This implies V xn ⇀ x. By
the demiclosedness of I − S, we get x ∈ Fix(S). Moreover, from Lemma 2.9(ii), we
obtain

‖SV xn − z‖2 ≤ ‖V xn − z‖2

≤ ‖xn − z‖2 − γ(1− β − γL)‖Axn − TAxn‖2.
It follows that

γ(1− β − γL)‖Axn − TAxn‖2 ≤ ‖xn − z‖2 − ‖SV xn − z‖2

≤M‖xn − SV xn‖ → 0.

Since Axn ⇀ Ax, the demiclosedness of I − T implies Ax ∈ Fix(T ). Hence, x ∈
Fix(S) ∩ Fix(V ) = Fix(SV ) and I − SV is demiclosed at zero. �

Corollary 3.7. Let all the assumptions of Theorem 3.6 hold except that the mapping
S : H1 → H1 is a µ-demicontractive mapping for some µ ∈ (0, 1) [instead of α̂1-
strongly quasi-nonexpansive mapping]. Let {xn} be generated by the iteration process{

φ(un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, y ∈ H1,

xn+1 = αnf(xn) + (1− αn)Sλ(I + γA∗(T − I)A)un, n ≥ 0,
(3.16)

where x0 ∈ H and λ ∈ (0, 1 − µ). Then, the sequences {xn} and {un} converge
strongly to q ∈ F , where q = PF f(q).

Proof. From Lemma 2.8, V = I + γA∗(T − I)A) is α̂2-strongly quasi-nonexpansive
with α̂2 = 1

γL (1− β − γL) and from Lemma 2.8, Sλ is ν-strongly quasi-nonexpansive

with ν = 1
λ (1 − µ − λ). The remaining of the proof follows from that of Theorem

3.6. �

Remark 3.8. Corollary 3.7 remains true when T and S are quasi-nonexpansive
mappings, similar to Remark 3.5.

Theorem 3.9. Let H1 and H2 be real Hilbert spaces, S : H1 → H1 a β-
demicontractive mapping, T : H2 → H2 a µ-demicontractive mapping, A : H1 → H2

a bounded linear operator with L = ‖A∗A‖, φ : H1 × H1 → R a bifunction sat-
isfying the conditions (A1)-(A4) of Lemma 2.2, f a κ-contraction on H1 for some
κ ∈ [0, 1), F := EP (φ) ∩ Γ 6= ∅. Suppose {αn} and {rn} are real sequences satisfying
the following conditions:

(B1) {αn} ⊂ (0, 1), limn→∞ αn = 0 and
∑∞
n=1 αn =∞;

(B2) {rn} ⊂ (a,∞) for some a > 0.

Let {xn} ⊂ H1 be a sequence generated by the iterative process{
φ(un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0, y ∈ H1,

xn+1 = αnf(xn) + (1− αn)Wλun, n ≥ 1,
(3.17)

where x0 ∈ H1, W = S(I+γA∗(T −I)A), and Wλ = I+λ(W −I) is the λ-relaxation
of W . Assume I − W is demiclosed at zero, β < α, where α = 1

γL (I − µ − γL),

λ ∈ (0, 1 − αβ
α+β ) and γ ∈ (0, 1−µL ). Then, the sequences {xn} and {un} converge

strongly to q ∈ F , where q = PF f(q).
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Proof. Set V := I + γA∗(T − I)A) for a fixed γ ∈ (0, 1−µL ). From Lemma 2.9, V is

α-strongly quasi-nonexpansive mapping. It turns out that SV is αβ
α+β -demicontractive

and Fix(S)∩Fix(V ) = Fix(SV ) from Lemma 2.7. Now, we show that Γ = Fix(S)∩
Fix(V ) = Fix(SV ). In fact, it follows from Lemma 2.9 that

Γ = {x ∈ H1 : x ∈ Fix(S) and Ax ∈ Fix(T )}
= {x ∈ H1 : x ∈ Fix(S) and x ∈ Fix(V )}
= F (S) ∩ Fix(V ) = Fix(SV ).

�

Corollary 3.10. In Theorem 3.9, suppose S is quasi-nonexpansive (instead of being
β-demicontractive), and I − S and I − T (instead of I −W ) are demiclosed at zero;
suppose also λ ∈ (0, 1). Then, the sequences {xn} and {un} generated by the algorithm
(3.17) converge strongly to q ∈ F , where q = PF f(q).

Proof. According to the proof of Theorem 3.9, it is suffices to show that I − SV is
demiclosed at zero, which can be proved similarly by repeating the proof of Theorem
3.6. �

Remark 3.11. Corollary 3.10 is a generalization of [26, Corollary 3.8], [37, Corollary
3.2] and [18, Theorem 2.1].

4. Application

Let H1 and H2 be real Hilbert spaces, B1 : H1 → 2H1 and B2 : H2 → 2H2 be
set-valued operators, and A : H1 → H2 be a (nonzero) bounded linear operator. The
split common null point problem (SCNP) is the problem of finding a point x ∈ H1

with the property

0 ∈ B1(x) and 0 ∈ B2(Ax). (4.1)

Recently, Byrne et al. [3] and Kazmi et al. [13] proposed a strongly convergent algo-
rithm for finding a solution of SCNP (4.1) when B1 and B2 are maximal monotone.
Recall that B : H → 2H is said to be monotone if

〈x− y, u− v〉 ≥ 0, x, y ∈ D(B), u ∈ Bx, v ∈ By,

where D(B) := {x ∈ H : Bx 6= ∅} is the (effective) domain of B.
A monotone operator is said to be maximal if its graph is not properly contained

in the graph of any other monotone operator. For a maximal monotone operator
B : H → 2H and λ > 0, we can define the following single-valued operator (referred
to as resolvent):

JBλ := (I + λB)−1 : H → H.

It is known JBλ is firmly nonexpansive and 0 ∈ B(x) if and only if x ∈ Fix(JBλ ).
Therefore, the problem (4.1) is equivalent to the problem of finding a point x ∈ H1

satisfying the property

x ∈ Fix(JB1

λ ) and Ax ∈ Fix(JB2

λ ),
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where λ > 0, that is, the SCNP is reduced to the split common fixed point problem
(SCFP).

Theorem 4.1. Let B1 : H1 → 2H1 and B2 : H2 → 2H2 be set-valued maximal
monotone operators, and A : H1 → H2 be a bounded linear operator. Set Γ to be the
solution set of SCNP (4.1) and F = EP (φ)∩Γ. Assume F 6= ∅. Let f : H1 → H1 be
a κ-contraction for some κ ∈ [0, 1) and γ ∈ (0, 1

L ) with L = ‖A∗A‖. Suppose {αn}and
{rn} are real sequences satisfying the following conditions:

(B1) {αn} ⊂ (0, 1), limn→∞ αn = 0 and
∑∞
n=1 αn =∞;

(B2) {rn} ⊂ (a,∞) for some a > 0.

Let {xn} ⊂ H1 be a sequence generated by the iterative algorithm{
φ(un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0, for all y ∈ H1,

xn+1 = αnf(xn) + (1− αn)JB1

λ (I − γA∗(I − JB2

λ )A)un,
(4.2)

for n ≥ 0, where the starting point x0 ∈ H1 is arbitrary. Then, the sequences {xn}
and {un} converge strongly to q ∈ F , where q = PF f(q).

Proof. The resolvents JB1

λ and JB2

λ are firmly nonexpansive operators, and I − JB1

λ

and I − JB2

λ are demiclosed at zero. Also, JB1

λ is 1-strongly quasi-nonexpansive and

JB2

λ is 0-demicontractive. Consequently, the strong convergence of the algorithm (4.2)
immediately follows from Theorem 3.6. �

Remark 4.2. Theorem 4.1 is a generalization of [4, Theorem 4.5] when we take φ = 0
and the contraction f(x) ≡ u to be constant.

5. Numerical Test

In this section, we give a numerical example to illustrate the convergence of the
algorithm (3.15) in Theorem 3.6.

Example 5.1. Let H1 = H2 = R2 and define

φ((x, y)t, (u, v)t) := −6(x2 + y2) + xu+ yv + 5(u2 + v2). (5.1)

It is easy to verify that φ satisfies the conditions (A1)-(A4). First, we deduce a formula
for Qr((x, y)t). For any (u, v)t ∈ R2 and r > 0,

φ((x, y)t, (u, v)t) +
1

r
〈(u− z, v − w)t, (z − x,w − y)t〉 ≥ 0, (5.2)

if and only if

5r(u2 + v2) + ((r + 1)z − x)u+ ((r + 1)w − y)v + xz + yw (5.3)

− (6r + 1)(z2 + w2) ≥ 0.

Set

G(u) = 5ru2 + ((r + 1)z − x)u+ xz − (6r + 1)z2,

and

J(v) = 5rv2 + ((r + 1)w − y)v + yw − (6r + 1)w2.
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Therefore, from (5.3), it is clear that (5.2) holds if and only if

G(u) + J(v) ≥ 0 for all u, v ∈ R. (5.4)

Also, we know G(u) is a quadratic function of u with coefficients

a := 5r, b := (r + 1)z − x, c := xz − (6r + 1)z2.

The discriminant of G(u), ∆ = b2−4ac, is given by ∆G = [(11r+1)z−x]2. Similarly,
J(v) is a quadratic function of v and its discriminant is ∆J = [(11r+1)w−y]2. Hence
∆G ≥ 0 and ∆J ≥ 0. Next, we will show (5.4) is true if and only if

G(u) ≥ 0 for all u ∈ R and J(v) ≥ 0 for all v ∈ R. (5.5)

Obviously, (5.5) concludes (5.4). Inversely, suppose (5.4) holds and there exists u0 ∈ R
such that G(u0) < 0. From (5.4), we get J(v) > 0 for all v ∈ R. So, the discriminant
of J(v) should be negative. This is a contradiction with ∆J ≥ 0. Hence, G(u) ≥ 0
for all u ∈ R. By the same argument as above, we can prove J(v) ≥ 0 for all v ∈ R.
This shows (5.4) derives (5.5).

Now, from (5.5), we have ∆G ≤ 0. That is, [(11r + 1)z − x]2 ≤ 0. So, z = x
11r+1 .

Similarly, we get w = y
11r+1 . By Lemma 2.3, Qr is single-valued for r > 0. Hence

Qr((x, y)t) = ( x
11r+1 ,

y
11r+1 )t. Thus, from Lemma 2.3, we get EP (φ) = {(0, 0)t}.

Let αn = 1
n and rn = 1, for all n ∈ N, T ((x, y)t) = (0, y)t, f((x, y)t) = 1

2 (x, y)t

and S((x, y)t) = 1
4 (x, y)t, A =

[
1 3
−2 1

]
, γ = 1

5 and xn = (an, bn)t. Hence F =

Γ∩EP (φ) = (0, 0)t. Then, from Theorem 3.6, the sequences {xn} and {un}, generated
iteratively by un = ( 1

12an,
1
12bn)t,

xn+1 =
(

(292n−12)an+(n−1)bn
560n , (881n−41)bn+2(n−1)an

1680n

)t
,

(5.6)

converge strongly to (0, 0)t ∈ F , where (0, 0)t = PF (f)((0, 0)t).

0 5 10 15 20 25 30
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Figure 1. The convergence of {xn} with initial value x0 = (−3, 2)t
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Table 1. The values of the sequences {an}, {bn} and {‖xn − q‖}

Numerical results for x1 = (−3, 2)t

n an bn ‖xn − q‖
1 -3 2 3.6056
2 -1.1625 1 1.5334
3 -0.46203 0.51151 0.68929
...

...
...

...
14 −1.7602−5 0.00038738 0.00038778
15 −6.5285e−6 0.00020245 0.00020255
16 −2.323e−6 0.00010583 0.00010585
...

...
...

...
28 5.7821e−10 4.4568e−8 4.4572e−8

29 3.1275e−10 2.3333e−8 2.3335e−8

30 11.6789e−10 1.2217e−8 1.2218e−8

Table 1 indicates the values of the sequences {an}, {bn} and ‖xn−q‖ for algorithm
(5.6), where x1 = (−3, 2)t and n = 30.

Figure 1 shows the behavior of ‖xn − q‖ that corresponds to Table 1 and also the
convergence to 0 ∈ F of the sequence {xn}.
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