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Abstract. In this paper, we study the following Schrödinger-Kirchhoff type equations involving the

fractional p-Laplacian M([u]ps,p)(−∆)spu + (1 + λg(x))up−1 = H(x)uq−1, u > 0, x ∈ RN , where

s ∈ (0, 1), 2 ≤ p < ∞, ps < N and (−∆)sp is the fractional p-Laplacian operator. M(t) = a + btk,

where a, k > 0 and b ≥ 0 are constants. λ > 0 is a real parameter. p(k + 1) < q < p∗s , where

p∗s = Np
N−ps

is the fractional Sobolev critical exponent. Under some appropriate assumptions on g(x)

and H(x), we obtain the existence of positive ground state solutions and discuss their asymptotical
behavior via the method used by Bartsch and Wang [Multiple positive solutions for a nonlinear

Schrödinger equation. Z. Angew. Math. Phys. 51 (2000) 366-384].
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1. Introduction and main results

In this paper, we consider the following equation:

M

(∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy

)
(−∆)

s
pu+ (1 + λg(x))up−1 = H(x)uq−1, (1.1)

u > 0, x ∈ RN , where s ∈ (0, 1), 2 ≤ p < ∞ and ps < N . Here (−∆)
s
p is the

fractional p-Laplacian operator which (up to normalization factors) may be defined
along a function ϕ ∈ C∞0 (RN ) as

(−∆)spϕ(x) = 2 lim
ε→0+

∫
RN\Bε(x)

|ϕ(x)− ϕ(y)|p−2
(ϕ(x)− ϕ(y))

|x− y|N+ps
dy, x ∈ RN ,
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where Bε(x) := {y ∈ RN : |x− y| < ε}. In relation to the fractional p-Laplacian
operator, we recommend readers to read [14, 19, 12] and the references therein.

When p = 2 and M ≡ 1, Eq. (1.1) transform into the fraction Laplacian equation

(−∆)su+ V (x)u = h(x, u), x ∈ RN ,

which can been seen as the fractional form of the following classical stationary
Schrödinger equation

−∆u+ V (x)u = h(x, u), x ∈ RN .

In recent years, a great interest has devoted to studying the existence of solutions
via variational methods for the Kirchhoff equation:

utt −
(
a+ b

∫
Ω

|Ou|2 dx

)
∆u = h(x, u).

It comes from the well-known D’Alembert wave equation

ρ
∂2u

∂t2
−

(
p0

h
+

E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

)
∂2u

∂x2
= h(x, u)

for free vibrations of elastic strings, see[15]. Here, u denotes the displacement of a
string, ρ is the mass density, p0 is the initial tension, h is the area of cross-section,
E is the Young modulus of the material and L is the length of the string. For this,
Kirchhoff’s model takes into account the changes in length of the string produced
by transverse vibrations. For more details on the Kirchhoff equation, we recommend
readers to read [1, 9, 15] and the references therein. More recently, in [11], Fiscella
and Valdinoci provide a detailed discussion about the physical meaning underlying
the fractional Kirchhoff problems and their applications. Indeed, in Appendix, they
construct a stationary Kirchhoff variational problem which models, as a special sig-
nificant case, the nonlocal aspect of the tension arising from nonlocal measurements
of the fractional length of the string.

Nonlocal fractional problems have been appearing in the literature in many dif-
ferent contexts, both in the pure mathematical research and in concrete real-world
application. Indeed, fractional and nonlocal operators appear in many diverse fields
such as optimization, finance, phase transitions, stratified materials, anomalous dif-
fusion, crystal dislocation, soft thin films, semipermeable membranes, flame propaga-
tion, conversion laws, ultra-relativistic of quantum mechanics, quasi-geotrophic flows,
multiple scattering, minimal surface, materials science, and water waves, see [22, 10]
for more details.

Indeed, for the Schrödinger-Kirchhoff type equations involving the fractional p-
Laplacian, many people have made great contributions, see e.g. [7, 26, 24, 23, 16, 31,
30, 28, 27, 25, 3, 17, 18, 20, 2] and the references therein. For exmple, in [24], Pucci
and Xiang obtain two solutions for nonhomogeneous fractional p-Laplacian equations
of Schrödinger-Kirchhoff type

M

(∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy

)
(−∆)

s
pu+ V (x) |u|p−2

u = f(x, u) + g(x), in RN
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by assuming the potential function V (x) satisfies following conditions:
(V1) V (x) ∈ C(RN ) satisfies infx∈RN V (x) ≥ V0, where V0 > 0 is a constant;
(V2) there exists h > 0 such that lim|y|→∞meas({x ∈ Bh(y) : V (x) ≤ c}) = 0 for any

c > 0, where meas(A) denotes the Lebesgue measure of A on RN .
In addition, in [31], Zhang et al. get the existence of infinitely many solutions for
fractional p-Laplacian Schrödinger-Kirchhoff type equations with sign-changing po-
tential(

a+ b

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy

)p−1

(−∆)
s
pu+ V (x) |u|p−2

u = f(x, u), in RN .

They assume the potential function V (x) satisfies following conditions:

(V
′

1 ) V (x) ∈ C(RN ,R) and infx∈RN V (x) > −∞;

(V
′

2 ) There exists d > 0 such that lim|y|→+∞meas({x ∈ Bd(y) : V (x) ≤ M}) = 0 for
any M > 0.
However, to our knowledge, there is no study for elliptic equations of Schödinger-
Kirchhoff type involving the fractional p-Laplacian and steep well potential V (x) =
1 + λg(x) yet.

In this paper, we are interested in the existence of positive ground state solutions of
problem (1.1) and the asymptotical behavior of the solutions as λ→ +∞. To obtain
these results, the potential in (1.1) needs some restricted conditions to overcome the
loss of compactness caused by RN . Specifically, for Vλ(x) = 1 + λg(x), we can have
some compactness by letting the parameter λ large enough, while any limit is not
needed to be posed on the potentials. The method above is first proposed by Bartsch
and Wang[4, 5]. In relation to the steep well potentail, we recommend readers to read
[21, 29] and the references therein.

Throughout this paper, we make the following assumptions:
(M) M(t) = a+ b tk with a, k > 0 and b ≥ 0;
(A1) 2 ≤ p < p(k + 1) < q < p∗s;
(A2) g(x), H(x) are two nonnegative, locally Hölder continuous, and bounded poten-
tial functions. Moreover, 0 ≤ g(x) ≤ g∞ and 0 < H(x) ≤ H∞;
(A3) There exists M0 > 0 such that the set A = {x ∈ RN : g(x) ≤ M0} is nonempty
and meas(A) <∞;
(A4) Ω := int{g−1(0)} is nonempty, bounded, and has smooth boundary, Ω = g−1(0).

Before stating our main results, we give the variational setting for (1.1). The
fractional Sobolev space W s,p(RN ) defined by

W s,p(RN ) = {u ∈ Lp(RN ) : [u]s,p <∞},

where

[u]
p
s,p =

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
,

and W s,p(RN ) is equipped with the norm

‖u‖W s,p(RN ) =
(

[u]
p
s,p + ‖u‖pp

) 1
p

.
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It is clear that W s,p(RN ) is a uniformly convex Banach space (see Appendix in [24]).
For more basic properties of fractional Sobolev space, we refer the readers to [10].

The nature energy functional associated with (1.1) is given by

Iλ(u) =
1

p

(
M([u]ps,p) +

∫
RN

Vλ(x) |u|p
)
− 1

q

∫
RN

H(x) |u|q , (1.2)

where M(t) = at + b
k+1 tk+1 and Vλ(x) = 1 + λg(x). It is well known that Iλ(u)

is well defined. Furthermore, Iλ(u) ∈ C1(W s,p,R) and for any v ∈ C∞0 (RN ), there
holds

〈I
′

λ(u), v〉 = M([u]
p
s,p)

∫∫
R2N

|u(x)− u(y)|p−2
(u(x)− u(y))(v(x)− v(y))

|x− y|N+ps

+

∫
RN

Vλ(x) |u|p−1
v −

∫
RN

H(x) |u|q−1
v, ∀ u ∈W s,p(RN ).

(1.3)

Define

Nλ := {u ∈W s,p(RN ) \ {0} | 〈I
′

λ(u), u〉 = 0}
and

cλ := inf
u∈Nλ

Iλ(u).

We call that uλ is ground state solution of (1.1) if uλ ∈ W s,p(RN ) is a critical
point of Iλ(u) such that cλ is achieved.

The following Dirichlet problem is a kind of ‘limit’ problem for (1.1):
M
(
[u]ps,p

)
(−∆)

s
pu+ up−1 = H(x)uq−1 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(1.4)

Similarly, we define a functional ΦΩ on W s,p(Ω) by

ΦΩ(u) =
1

p

(
M([u]ps,p) +

∫
Ω

|u|p
)
− 1

q

∫
Ω

H(x) |u|q , (1.5)

and for any v ∈ C∞0 (Ω), there holds

〈Φ
′

Ω(u), v〉 = M([u]
p
s,p)

∫∫
Ω×Ω

|u(x)− u(y)|p−2
(u(x)− u(y))(v(x)− v(y))

|x− y|N+ps

+

∫
Ω

|u|p−1
v −

∫
Ω

H(x) |u|q−1
v, ∀ u ∈W s,p(Ω).

(1.6)

Moreover, we define the Nehari manifold NΩ by

NΩ := {u ∈W s,p(Ω) \ {0} | 〈Φ
′

Ω(u), u〉 = 0}

and cΩ by

cΩ := inf
u∈NΩ

ΦΩ(u).

We call that u is ground state solution of (1.4) if u ∈W s,p(Ω) is a critical point of
ΦΩ(u) such that cΩ is achieved.
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Now we state the first result of this paper.
Theorem 1.1. Assume that (M), (A1) − (A4) hold. Then, for λ > 0 sufficiently
large, cλ is achieved by a critical point uλ of Iλ such that uλ is a ground state solution
of problem (1.1).

In fact, in order to get the ground state solution, another aim of this paper is to
show that the energy of the ground state solution of (1.1) is equal to the energy of the
mountain pass type solution.To this end, we need to obtain that there exists a unique
t(u) > 0 such that t(u)t ∈ Nλ, Iλ(t(u)t) = maxt≥0 Iλ(tu) and limt→∞ Iλ(tu) = −∞
for any u ∈ W s,p \ {0}. Hence, we need to assume that g(x) is bounded.It is easy to
check that V (x) = 1+g(x) is not satisfying the coercivity condition.Then it will cause
the lack of compactness. In order to overcome the difficulty, we let V (x) = 1 + λg(x)
and λ is sufficiently large, where λ is a real parameter. Thus, we obtain the existence
of ground state solutions of problem (1.1) for every λ > Λ∗, where Λ∗ is a constant
as in Lemma 3.9. Because of the introduction of λ, a natural question is whether the
ground solutions of problem (1.1) have asymptotical behavior when λ→ +∞. Then,
we give the second result of this paper.
Theorem 1.2. Assume that (M), (A1) − (A4) hold. Then, for any sequence
λn → +∞, uλn has a subsequence converging to u in W s,p(RN ) such that u is a
ground state solution of problem (1.4).

Remark 1.1. As mentioned above, for λ large enough, we can prove that the
functional Iλ satisfies (PS)c condition when c lies in suitable range (see Lemma 3.9
below).

Remark 1.2. In this paper, we extend the results of Chen and Guo [8] to the
Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian. Moreover,
comparing with [24, 7, 31], we consider the steep potential well question. Our results
are new. Therefore, the results of this paper can enrich and supplement the previous
one in the literature.

This paper is organized as follows. In Sect. 2, we give some basic properties of
the space W s,p(RN ) and Nehari manifold Nλ. In Sect. 3, using the Mountain Pass
theorem and comparing some energy levels, we obtain the existence of ground state
solutions of problem (1.1). In Sect. 4, we complete the proof of Theorem 1.2.

Notations. In this paper, we make use of the following notations:
• we use C and Ci to denote various positive constants in context;
• W s,p denotes W s,p(RN );

• Lr(RN ) denotes the Lebesgue space with norm ‖u‖r = (
∫
RN |u|

r
dx)

1
r , where 1 ≤

r <∞;
• the weak convergence is denoted by ⇀, and the strong convergence is denoted by
→;
• G(i)(t) denote the i-order derivative of G(t);
•
∫
RN ♣ denotes

∫
RN ♣dx.
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2. preliminaries

In this section, we give some properties of the fractional Sobolev spaces W s,p and
energy functional Iλ(u).

Lemma 2.1. (Theorem 6.7 and Corollary 7.2 of [10]) If ν ∈ [p, p∗s], then the em-
bedding W s,p(RN ) ↪→ Lν(RN ) is continuous. In particular, there exists a constant
Cν > 0 such that

‖u‖Lν(RN ) ≤ Cν ‖u‖W s,p , ∀ u ∈W s,p. (2.1)

If ν ∈ [1, p∗s), then the embedding W s,p(BR) ↪→↪→ Lν(BR) is compact, where BR(x) :=
{y ∈ RN : |x− y| < R} and we simply write BR when x = 0.

Lemma 2.2. For any u ∈ Nλ \ {0}, there exists σ ∈ (0, 1) which is independent of λ
such that

‖u‖W s,p > σ, Iλ(u) ≥ (q − p) min{a, 1}
pq

σp. (2.2)

Proof. By u ∈ Nλ \ {0}, we have 〈I ′λ(u), u〉 = 0. Then

M([u]
p
s,p)[u]ps,p +

∫
RN

Vλ(x) |u|p =

∫
RN

H(x) |u|q . (2.3)

By (A2) and (2.1), we have

H∞C
q
q ‖u‖

q
W s,p ≥

∫
RN

H(x) |u|q

= M([u]
p
s,p)[u]ps,p +

∫
RN

Vλ(x) |u|p

≥ a[u]ps,p +

∫
RN

Vλ(x) |u|p

≥ min{a, 1} ‖u‖pW s,p .

Then,

‖u‖W s,p ≥
(

min{a, 1}
H∞C

q
q

) 1
q−p

> σ > 0.

On the other hand, by (1.2) and (2.3), we have

Iλ(u) =
1

p

(
M([u]ps,p) +

∫
RN

Vλ(x) |u|p
)
− 1

q

∫
RN

H(x) |u|q

=
1

p

(
M([u]ps,p) +

∫
RN

Vλ(x) |u|p
)
− 1

q

(
M([u]

p
s,p)[u]ps,p +

∫
RN

Vλ(x) |u|p
)

=

(
a

p
− a

q

)
[u]ps,p +

(
b

p(k + 1)
− b

q

)
[u]p(k+1)

s,p +

(
1

p
− 1

q

)∫
RN

Vλ(x) |u|p

≥
(

1

p
− 1

q

)
min{a, 1} ‖u‖pW s,p

≥ (q − p) min{a, 1}
pq

σp.

�
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Lemma 2.3. For any u ∈W s,p \ {0}, there exists a unique t(u) > 0 such that

t(u)u ∈ Nλ, Iλ(t(u)u) = max
t≥0

Iλ(tu).

Proof. Let

G(t) = Iλ(tu), t > 0.

Then,

G(t) =
a

p
[u]ps,pt

p +
b

p(k + 1)
[u]p(k+1)

s,p tp(k+1) +
tp

p

∫
RN

Vλ(x) |u|p − tq

q

∫
RN

H(x) |u|q ,

G(1)(t) = a[u]ps,pt
p−1 + b[u]p(k+1)

s,p tp(k+1)−1 + tp−1

∫
RN

Vλ(x) |u|p − tq−1

∫
RN

H(x) |u|q

...

G(p)(t) = (p− 1)!a[u]s,p +
(pk + p− 1)!

(pk)!
b[u]p(k+1)

s,p tpk + (p− 1)!

∫
RN

Vλ(x) |u|p

− (q − 1)!

(q − p)!

(∫
RN

H(x) |u|q
)
tq−p,

...

G(pk+p)(t) = (pk + p− 1)!b[u]p(k+1)
s,p − (q − 1)!

(q − p(k + 1))!

(∫
RN

H(x) |u|q
)
tq−p(k+1),

G(p(k+1)+1)(t) = − (q − 1)!

(q − p(k + 1)− 1)!

(∫
RN

H(x) |u|q
)
tq−p(k+1)−1 < 0.

So, there exists ti > 0, such that
t < ti, G(i)(t) > 0,
t = ti, G(i)(t) = 0, (i = 1, 2, . . . , pk + p).
t > ti, G(i)(t) < 0,

Therefore, there exists a unique t(u) > 0, such that t(u)u ∈ Nλ and Iλ(t(u)u) =
maxt≥0 Iλ(tu). �

3. Proof of Theorem 1.1.

Lemma 3.1. (i) There exist η > 0, 0 < ρ < 1 both independent of λ, such that
Iλ(u) ≥ η for all u ∈W s,p with ‖u‖W s,p = ρ.

(ii) For any u ∈W s,p \ {0}, limt→∞ Iλ(tu) = −∞.



406 CHAWEN XIONG, CHUNFANG CHEN, JIANHUA CHEN AND JIJIANG SUN

Proof. By (1.2) and (2.1), we have

Iλ(u) =
a

p
[u]ps,p +

b

p(k + 1)
[u]p(k+1)

s,p +
1

p

∫
RN

Vλ(x) |u|p − 1

q

∫
RN

H(x) |u|q

≥ 2

√
ab

p2(k + 1)
[u]

p(k+2)
2

s,p +
1

p
‖u‖

p(k+2)
2

p −
CqqH∞

q
‖u‖qW s,p

≥ 1

2
k
2

min

{
2

√
ab

p2(k + 1)
,

1

p

}
‖u‖

p(k+2)
2

W s,p −
CqqH∞

q
‖u‖qW s,p .

Since q > p(k + 1) > p(k+2)
2 , then there exists ‖u‖W s,p = ρ > 0 small enough such

that Iλ(u) ≥ η.
On the other hand, for any u ∈W s,p \ {0}, we have

Iλ(tu) =
a

p
[tu]ps,p +

b

p(k + 1)
[tu]p(k+1)

s,p +
1

p

∫
RN

Vλ(x) |tu|p − 1

q

∫
RN

H(x) |tu|q

≤ atp

p
[u]

p
s,p +

btp(k+1)

p(k + 1)
[u]

p(k+1)
s,p +

(1 + λg∞)tp

p
‖u‖pp −

tq

q

∫
RN

H(x) |u|q .

Since q > p(k + 1) > p, then Iλ(tu)→ −∞ as t→∞. �
Let

c∗λ = inf
u∈W s,p\{0}

max
t≥0

Iλ(tu), c∗∗λ = inf
γ∈Γ

sup
t∈[0,1]

Iλ(γ(t)),

where
Γ = {γ(t) ∈ C([0, 1],R) : γ(0) = 0, Iλ(γ(1)) < 0}.

Lemma 3.2. For λ > 0, cλ = c∗λ = c∗∗λ .

Proof. We divided the proof into three steps.
Step 1 c∗λ = cλ.

By Lemma 2.3, we have

c∗λ = inf
u∈W s,p\{0}

max
t≥0

Iλ(tu) = inf
u∈W s,p\{0}

Iλ(t(u)u) = inf
u∈Nλ

Iλ(u) = cλ.

Step 2 c∗λ ≥ c∗∗λ .
Form Lemma 3.1, for u ∈ W s,p \ {0}, there exists t0 large enough, such that

Iλ(t0u) < 0. Define γ0(t) = tt0u for t ∈ [0, 1]. Then γ0(t) ∈ Γ, and thus,

c∗∗λ = inf
γ∈Γ

sup
t∈[0,1]

Iλ(γ(t)) ≤ sup
t∈[0,1]

Iλ(γ0(t)) ≤ max
t≥0

Iλ(tu).

Then, c∗λ ≥ c∗∗λ .
Step 3 c∗∗λ ≥ cλ.

The manifold Nλ separates W s,p into two component. By Lemma 3.1, the com-
ponent containing the origin also contains a small ball around the origin. Moreover,
Iλ(u) ≥ 0 in this component, because

G(1)(t) ≥ 0, ∀t ∈ [0, t1(u)].

Thus, every γ ∈ Γ has to cross Nλ. Therefore, c∗∗λ ≥ cλ. �

Lemma 3.3. For any λ > 0, we have cλ ≤ cΩ.
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Proof. For each u ∈ NΩ, we have 〈Φ′Ω(u), u〉 = 0. Then

M([u]
p
s,p)

∫∫
Ω×Ω

|u(x)− u(y)|p

|x− y|N+ps
+

∫
Ω

|u|p =

∫
Ω

H(x) |u|q .

By Vλ(x) = 1 in Ω and u = 0 in RN \ Ω, the above equality can be written as

M([u]
p
s,p)

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
+

∫
RN

Vλ(x) |u|p =

∫
RN

H(x) |u|q .

Thus, u ∈ Nλ.
On the other hand, we can easy to see

ΦΩ(u) = Iλ(u), ∀u ∈ NΩ.

Therefore, cλ ≤ cΩ. �

Lemma 3.4. For any λ > 0, there exists a constant K > 0 independent of λ such
that cλ ≤ K.

Proof. Let v ∈ C∞0 (Ω) \ {0}. By Lemma 2.3, we have

Iλ(tv) =
1

p

(
M([tv]ps,p) +

∫
RN

Vλ(x) |tv|p
)
− 1

q

∫
RN

H(x) |tv|q

=
1

p

(
M([tv]ps,p) +

∫
Ω

|tv|p
)
− 1

q

∫
Ω

H(x) |tv|q

=
atp

p
[v]ps,p +

btp(k+1)

p(k + 1)
[v]

p(k+1)
s,p +

tp

p

∫
Ω

|v|p − tq

q

∫
Ω

H(x) |v|q

≤ K.

Then, by Lemma 3.1, there exists t1 large enough such that Iλ(t1v) < 0.
Define γ1(t) = tt1v for t ∈ [0, 1]. Then, γ1(t) ∈ Γ and thus

cλ = c∗∗λ ≤ max
t∈[0,1]

Iλ(γ1(t)) ≤ max
t≥0

Iλ(tv) ≤ K.

The proof is completed. �

Lemma 3.5. Any of the (PS)c sequence {un} for Iλ is bounded and

lim
n→∞

sup ‖un‖W s,p ≤
(

pqc

(q − p) min{a, 1}

) 1
p

. (3.1)

Proof. Suppose that {un} is a (PS)c sequence of Iλ, we have

Iλ(un)→ c, I
′

λ(un)→ 0.
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Then,

c+ o(1) + o(1) ‖un‖W s,p ≥ Iλ(un)− 1

q
〈I
′

λ(un), un〉

=
a

p
[un]

p
s,p +

b

p(k + 1)
[un]

p(k+1)
s,p +

1

p

∫
RN

Vλ(x) |un|p −
1

q

∫
RN

H(x) |un|q

− a

q
[un]

p
s,p −

b

q
[un]

p(k+1)
s,p − 1

q

∫
RN

Vλ(x) |un|p +
1

q

∫
RN

H(x) |un|q

≥
(
a

p
− a

q

)
[un]

p
s,p +

(
b

p(k + 1)
− b

q

)
[un]

p(k+1)
s,p +

(
1

p
− 1

q

)∫
RN

Vλ(x) |un|p

≥
(

1

p
− 1

q

)(
a [un]

p
s,p +

∫
RN

Vλ(x) |un|p
)
.

It follows that

min{a, 1} ‖un‖pW s,p ≤ a [un]
p
s,p +

∫
RN

Vλ(x) |un|p ≤
pqc

(q − p)
+ o(1) + o(1) ‖un‖W s,p .

(3.2)
Then, {un} is bounded in W s,p and (3.1) holds. �

Lemma 3.6. Let K > 0 is the number given in Lemma 3.4. Then for any ε > 0,
there exist Λε, Rε > 0 such that if {un} is a (PS)c sequence of Iλ with λ > Λε, c ≤ K,
then

lim
n→∞

sup

∫
RN\BRε (0)

|un|ν ≤ ε, ν ∈ (p, p∗s).

Proof. For all R > 0, let

A(R) := {x ∈ RN | |x| ≥ R, g(x) ≥M0},
B(R) := {x ∈ RN | |x| ≥ R, g(x) ≤M0}.

When n large enough, by (3.2) we have∫
A(R)

|un|p ≤
1

λM0 + 1

∫
A(R)

(λg(x) + 1) |un|p

≤ 1

λM0 + 1

[
a[un]ps,p +

∫
RN

(λg(x) + 1) |un|p
]

≤ 1

λM0 + 1

[
pqc

(q − p)
+ o(1) + o(1) ‖un‖W s,p

]
≤ 1

λM0 + 1

[
pqK

(q − p)
+ 1

]
.

(3.3)

On the other hand, by the Hölder inequality and the boundedness of {un} in Lp
∗
s (RN ),

we have ∫
B(R)

|un|p ≤

(∫
B(R)

|un|p
∗
s

) p
p∗s
(∫

B(R)

1

) p∗s−p
p∗s

≤ C(meas(B(R)))
p∗s−p
p∗s .

(3.4)
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By using the interpolation inequality, there exists σ ∈ (0, 1) such that 1
ν = σ

p + 1−σ
p∗s

and ∫
RN\BR

|un|ν ≤

(∫
RN\BR

|un|p
) νσ

p
(∫

RN\BR
|un|p

∗
s

) ν(1−σ)
p∗s

(3.5)

for any ν ∈ (p, p∗s). Let λ and R large enough. For any ε > 0, by (3.3), (3.4), (3.5),
(A3) and the boundedness of {un} in Lp

∗
s (RN ), we obtain

lim
n→∞

sup

∫
RN\BRε

|un|ν ≤ ε. �

Corollary 3.1. Let L > 0 be a constant, and let λn →∞ as n→∞. If

a [un]
p
s,p +

∫
RN

Vλn(x) |un|p ≤ L

and un ⇀ 0 in W s,p, then

lim
n→∞

∫
RN
|un|ν = 0, ν ∈ (p, p∗s).

Lemma 3.7. There exists δ > 0 such that any (PS)c sequence {un} of Iλ with λ > 0,
c > 0 satisfies

lim inf
n→∞

∫
RN
|un|q ≥ δc.

Proof. From Lemma 3.5 and (A2), we have

c = lim inf
n→∞

(
Iλ(un)− 1

p
〈I
′

λ(un), un〉
)

= lim inf
n→∞

[(
b

p(k + 1)
− b

p

)
[un]p(k+1)

s,p +

(
1

p
− 1

q

)∫
RN

H(x) |un|q
]

≤ lim inf
n→∞

(
1

p
− 1

q

)∫
RN

H(x) |un|q

≤ lim inf
n→∞

(
(q − p)H∞

pq

)∫
RN
|un|q .

Then, there exists δ > 0, such that

lim inf
n→∞

∫
RN
|un|q ≥

pqc

(q − p)H∞
≥ δc. �

Lemma 3.8. For any (PS)c sequence {un} of Iλ, there exists u ∈ W s,p such that

I
′

λ(u) = 0. Moreover if u 6= 0, then

[un]ps,p → [u]ps,p. (3.6)

Proof. Assume that {un} is a (PS)c sequence of Iλ. By lemma 3.5, we know that
{un} is doubded in W s,p. Then there exists u ∈W s,p such that un ⇀ u in W s,p and
[un]ps,p → β. If u ≡ 0, the proof is complete. If u 6= 0, then by Fatou lemma, we have

[u]ps,p ≤ β.
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Suppose that [u]ps,p < β. Then, by I
′

λ(un)→ 0, we have

a

∫∫
R2N

|u(x)− u(y)|p−2
(u(x)− u(y))(v(x)− v(y))

|x− y|N+ps

+ bβk
∫∫

R2N

|u(x)− u(y)|p−2
(u(x)− u(y))(v(x)− v(y))

|x− y|N+ps

+

∫
RN

Vλ(x) |u|p−1
v −

∫
RN

H(x) |u|q−1
v = 0, ∀ v ∈W s,p(RN ).

Taking v = u, then 〈I ′λ(u), u〉 < 0. From the proof of Lemma 2.3, we can easy to

see that 〈I ′λ(tu), tu〉 > 0 for small t > 0. Hence, there exists a t0 ∈ (0, 1) such that

〈I ′λ(t0u), t0u〉 = 0. Moreover, Iλ(t0u) = maxt>0 Iλ(tu). So, we have

c ≤Iλ(t0u)− 1

p(k + 1)
〈I
′

λ(t0u), t0u〉

=

(
a

p
− a

p(k + 1)

)
[t0u]ps,p +

(
1

p
− 1

p(k + 1)

)∫
RN

Vλ(x) |t0u|p

+

(
1

p(k + 1)
− 1

q

)∫
RN

H(x) |t0u|q

<

(
a

p
− a

p(k + 1)

)
[u]ps,p +

(
1

p
− 1

p(k + 1)

)∫
RN

Vλ(x) |u|p

+

(
1

p(k + 1)
− 1

q

)∫
RN

H(x) |u|q

≤
(
a

p
− a

p(k + 1)

)
lim inf
n→∞

[un]ps,p +

(
1

p
− 1

p(k + 1)

)
lim inf
n→∞

∫
RN

Vλ(x) |un|p

+

(
1

p(k + 1)
− 1

q

)
lim inf
n→∞

∫
RN

H(x) |un|q

= lim inf
n→∞

[Iλ(un)− 1

p(k + 1)
〈I
′

λ(un), un〉]

≤c.

Which is a contradiction. Then, [un]ps,p → [u]ps,p and I
′

λ(u) = 0. �

Lemma 3.9. For any λ > Λ∗, Iλ satisfies (PS)c condition with c ≤ K.

Proof. Let {un} ∈W s,p be any (PS)c sequence of Iλ, that is

Iλ(un)→ c, I
′

λ(un)→ 0.

By Lemmas 3.5, {un} is bounded. Then, up to a subsequence, we have
un ⇀ u in W s,p,

un → u a.e. in RN ,
un → u in Lνloc(RN ), ν ∈ [p, p∗s).

(3.7)
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Define wn = un − u. Thus,
wn ⇀ 0 in W s,p,

wn → 0 a.e. in RN ,
wn → 0 in Lνloc(RN ), ν ∈ [p, p∗s).

(3.8)

By the Brézis-Lieb Lemma (see [6]), Lemma 3.8 and (3.8), for any ϕ ∈ C∞0 (RN ), we
have

lim
n→∞

〈I
′

λ(wn), ϕ〉

=M
(

[un]
p
s,p − [u]

p
s,p

)∫∫
R2N

|wn(x)− wn(y)|p−2
(wn(x)− wn(y))(ϕ(x)− ϕ(y))

|x− y|N+ps

+

∫
RN

Vλ(x) |wn|p−1
ϕ−

∫
RN

H(x) |wn|q−1
ϕ+ o(1)

=0

and

lim
n→∞

Iλ(wn)

=
a

p
[un − u]

p
s,p +

b

p(k + 1)
[un − u]

p(k+1)
s,p +

1

p

∫
RN

Vλ(x) |un − u|p

− 1

q

∫
RN

H(x) |un − u|q + o(1)

=
a

p
[un]

p
s,p −

a

p
[u]

p
s,p +

b

p(k + 1)
[un]

p(k+1)
s,p − b

p(k + 1)
[u]

p(k+1)
s,p +

1

p

∫
RN

Vλ(x) |un|p

− 1

p

∫
RN

Vλ(x) |u|p − 1

q

∫
RN

H(x) |un|q +
1

q

∫
RN

H(x) |u|q + o(1)

= lim
n→∞

Iλ(un)− Iλ(u).

Then we know that {wn} is also a (PS) sequence for Iλ and

Iλ(wn)→ c− Iλ(u) := c1, I
′

λ(wn)→ 0.

From Lemma 3.5, we have c1 ≥ 0. Hence, if c1 = 0, by Lemma 3.5, we have wn → 0
in W s,p, then un → u in W s,p, the proof is completed. Now, we assume c1 > 0. Then,
by Lemma 3.7, we obtain

lim inf
n→∞

∫
RN
|wn|q ≥ δc1.

Next, if we choose ε = δc1
2 and Λ∗ = Λε and Rε as in Lemma 3.6, then we have

lim
n→∞

sup

∫
RN\BRε

|wn|q ≤ ε =
δc1
2
.

This implies wn → w in Lq(BRε) such that w 6= 0, which contradicts (3.8). Therefore,
c1 = 0. Then un → u, and the proof is completed. �
Proof of Theorem 1.1. From Lemma 3.1, Iλ satisfies the conditions of the Mountain
Pass lemma. We can find a (PS)c sequence {un} ∈ W s,p for the functional Iλ. By
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Lemma 3.9, for λ sufficiently large, there exists uλ ∈ W s,p such that Iλ(uλ) = c∗∗λ .
Then Iλ(uλ) = cλ by Lemma 3.2. Therefore, cλ is achieved by a critical point uλ of
Iλ and uλ is a ground state solution of problem (1.1). The proof of Theorem 1.1 is
completed. �

4. proof of Theorem 1.2.

In this section, we give a asymptotical behavior of ground state solutions for prob-
lem (1.1) when λn → +∞.
Proof of Theorem 1.2. By Theorem 1.1, suppose that λn → +∞ as n → ∞ and
{uλn} ⊂ Nλn is a sequence such that

uλn > 0, Iλn(uλn) = cλn , I
′

λn(uλn) = 0.

By Lemmas 3.4 and 3.5, there exists C > 0, such that ‖uλn‖W s,p ≤ C. Thus, there
exists u ∈W s,p such that

uλn ⇀ u in W s,p,

uλn → u a.e. in RN ,
uλn → u in Lνloc(RN ), ν ∈ [p, p∗s).

(4.1)

We claim that u|Ωc = 0, where Ωc := {x | x ∈ RN \ Ω}. If not, we have u|Ωc 6= 0.
Then, there exists a compact subset D ⊂ Ωc with dist{D, ∂Ω} > 0 such that u|D 6= 0
and ∫

D

|uλn |
p →

∫
D

|u|p > 0.

Moreover, there exists ε0 > 0. such that g(x) ≥ ε0 for any x ∈ D.
By the choice of {uλn}, we have

0 = 〈I
′

λn(uλn), uλn〉

= M([uλn ]ps,p)[uλn ]ps,p +

∫
RN

Vλn(x) |uλn |
p −

∫
RN

H(x) |uλn |
q
.

(4.2)

Then,

cλn = Iλn(uλn)

=
1

p

(
M([uλn ]ps,p) +

∫
RN

Vλn(x) |uλn |
p

)
− 1

q

∫
RN

H(x) |uλn |
q

=
1

p

(
M([uλn ]ps,p) +

∫
RN

Vλn(x) |uλn |
p

)
− 1

q

(
M([uλn ]ps,p)[uλn ]ps,p +

∫
RN

Vλn(x) |uλn |
p

)
=

(
a

p
− a

q

)
[uλn ]

p
s,p +

(
b

p(k + 1)
− b

q

)
[uλn ]

p(k+1)
s,p +

(
1

p
− 1

q

)∫
RN

Vλn(x) |uλn |
p

≥
(

1

p
− 1

q

)∫
D

(λnε0 + 1) |uλn |
p

→ +∞
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as n→ +∞, which contradicts Lemma 3.4. Then u|Ωc = 0 and u ∈W s,p(Ω).
Now, we show u 6≡ 0. If not, uλn ⇀ 0 in W s,p(RN ). By the choice of {uλn}, we have
(4.2). From Corollary 3.1 and (A2), we have∫

RN
H(x) |uλn |

q → 0

as n→ +∞. Then

M([uλn ]ps,p)[uλn ]ps,p +

∫
RN

Vλn(x) |uλn |
p → 0

as n → +∞. This implies ‖uλn‖ → 0, which contradicts Lemma 2.2. Therefore,
u 6≡ 0.
Next, we prove Φ

′

Ω(u) = 0. Consider a test function ϕ ∈ C∞0 (Ω).

By the 〈I ′λn(uλn), ϕ〉 = 0, we have

0 = M([uλn ]
p
s,p)

∫∫
R2N

|uλn(x)− uλn(y)|p−2
(uλn(x)− uλn(y))(ϕ(x)− ϕ(y))

|x− y|N+ps

+

∫
RN

Vλn(x) |uλn |
p−1

ϕ−
∫
RN

H(x) |uλn |
q−1

ϕ.

It follows from uλn ⇀ u in W s,p that

M([uλn ]
p
s,p)

∫∫
R2N

|uλn(x)− uλn(y)|p−2
(uλn(x)− uλn(y))(ϕ(x)− ϕ(y))

|x− y|N+ps
dy →

M([u]
p
s,p)

∫∫
Ω×Ω

|u(x)− u(y)|p−2
(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+ps
,

∫
RN

Vλn(x) |uλn |
p−1

ϕ→
∫

Ω

|u|p−1
ϕ,

and ∫
RN

H(x) |uλn |
q−1

ϕ→
∫

Ω

H(x) |u|q−1
ϕ.

Thus, we obtain

0 = M([u]
p
s,p)

∫∫
Ω×Ω

|u(x)− u(y)|p−2
(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+ps

+

∫
Ω

|u|p−1
ϕ−

∫
Ω

H(x) |u|q−1
ϕ, ∀ϕ ∈ C∞0 (Ω),

which means Φ
′

Ω(u) = 0. By using the strong maximum principle, we have u > 0
in Ω.
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Next, we prove ΦΩ(u) = cΩ. From the above discussion, we know u ∈ NΩ. Then,
from Lemma 3.3, we have

cΩ ≤ ΦΩ(u)

=ΦΩ(u)− 1

p(k + 1)
〈Φ
′

Ω(u), u〉

=

(
a

p
− a

p(k + 1)

)
[u]ps,p +

(
1

p
− 1

p(k + 1)

)∫
Ω

|u|p +

(
1

p(k + 1)
− 1

q

)∫
Ω

H(x) |u|q

≤
(
a

p
− a

p(k + 1)

)
lim inf
n→∞

[uλn ]ps,p +

(
1

p
− 1

p(k + 1)

)
lim inf
n→∞

∫
Ω

|uλn |
p

+

(
1

p(k + 1)
− 1

q

)
lim inf
n→∞

∫
Ω

H(x) |uλn |
q

≤
(
a

p
− a

p(k + 1)

)
lim inf
n→∞

[uλn ]ps,p +

(
1

p
− 1

p(k + 1)

)
lim inf
n→∞

∫
RN

Vλn(x) |uλn |
p

+

(
1

p(k + 1)
− 1

q

)
lim inf
n→∞

∫
RN

H(x) |uλn |
q

= lim inf
n→∞

[
Iλn(uλn)− 1

p(k + 1)
〈I
′

λn(uλn), uλn〉
]

= lim inf
n→∞

cλn

≤cΩ,
which implies that

lim
n→∞

Iλn(uλn) = lim
n→∞

cλn = cΩ = ΦΩ(u). (4.3)

Finally, we prove uλn → u in W s,p(RN ). Let us now recall the following equations:

Iλn(uλn − u) =
a

p
[uλn − u]

p
s,p +

b

p(k + 1)
[uλn − u]

p(k+1)
s,p

+
1

p

∫
RN

Vλn(x) |uλn − u|
p − 1

q

∫
RN

H(x) |uλn − u|
q
,

(4.4)

Iλn(uλn) =
a

p
[uλn ]

p
s,p +

b

p(k + 1)
[uλn ]

p(k+1)
s,p +

1

p

∫
RN

Vλn(x) |uλn |
p

− 1

q

∫
RN

H(x) |uλn |
q
,

(4.5)

ΦΩ(u) =
a

p
[u]ps,p +

b

p(k + 1)
[u]p(k+1)

s,p +
1

p

∫
Ω

|u|p − 1

q

∫
Ω

H(x) |u|q , (4.6)

〈I
′

λn(uλn − u), uλn − u〉 =a [uλn − u]
p
s,p + b [uλn − u]

p(k+1)
s,p

+

∫
RN

Vλn(x) |uλn − u|
p −

∫
RN

H(x) |uλn − u|
q
,

(4.7)
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〈I
′

λn(uλn), uλn〉 =a [uλn ]
p
s,p + b [uλn ]

p(k+1)
s,p +

∫
RN

Vλn(x) |uλn |
p

−
∫
RN

H(x) |uλn |
q
,

(4.8)

and

〈Φ
′

Ω(u), u〉 = a [u]
p
s,p + b [u]

p(k+1)
s,p +

∫
Ω

|u|p −
∫

Ω

H(x) |u|q . (4.9)

By the Brézis-Lieb Lemma (see [6])and Lemma 3.8, we obtain

[uλn − u]
p
s,p = [uλn ]

p
s,p − [u]

p
s,p + o(1), (4.10)

∫
RN

Vλn(x) |uλn − u|
p

=

∫
RN\Ω

Vλn(x) |uλn − u|
p

+

∫
Ω

Vλn(x) |uλn − u|
p

=

∫
RN\Ω

Vλn(x) |uλn |
p

+

∫
Ω

|uλn − u|
p

+ o(1)

=

∫
RN\Ω

Vλn(x) |uλn |
p

+

∫
Ω

|uλn |
p −

∫
Ω

|u|p + o(1)

=

∫
RN

Vλn(x) |uλn |
p −

∫
Ω

|u|p + o(1),

(4.11)

and ∫
RN

H(x) |uλn − u|
q

=

∫
RN

H(x) |uλn |
q −

∫
Ω

H(x) |u|q + o(1). (4.12)

Hence, according to (4.4)-(4.12), we have

Iλn(uλn − u) = Iλn(uλn)− ΦΩ(u) + o(1),

〈I
′

λn(uλn − u), uλn − u〉 = 〈I
′

λn(uλn), uλn〉 − 〈Φ
′

Ω(u), u〉+ o(1).

Thus, by (4.3), we have

Iλn(uλn − u) = o(1).

From I
′

λn
(uλn) = 0 and Φ

′

Ω(u) = 0, we obtain

〈I
′

λn(uλn − u), uλn − u〉 = o(1).



416 CHAWEN XIONG, CHUNFANG CHEN, JIANHUA CHEN AND JIJIANG SUN

Then,

o(1) = Iλn(uλn − u)− 1

q
〈I
′

λn(uλn − u), uλn − u〉

=
a

p
[uλn − u]

p
s,p +

b

p(k + 1)
[uλn − u]

p(k+1)
s,p +

1

p

∫
RN

Vλn(x) |uλn − u|
p

− 1

q

∫
RN

H(x) |uλn − u|
q − a

q
[uλn − u]

p
s,p −

b

q
[uλn − u]

p(k+1)
s,p

− 1

q

∫
RN

Vλn(x) |uλn − u|
p

+
1

q

∫
RN

H(x) |uλn − u|
q

=

(
a

p
− a

q

)
[uλn − u]

p
s,p +

(
b

p(k + 1)
− b

q

)
[uλn − u]

p(k+1)
s,p

+

(
1

p
− 1

q

)∫
RN

Vλn(x) |uλn − u|
p

≥
(

1

p
− 1

q

)(
a [uλn − u]

p
s,p +

∫
RN

Vλn(x) |uλn − u|
p

)
≥
(

1

p
− 1

q

)
min{a, 1} ‖uλn − u‖

p
W s,p ,

which implies that ‖uλn − u‖
p
W s,p → 0 as n → ∞. Therefore, the proof of Theorem

1.2 is completed. �
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