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1. Introduction

Caristi proved in [4] his celebrated fixed point theorem that every Caristi mapping
on a complete metric space has a fixed point, where a self mapping T of a metric
space (X, d) is called a Caristi mapping if there exists a lower semicontinuous function
ϕ : X → [0,∞) such that d(x, Tx) ≤ ϕ(x)− ϕ(Tx) for all x ∈ X.

Caristi’s fixed point theorem has, among other appealing properties, that it gener-
alizes the Banach contraction principle, and also allows to obtain a characterization
of complete metric spaces. This last fact was proved by Kirk in [13]. Consequently,
we have the following important result, named by several authors as the Caristi-Kirk
theorem.
Theorem 1.1. (Caristi-Kirk’s theorem) A metric space is complete if and only if
every Caristi mapping on it has a fixed point.

The main goal of this note is to obtain an extension of Caristi’s fixed point theo-
rem to the framework of b-metric spaces in such a way that it generalizes the b-metric
version of the Banach contraction principle and also allows us to characterize com-
pleteness of b-metric spaces.

By R, R+, N and ω we shall denote the set of real numbers, the set of non-negative
real numbers, the set of positive integer numbers and the set of non-negative integer
numbers, respectively.
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We now remind those concepts and properties that will be useful in the rest of the
paper, where our basic reference for general topology is [10] and for b-metric spaces
it is [14, Chapter 12].

We point out that several authors have reinvented over time the notion of a b-
metric space under different approaches and designations (a detailed compilation can
be found in [5, page 134]). Here we adjust that notion as given by Czerwik in [7].

By a b-metric space we mean a triple (X, d, s), where X is a set, s is a real number
with s ≥ 1, and d : X ×X → R+ is a function fulfilling the following conditions for
all x, y, z∈ X:

(b1) d(x, y) = 0 if and only if x = y;

(b2) d(x, y) = d(y, x);

(b3) d(x, y) ≤ s(d(x, z) + d(z, y)).

If (X, d, s) is a b-metric space, the function d is called a b-metric on X. Of course
d is a metric on X if s = 1.

Remark 1.2. Distinguished and well-known examples of b-metric spaces may be
found, for instance, in [3, 14, 19]. In particular, if (X, d) is a metric space, and K and
β are real constants with K > 0 and β > 1, then (X, db, s) is a b-metric space, where
s = 2β−1 and db is the b-metric on X given by db(x, y) = Kd(x, y)β for all x, y ∈ X
(see e.g. [19, Example 2.2] and [14, Example 12.2]).

As in the metric case, a b-metric d on a set X induces in a natural way a topology
on X. Indeed, for each x ∈ X and r > 0 put B(x, r) = {y ∈ X : d(x, y) < r}, and let

τd = {A ⊆ X : for each x ∈A there is r > 0 such that B(x, r) ⊆ A}.
It is easily seen that τd is a topology on X. In fact, this topology can be induced by
the uniformity which has a countable base the sets of the form

Un = {(x, y) ∈ X ×X : d(x, y) < 1/n},
for all n ∈ N. Consequently τd is a metrizable topology.

In fact, the study of the topological properties and the problem of the completion of
b-metric spaces, as well as an extensive and deep development of the fixed point theory
for these spaces, has received the care of many authors (see e.g. [1, 2, 3, 5, 8, 9, 12, 14]
and the references therein).

It is interesting to note that, contrarily to the classical metric case, the balls B(x, r)
are not necessarily τd-open sets and the b-metric d is not continuous, in general (see
e.g. [2, Example 3.9], [14, Section 12.4]). However, for each x ∈ X and r > 0 we have
x ∈ IntB(x, r) (see e.g. [10, Corollary 8.1.3]), which implies that a sequence (xn)n∈ω
in X τd-converges to x ∈ X if and only if limn d(x, xn) = 0.

In the sequel, if (xn)nεω is a sequence in a b-metric space (X, d, s) that τd-converges
to x ∈ X we will simply write xn → x or d(x, xn)→ 0 if no confusion arises.

We finally recall that, exactly as in the metric case, a sequence (xn)nεω in a b-
metric space (X, d, s) is said to be a Cauchy sequence if for each ε > 0 there is nε ∈ ω
such that d(xn, xm) < ε for all n,m ≥ nε. (X, d, s) is said to be complete if every
Cauchy sequence is τd-convergent.
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Remark 1.3. Let (X, d) be a metric space and let (X, db, s) the b-metric space
constructed in Remark 1.2. Then, it is clear that (X, db, s) is complete if and only if
(X, d) is complete.

2. The results

Various authors have investigated the problem of extending Caristi’s fixed point
theorem to the realm of b-metric spaces [3, 8, 12, 14, 16]. In particular, Dung and
Hang presented in [8, Example 2.8] an instance of a complete b-metric space (X, d, s),
with s = 8, for which there is a self mapping T of X and a lower semicontinuous and
bounded from below function ϕ : X → R such that d(x, Tx) ≤ ϕ(x) − ϕ(Tx) for all
x ∈ X, but T has no any fixed point. This key example shows that for obtaining
a suitable extension of Caristi’s fixed point theorem to b-metric spaces is necessary
to add some ingredient or include some appropriate modification on the conditions
of the self mapping or on the contractivity condition provided by the function ϕ. In
this direction, our approach takes as a starting point the following relevant theorem
obtained by Miculescu and Mihail in [16]. (Recall that a self mapping of a b-metric
space (X, d, s) is continuous provided that it is continuous from the topological space
(X, τd) into itself.)

Theorem 2.1. ([16, Theorem 3.1]). Let T be a continuous self mapping of a complete
b-metric space (X, d, s), ϕ : X → R+ and r > 1 such that d(x, Tx) ≤ ϕ(x)− rϕ(Tx)
for all x ∈ X. Then T has a fixed point.

We also need two definitions.

Definition 2.2. Let(X, d, s) be a b-metric space. We say that a function ϕ : X → R+

is 0-lower semicontinuous (0-lsc in short) provided that the next condition holds:
If xn → x and limn ϕ(xn) = 0, then ϕ(x) = 0.

Remark 2.3. Obviously, every lower semicontinuous function ϕ : X → R+ is 0-lsc.
On the other hand, it is not hard to found examples of 0-lsc functions that are not
lower semicontinuous. For instance, let dR be the usual metric on R and ϕ : R→ R+

defined by ϕ(x) = x if x ∈ [0, 1] and ϕ(x) = 0 otherwise. Then ϕ is 0-lsc but not
lower semicontinuous for the (complete) metric space (R, dR).

Note that the contraction condition of Theorem 2.1 implies that ϕ(u)=0 whenever
u is a fixed point of T . In order to avoid this restriction we slightly modify that
contraction condition in Definition 2.4 below.

Definition 2.4. A self mapping T of a b-metric space (X, d, s), with s > 1, is said
to be a b-Caristi mapping if there exist a constant r ∈ (1, s] and a 0-lsc function ϕ :
X → R+ such that for each x ∈ X,

d(x, Tx) > 0 =⇒ d(x, Tx) ≤ ϕ(x)− rϕ(Tx).

Theorem 2.5. Let (X, d, s) be a complete b-metric space with s > 1. Then, every b-
Caristi mapping of X has a fixed point.

Proof. Let T be a b-Caristi mapping of X. Then, there are an r ∈ (1, s] and a 0-lsc
function ϕ : X → R+ such that for each x ∈ X,

d(x, Tx) > 0 =⇒ d(x, Tx) ≤ ϕ(x)− rϕ(Tx). (2.1)
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Fix x0 ∈ X and put xn := Tnx0 for all n ∈ ω. If Tnx0 = Tn+1x0 for some n ∈ ω,
Tnx0 is a fixed point of T. So, in the sequel we assume that Tnx0 6= Tn+1x0 for all
n ∈ ω.

Then rϕ(xn+1) < ϕ(xn) for all n ∈ ω, and hence (rnϕ(xn))n∈ω is a strictly de-
creasing sequence in R+. Therefore limn r

nϕ(xn) = L ≥ 0 where L = infn∈ω r
nϕ(xn).

Since limn r
n =∞ we get limn ϕ(xn) = 0.

For each n ∈ ω we have:∑n
k=0 r

kd(xk, xk+1) ≤ rϕ(x0),

which implies that the series
∑∞
k=0 r

kd(xk, xk+1) is convergent and by [16, Corollary
2.8], (xn)n∈ω is a Cauchy sequence.

Let y ∈ X be such that d(y, xn) → 0. Since ϕ is 0-lsc and limn ϕ(xn) = 0, we
get ϕ(y) = 0. If y 6= Ty, we deduce from the contraction condition (2.1) that ϕ(y) >
rϕ(Ty) > ϕ(Ty), and thus ϕ(Ty) < 0, a contradiction. Hence y = Ty. This concludes
the proof. �

Next we shall apply Theorem 2.5 to deduce a full b-metric generalization of the
Banach contraction principle. This generalization was obtained in [8, Theorem 2.1]
as a consequence of a b-metric version of the well-known Matkowski’s fixed point
theorem [15, Theorem 1.2], established by Czerwik in [6, Theorem 1]. Kajántó and
Lukács observed in [11] that the original proof of [6, Theorem 1] has an inaccuracy;
then, they gave a correct proof, validating thereby [6, Theorem 1] and, consequently,
also [8, Theorem 2.1] (another (correct) proof of Czerwik’s theorem was given by
Miculescu and Mihail in [17]).

Theorem 2.6. ([8, Theorem 2.1]). Let (X, d, s) be a complete b-metric space with
s > 1. Let T be a self mapping of X such that there is a constant c ∈ (0, 1) satisfying
d(Tx, Ty) ≤ cd(x, y) for all x, y ∈ X. Then T has a unique fixed point.

Proof. Let r = min{s, (1 + c)/2c} and let ϕ : X → R+ defined as ϕ(x) =
2d(x, Tx)/(1−c) for all x ∈ X. Observe that r∈ (1, s]. Moreover ϕ is 0-lsc on (X, d, s).
Indeed, suppose d(x, xn)→ 0 and limn ϕ(xn) = 0. Since , for each n ∈ ω,

d(x, Tx) ≤ sd(x, xn) + s2(d(xn, Txn) + d(Txn, Tx))

≤ sd(x, xn) +
s2(1− c)

2
ϕ(xn) + cs2d(xn, x),

we deduce that d(x, Tx) = 0, i.e., ϕ(x) = 0.
Next we show that rϕ(Tx) ≤ ϕ(x)− d(x, Tx) for all x ∈ X. Indeed, we have

rϕ(Tx) =
2r

1− c
d(Tx, T 2x) ≤ 1 + c

c(1− c)
d(Tx, T 2x)

≤ 1 + c

1− c
d(x, Tx) =

2

1− c
d(x, Tx)− d(x, Tx)

= ϕ(x)− d(x, Tx).

Thus, all conditions of Theorem 2.5 are fulfilled and hence T has a fixed point.
Finally, its uniqueness follows immediately from the contraction condition. �
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Next we give an easy example where we can apply Theorem 2.5 for an r ∈ (1, s)
and a 0-lsc function ϕ but not for s and for such ϕ.

Example 2.7. Let (X, d, s) be the complete b-metric space where X := R+, s = 2,

and d is the b-metric on X given by d(x, y) = |x− y|2 for all x, y ∈ X (see Remarks
1.2 and 1.3).

Let T be the self mapping of X given by Tx = cx, with c constant such that
c ∈ (0, 1). By Theorem 2.6, T has a unique fixed point. Let rc = min{2, (1 + c)/2c}
and ϕ : X → R+ defined by ϕ(x) = 2d(x, Tx)/(1− c) for all x ∈ X. In accordance to
the proof of Theorem 2.6 we obtain d(x, Tx) ≤ ϕ(x)− rcϕ(Tx) for all x ∈ X.

Choose any c ∈ (0, 1) such that 1 + c < 4c2, i.e. (1 +
√

17)/8 < c < 1. Then
rc = (1 + c)/2c < (1 + c)/2c2 < 2, and we have

d(x, Tx) = (1− c)2x2 > 2(1− c)x2 − 4(1− c)c2x2

= ϕ(x)− 2ϕ(Tx),

for all x ∈ X\{0}.
Therefore, the conditions of Theorem 2.5 are satisfied for rc and ϕ but not for s

and ϕ.

The following is an example where we can apply Theorem 2.5 but not Theorems
2.1 and 2.6.

Example 2.8. Let (X, d, s) be the b-metric space where X := R+, s = 2, and d is
the b-metric on X given by d(x, y) = (max{x, y})2 for all x, y ∈ X with x 6= y.

We first note that (X, d, s) is complete because the only non-eventually constant
Cauchy sequences are those that τd-converges to 0 (equivalently, those that converges
to 0 for the usual topology on X).

Let T be the self mapping of X given by T0 = 0, Tx = 1 for all x ∈ (0, 4), and
Tx = x1/2 for all x ≥ 4. Note that T has two fixed points: 0 and 1. Moreover it is not
continuous at x = 0.

Now define a function ϕ : X → R+ by ϕ(0) = 2, ϕ(x) = 1 for all x ∈ (0, 4)\{1},
ϕ(1) = 0, and ϕ(x) = 2x2 for all x ≥ 4.

We going to check that T is a b-Caristi mapping on (X, d, s) (for this ϕ and for
r = 2).

Indeed ϕ is a 0-lsc function because if xn → x with limn ϕ(xn) = 0, then xn = 1
eventually, so x = 1, and ϕ(1) = 0. Note also that ϕ is not lower semicontinuous
because 1/n→ 0 and, nevertheless, ϕ(0) = 2 and ϕ(1/n) = 1 for all n ∈ N.

Finally, take x ∈ X such that d(x, Tx) > 0. If x ∈ (0, 4)\{1} we get

d(x, Tx) = d(x, 1) = 1 = ϕ(x)− 2ϕ(1) = ϕ(x)− 2ϕ(Tx),

and if x ≥ 4 we distinguish two cases:
Case 1. Tx ≥ 4. Then

d(x, Tx) = d(x, x1/2) = x2 ≤ 2x2 − 4x = ϕ(x)− 2ϕ(x1/2) = ϕ(x)− 2ϕ(Tx).

Case 2. Tx < 4. Then Tx = x1/2 > 2, so ϕ(Tx) = 1, and hence

d(x, Tx) = x2 < 2x2 − 2 = ϕ(x)− 2ϕ(Tx).
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Therefore, all conditions of Theorem 2.5 are satisfied. However, we cannot apply
Theorems 2.1 and 2.6 because T is not continuous.

We now prove our main result.

Theorem 2.9. A b-metric space (X, d, s), with s > 1, is complete if and only if
every b-Caristi mapping on it has a fixed point.

Proof. The “only if” part follows from Theorem 2.5.
To prove the “if” part we shall reason by contradiction. Let (X, d, s), with s > 1,

be a non-complete b-metric space for which every b-Caristi mapping has a fixed point.
Since (X, d, s) is not complete, there exists a Cauchy sequence (xn)n∈ω of dis-

tinct points in X that does not converge. Hence, there is a subsequence (xn(k))k∈ω
of (xn)n∈ω such that d(xn(k), xm) < 2−(k+1) for all k ∈ ω and m ≥ n(k). So, in

particular, d(xn(k), xn(k+1) < 2−(k+1) for all k ∈ ω.
Obviously (xn(k))k∈ω does not converge because (xn)n∈ω is a non-convergent

Cauchy sequence.
We proceed to construct a b-Caristi mapping free of fixed points, which will yields

a contradiction.
Put F := {xn(k) : k ∈ ω}, and define a self mapping T of X, free of fixed points,

as follows:
Txn(k) = xn(k+1) for all k ∈ ω, and Tx = xn(0) whenever x ∈ X\F .

Now fix r ∈ (1, s] with r < 2 and define a function ϕ : X → R+ by

ϕ(xn(k)) = 2−k/(2− r)

for all k ∈ ω, and ϕ(x) = d(x, xn(0)) + r/(2− r) for all x ∈ X\F .

We show that T is a b-Caristi mapping on X.

We first note that ϕ is 0-lsc because if yj → y, we get that yj ∈ X\F eventually
(in fact yj ∈ X\(F ∪ {xn : xn ∈ X\F}) eventually), and thus ϕ(yj) > r/(2 − r)
eventually.

Finally, for each k ∈ ω we have

d(xn(k), Txn(k)) = d(xn(k), xn(k+1)) < 2−(k+1)

=
2−k

2− r
− r2−(k+1)

2− r
= ϕ(xn(k))− rϕ(Txn(k)),

and for each x ∈ X\F ,

d(x, Tx) = d(x, xn(0)) = ϕ(x)− rϕ(xn(0)) = ϕ(x)− rϕ(Tx).

Therefore T is a b-Caristi mapping of X. This concludes the proof. �

Remark 2.10. Theorem 2.1 has the advantage that the function ϕ is not necessarily
0-lsc. However, it does not allow to characterize the completeness of b-metric spaces,
which follows from Remark 1.2 and the example given by Suzuki and Takahashi in
[18] of a non-complete metric space for which every continuous self mapping has a
fixed point.
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