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Abstract. The paper contains a brief summary of the generalization of metrical structure regarding

the fixed point theorem and corresponding operator equation problems. We observed that many

researcher either tried to weaken the metrical structure, the contraction condition, or both. The idea
behind this paper is to look for a minimal metrical structure to establish fixed point theorems. In this

connection, we present new variants of the known fixed point theorem under non-triangular metric
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1. Introduction

Definition 1.1. Let X be a non-empty set and a function d : X × X → R+
0 . If d

satisfies the following conditions:

(i) d(x, x) = 0, for all x ∈ X;
(ii) d(x, y) = d(y, x), for all x, y ∈ X;

(iii) For each x, y ∈ X and {xn} ⊂ X such that lim
n→∞

d(xn, x) = 0, and

lim
n→∞

d(xn, y) = 0, then x = y.
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Then, d is a non-triangular metric and (X, d) is known as non-triangular metric space.
Theorem 1.2. [2] Let (X, d) be a JS-metric space, such that for each x ∈ X, the
set C(d,X, x), is non-empty. Then, (X, d) is a non-triangular metric space, where
C(d,X, x) = {(xn)| lim

n→∞
d(xn , x) = 0}.

Example 1.3. Let X = R and d : X ×X → [0 , ∞) defined as follows:

d(x, y) =

{
|x− y|, if x = 0 or y = 0 orx = y.

1, otherwise.

Then, the pair (X, d) is a non-triangular metric space but it is not a JS-metric space.
Example 1.4. Let X = [0,∞) and d : X ×X → R+

0 is defined as

d(x, y) =



x+ y

x+ y + 1
, if x 6= y;

0, if x = y 6= 0;
x

2
, if y = 0;

y

2
, if x = 0.

Then d is a non-triangular metric, but not a JS-metric.
Definition 1.5. (Property C) [2] Let (X, d) be a non-triangular metric space then
d is said to satisfy property (C) if for any sequence (xn) with d(xn, x) → 0, have
d(xn, y)→ d(x, y) for every y ∈ X.
Definition 1.6. Let (X, d) be a complete metric space, then the mapping f : X → X
is called orbitally S-operator if the following conditions hold:

(S1) The Picard sequence {xn} based on x0, is asymptotically regular for some
x0 ∈ X,

(S2) For any two sub-sequences xn(k) and xm(k) of {xn} if d(xn(k), xm(k)) converges
to some limit L ≥ 0 and d(xn(k), xm(k)) > L for all k ∈ N0, then L = 0, in
which, {xn} is the Picard sequence of f based on x0 ∈ X,

(S3) f is orbitally continuous.

Theorem 1.7. [5] Let (X, d) be a d−complete non-triangular metric space, and let
f : X → X be a map such that, f satisfies the (S2) and (S3) of Definition 1.6. If
there exists x0 ∈ X such that O(f, x0) is bounded, then f has fixed point.
Example 1.8. Let (X, d) be a non-triangular metric space as given in Example 1.4

and f : X → X is given as fx =
x

2
. Then the map f satisfies the condition of

Theorem 1.7, and hence it has a fixed point at x = 0.
In, 2021 V. Rakočević et al. [8] noticed that non-triangular metric space is not

a new concept, as it is nothing but symmetric space with the condition W3 (Haus-
dorffness of the topology induced by the symmetric structure). They introduced the
non-triangular metric-like space which they claimed to be a generalization of non-
triangular metric space.
Definition 1.8. (non-triangular metric-like space) [8] Let X be a non-empty set
and d : X × X → [0,∞) be a mapping. Then (X, d) is said to be a non-triangular
metric-like space if for every x, y, z ∈ X, the following conditions are satisfied:
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(NTML-1) d(x, y) = 0 =⇒ x = y;
(NTML-2) d(x, y) = d(y, x);
(NTML-3) if {xn} is a sequence in X such that lim

n→∞
d(xn, x) = d(x, x) and

lim
n→∞

d(xn, y) = d(y, y), then d(x, y) ≤ kmax{d(x, x), d(y, y)} for some fixed k ≥ 1.

Remark 1.9. If d(x, x) = 0 for all x ∈ X, then a non-triangular metric-like space
is a non-triangular metric space. Notice, also that a function d : X × X → R+

0

satisfying (i) and (ii) in Definition 1.1 and the axiom (NTML-1) from above is called
a semi-metric.
Example 1.10. [8] Let X = {0} ∪ { 1

n : n ≥ 1} and d : X ×X → R+
0 be defined as

d(0, 0) = 1, d

(
1

n
,

1

n

)
= 3, d

(
0,

1

n

)
= 1 +

1

n
= d

(
1

n
, 0

)
for all n ∈ N

and

d

(
1

n
,

1

m

)
= 1− 1

n+m
= d

(
1

m
,

1

n

)
for all n,m ≥ 1.

Then (X, d) is a non-triangular metric-like space, for any k ≥ 1.
Definition 1.11. [8] In a non-triangular metric-like space (X, d), the map f : X → X
is said to have property S if for any Picard iterating sequence {fnx0}, x0 ∈ X,
converging to x ∈ X we have d(x, fx) ≤ lim sup

n→∞
d(fnx0, fx).

Theorem 1.12. [8] Let (X, d) be a d-complete non-triangular metric-like space for
some k ≥ 1 and f : X → X be a mapping satisfying

d(fx, fy) ≤ qmax{d(x, y), d(x, fx), d(y, fy), d(x, fy), d(y, fx)}

for all x, y ∈ X and for some q ∈ (0, 1). If f has property S and for some x0 ∈ X the
orbit of f with respect to x0 i.e. O(f, x0) is bounded then f has unique fixed point.
Remark 1.13. From Remark 3.10 of [8], in a non-triangular metric-like space (X, d),
if a sequence {xn} is such that lim

n→∞
d(xn, x) = 0 = d(x, x) and lim

n→∞
d(xn, y) = 0 =

d(y, y) for some x, y ∈ X, then d(x, y) = 0,. That is x = y, i.e., every convergent
sequence {xn} has a unique limit.

Now, from the proof of Theorem 1.12 in [8], the relation (3.2) implies
lim
n→∞

d(xn, x) = d(x, x) = 0 and here the sequence {xn} is Picard sequence which

has unique limit. Thus, every convergent sequence in non-triangular metric-like space
has a unique limit, so by definition, it is a non-triangular metric space. Hence, in the
context of fixed point theorems, the non-triangular metric-like space is nothing new.
it but fall in the class of non-triangular metric space.

In [9], the authors defined the pseudo non-triangular metric in order to to gener-
alize the non-triangular metric. However, in the context of a fixed point theorem,
pseudo non-triangular coincide with non-triangular metric, and hence non-triangular
metric space is the required minimal metrical structure for establishment of fixed
point theorem.
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2. Main results

In this section we re-establish some known fixed point theorems in the setting
of non-triangular metric space, using F -contraction, (A,S)- contraction and (ψ, φ)-
contraction. The idea of the following lemma is well known and it was given by Boyd
and Wong [1]. We modified the proof of this lemma, by dropping the use of the
triangular inequality.
Lemma 2.1. Let (X, d) be a non-triangular metric space and (xn) be a sequence in
X which is not Cauchy and lim

n→∞
d(xn, xn+1) = 0. Then there exist ε > 0 and two

sub-sequences (xnk
) and (xmk

) of (xn) such that

lim
n→∞

d(xnk−1, xmk−1) = lim
n→∞

d(xnk
, xmk

) = ε. (2.1)

Proof. In the non-triangular metric space, let the sequence (xn) which is not Cauchy,
then there exist ε > 0 and two sub-sequences {xnk

} and {xmk
} of sequence {xn} such

that

k < nk < mk =⇒ d(xnk
, xmk−1) ≤ ε < d(xnk

, xmk
) for each k ∈ N. (2.2)

since

nk − 1 < mk, d(xnk−1, xmk−1) ≤ ε, for every k ∈ N;

=⇒ lim
k→∞

d(xnk−1, xmk−1) ≤ ε. (2.3)

Also nk − 1 < mk − 1, =⇒ ε < d(xnk−1, xmk−1), for every k ∈ N

=⇒ ε ≤ lim
n→∞

d(xnk−1, xmk−1) (2.4)

from (2.3) and (2.4)

lim
k→∞

d(xnk−1, xmk−1) = ε. (2.5)

Now from (2.2), ε < d(xnk
, xmk

) for each k ∈ N

ε ≤ lim
k→∞

d(xnk
, xmk

) for each k ∈ N. (2.6)

Since nk < mk + 1 =⇒ d(xnk
, xmk+1−1) ≤ ε for every k ∈ N

lim
k→∞

d(xnk
, xmk

) ≤ ε. (2.7)

From (2.6) and (2.7)

lim
k→∞

d(xnk
, xmk

) = ε. (2.8)

Now finally from the equation (2.5) and (2.8) we can say that

lim
k→∞

d(xnk−1, xmk−1) = lim
k→∞

d(xnk
, xmk

) = ε.



SEARCH OF MINIMAL METRIC STRUCTURE 383

2.1. F-contraction. In 2012, Wardowski [12] introduced a new concept for contrac-
tion mappings called F -contraction by considering a class of real valued functions.
Definition 2.1.1. [12] Let F be the set of all functions F : (0,∞) → R satisfying
the following conditions:
(F1) F is strictly increasing, i.e., for all α, β ∈ (0,∞) such that α < β, F (α) < F (β),
(F2) For each sequence {xn} of positive numbers

lim
n→∞

xn = 0 ⇐⇒ lim
n→∞

F (xn) = −∞,

(F3) There exists k ∈ (0, 1) such that lim
α→0+

αkF (α) = 0.

Then a self mapping T of a metric space (X, d) is said to be F-contraction if there
exist F ∈ F and τ > 0 such that

∀x, y ∈ X, d(Tx, Ty) > 0⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)). (2.9)

By condition (F1) every F -contraction is a contractive mapping and hence it is
continuous. From the Banach and Edelstein fixed point theorems, we know that every
Banach contraction mapping on a complete metric space has a unique fixed point and
every contractive mapping on a compact metric space has a unique fixed point. That
is, passing from Banach to Edelstein fixed point theorem, when the class of mapping
is expending by contractive condition, the structure of the space is restricted. Now,
the following question arises naturally.

Is there any change of structure of the space while investigating the existence of
the fixed points of F -contractions? Therefore, Wardowski proved the following result
without restricting the structure of the space:
Theorem 2.1.2. [12] Let (X, d) be a complete metric space and let T : X → X be
F -contraction. Then T has a unique fixed point in X.
Property 2.1.3. Let (X, d) be a non-triangular metric space and {xn} be any given
sequence such that lim

n→∞
d(xn, xn+1) = 0. Then, for any two subsequence {xnk

} and

{xmk
} of {xn}, if d(xnk

, xmk
) converges to some limit L ≥ 0 and d(xnk

, xmk
) > L

for all k ∈ N, then L = 0.
Property 2.1.4. A non-triangular metric d is said to be continuous if
lim
n→∞

d(xn, x) = 0 and lim
n→∞

d(yn, y) = 0 imply lim
n→∞

d(xn, yn) = d(x, y) where xn, yn

are sequences in X and x, y ∈ X.
In the following theorem we assume that the non-triangular metric d satisfies the

Property 2.1.3 and Property 2.1.4.
Theorem 2.1.5. Let (X, d) be a complete non-triangular metric space and T : X →
X be an F -contraction. Then, T has a unique fixed point in X.
Proof. First, let us observe that T has at most one fixed point. Indeed, if x? 6= x?? ∈
X, with Tx? = x? and Tx?? = x?? then we get

τ ≤ F (d(x?, x??))− F (d(Tx?, Tx??)) = 0,

which is contradiction as τ > 0. In order to show that T has a fixed point let x0 ∈ X
be arbitrary and fixed. We define a sequence {xn} in X as xn+1 = Txn for every
n ∈ N. Denote γn = d(xn+1, xn) for each natural number n. If there exists n0 ∈ N
for which xn0+1 = xn0 , then Txn0 = xn0 and the proof is finished.
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Now suppose that xn+1 6= xn for each n ∈ N. Then γn > 0 for all n ∈ N. Using (2.9),
we get

F (γn) ≤ F (γn−1)− τ ≤ F (γn−2)− 2τ ≤ ... ≤ F (γ0)− nτ (2.10)

From (2.10), we obtain lim
n→∞

F (γn) = −∞ that together with (F2) gives

lim
n→∞

γn = lim
n→∞

d(xn+1, xn) = 0. (2.11)

Now, we are going to prove that sequence {xn} is Cauchy. By contradiction, we
assume that {xn} is not a Cauchy sequence. Then by Lemma 2.1 for ε > 0 and
subsequence {xnk

} and {xmk
} of {xn} we get lim

k→∞
d(xnk

, xmk
) = ε. Which contradicts

that {xn} satisfies Property 2.1.3. Hence ε = 0 and which implies sequence {xn} is a
Cauchy sequence. Since X is complete there exist some x? ∈ X such that xn → x?

as n→∞. Also, by the continuity of T , we have that Txn → Tx?. Hence

0 = lim
n→∞

d(xn, xn+1) = lim
n→∞

d(xn, Txn) = d(x?, Tx?),

which implies Tx? = x?. This completes the proof.
Example 2.1.6. Let X = {0, 1, 2} and define the mapping d : X ×X → R+

0 as

d(0, 0) = d(1, 1) = d(2, 2) = 0

d(0, 1) = 4, d(0, 2) = 2, d(1, 2) = 1,

Now define the mapping T : X → X define as T (1) = 1, T (2) = 1 and T (0) = 2 and
F (x) = log(x), then T is a F - contraction with respect to map F and τ = 1

2 log 2, As

1

2
log(2) + log(d(T (0), T (1))) =

1

2
log(2) + log(1) ≤ log(d(0, 1)) = log(4).

1

2
log(2) + log(d(T (0), T (2))) =

1

2
log(2) + log(1) ≤ log(d(0, 2)) = log(2).

It’s clear that the mapping d is a complete non-triangular metric on the set X, but
not usual metric as d(0, 1) > d(0, 2) + d(1, 2).

Also the non-triangular metric d satisfies Property 2.1.3 and Property 2.1.4, so, by
Theorem 2.1.5, the mapping T has a unique fixed point T (1) = 1.
Remark 2.1.7. By observing the Example 2.1.6 and Theorem 2.1.5 we shall conclude
that Wardowski’s theorem is improved significantly with respect to non-triangular
metric.

2.2. (A,S) contraction. Throughout this section, we shall use S to denote a binary
relation on X, which is nothing but a non-empty subset of the Cartesian product
X×X. The notation we shall use is that whenever (x, y) ∈ S, we shall write xSy. If,
in addition to xSy, x 6= y, we will denote it as xS∗y. Two points are S-comparable if
xSy or ySx. A binary relation S on X is reflexive if xSx for all x ∈ X. It is said to be
transitive if whenever xSy and ySz for some x, y, z ∈ X, xSz holds. It is said to be
antisymmetric if whenever xSy and ySx for any x, y ∈ X, x = y holds. A preorder is
a reflexive, transitive binary relation. If a binary relation is reflexive, transitive and
antisymmetric, it can be termed as a partial order. ! Thus, a partial order is simply
an antisymmetric preorder. SX shall denote the trivial preorder given by xSXy for
all x, y ∈ X.
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Definition 2.2.1. (S-nondecreasing sequence) [10] A sequence {xn} ⊆ X is S-non-
decreasing if xnSxn+1 for all n ∈ N.
Definition 2.2.2. (S-increasing sequence [10]) A sequence {xn} ⊆ X is S-increasing
if xnS∗xn+1 for all n ∈ N.
Definition 2.2.3. ((T,S)-sequence [10]) Let {an} and {bn} be two sequences of real
numbers. We say that {(an, bn)} is a (T,S)-sequence if there exist two sequences
{xn}, {yn} ⊆ X such that

xnSyn, an = d(Txn, Tyn) > 0 and bn = d(xn, yn) > 0 for all n ∈ N.

If S is the trivial binary relation SX , then {(an, bn)} is called a T -sequence.
Definition 2.2.4. ((A,S)-contraction [10]) Let (X, d) be a non-triangular metric
space. Let T : X → X be a self-mapping into X and S be a binary relation on
X. We will say that T : X → X is an (A,S)-contraction if there exists a function
% : A×A→ R such that T and % satisfy the following conditions:

(A1) ran(d) ⊆ A.
(A2) If {xn} is a Picard S-non-decreasing sequence of T such that

xn 6= xn+1, and %(d(xn+1, xn+2), d(xn, xn+1)) > 0 for all n ∈ N,

then {xn} is asymptotically regular on (X, d), that is, {d(xn, xn+1)} → 0.
(A3) If {(an, bn)} ⊆ A× A is a (T,S)-sequence such that {an} and {bn} converge

to the same limit L ≥ 0 and verifying that L < an and %(an, bn) > 0 for all
n ∈ N, then L = 0.

(A4) %(d(Tx, Ty), d(x, y)) > 0 for all x, y ∈ X such that xS∗y and TxS∗Ty.

The family of all (A,S)-contractions from (X, d) into itself with respect to % can
be denoted by AX,d,S,%,A, or, where no confusion is possible, by A%. If S is the trivial
binary relation Sx, then T is called an A-contraction.

In some cases, the following properties shall also be important to us.

(A′2) If x1, x2 ∈ X are two points such that Tnx1S∗Tnx2 and
ρ(d(Tn+1x1, T

n+1x2), d(Tnx1, T
nx2)) > 0 for all n ∈ N, then

{d(Tnx1, T
nx2)} → 0.

(A5) If {(an, bn)} is a (T,S)-sequence such that bn → 0 and ρ(an, bn) > 0 for all
n ∈ N, then an → 0.

Remark 2.2.5. Condition A1 implies that A is a non-empty set.
Remark 2.2.6. Asymptotic regularity of a contractive mapping is a useful property
in the study of fixed point theory. It is clear from Definition 2.2.4 that if T is an
(A,S)-contraction with respect to some function % : A×A→ R such that its Picard
sequence is S-non-decreasing, with xn 6= xn+1 and %(d(xn+1, xn+2), d(xn, xn+1)) > 0
for all n ∈ N, then T is asymptotically regular at x0, if x0 is the initial point of the
Picard sequence.
Example 2.2.7. We consider X = {0, 1, 2, 3}, endowed with the non-triangular
metric d : X ×X → [0,∞) defined as

d (x, y) =


3
n ,

3
n+1 < |x− y| ≤

3
n .

0, x = y.
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Also consider S to be the trivial binary relation SX on X. So, xSy for all x, y ∈ X.
Define T : X → X by

Tx =

0, x = {0, 1, 2}.

1, x = 3.

Before moving on to the main section of the proof, let us quickly verify that the
considered (X, d) is a non-triangular metric space. (NT1) and (NT2) are obvious.
Thus, we examine (NT3).

Let {xn}n∈N be a sequence in X = {0, 1, 2, 3} such that lim
n→∞

d(xn, x) =

lim
n→∞

d(xn, y) = 0. We want to show that x = y. If {xn}n∈N is eventually con-

stant, lim
n→∞

d(xn, x) = 0 implies that xn = x for all n ≥ n1, for some n1 ∈ N.

Similarly, lim
n→∞

d(xn, y) = 0 implies that xn = y, for all n ≥ n2, where n2 ∈ N. Thus,

xn = x = y, for all n ≥ N , where N = max{n1, n2}. Thus, x = y.
Now, upon examining the function d closer, we find that ran(d) = {0, 1, 3}. Thus,

{xn}n∈N is a convergent sequence if and only if it is eventually constant, for the
current example. This is easy to see since for a convergent sequence, for all ε > 0,
there exists n0 ∈ N such that whenever n ≥ n0, d(xn, x) < ε. In this case, if we
consider ε = 1, there must exist some n0 ∈ N so that whenever n ≥ n0, d(xn, x) <
1 =⇒ d(xn, x) = 0. This means that for all n ≥ n0, xn = x. In other words,
{xn}n∈N is eventually constant. That eventually constant sequences are convergent
is obvious. Thus, (NT3) holds, since we have already elaborated the case wherein
{xn}n∈N is eventually constant.

Now that we have established that (X, d) is a non-triangular metric space, we
choose a function % : A× A→ R to be able to move ahead with the proof. Let it be
defined as %(t, s) = 1, for all s, t ∈ A = [0,∞).

It is clear that ran(d) = {0, 1, 3} ⊆ A. Thus, (A1) holds. For our choice of %, (A4)
is also very obvious. We check the other two conditions.

For (A2), if {xn} ⊆ X is a Picard sequence of T , such that xn 6= xn+1 and
%(d(xn+1, xn+2), d(xn, xn+1)), for all n ∈ N, we want to show that {xn}n∈N is asymp-
totically regular. Here, if x0 ∈ X, x1 = Tx0 ∈ {0, 1} =⇒ x2 = 0. Thus, xn = 0,
for all n ≥ 2. This means that the hypothesis xn 6= xn+1 is not satisfied, which
means that (A2) is vacuously true. However, it can be seen that {d(xn, xn+1)} → 0,
nevertheless.

We check (A3). We consider a (T,S)-sequence {(an, bn)}n∈N such that {an} → L
and {bn} → L for some L ≥ 0. We further assume L < an and %(an, bn) > 0, for
all n ∈ N. By definition, there exist {xn}n∈N and {yn}n∈N in X such that an =
d(Txn, T yn) > 0 and bn = d(xn, yn) > 0. Now, an = d(Txn, T yn) ∈ {0, 1}, Since
an > 0, an = 1 for all n ∈ N, which implies that lim

n→∞
an = 1 = L. However, this is a

contradiction, since the hypothesis requires that L < an. Thus, (A3) is also vacuously
true.

Thus, all the four conditions for T to an (A,S)-contraction hold.
Next, we state the two fixed point results based on theorems presented in [10],

whose beauty lies in the fact that neither of the two makes any use of the triangle
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inequality. Thus, they happen to hold well in the context of non-triangular metric
spaces as well. However, they do rely on uniqueness of limits of convergent sequences,
which is a natural characteristic of non-triangular metric spaces.
Theorem 2.2.8. Let (X, d) be a non-triangular metric space equipped with a transi-
tive binary relation S and let T : X → X be an S-non-decreasing (A,S)-contraction
with respect to % : A × A → R. Suppose that T (X) is (S, d)-strictly-increasing-pre-
complete and there exists a point x0 ∈ X such that x0STx0. Assume that, at least,
one of the following conditions is fulfilled:

(a) T is S-strictly-increasing-continuous.
(b) (X, d) is S-strictly-increasing-regular and condition (A5) holds.
(c) (X, d) is S-strictly-increasing-regular and %(t, s) ≤ s− t for all t, s ∈ A ∩ (0,∞).

Then the Picard sequence of T based on x0 converges to a fixed point of T .
In particular, T has, at least, a fixed point.
Proof. Let x0 ∈ X be a point such that x0STx0 and let xn+1 = Txn be the Picard
sequence of T based on x0. If there exists some n0 ∈ N such that xn0+1 = xn0

, then
xn0 is a fixed point of T , and {xn} converges to such point. On the contrary case,
assume that xn 6= xn+1 for all n ∈ N. As T is S-non-decreasing and x0STx0 = x1,
then xnSxn+1 for all n ∈ N, and as S is transitive, then

xnSxm for all n,m ∈ N such that n < m. (2.12)

In fact, as xn 6= xn+1 for all n ∈ N, then

xnS∗xn+1 and TxnS∗Txn+1 for all n ∈ N. (2.13)

Let consider the sequence {d(xn, xn+1)}. Taking into account (13) and the fact that
T is an (A,S)-contraction, condition (A4) implies that, for all n ∈ N,

%(d
(
Tn+1x0, T

n+2x0

)
, d
(
Tnx0, T

n+1x0

)
) = % (d(Txn, Txn+1), d(xn, xn+1)) > 0.

Applying (A2) we deduce that {xn = Tnx0} is an asymptotically regular sequence on
(X, d), that is, {d(xn, xn+1)} → 0. Let us show that {xn} is an S-strictly-increasing
sequence. Indeed, in view of (12), assume that there exists n0,m0 ∈ N such that
n0 < m0 and xn0

= xm0
. If p0 = m0 − n0 ∈ N�{0}, then xn0

= xn0+k p0 for all
k ∈ N. In particular, the sequence {d(xn, xn+1)} contains the constant subsequence

{d(xn0+k p0 , xn0+k p0+1) = d(xn0
, xn0+1) > 0}k∈N ,

which contradicts the fact that {d(xn, xn+1)} → 0. This contradiction guarantees
that xn 6= xm for all n 6= m, so xnS∗xm for all n,m ∈ N such that n < m, that
is, {xn} is an S-strictly-increasing sequence. Next we show that {xn} is a Cauchy
sequence reasoning by contradiction. If {xn} is not a Cauchy sequence, then by lemma
(2.1) there exist ε0 > 0 and two sub-sequences {xn(k)} and {xm(k)} of {xn} such that

k ≤ n(k) < m(k), d(xn(k), xm(k)−1) ≤ ε0 < d(xn(k), xm(k)) for all k ∈ N,
lim
k→∞

d(xn(k), xm(k)) = lim
k→∞

d(xn(k)−1, xm(k)−1) = ε0.
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Let L = ε0 > 0, {ak = d(xn(k), xm(k))} → L and {bk = d(xn(k)−1, xm(k)−1)} → L.
Clearly, {(ak, bk)} is a (T,S)-sequence. Since L = ε0 < d(xn(k), xm(k)) = ak and

% (ak, bk) = %
(
d(xn(k), xm(k)), d(xn(k)−1, xm(k)−1)

)
= %

(
d(Txn(k)−1, Txm(k)−1), d(xn(k)−1, xm(k)−1)

)
> 0

for all k ∈ N, condition (A3) guarantees that ε0 = L = 0, which is a contradiction. As
a consequence, {xn} is a Cauchy sequence. Since {xn}n≥1 ⊆ T (X) and T (X) is (S, d)-
strictly-increasing-pre-complete, there is a subset Z ⊂ X such that T (X) ⊆ Z ⊆ X
and Z is (S, d) -strictly-increasing-complete. In particular, as {xn} is an S-strictly-
increasing and Cauchy sequence, there exists z ∈ Z ⊆ X such that {xn} → z. Let us
show that z is a fixed point of T distinguishing three cases.
Case 1. Assume that T is S-strictly-increasing-continuous.
In this case, {xn+1 = Txn} → Tz, so Tz = z.
Case 2. Assume that S-strictly-increasing-regular and condition (A5) holds. In this
case, as {xn} is an S-strictly-increasing sequence such that {xn} → z, it follows that

xnSz for all n ∈ N. (2.14)

Since T is S-non-decreasing,

TxnSTz for all n ∈ N. (2.15)

Let an = d(xn+1, T z) = d(Txn, T z) and bn = d(xn, z) for all n ∈ N.
Clearly, {bn} → 0. Notice that

bn = 0 ⇒ an = 0 (2.16)

because

bn = 0 ⇔ xn = z ⇒ xn+1 = Txn = Tz ⇔ an = 0.

Let consider the set

Ω = {n ∈ N : an = 0} = {n ∈ N : d(xn+1, T z) = 0} .

Subcase 2.1. Assume that Ω is finite. In this case, there exists n0 ∈ N such that
d(xn+1, T z) = an > 0 for all n ≥ n0. By (16), d(xn, z) = bn > 0 for all n ≥ n0. In
this case, {(an, bn)}n≥n0 is a (T,S)- sequence. In particular xn 6= z and Txn 6= Tz
for all n ≥ n0. By (14) and (15), we deduce that xnS∗z and TxnS∗Tz for all n ≥ n0.
It follows from (A4) that

%(an, bn) = % (d(Txn, T z), d(xn, z)) > 0 for all n ≥ n0.

As a consequence, as (A5) holds, we conclude that {an = d(xn+1, T z)} → 0, that is,
{xn+1} → Tz, which guarantees that Tz = z.
Subcase 2.2. Assume that Ω is not finite. In this case, there exists a subsequence
{xn(k)} of {xn} such that

d(xn(k)+1, T z) = 0 for all k ∈ N.

Hence xn(k)+1 = Tz for all k ∈ N. Since {xn} → z and
{
xn(k)+1

}
→ Tz, then Tz = z.
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Case 3. Assume that S-strictly-increasing-regular and % (t, s) ≤ s − t for all t, s ∈
A ∩ (0,∞). Then item(b) is applicable.

In any case, we conclude that z is a fixed point of T .
Theorem 2.2.9. Under the hypotheses of Theorem (2.2.8), we further assume that
the following properties hold:

(a) Condition (A′2) holds (refer to Definition 2.2.4).
(b) For all x, y ∈ Fix(T ), which is the set of all fixed points of T in X, there exists

z ∈ X such that z is S-comparable to both x and y.

Then, T has a unique fixed point.
Proof. Let x, y ∈ Fix(T ) be two fixed points of T . By hypothesis, there exists z0 ∈ X
such that z0 is, at the same time, S-comparable to x and S-comparable to y. Let
{zn} be the Picard sequence of T based on z0, that is, zn+1 = Tzn for all n ∈ N. We
will prove that x = y by showing that {zn} → x and {zn} → y. We first use x, but
the same reasoning is valid for y.

Since z0 is S-comparable to x, assume that z0Sx. As T is S-non-decreasing, znSx
for all n ∈ N. If there exists n0 ∈ N such that zn0 = x, then zn = x for all n ≥ n0.
In particular {zn} → x and the proof is finished. On the contrary case, assume that
zn 6= x for all n ∈ N. Therefore znS∗x and TznS∗Tx for all n ∈ N. Using the contrary
condition (A4), for all n ∈ N,

0 < %(d(Tzn, Tx), d(zn, x)) = %(d(Tn+1z0, T
n+1x), d(Tnz0, T

nx)).

It follows from (A′2) that {d(Tnz0, T
nx)} → 0 that is {zn} → x.

2.3. Fixed point theorems for (ψ, φ)-contractions. In this section first we see
some lemmas which will be used to prove our main result.
Lemma 2.3.1. Let ψ : (0,∞)→ R. Then the following conditions are equivalent:
(i) inf

t>ε
ψ(t) > −∞ for every ε > 0.

(ii) lim inf
t→ε

ψ(t) > −∞ for every ε > 0.

(iii) lim
n→∞

ψ(tn) = −∞ implies lim
n→∞

tn = 0.

Proof. (i) =⇒ (ii) : Let (i) hold and inf
t>ε

ψ(t) = A for some ε > 0. Then ψ(t) ≥ A

for every t > ε. Therefore, lim inft→ε ψ(t) ≥ A, i.e., (ii) holds.
(ii) =⇒ (iii) : Let (ii) hold and lim

n→∞
ψ(tn) = −∞ for a sequence (tn) ⊂ (0,∞).

Assume that (tn) does not converge to zero. Then there exists ε > 0 and a subsequence
(tnk

) such that tnk
> ε for every k ≥ 1. Since lim

n→∞
ψ(tn) = −∞ implies lim

k→∞
ψ(tnk

) =

−∞, we conclude that lim inf
t→ε

ψ(t) = −∞ which is a contradiction to (ii). Hence,

lim
n→∞

(tn) = 0 which means that (iii) holds.

(iii) =⇒ (i) : Let (iii) hold. Assume that inf
t>ε

ψ(t) = −∞ for some ε > 0. Then there

exists a sequence (tn) ⊂ (0,∞) such that tn > ε for every n ≥ 1 and lim
n→∞

ψ(tn) = −∞.

From (iii), we get that lim
n→∞

tn = 0 which contradicts tn > ε. Therefore, (i) holds.

We are going to provide a fixed point theorem for a self-mapping T on a complete
non-triangular metric space (X, d) satisfying a contractive-type condition
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Definition 2.3.2. Contractive type condition:

ψ(d(Tx, Ty)) ≤ φ(d(x, y)) for all x, y ∈ X with d(Tx, Ty) > 0, (2.17)

where ψ, φ : (0,∞)→ R are two functions such that φ(t) < ψ(t) for t > 0.
Idea of following lemmas is taken from the [7].

Lemma 2.3.3. Let (X, d) be a non-triangular metric space and T be a self-mapping
on X satisfying condition (2.17), where the functions ψ, φ : (0,∞)→ R are such that
(i) φ(t) < ψ(t) for any t > 0;
(ii) inf

t>ε
ψ(t) > −∞ for any ε > 0.

Suppose also that at least one of the following conditions holds:
(iii) ψ is non-decreasing and lim sup

t→ε
φ(t) < ψ(ε) for any ε > 0;

(iv) if (ψ(tn)) and (φ(tn)) are convergent sequences with the same limit and (ψ(tn))
is a strictly decreasing, then lim

n→∞
tn = 0.

Then T is an asymptotically regular mapping.
Lemma 2.3.4. Let (X, d) be a metric space and T be a self-mapping on X satisfying
condition (2.17) with the functions ψ, φ : (0,∞)→ R which satisfy at least one of the
following conditions:

(i) ψ is non-decreasing, φ < ψ, and lim sup
t→ε

φ(t) < ψ(ε) for any ε > 0;

(ii) lim sup
t→ε

φ(t) < lim inf
t→ε

ψ(t) for any ε > 0.

If T is asymptotically regular at a point x ∈ X, then (Tnx) is a Cauchy sequence.
Proof. Let T be an asymptotically regular mapping at a point x ∈ X. Assume that
the sequence (Tnx) is not Cauchy. Set xn = Tnx for each n ≥ 0. Let ψ and φ
satisfy condition (i). It follows from Lemma (2.1) that there exist ε > 0 and two sub-
sequences (xnk

) and (xmk
) of (xn) such that the limits (2.2) and (2.3) hold. It follows

from (2.3) that d(xnk+1
, xmk+1

) > ε for all k ≥ 1. Applying (2.17) with x = xnk
and

y = xmk
, we get

ψ(d(xnk+1
, xmk+1

)) ≤ φ(d(xnk
, xmk

)). (2.18)

for all k ≥ 1. We set αk = d(xnk+1
, xmk+1

) and βk = d(xnk
, xmk

). Then 2.18 takes
the form

ψ(αk) ≤ φ(βk). (2.19)

Hence, taking into account that φ < ψ, we obtain

ψ(αk) ≤ φ(βk) < ψ(βk).

From this and monotonicity of ψ, we deduce that αk < βk. Then it follows from 2.2
that αk → ε and βk → ε. Taking the limit superior in 2.19, we get

ψ(ε) = lim
k→∞

ψ(αk) ≤ lim sup
k→∞

φ(βk) ≤ lim sup
t→ε

φ(t)

which is a contradiction to the third part of condition (i). Let ψ and φ satisfy condition
(ii). Note that we have proved (2.19) without using condition (i). It follows from (2.2)
that αk → ε and βk → ε. From (2.19), we get

lim inf
t→ε

ψ(t) ≤ lim inf
k→∞

ψ(αk) ≤ lim sup
k→∞

φ(βk) ≤ lim sup
t→ε

φ(t)
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which is a contraction to (ii). Therefore (Tnx) is Cauchy.
Lemma 2.3.5. Let (X, d) be a non-triangular metric space which satisfies the prop-
erty C and T be a self-mapping on X satisfy condition (2.17), with the functions
ψ, φ : (0,∞)→ R which satisfy at least one of the following conditions:

(i) ψ is non-decreasing and φ(t) < ψ(t) for any t > 0;
(ii) lim sup

t→0
φ(t) < lim inf

t→ε
ψ(t) for any ε > 0.

If lim
n→∞

Tnx = ξ for some x ∈ X, then ξ is a fixed point of T .

Proof. Let xn = Tnx, then (Tnx) converges to a point ξ ∈ X. As d(Tnx, ξ) → 0 as
n→∞ and d satisfies the property C, d(Tnx, Tξ)→ d(ξ, T ξ). If d(Tnx, Tξ) = 0 for
infinitely many values of n, then d(ξ, T ξ) = 0. This means Tξ = ξ, that is ξ is a fixed
point of map T .
Now suppose that d(Tnx, Tξ) > 0 holds for infinitely many values of n. Then applying
(2.17) with x = xn and y = ξ, we conclude that

ψ(d(xn+1, T ξ)) ≤ φ(d(xn, ξ)) (2.20)

holds for any values of n. Let ψ and φ satisfy condition (i) and (ii). Then it follows
from (2.20) that

ψ(d(xn+1, T ξ)) ≤ φ(d(xn, ξ)) < ψ(d(xn, ξ)).

This implies that d(xn+1, T ξ) < d(xn, ξ). Taking the limit n→∞, we get d(ξ, T ξ) ≤ 0
which implies that ξ is a fixed point of T . Let ψ and φ satisfy condition (ii). From
(2.20), we have

ψ(αn) ≤ φ(βn) (2.21)

for infinitely many values of n, where αn = d(xn+1, T ξ) and βn = d(xn, ξ). Obviously,
αn → ε(by property C) and βn → 0 as n → ∞, where ε = d(ξ, T ξ). It follows from
(2.21) that

lim inf
t→ε

ψ(t) ≤ lim inf
n→∞

ψ(αn) ≤ lim sup
n→∞

φ(αn) ≤ lim sup
t→0

ψ(t),

If ε > 0, then the last inequality is a contradiction to condition (ii). Hence, d(ξ, T ξ) =
0, which implies that ξ is a fixed point of T .

Now we are ready to state and prove the theorem for self-mappings that satisfy
contractive-type condition (2.17).
Theorem 2.3.6. Let (X, d) be a complete non-triangular metric space which satisfy
the property C and T : X → X be a mapping satisfying condition (2.17), where the
functions ψ, φ : (0,∞)→ R satisfy the following conditions:

(i) ψ is non-decreasing;
(ii) φ(t) < ψ(t) for any t > 0;
(iii) lim sup

t→ε
φ(t) < ψ(ε) for any ε > 0.

Then T has a unique fixed point ξ ∈ X and the iterative sequence (Txn) converges to
ξ for every x ∈ X.
Proof. It follows from conditions (i)-(iii) and Lemma 2.3.3 that T is asymptotically
regular. Let x be an arbitrary point in X. It follows from conditions (i)-(iii) and
Lemma 2.3.4 that the sequence {Tnx} is Cauchy. Since the space X is complete,
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then {Tnx} converges to a point ξ ∈ X. Then by conditions (i),(ii) and Lemma 2.3.5
we conclude that ξ is a fixed point of T . The uniqueness of the fixed point follows
trivially from conditions (2.17) and (ii).
Example 2.3.6. Let X = [0, 1] and d : X ×X → [0,∞) be defined by

d(x, y) =



| x− y |, if x 6= 1

2
, y 6= 1

2
;

x+ 2

3
, if y =

1

2
, x 6= 1

2
;

y + 2

3
, if x =

1

2
, y 6= 1

2
;

0, if x = y = 1
2 .

Let T : X → X be defined as Tx =
x

3
. Consider the functions φ, ψ : (0,∞)→ (0,∞)

defined by φ(x) = 12x and ψ(x) = 14x. It’s easy to verify that the given mapping
d is a complete non-triangular metric on a set X at it has the property C. Now, for
checking the map T satisfies the condition (2.17), we required few cases as:

Case (i). x 6= 1

2
, y 6= 1

2
. For this case

ψ(d(Tx, Ty)) = 14

∣∣∣∣x− y3

∣∣∣∣ ≤ 12|x− y| = φ(d(x, y)),

i.e. In this case we obtain ψ(d(Tx, Ty)) ≤ φ(d(x, y)).

Case (ii). x =
1

2
, y 6= 1

2
. For this case

ψ(d(Tx, Ty)) = 14d(
1

6
, y) = 14

∣∣∣∣16 − y
∣∣∣∣ ,

φ(d(x, y)) = 12d

(
1

2
, y

)
= 12

y + 2

3
= 4(y + 2).

Now for each y ∈ X, 14|1
6
− y| ≤ 4(y + 2), which implies that

ψ(d(Tx, Ty)) ≤ φ(d(x, y)).

As here d(x, y) = d(y, x), for all the x ∈ X,T satisfies the condition (2.17). Also,
the maps T, φ and ψ satisfy all the conditions of Theorem 2.3. Hence T has a unique
fixed point ξ ∈ X.
Corollary 2.3.7. Let (X, d) be a complete non-triangular metric space which satisfies
property C and the map T : X → X satisfies the condition (2.17), where the functions
ψ, φ : (0,∞) → R are defined by ψ(x) = x and φ(x) = kx, for some k < 1 and all
x ∈ X. Then T has a unique fixed point in the set X.
Theorem 2.3.8. Let (X, d) be a non-triangular metric space with property C. Let
T : X → X be a mapping satisfying the condition (2.17), where the functions ψ, φ :
(0,∞)→ R satisfy the following conditions:

(i) φ(t) < ψ(t) for any t > 0;
(ii) inf

t>ε
ψ(t) > −∞ for any ε > 0;
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(iii) if (ψ(tn)) and (φ(tn)) are convergent sequences with the same limit and
(ψ(tn)) is strictly decreasing, then tn → 0 as n→∞;

(iv) lim sup
t→ε

ψ(t) < lim inf
t→ε

ψ(t) or lim sup
t→ε

φ(t) < lim inf
t→ε

ψ(t) for any ε > 0;

(v) T has closed graph or lim sup
t→0

φ(t) < lim inf
t→ε

ψ(t) for any ε > 0.

Then T has a unique fixed point ξ ∈ X and the iterative sequence (Tnx) converges to
ξ, for every x ∈ X.
Corollary 2.3.9. Let (X, d) be a non-triangular metric space and let T : X → X be
a mapping satisfying condition (2.17), where the functions ψ, φ : (0,∞) → R satisfy
the following conditions:

(i) φ(t) < ψ(t) for any t > 0;
(ii) ψ is lower semi-continuous and φ is upper semi-continuous;

(iii) if (ψ(tn)) and (φ(tn)) are convergent sequences with the same limit and
(ψ(tn)) is a strictly decreasing, then (tn) is a bounded sequence;

(iv) T has closed graph or lim sup
t→0

φ(t) < ψ(ε) for any ε > 0.

Then T has a unique fixed point ξ ∈ X and the iterative sequence (Tnx) converges to
ξ for every x ∈ X.

3. Applications to operator equations

3.1. Application to high-order fractional differential equations with non-
local Boundary conditions. Motivated by [11], we investigate the existence of a
unique solution for a class of high-order fractional differential equations with non-local
boundary conditions given by

{
CDα

t u+ f(t, u(t)) = 0, t ∈ (0, 1),

u′(0) = u′′(0) = · · · = u(m−1) = 0, u(0) = λ
∫ 1

0
u(s)ds,

(3.1)

where m − 1 < α ≤ m,m ∈ N, 0 < λ < 1, CDα
t u is the Caputo fractional derivative

and f : (0, 1)× R→ R is a given continuous function.
Theorem 3.1.1. Let m− 1 < α ≤ m. Assume y ∈ C[0, 1]. Then, the problem (3.1)
has a unique solution u ∈ C[0, 1], given by

u(t) =

∫ 1

0

G(t, s)y(s)ds, (3.2)

where

G(t, s) =


(1− s)α − (1− λ)α(t− s)α−1

(1− λ)Γ(α+ 1)
, 0 ≤ s ≤ t ≤ 1;

(1− s)α

(1− λ)Γ(α+ 1)
, 0 ≤ t ≤ s ≤ 1.

(3.3)

Consider C[0, 1], the Banach space of all continuous functions from [0, 1] to R,
equipped with the norm ||u|| = sup

x∈[0,1]

|u(x)| + sup
x∈[0,1]

|u′(x)|. Replacing y(x) by
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f(t, u(t)) in Theorem 3.1, an operator T : C[0, 1] → C[0, 1] associated with prob-
lem (3.1) can be defined as

Tu(t) =

∫ 1

0

G(t, s)f(s, u(s))ds :≡ − 1

Γ(α)

∫ t

0

(t− s)α−1f(s, u(s))ds

+ µ

∫ 1

0

(1− s)αf(s, u(s))ds, (3.4)

where

µ =
1

(1− λ)Γ(α+ 1)
. (3.5)

Now, by Theorem 3.1, the fixed points of operator T are exactly the solutions of
problem (3.1). Therefore, it remains to investigate the fixed points of operator T , by
using Corollary 2.3.
We are now ready to prove the main theorem. For computational convenience, we
put

R =
1

Γ(α+ 1)
+

µ

α+ 1
.

Let Br = {u ∈ C[0, 1] : ‖u‖ ≤ r}, where r ≥ 4NfR

1− 4LfR
with Nf = sup

t∈[0,1]

|f(t, 0)|.

and d(u, v) = ‖u−v‖2, then it is clear that (Br, d) is a complete non-triangular metric
space but not a classical metric space.
Theorem 3.1.2. Assume that the following contraction condition holds: There exists
Lf > 0, such that

∀t ∈ [0, 1], u, v ∈ R : |f(t, u)− f(t, v)| ≤ Lf |u− v|. (3.6)

Then, if LfR <
1

2
, then the BVP (3.1) has a unique solution in Br.

Proof. First, we show that T : Br → Br i.e. T (Br) ⊂ Br. Take u ∈ Br, t ∈ [0, 1].
This means ||u|| = sup

x∈[0,1]

|u(x)|+ sup
x∈[0,1]

|u′(x)| ≤ r.

We need to show that ||Tu|| = sup
x∈[0,1]

|Tu(x)|+ sup
x∈[0,1]

|Tu′(x)| ≤ r.

|Tu(t)| ≤ 1

Γ(α)

∫ t

0

|t− s|α−1|f(s, u(s))|ds+ µ

∫ 1

0

|1− s|α|f(s, u(s))|ds

≤ 1

Γ(α+ 1)
tα‖f‖+

µ

α+ 1
‖f‖

≤‖f‖
(

1

Γ(α+ 1)
+

µ

α+ 1

)
. (3.7)

In a similar manner

|Tu′(t)| ≤ ‖f‖
(

1

Γ(α+ 1)
+

µ

α+ 1

)
. (3.8)
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By (3.7) and (3.8) we get

‖Tu‖ = sup
t∈[0,1]

|Tu(t)|+ sup
t∈[0,1]

|Tu′(t)| ≤ ‖f‖R+ ‖f‖R = 2‖f‖R, (3.9)

However

|f(t, u(t))| ≤|f(t, u(t))− f(t, 0)|+ |f(t, 0)|
≤Lf (|u(t)|) + |f(t, 0)|
≤Lf‖u‖+Nf . (3.10)

Similarly

|f(t, u′(t))| ≤ Lf‖u‖+Nf . (3.11)

From (3.10) and (3.11), we get

‖f‖ ≤ 2{Lf‖u‖+Nf} ≤ 2{Lfr +Nf}. (3.12)

Therefore, by the inequalities (3.9) and (3.12), we get

‖Tu‖ ≤2(Lfr +Nf )2R ≤ 4{Lfr +Nf}. (3.13)

So, by choosing sufficient r ≥ 4(Lfr+Nf )R we get T (Br) ⊂ Br. Next, we show that
T is a contraction. Notice that, for arbitrary u, v ∈ C[0, 1] , we have

|(Tu)(t)− (Tv)(t)| ≤ 1

Γ(α)

∫ t

0

|t− s|α−1|f(s, u(s))− f(s, v(s))|ds+ µ∫ 1

0

|1− s|α|f(s, u(s))− f(s, v(s))|ds

≤ Lf |u− v|
[

1

Γ(α+ 1)
+

µ

α+ 1

]
≤ Lf‖u− v‖R. (3.14)

Similarly

|(Tu′)(t)− (Tv′)(t)| ≤ Lf |u′ − v′|
[

1

Γ(α+ 1)
+

µ

α+ 1

]
≤ Lf‖u− v‖R. (3.15)

From 3.14 and 3.15 we get

‖Tu− Tv‖ ≤ 2Lf‖u− v‖R (3.16)

If we square inequality (3.16), then we get

‖Tu− Tv‖2 ≤ 4L2
f‖u− v‖2R2

=⇒ d(Tu, Tv) ≤ 4L2
fR

2d(u, v). (3.17)

Now define ψ(u) = u and φ(u) = (2LfR)2u, where LfR <
1

2
which implies

ψ(d(Tu, Tv)) ≤ φ(d(u, v)). Hence T, φ and ψ satisfy all the assumptions of the
Corollary 2.3.7. Hence the problem (3.1) has a unique solution in Br.
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Example 3.1.3. Consider the following fractional differential equation:
CD3.5

t u+ β

(
1 + u(t)

1 + cos2(t)

)
= 0, t ∈ (0, 1) and β > 0,

u′(0) = u′′(0) = u
′′′

= 0, u(0) =
1

3

∫ 1

0

u(s)ds,

(3.18)

As we can see α = 3.5, λ =
1

3
and f(t, u(t)) = β

(
1 + u(t)

1 + cos2(t)

)
It is easy to observe

that

|f(t, u(t))− f(t, v(t))| =
∣∣∣∣β( 1 + u(t)

1 + cos2(t)

)
− β

(
1 + v(t)

1 + cos2(t)

)∣∣∣∣
≤ β

(∣∣∣∣ |u(t)|
1 + cos2(t)

− |v(t)|
1 + cos2(t)

∣∣∣∣) ≤ β |u(t)− v(t)| .

Therefore by setting Lf = β, the hypothesis (3.6) of Theorem 3.1.2 is satisfied. By

routine calculations we can find µ =
8

35
√
π

, R =
64

315
√
π

and Nf = sup
t∈[0,1]

|f(t, 0)| = β.

Now, if we consider β <
315
√
π

128
, then the LfR <

1

2
holds. Thus, we get the result

concerning the existence of the unique solution in the ball βr = {u ∈ C[0, 1] : ‖u‖ ≤

r}, where r ≥ 4βR

1− 4βR
. As an example, if we set β = 3, then the unique solution

belongs to

βr =

{
u ∈ C[0, 1] : ‖u‖ ≤ 768

315
√
π − 768

}
.

3.2. Application to non-linear integral equation. In this section we present an
application of our fixed point results for non-linear integral equations.
Let X = C[0, 1] and d : X × X → R+ define by d(x, y) = ‖x − y‖2∞. Now consider
the integral equation

x(t) = g(t) +

∫ 1

0

k(t, s)f(s, x(s))ds (3.19)

and let T : X → X, defined by

Tx(t) = g(t) +

∫ 1

0

k(t, s)f(s, x(s))ds,

where f is a function on [0, 1]×C[0, 1]→ R, and k : [0, 1]× [0, 1]→ R+
0 is a continuous

map.

For smooth calculation we take µ = max
t∈[0,1]

∫ 1

0

k(t, s)ds.

Theorem 3.2.1. Assume that the following contraction condition holds for the map-
ping f : for some Lf > 0, we have

|f(t, u)− f(t, v)| ≤ Lf |u− v|,∀t ∈ [0, 1], u, v ∈ R. (3.20)

Then, if Lfµ < 1, then non-linear integral equation (3.19) has a unique solution.
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Proof. For the arbitrary x, y ∈ C[0, 1], we have

|(Tx)(t)− (Ty)(t)| ≤
∫ 1

0

k(t, s)|f(s, x(s))− f(s, y(s))|ds

≤ Lf |x− y|
∫ 1

0

k(t, s)ds

≤ Lf |x− y|µ. (3.21)

Taking supremum on the both the side we get

‖Tx− Ty‖ ≤ Lfµ‖x− y‖. (3.22)

Now, define ψ(x) = x and φ(x) = Lfµx, where Lfµ < 1. Then T, φ and ψ satisfies all
the assumption of Corollary 2.3.7. Hence, the equation (3.19) has a unique solution.

4. Conclusion

Motivated by the rich literature on fixed point theorems and applications, in this
paper, we possibly provide the answer to the question:

What would be the minimal metric structure to prove fixed point theorems for con-
tractive type mapping?

In connection to above question, from observing many abstract metric structure in
the book [3] and [6] some how we realized that non-triangular metric space is the min-
imal metric structure to establish fixed point theorems for various contractions (we
have established new fixed point theorems for F -contraction, (A,S)-contraction,and
(ψ, φ)-contraction).

On the other hand, a careful study of solution procedure of operator equation
problems reveals that the method of application of fixed point theorem to operator
equations consists of following main steps:

(i) Since integrals are easier to handle than differential, first the given operator
equation is converted into an equivalent equation via theory of differential
and integral calculus and then obtained integral equation is written in the
form of corresponding equation in a suitable metric space.

(ii) Depending upon the nature of nonlinear involved in a operator equation, a
fixed point theorem on a suitable metric space is used to prove the existence of
solution for the so obtained equivalent operator equation which theory implies
the existence results for the operator equation.

In the present article, we demonstrates the applicability of fixed point theorems
proved under weaker metrical structure in solving (i) high-order fractional differential
equations with non-local boundary conditions (ii) nonlinear integral equation.

One can apply the technique used in Corollary 2.3.7 for proving the existence and
uniqueness of solutions of various mathematical models(differential, integral, ordinary
and partial differential equations, variational inequalities), the same technique could
be applied in other fields e.g. Steady-state temperature distribution, Chemical re-
actions, Neutron transport theory, Economic theory, Game theory, Optimal control
theory, Fractals, etc.
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