Fixed Point Theory, 25(2024), No. 1, 371-378 DOI: 10.24193/fpt-ro.2024.1.23 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

A THEOREM OF CARISTI-KIRK TYPE FOR *b*-METRIC SPACES

SALVADOR ROMAGUERA

Dedicated to the memory of Professor William A. Kirk

Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, 46022 Valencia, Spain E-mail: sromague@mat.upv.es

Abstract. The renowned Caristi-Kirk theorem states that a metric space is complete if and only if every Caristi mapping on it has a fixed point. In this note we extend this result to the setting of *b*-metric spaces.

Key Words and Phrases: Fixed point, *b*-metric space, complete, Caristi-Kirk's theorem. **2020** Mathematics Subject Classification: 54H25, 54E35, 54E50, 47H10.

1. INTRODUCTION

Caristi proved in [4] his celebrated fixed point theorem that every Caristi mapping on a complete metric space has a fixed point, where a self mapping T of a metric space (X, d) is called a Caristi mapping if there exists a lower semicontinuous function $\varphi: X \to [0, \infty)$ such that $d(x, Tx) \leq \varphi(x) - \varphi(Tx)$ for all $x \in X$.

Caristi's fixed point theorem has, among other appealing properties, that it generalizes the Banach contraction principle, and also allows to obtain a characterization of complete metric spaces. This last fact was proved by Kirk in [13]. Consequently, we have the following important result, named by several authors as the Caristi-Kirk theorem.

Theorem 1.1. (Caristi-Kirk's theorem) A metric space is complete if and only if every Caristi mapping on it has a fixed point.

The main goal of this note is to obtain an extension of Caristi's fixed point theorem to the framework of *b*-metric spaces in such a way that it generalizes the *b*-metric version of the Banach contraction principle and also allows us to characterize completeness of *b*-metric spaces.

By \mathbb{R} , \mathbb{R}^+ , \mathbb{N} and ω we shall denote the set of real numbers, the set of non-negative real numbers, the set of positive integer numbers and the set of non-negative integer numbers, respectively.

We now remind those concepts and properties that will be useful in the rest of the paper, where our basic reference for general topology is [10] and for *b*-metric spaces it is [14, Chapter 12].

We point out that several authors have reinvented over time the notion of a b-metric space under different approaches and designations (a detailed compilation can be found in [5, page 134]). Here we adjust that notion as given by Czerwik in [7].

By a *b*-metric space we mean a triple (X, d, s), where X is a set, s is a real number with $s \ge 1$, and $d: X \times X \to \mathbb{R}^+$ is a function fulfilling the following conditions for all $x, y, z \in X$:

- (b1) d(x, y) = 0 if and only if x = y;
- (b2) d(x, y) = d(y, x);
- (b3) $d(x,y) \le s(d(x,z) + d(z,y)).$

If (X, d, s) is a *b*-metric space, the function *d* is called a *b*-metric on *X*. Of course *d* is a metric on *X* if s = 1.

Remark 1.2. Distinguished and well-known examples of *b*-metric spaces may be found, for instance, in [3, 14, 19]. In particular, if (X, d) is a metric space, and K and β are real constants with K > 0 and $\beta > 1$, then (X, d_b, s) is a *b*-metric space, where $s = 2^{\beta-1}$ and d_b is the *b*-metric on X given by $d_b(x, y) = Kd(x, y)^{\beta}$ for all $x, y \in X$ (see e.g. [19, Example 2.2] and [14, Example 12.2]).

As in the metric case, a *b*-metric *d* on a set *X* induces in a natural way a topology on *X*. Indeed, for each $x \in X$ and r > 0 put $B(x, r) = \{y \in X : d(x, y) < r\}$, and let

$$\tau_d = \{A \subseteq X : \text{for each } x \in A \text{ there is } r > 0 \text{ such that } B(x, r) \subseteq A\}.$$

It is easily seen that τ_d is a topology on X. In fact, this topology can be induced by the uniformity which has a countable base the sets of the form

$$U_n = \{ (x, y) \in X \times X : d(x, y) < 1/n \}$$

for all $n \in \mathbb{N}$. Consequently τ_d is a metrizable topology.

In fact, the study of the topological properties and the problem of the completion of b-metric spaces, as well as an extensive and deep development of the fixed point theory for these spaces, has received the care of many authors (see e.g. [1, 2, 3, 5, 8, 9, 12, 14] and the references therein).

It is interesting to note that, contrarily to the classical metric case, the balls B(x, r) are not necessarily τ_d -open sets and the *b*-metric *d* is not continuous, in general (see e.g. [2, Example 3.9], [14, Section 12.4]). However, for each $x \in X$ and r > 0 we have $x \in IntB(x, r)$ (see e.g. [10, Corollary 8.1.3]), which implies that a sequence $(x_n)_{n \in \omega}$ in $X \tau_d$ -converges to $x \in X$ if and only if $\lim_n d(x, x_n) = 0$.

In the sequel, if $(x_n)_{n \in \omega}$ is a sequence in a *b*-metric space (X, d, s) that τ_d -converges to $x \in X$ we will simply write $x_n \to x$ or $d(x, x_n) \to 0$ if no confusion arises.

We finally recall that, exactly as in the metric case, a sequence $(x_n)_{n \in \omega}$ in a *b*metric space (X, d, s) is said to be a Cauchy sequence if for each $\varepsilon > 0$ there is $n_{\varepsilon} \in \omega$ such that $d(x_n, x_m) < \varepsilon$ for all $n, m \ge n_{\varepsilon}$. (X, d, s) is said to be complete if every Cauchy sequence is τ_d -convergent.

372

Remark 1.3. Let (X, d) be a metric space and let (X, d_b, s) the *b*-metric space constructed in Remark 1.2. Then, it is clear that (X, d_b, s) is complete if and only if (X, d) is complete.

2. The results

Various authors have investigated the problem of extending Caristi's fixed point theorem to the realm of *b*-metric spaces [3, 8, 12, 14, 16]. In particular, Dung and Hang presented in [8, Example 2.8] an instance of a complete *b*-metric space (X, d, s), with s = 8, for which there is a self mapping T of X and a lower semicontinuous and bounded from below function $\varphi : X \to \mathbb{R}$ such that $d(x, Tx) \leq \varphi(x) - \varphi(Tx)$ for all $x \in X$, but T has no any fixed point. This key example shows that for obtaining a suitable extension of Caristi's fixed point theorem to *b*-metric spaces is necessary to add some ingredient or include some appropriate modification on the conditions of the self mapping or on the contractivity condition provided by the function φ . In this direction, our approach takes as a starting point the following relevant theorem obtained by Miculescu and Mihail in [16]. (Recall that a self mapping of a *b*-metric space (X, d, s) is continuous provided that it is continuous from the topological space (X, τ_d) into itself.)

Theorem 2.1. ([16, Theorem 3.1]). Let T be a continuous self mapping of a complete b-metric space $(X, d, s), \varphi : X \to \mathbb{R}^+$ and r > 1 such that $d(x, Tx) \leq \varphi(x) - r\varphi(Tx)$ for all $x \in X$. Then T has a fixed point.

We also need two definitions.

Definition 2.2. Let(X, d, s) be a b-metric space. We say that a function $\varphi : X \to \mathbb{R}^+$ is 0-lower semicontinuous (0-lsc in short) provided that the next condition holds:

If $x_n \to x$ and $\lim_n \varphi(x_n) = 0$, then $\varphi(x) = 0$.

Remark 2.3. Obviously, every lower semicontinuous function $\varphi : X \to \mathbb{R}^+$ is 0-lsc. On the other hand, it is not hard to found examples of 0-lsc functions that are not lower semicontinuous. For instance, let $d_{\mathbb{R}}$ be the usual metric on \mathbb{R} and $\varphi : \mathbb{R} \to \mathbb{R}^+$ defined by $\varphi(x) = x$ if $x \in [0, 1]$ and $\varphi(x) = 0$ otherwise. Then φ is 0-lsc but not lower semicontinuous for the (complete) metric space $(\mathbb{R}, d_{\mathbb{R}})$.

Note that the contraction condition of Theorem 2.1 implies that $\varphi(u)=0$ whenever u is a fixed point of T. In order to avoid this restriction we slightly modify that contraction condition in Definition 2.4 below.

Definition 2.4. A self mapping T of a b-metric space (X, d, s), with s > 1, is said to be a b-Caristi mapping if there exist a constant $r \in (1, s]$ and a 0-lsc function $\varphi : X \to \mathbb{R}^+$ such that for each $x \in X$,

$$d(x,Tx) > 0 \implies d(x,Tx) \le \varphi(x) - r\varphi(Tx).$$

Theorem 2.5. Let (X, d, s) be a complete b-metric space with s > 1. Then, every b-Caristi mapping of X has a fixed point.

Proof. Let T be a b-Caristi mapping of X. Then, there are an $r \in (1, s]$ and a 0-lsc function $\varphi: X \to \mathbb{R}^+$ such that for each $x \in X$,

$$d(x,Tx) > 0 \implies d(x,Tx) \le \varphi(x) - r\varphi(Tx).$$
(2.1)

SALVADOR ROMAGUERA

Fix $x_0 \in X$ and put $x_n := T^n x_0$ for all $n \in \omega$. If $T^n x_0 = T^{n+1} x_0$ for some $n \in \omega$, $T^n x_0$ is a fixed point of T. So, in the sequel we assume that $T^n x_0 \neq T^{n+1} x_0$ for all $n \in \omega$.

Then $r\varphi(x_{n+1}) < \varphi(x_n)$ for all $n \in \omega$, and hence $(r^n\varphi(x_n))_{n\in\omega}$ is a strictly decreasing sequence in \mathbb{R}^+ . Therefore $\lim_n r^n\varphi(x_n) = L \ge 0$ where $L = \inf_{n\in\omega} r^n\varphi(x_n)$. Since $\lim_n r^n = \infty$ we get $\lim_n \varphi(x_n) = 0$.

For each $n \in \omega$ we have:

$$\sum_{k=0}^{n} r^k d(x_k, x_{k+1}) \le r\varphi(x_0),$$

which implies that the series $\sum_{k=0}^{\infty} r^k d(x_k, x_{k+1})$ is convergent and by [16, Corollary 2.8], $(x_n)_{n \in \omega}$ is a Cauchy sequence.

Let $y \in X$ be such that $d(y, x_n) \to 0$. Since φ is 0-lsc and $\lim_n \varphi(x_n) = 0$, we get $\varphi(y) = 0$. If $y \neq Ty$, we deduce from the contraction condition (2.1) that $\varphi(y) > r\varphi(Ty) > \varphi(Ty)$, and thus $\varphi(Ty) < 0$, a contradiction. Hence y = Ty. This concludes the proof.

Next we shall apply Theorem 2.5 to deduce a full *b*-metric generalization of the Banach contraction principle. This generalization was obtained in [8, Theorem 2.1] as a consequence of a *b*-metric version of the well-known Matkowski's fixed point theorem [15, Theorem 1.2], established by Czerwik in [6, Theorem 1]. Kajántó and Lukács observed in [11] that the original proof of [6, Theorem 1] has an inaccuracy; then, they gave a correct proof, validating thereby [6, Theorem 1] and, consequently, also [8, Theorem 2.1] (another (correct) proof of Czerwik's theorem was given by Miculescu and Mihail in [17]).

Theorem 2.6. ([8, Theorem 2.1]). Let (X, d, s) be a complete b-metric space with s > 1. Let T be a self mapping of X such that there is a constant $c \in (0, 1)$ satisfying $d(Tx, Ty) \leq cd(x, y)$ for all $x, y \in X$. Then T has a unique fixed point.

Proof. Let $r = \min\{s, (1 + c)/2c\}$ and let $\varphi : X \to \mathbb{R}^+$ defined as $\varphi(x) = 2d(x, Tx)/(1-c)$ for all $x \in X$. Observe that $r \in (1, s]$. Moreover φ is 0-lsc on (X, d, s). Indeed, suppose $d(x, x_n) \to 0$ and $\lim_n \varphi(x_n) = 0$. Since , for each $n \in \omega$,

$$d(x, Tx) \le sd(x, x_n) + s^2(d(x_n, Tx_n) + d(Tx_n, Tx))$$

$$\le sd(x, x_n) + \frac{s^2(1-c)}{2}\varphi(x_n) + cs^2d(x_n, x),$$

we deduce that d(x, Tx) = 0, i.e., $\varphi(x) = 0$.

Next we show that $r\varphi(Tx) \leq \varphi(x) - d(x, Tx)$ for all $x \in X$. Indeed, we have

$$\begin{aligned} r\varphi(Tx) &= \frac{2r}{1-c} d(Tx, T^2x) \leq \frac{1+c}{c(1-c)} d(Tx, T^2x) \\ &\leq \frac{1+c}{1-c} d(x, Tx) = \frac{2}{1-c} d(x, Tx) - d(x, Tx) \\ &= \varphi(x) - d(x, Tx). \end{aligned}$$

Thus, all conditions of Theorem 2.5 are fulfilled and hence T has a fixed point. Finally, its uniqueness follows immediately from the contraction condition.

374

Next we give an easy example where we can apply Theorem 2.5 for an $r \in (1, s)$ and a 0-lsc function φ but not for s and for such φ .

Example 2.7. Let (X, d, s) be the complete *b*-metric space where $X := \mathbb{R}^+$, s = 2, and *d* is the *b*-metric on *X* given by $d(x, y) = |x - y|^2$ for all $x, y \in X$ (see Remarks 1.2 and 1.3).

Let T be the self mapping of X given by Tx = cx, with c constant such that $c \in (0,1)$. By Theorem 2.6, T has a unique fixed point. Let $r_c = \min\{2, (1+c)/2c\}$ and $\varphi : X \to \mathbb{R}^+$ defined by $\varphi(x) = 2d(x, Tx)/(1-c)$ for all $x \in X$. In accordance to the proof of Theorem 2.6 we obtain $d(x, Tx) \leq \varphi(x) - r_c \varphi(Tx)$ for all $x \in X$.

Choose any $c \in (0,1)$ such that $1 + c < 4c^2$, i.e. $(1 + \sqrt{17})/8 < c < 1$. Then $r_c = (1+c)/2c < (1+c)/2c^2 < 2$, and we have

$$d(x, Tx) = (1 - c)^2 x^2 > 2(1 - c)x^2 - 4(1 - c)c^2 x^2$$

= $\varphi(x) - 2\varphi(Tx)$,

for all $x \in X \setminus \{0\}$.

Therefore, the conditions of Theorem 2.5 are satisfied for r_c and φ but not for s and φ .

The following is an example where we can apply Theorem 2.5 but not Theorems 2.1 and 2.6.

Example 2.8. Let (X, d, s) be the *b*-metric space where $X := \mathbb{R}^+$, s = 2, and *d* is the *b*-metric on *X* given by $d(x, y) = (\max\{x, y\})^2$ for all $x, y \in X$ with $x \neq y$.

We first note that (X, d, s) is complete because the only non-eventually constant Cauchy sequences are those that τ_d -converges to 0 (equivalently, those that converges to 0 for the usual topology on X).

Let T be the self mapping of X given by T0 = 0, Tx = 1 for all $x \in (0, 4)$, and $Tx = x^{1/2}$ for all $x \ge 4$. Note that T has two fixed points: 0 and 1. Moreover it is not continuous at x = 0.

Now define a function $\varphi : X \to \mathbb{R}^+$ by $\varphi(0) = 2$, $\varphi(x) = 1$ for all $x \in (0, 4) \setminus \{1\}$, $\varphi(1) = 0$, and $\varphi(x) = 2x^2$ for all $x \ge 4$.

We going to check that T is a b-Caristi mapping on (X, d, s) (for this φ and for r = 2).

Indeed φ is a 0-lsc function because if $x_n \to x$ with $\lim_n \varphi(x_n) = 0$, then $x_n = 1$ eventually, so x = 1, and $\varphi(1) = 0$. Note also that φ is not lower semicontinuous because $1/n \to 0$ and, nevertheless, $\varphi(0) = 2$ and $\varphi(1/n) = 1$ for all $n \in \mathbb{N}$.

Finally, take $x \in X$ such that d(x, Tx) > 0. If $x \in (0, 4) \setminus \{1\}$ we get

$$d(x,Tx) = d(x,1) = 1 = \varphi(x) - 2\varphi(1) = \varphi(x) - 2\varphi(Tx),$$

and if $x \ge 4$ we distinguish two cases: Case 1. $Tx \ge 4$. Then

$$d(x, Tx) = d(x, x^{1/2}) = x^2 \le 2x^2 - 4x = \varphi(x) - 2\varphi(x^{1/2}) = \varphi(x) - 2\varphi(Tx).$$

Case 2. Tx < 4. Then $Tx = x^{1/2} > 2$, so $\varphi(Tx) = 1$, and hence

$$d(x, Tx) = x^{2} < 2x^{2} - 2 = \varphi(x) - 2\varphi(Tx).$$

Therefore, all conditions of Theorem 2.5 are satisfied. However, we cannot apply Theorems 2.1 and 2.6 because T is not continuous.

We now prove our main result.

Theorem 2.9. A b-metric space (X, d, s), with s > 1, is complete if and only if every b-Caristi mapping on it has a fixed point.

Proof. The "only if" part follows from Theorem 2.5.

To prove the "if" part we shall reason by contradiction. Let (X, d, s), with s > 1, be a non-complete *b*-metric space for which every *b*-Caristi mapping has a fixed point.

Since (X, d, s) is not complete, there exists a Cauchy sequence $(x_n)_{n \in \omega}$ of distinct points in X that does not converge. Hence, there is a subsequence $(x_{n(k)})_{k \in \omega}$ of $(x_n)_{n \in \omega}$ such that $d(x_{n(k)}, x_m) < 2^{-(k+1)}$ for all $k \in \omega$ and $m \ge n(k)$. So, in particular, $d(x_{n(k)}, x_{n(k+1)}) < 2^{-(k+1)}$ for all $k \in \omega$.

Obviously $(x_{n(k)})_{k \in \omega}$ does not converge because $(x_n)_{n \in \omega}$ is a non-convergent Cauchy sequence.

We proceed to construct a b-Caristi mapping free of fixed points, which will yields a contradiction.

Put $F := \{x_{n(k)} : k \in \omega\}$, and define a self mapping T of X, free of fixed points, as follows:

 $Tx_{n(k)} = x_{n(k+1)}$ for all $k \in \omega$, and $Tx = x_{n(0)}$ whenever $x \in X \setminus F$.

Now fix $r \in (1, s]$ with r < 2 and define a function $\varphi : X \to \mathbb{R}^+$ by

$$\varphi(x_{n(k)}) = 2^{-k}/(2-r)$$

for all $k \in \omega$, and $\varphi(x) = d(x, x_{n(0)}) + r/(2 - r)$ for all $x \in X \setminus F$.

We show that T is a b-Caristi mapping on X.

We first note that φ is 0-lsc because if $y_j \to y$, we get that $y_j \in X \setminus F$ eventually (in fact $y_j \in X \setminus (F \cup \{x_n : x_n \in X \setminus F\})$ eventually), and thus $\varphi(y_j) > r/(2-r)$ eventually.

Finally, for each $k \in \omega$ we have

$$d(x_{n(k)}, Tx_{n(k)}) = d(x_{n(k)}, x_{n(k+1)}) < 2^{-(k+1)}$$
$$= \frac{2^{-k}}{2 - r} - r\frac{2^{-(k+1)}}{2 - r}$$
$$= \varphi(x_{n(k)}) - r\varphi(Tx_{n(k)}),$$

and for each $x \in X \setminus F$,

$$d(x,Tx) = d(x,x_{n(0)}) = \varphi(x) - r\varphi(x_{n(0)}) = \varphi(x) - r\varphi(Tx).$$

Therefore T is a b-Caristi mapping of X. This concludes the proof.

Remark 2.10. Theorem 2.1 has the advantage that the function φ is not necessarily 0-lsc. However, it does not allow to characterize the completeness of *b*-metric spaces, which follows from Remark 1.2 and the example given by Suzuki and Takahashi in [18] of a non-complete metric space for which every continuous self mapping has a fixed point.

References

- H. Alolaiyan, B. Ali, M. Abbas, Characterization of a b-metric space completeness via the existence of a fixed point of Ciric-Suzuki type quasi-contractive multivalued operators and applications, An. St. Univ. Ovidius Constanta, 27(2019), 5-33.
- [2] T.V. An, L.Q. Tuyen, N.V. Dung, Stone-type theorem on b-metric spaces and applications, Topol. Appl., 185-186(2015), 50-64.
- [3] M. Bota, A. Molnár, C. Varga, On Ekeland's variational principle in b-metric spaces, Fixed Point Theory, 12(2011), 21-28.
- [4] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc., 215(1976), 241-251.
- [5] S. Cobzaş, S. Czerwik, The completion of generalized b-metric spaces and fixed points, Fixed Point Theory, 21(2020), 133-150.
- [6] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav., 1(1993), 5-11.
- S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 46(1998), 263-276.
- [8] N.V. Dung, V.T.L. Hang, On relaxations of contraction constants and Caristi's theorem in b-metric spaces, J. Fixed Point Theory Appl., 18(2016) 267-284.
- [9] N.V. Dung, V.T.L. Hang, On the completion of b-metric spaces, Bull. Aust. Math. Soc., 98(2018), 298-304.
- [10] R. Engelking, General Topology, Mongrafie Mat., PWN-Polish Sci. Publ., Warszawa, 1977.
- [11] S. Kajántó, A. Lukács, A note on the paper "Contraction mappings in b-metric spaces" by Czerwik, Acta Univ. Sapientiae, Mathematica, 10(2018), 85-89.
- [12] E. Karapinar, F. Khojasteh, Z. Mitrović, A proposal for revisiting Banach and Caristi type theorems in b-metric spaces, Mathematics, 7(2019), 308.
- [13] W.A. Kirk, Caristi's fixed point theorem and metric convexity, Colloq. Math., 36(1976), 81-86.
- [14] W. Kirk, N. Shahzad, Fixed Point Theory in Distance Spaces, Springer, Cham, 2014.
- [15] J. Matkowski, Integrable solutions of functional equations, Dissertations Math., (Rozprawy), 127(1976), 68 pp.
- [16] R. Miculescu, A. Mihail, Caristi-Kirk type and Boyd & Wong-Browder-Matkowski-Rus type fixed point results in b-metric spaces, Filomat, 31(2017), 4331-4340.
- [17] R. Miculescu, A. Mihail, A generalization of Matkowski's fixed point theorem and Istrăţescu's fixed point theorem concerning convex contractions, J. Fixed Point Theory Appl., 19(2017), 1525-1533.
- [18] T. Suzuki, W. Takahaski, Fixed point theorems and characterizations of metric completeness, Topol. Methods Nonlinear Anal., 8(1996), 371-382.
- [19] Q. Xia, The geodesic problem in quasimetric spaces, J. Geom. Anal., 19(2009), 452-479.

Received: November 30, 2021; Accepted: May 10, 2022.

SALVADOR ROMAGUERA