CYCLIC PROJECTION METHODS FOR SOLVING THE SPLIT COMMON ZERO POINT PROBLEM IN BANACH SPACES

SIMEON REICH* AND TRUONG MINH TUYEN**
*Department of Mathematics, The Technion - Israel Institute of Technology, 32000 Haifa, Israel E-mail: sreich@technion.ac.il
** Department of Mathematics and Informatics, Thai Nguyen University of Sciences, Vietnam
E-mail: tuyentm@tnus.edu.vn

Abstract

We study the split common zero point problem with multiple output sets (SCZPPMOS, for short) in Banach spaces. We introduce two new cyclic projection algorithms for finding a solution to SCZPPMOS and establish the strong convergence of the sequences generated by them. Key Words and Phrases: Maximal monotone operator, metric projection, uniformly convex space, zero point. 2020 Mathematics Subject Classification: 47H05, 47H09, 47H10, 49J53, 90C25.

1. Introduction

Let E and F be two Banach spaces and let $\left(P_{1}\right)$ and $\left(P_{2}\right)$ be two given problems on E and F, respectively. Let $T: E \rightarrow F$ be a given operator which we call the transfer mapping. The split problem corresponding to $\left(P_{1}\right)$ and $\left(P_{2}\right)$ on the two Banach spaces E and F is to find an element $x \in E$ such that x is a solution to $\operatorname{Problem}\left(P_{1}\right)$ and its image under the transfer mapping T is a solution to Problem $\left(P_{2}\right)$. We denote this split problem by (P). This model problem was first introduced by Censor and Elfving [12] in 1994 for modeling certain inverse problems. More precisely, they considered the following split feasibility problem (SFP): Find an element in a given nonempty, closed and convex subset of a real Hilbert space such that its image under a given transfer mapping belongs to a given nonempty, closed and convex subset of the image space. It is well known by now that the SFP plays an important role in medical image reconstruction and in signal processing (see, for example, $[6,7]$). Since then, the SFP has attracted the attention of many mathematicians, who have proposed and studied many algorithms and iterative methods for solving it. See, for example, $[6,7,9,11,12,10,24,31,44,45,46,47]$ and references therein.

As a matter of fact, several problems of the SFP type have been studied. We mention, for instance, the multiple-set SFP (MSSFP) (see, for example, [13, 21]), the split common fixed point problem (SCFPP) (see, for example, [15, 22, 33, 26, 30]), the split variational inequality problem (SVIP) (see, for example, $[14,16]$) and the
split common null point problem (SCNPP) (see, for example, $[8,25,27,28,35,36$, 37, 42, 39, 41, 40]).

In 2020 Reich and Tuyen [25] studied a general case of Problem (P) and proposed a model split feasibility type problem. More precisely, they considered the following model problem: Let $E_{1}, E_{2}, \ldots, E_{N}$ be Banach or Hilbert spaces and let the transfer mappings $T_{i}: E_{i} \rightarrow E_{i+1}, i=1,2, \ldots, N-1$, be given. Suppose that $\left(P_{i}\right)$, $i=1,2, \ldots, N$, are N given problems on E_{i}, respectively. The general case of Problem (P) is to find an element x in E_{1} such that x is a solution to $\left(P_{1}\right), T_{1}(x)$ is a solution to $\left(P_{2}\right), \ldots$, and $T_{N-1}\left(T_{N-2}\left(\ldots T_{2}\left(T_{1}(x)\right)\right)\right)$ is a solution to $\left(P_{N}\right)$. This problem is denoted by $(G P)$.

Next, Reich et al. [24, 31, 28] introduced and studied the following model of the split feasibility problem with multiple output sets in different image spaces. Let E and $E_{i}, i=1,2, \ldots, N$, be Banach or Hilbert spaces and let the transfer mappings $T_{i}: E \rightarrow E_{i}, i=1,2, \ldots, N$, be given. Suppose that $\left(P_{0}\right)$ and $\left(P_{i}\right), i=1,2, \ldots, N$, are given $N+1$ problems on E and E_{i}, respectively. Then the problem is to find an element x in E such that x is a solution to $\left(P_{0}\right)$, and $T_{i}(x)$ is a solution to $\left(P_{i}\right)$ for all $i=1,2, \ldots, N$. We denote this problem by GPMOS. It is not difficult to see that Problem GPMOS is a general case of Problem (GP) (see, for example, [24, Remark 1.1]). Some other results regarding this type of problem can be found in [20, 29, 32].

In this paper, we study the model of Problem GPMOS where E is a uniformly convex and smooth Banach space, $E_{i}, i=1,2, \ldots, N$, are smooth Banach spaces, and $\left(P_{0}\right)$ and $\left(P_{i}\right), i=1,2, \ldots, N$, are the problems of finding a zero point of a maximal monotone operator on E and E_{i}, respectively. More precisely, we study Problem SCZPPMOS. By using the definition of an enlargement of a maximal monotone operator (see, for example, [5]), we propose two new projection algorithms for finding a solution to Problem SCZPPMOS (see Section 3). Our algorithms do not depend on the norm of the transfer mappings. In Section 4 we introduce two applications of our main results to solving the split minimum point problem and the split feasibility problem with multiple output sets. Finally, in Section 5, we implement a numerical example and compare the effectiveness of the proposed algorithms with some previous results.

2. Preliminaries

Let E be a real Banach space with norm $\|\cdot\|$ and let E^{*} be its dual. We denote by $\langle x, f\rangle$ the value of $f \in E^{*}$ at the point $x \in E$. When $\left\{x_{n}\right\}$ is a sequence in E, we use the symbols $x_{n} \rightarrow x$ and $x_{n} \rightharpoonup x$ to denote the strong convergence and the weak convergence of the sequence $\left\{x_{n}\right\}$ to x, respectively.

Let J_{E} denote the normalized duality mapping from E into $2^{E^{*}}$ given by

$$
J_{E}(x)=\left\{f \in E^{*}:\langle x, f\rangle=\|x\|^{2}=\|f\|^{2}\right\}, \forall x \in E .
$$

Remark 2.1. In any Banach space, we have $J_{E}(x)=\partial\left(\|x\|^{2} / 2\right)$ for all $x \in E$, where $\partial\left(\|x\|^{2} / 2\right)$ is the subdifferential of the function $\|x\|^{2} / 2$ (see, for example, [17, Example 2.9, page 16]). In a Hilbert space H it is easy to see that $J_{H}(x)=x$ for all $x \in H$ (see, for example, [17, Proposition 4.8, page 29]).

We always use S_{E} to denote the unit sphere of a Banach space E, that is,

$$
S_{E}=\{x \in E:\|x\|=1\}
$$

A Banach space E is said to be strictly convex if for all $x, y \in S_{E}$ with $x \neq y$, we have $\|x+y\|<2$ or equivalently, $\|(1-t) x+t y\|<1$ for all $t \in(0,1)$.

A Banach space E is said to be uniformly convex (see, for example, [17, 19]) if for any $\varepsilon \in(0,2]$ and for all $x, y \in E$ with $\|x\| \leq 1,\|y\| \leq 1,\|x-y\| \geq \varepsilon$, there exists a positive real number $\delta=\delta(\varepsilon)>0$ such that $\|x+y\| / 2 \leq 1-\delta$.
Remark 2.2. If E is a uniformly convex Banach space and if $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are two sequences in E such that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|y_{n}\right\|=d \geq 0 \text { and } \lim _{n \rightarrow \infty} \frac{\left\|x_{n}+y_{n}\right\|}{2}=d
$$

then $\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0$.
Recall that a Banach space E is said to have the Kadec-Klee property if for any sequence $\left\{x_{n}\right\} \subset E$ such that $\left\|x_{n}\right\| \rightarrow\|x\|$ and $x_{n} \rightharpoonup x$ as $n \rightarrow \infty$, we have $x_{n} \rightarrow x$ as $n \rightarrow \infty$. It is well known that every uniformly convex Banach space has the Kadec-Klee property (see, for example, [17, Proposition 2.8] or [23]).

A Banach space E is said to be smooth if for each x in S_{E} there exists a unique linear functional $j_{x} \in E^{*}$ such that $\left\langle x, j_{x}\right\rangle=\|x\|$ and $\left\|j_{x}\right\|=1$ (see, for example, [1, Definition 2.6.1, page 91]).

Next, we recall several properties of the normalized duality mapping J_{E} of a real Banach space E (see, for example, [1, 17, 18]):
i) E is reflexive if and only if J_{E} is surjective;
ii) If E is smooth or E^{*} is strictly convex, then J_{E} is single-valued;
iii) If E is a smooth, strictly convex and reflexive Banach space, then J_{E} is a single-valued bijection;
iv) If E^{*} is uniformly convex, then J_{E} is uniformly continuous on each bounded subset of E.
It is also known that, if E is a smooth, strictly convex and reflexive Banach space, and C is a nonempty, closed and convex subset of E, then for each $x \in E$, there exists a unique point $z \in C$ such that $\|x-z\|=\inf _{y \in C}\|x-y\|$. The mapping $P_{C}: E \rightarrow C$ defined by $P_{C} x=z$ for all $x \in E$ is called the metric projection from E onto C.

Let $A: E \rightrightarrows E^{*}$ be an operator. The effective domain of A is denoted by $D(A)$, that is, $D(A):=\{x \in E: A x \neq \emptyset\}$. Recall that A is called a monotone operator if $\langle x-y, u-v\rangle \geq 0$ for all $x, y \in D(A)$ and for all $u \in A x, v \in A(y)$. The graph of A is denoted by $G r(A)$. It is defined by $G r(A):=\left\{(x, u) \in E \times E^{*}: x \in D(A), u \in A(x)\right\}$. A monotone operator A on E is called maximal monotone if its graph is not properly contained in the graph of any other monotone operator on E. It is known that if A is a maximal monotone operator on E, and if E is a uniformly convex and smooth Banach space, then $R\left(J_{E}+r A\right)=E^{*}$ for all $r>0$, where $R\left(J_{E}+r A\right)$ is the range of $J_{E}+r A$ (see, for example, [4], [2, Theorem 1.7.13, page 57]). For each $x \in E$ and $r>0$, there exists a unique point $x_{r} \in E$ such that $0 \in J_{E}\left(x_{r}-x\right)+r A x_{r}$. We define a mapping Q_{r}^{A} by $Q_{r}^{A} x:=x_{r}$. The mapping Q_{r}^{A} is called the metric resolvent of A.

The zero point set of a maximal monotone operator A is defined as follows: $\operatorname{Zer}(A):=\{z \in E: 0 \in A z\}$. It is known that $\operatorname{Zer}(A)$ is a closed and convex subset of E (see, for example, [2, Corollary 1.4.10, page 31]).

Let $A: \rightrightarrows E^{*}$ be a maximal monotone operator. In [5], for each $\varepsilon \geq 0$, Burachik and Svaiter defined $A^{\varepsilon}(x)$, an ε-enlargement of A, as follows:

$$
A^{\varepsilon} x:=\left\{u \in E^{*}:\langle y-x, v-u\rangle \geq-\varepsilon \quad \forall y \in E, v \in A y\right\}
$$

It is easy to see that $A^{0} x=A x$ and if $0 \leq \varepsilon_{1} \leq \varepsilon_{2}$, then $A^{\varepsilon_{1}} x \subseteq A^{\varepsilon_{2}} x$ for any $x \in E$ (see, for example, [5, Lemma 3.1]). The use of elements in A^{ε} instead of A allows us an extra degree of freedom which is very useful in various applications.

The following lemmas are needed in the sequel for the proof of our main theorems.
Lemma 2.3. (see, for example, [1, Theorem 2.8.17, page 105]) Let E be a Banach space. Then the following statements are equivalent:
i) E is uniformly convex.
ii) For any $1<k<\infty$ and $r>0$, there exists a strictly increasing convex function $g_{r}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that $g_{r}(0)=0$ and

$$
\|t x+(1-t) y\|^{k} \leq t\|x\|^{k}+(1-t)\|y\|^{k}-t(1-t) g_{r}(\|x-y\|)
$$

for all $t \in[0,1]$ and for all $x, y \in E$ with $\max \{\|x\|,\|y\|\} \leq r$.
Lemma 2.4. (see, for example, [19, Proposition 3.4, page 13]) Let E be a smooth, strictly convex and reflexive Banach space. Let C be a nonempty, closed and convex subset of E, and let $x_{1} \in E$ and $z \in C$. Then the following conditions are equivalent:
i) $z=P_{C} x_{1}$;
ii) $\left\langle y-z, J_{E}\left(x_{1}-z\right)\right\rangle \leq 0 \quad \forall y \in C$.

Lemma 2.5. (see, for example, [5, Proposition 3.4]) The graph of $A^{\varepsilon}: \mathbb{R}_{+} \times E \rightrightarrows E^{*}$ is demiclosed, that is, the statements below hold:
i) If the sequence $\left\{x_{n}\right\} \subset E$ converges strongly to x_{0}, the sequence $\left\{u_{n} \in A^{\varepsilon_{n}} x_{n}\right\}$ converges weakly to u_{0} in E^{*} and the sequence $\left\{\varepsilon_{n}\right\} \subset \mathbb{R}_{+}$converges to ε, then $u_{0} \in A^{\varepsilon} x_{0}$;
ii) If the sequence $\left\{x_{n}\right\} \subset E$ converges weakly to x_{0}, the sequence $\left\{u_{n} \in A^{\varepsilon_{n}} x_{n}\right\}$ converges strongly to u_{0} in E^{*} and the sequence $\left\{\varepsilon_{n}\right\} \subset \mathbb{R}_{+}$converges to ε, then $u_{0} \in A^{\varepsilon} x_{0}$.

Lemma 2.6. (see, for example, [1, Theorem 1.9.10, page 39]) Let E be a Banach space and let $\left\{x_{n}\right\}$ be a sequence in E. Suppose that $\left\{x_{n}\right\}$ converges weakly to some point $x \in E$. Then we have $\|x\| \leq \liminf _{n \rightarrow \infty}\left\|x_{n}\right\|$.

3. Main Results

Let E be a uniformly convex and smooth Banach space, and let $E_{i}, i=1,2, \ldots, N$, be smooth Banach spaces. Let $A: E \rightrightarrows E^{*}$ and $A_{i}: E_{i} \rightrightarrows E_{i}^{*}, i=1,2, \ldots, N$, be maximal set-valued operators. Let $T_{i}: E \rightarrow E_{i}, i=1,2, \ldots, N$, be bounded linear operators. Assume that

$$
\Omega:=\operatorname{Zer}(A) \bigcap\left(\cap_{i=1}^{N} T_{i}^{-1}\left(\operatorname{Zer}\left(A_{i}\right)\right) \neq \emptyset\right.
$$

We consider the following problem:
Find an element in Ω.
(SCZPPMOS)
Assume that $\left\{\mu_{n}\right\}$ is a sequence of positive real numbers and that $\left\{\varepsilon_{n}\right\}$ is a sequence of nonnegative real numbers. We study the strong convergence of the proposed algorithms in this paper under the following conditions on the parameters μ_{n} and ε_{n}.
(C1) $\inf _{n}\left\{\mu_{n}\right\}=\mu>0$;
(C2) $\lim _{n \rightarrow \infty} \varepsilon_{n} \mu_{n}=0$.
Let $\mathcal{N}=\{0,1, \ldots, N\}$. We recall that a mapping Ind: $\mathbb{N} \rightarrow \mathcal{N}$ is called an index control mapping if for each $i \in \mathcal{N}$, there is a natural number M_{i} such that

$$
i \in\left\{\operatorname{Ind}(n), \operatorname{Ind}(n+1), \ldots, \operatorname{Ind}\left(n+M_{i}-1\right)\right\} \quad \forall n \in \mathbb{N}
$$

Example 3.1. Let $\mathcal{N}=\{0,1,2, \ldots, N\}$.
The mapping Ind: $\mathbb{N} \rightarrow \mathcal{N}$ defined by

$$
\operatorname{Ind}(n)=n \quad \bmod (N+1) \quad \forall n \in \mathbb{N}
$$

is an index control mapping (see, for example, [3]).
3.1. Hybrid projection algorithm. Let $E_{0}=E, A_{0}=A$, and let $T_{0}=I^{E}$ be the identity operator on E. Below we propose an algorithm for solving Problem (SCZPPMOS).

Algorithm 1 The hybrid projection algorithm for solving Problem (SCZPPMOS)
For any initial guess $x_{0} \in E$, define the sequence $\left\{x_{n}\right\}$ as follows:
Step 1 Compute $y_{n}=T_{\operatorname{Ind}(n)} x_{n}$.
Step 2 Find an element $z_{n} \in E_{\operatorname{Ind}(n)}$ such that

$$
0 \in J_{E_{\operatorname{Ind}(n)}}\left(z_{n}-y_{n}\right)+\mu_{n} A_{\operatorname{Ind}(n)}^{\varepsilon_{n}}\left(z_{n}\right) .
$$

Step 3 Define the subsets C_{n} and Q_{n} by

$$
\begin{aligned}
& C_{n}=\left\{z \in E:\left\langle T_{\operatorname{Ind}(n)} z-z_{n}, J_{E_{\operatorname{Ind}(n)}}\left(y_{n}-z_{n}\right)\right\rangle \leq \mu_{n} \varepsilon_{n}\right\} \\
& Q_{n}=\left\{z \in E:\left\langle z-x_{n}, J_{E}\left(x_{0}-x_{n}\right)\right\rangle \leq 0\right\}
\end{aligned}
$$

Step 4 Compute $x_{n+1}=P_{C_{n} \cap Q_{n}} x_{0}, n \geq 0$, and go to Step 1 .
The strong convergence of the sequences generated by Algorithm 1 is established in the following theorem.
Theorem 3.2. If the sequences $\left\{\mu_{n}\right\}$ and $\left\{\varepsilon_{n}\right\}$ satisfy conditions (C 1) and (C 2$)$, then the sequence $\left\{x_{n}\right\}$ generated by Algorithm 1 converges strongly to $P_{\Omega} x_{0}$.
Proof. We divide the proof of this theorem into seven claims as follows.
Claim 1. The sequence $\left\{x_{n}\right\}$ is well defined.
First, we show that C_{n} and Q_{n} are closed half-spaces of E.
Indeed, we rewrite the definitions of the subsets C_{n} and Q_{n} in the following forms:

$$
\begin{aligned}
C_{n} & =\left\{z \in E:\left\langle T_{\operatorname{Ind}(n)} z, J_{E_{\operatorname{Ind}(n)}}\left(y_{n}-z_{n}\right)\right\rangle \leq\left\langle z_{n}, J_{E_{\operatorname{Ind}(n)}}\left(y_{n}-z_{n}\right)\right\rangle+\mu_{n}\right\} \\
& =\left\{z \in E:\left\langle z, T_{\operatorname{Ind}(n)}^{*} J_{E_{\operatorname{Ind}(n)}}\left(y_{n}-z_{n}\right)\right\rangle \leq\left\langle z_{n}, J_{E_{\operatorname{Ind}(n)}}\left(y_{n}-z_{n}\right)\right\rangle+\mu_{n} \varepsilon_{n}\right\}
\end{aligned}
$$

and

$$
Q_{n}=\left\{z \in E:\left\langle z, J_{E_{\operatorname{Ind}(n)}}\left(x_{0}-x_{n}\right)\right\rangle \leq\left\langle x_{n}, J_{E_{\operatorname{Ind}(n)}}\left(x_{0}-x_{n}\right)\right\rangle\right\} .
$$

Now it is clear that C_{n} and Q_{n} are indeed closed half-spaces of E.
We next show that $\Omega \subset C_{n} \cap Q_{n}$ for all $n \geq 0$. Indeed, take any $p \in \Omega$. It follows from (3.1) that

$$
\begin{equation*}
\frac{1}{\mu_{n}} J_{E_{\operatorname{Ind}(n)}}\left(y_{n}-z_{n}\right) \in A_{\operatorname{Ind}(n)}^{\varepsilon_{n}}\left(z_{n}\right) \tag{3.2}
\end{equation*}
$$

Thus, using (3.2), $0 \in A_{\operatorname{Ind}(n)} T_{\operatorname{Ind}(n)} p$ and the definition of $A_{\operatorname{Ind}(n)}^{\varepsilon_{n}}$, we obtain

$$
\left\langle T_{\operatorname{Ind}(n)} p-z_{n},-\frac{1}{\mu_{n}} J_{E_{\operatorname{Ind}(n)}}\left(y_{n}-z_{n}\right)\right\rangle \geq-\varepsilon_{n} .
$$

This is equivalent to

$$
\left\langle T_{\operatorname{Ind}(n)} p-z_{n}, J_{E_{\operatorname{Ind}(n)}}\left(y_{n}-z_{n}\right)\right\rangle \leq \varepsilon_{n} \mu_{n}
$$

which implies that $p \in C_{n}$.
It is clear that $Q_{0}=E$ and hence $\Omega \subset Q_{0}$. Suppose that $\Omega \subset Q_{n}$ for some $n \geq 0$. It follows from $x_{n+1}=P_{C_{n} \cap Q_{n}} x_{0}, p \in \Omega \subset C_{n} \cap Q_{n}$ and Lemma 2.4 that

$$
\left\langle p-x_{n+1}, J_{E_{\operatorname{Ind}(n)}}\left(x_{0}-x_{n+1}\right)\right\rangle \leq 0
$$

This implies that $p \in Q_{n+1}$ and hence $\Omega \subset Q_{n+1}$. So, using mathematical induction, we conclude that $\Omega \subset Q_{n}$ for all $n \geq 0$. Combining this with $\Omega \subset C_{n}$ for all $n \geq 0$, we obtain that $\Omega \subset C_{n} \cap Q_{n}$ for all $n \geq 0$. Thus $C_{n} \cap Q_{n}$ is a nonempty, closed and convex subset of E, and hence the metric projection of x_{0} onto $C_{n} \cap Q_{n}$ always exists. Therefore the sequence $\left\{x_{n}\right\}$ is well defined, as claimed.
Claim 2. The sequence $\left\{x_{n}\right\}$ is bounded.
Fix an element $p \in \Omega \subset Q_{n}$. It follows from the definition of Q_{n} and Lemma 2.4 that $x_{n}=P_{Q_{n}} x_{0}$. Thus, using the definition of the metric projection, we have

$$
\begin{equation*}
\left\|x_{n}-x_{0}\right\| \leq\left\|p-x_{0}\right\|, \quad \forall n \geq 0 \tag{3.3}
\end{equation*}
$$

This implies that the sequence $\left\{x_{n}\right\}$ is bounded, as claimed.
Claim 3. There exists the finite limit $\lim _{n \rightarrow \infty}\left\|x_{n}-x_{0}\right\|=l$.
It follows from $x_{n+1}=P_{C_{n} \cap Q_{n}} x_{0} \in Q_{n}$ and the definition of Q_{n} that

$$
\begin{aligned}
0 & \geq\left\langle x_{n+1}-x_{n}, J_{E_{\operatorname{Ind}(n)}}\left(x_{0}-x_{n}\right)\right\rangle \\
& =\left\langle x_{n+1}-x_{0}+x_{0}-x_{n}, J_{E_{\operatorname{Ind}(n)}}\left(x_{0}-x_{n}\right)\right\rangle \\
& =\left\langle x_{n+1}-x_{0}, J_{E_{\operatorname{Ind}(n)}}\left(x_{0}-x_{n}\right)\right\rangle+\left\|x_{n}-x_{0}\right\|^{2} .
\end{aligned}
$$

This implies that

$$
\left\|x_{n}-x_{0}\right\|^{2} \leq\left\langle x_{0}-x_{n+1}, J_{E_{\operatorname{Ind}(n)}}\left(x_{0}-x_{n}\right)\right\rangle \leq\left\|x_{n+1}-x_{0}\right\|\left\|x_{n}-x_{0}\right\|
$$

which yields that $\left\|x_{n}-x_{0}\right\| \leq\left\|x_{n+1}-x_{0}\right\|$. Combining this with the boundedness of the sequence $\left\{x_{n}\right\}$, we infer that there exists the finite limit $\lim _{n \rightarrow \infty}\left\|x_{n}-x_{0}\right\|=l$, as claimed.
Claim 4. The sequence $\left\{x_{n}\right\}$ is asymptotically regular, that is,

$$
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0
$$

It follows from the facts that x_{n} and x_{n+1} belong to Q_{n}, and from the convexity of Q_{n} that $\frac{x_{n}+x_{n+1}}{2}$ also belongs to Q_{n}. Since $x_{n}=P_{Q_{n}} x_{0}$, we have

$$
\left\|x_{n}-x_{0}\right\| \leq\left\|\frac{x_{n}+x_{n+1}}{2}-x_{0}\right\| \leq \frac{1}{2}\left(\left\|x_{n}-x_{0}\right\|+\left\|x_{n+1}-x_{0}\right\|\right)
$$

Combining this with $\lim _{n \rightarrow \infty}\left\|x_{n}-x_{0}\right\|=l$, we obtain

$$
\left\|\frac{x_{n}+x_{n+1}}{2}-x_{0}\right\| \rightarrow l
$$

that is,

$$
\lim _{n \rightarrow \infty} \frac{\left\|\left(x_{n}-x_{0}\right)+\left(x_{n+1}-x_{0}\right)\right\|}{2}=l .
$$

Thus, using Remark 2.2, we can deduce that

$$
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0
$$

as claimed.
Claim 5. $\lim _{n \rightarrow \infty}\left\|z_{n}-y_{n}\right\|=0$.
It follows from the fact that $x_{n+1}=P_{C_{n} \cap Q_{n}} x_{0} \in C_{n}$ and the definition of C_{n} that

$$
\left\langle T_{\operatorname{Ind}(n)} x_{n+1}-z_{n}, J_{E_{\operatorname{Ind}(n)}}\left(y_{n}-z_{n}\right)\right\rangle \leq \mu_{n} \varepsilon_{n}
$$

This is equivalent to

$$
\begin{aligned}
\mu_{n} \varepsilon_{n} & \geq\left\langle T_{\operatorname{Ind}(n)} x_{n+1}-y_{n}+y_{n}-z_{n}, J_{E_{\operatorname{Ind}(n)}}\left(y_{n}-z_{n}\right)\right\rangle \\
& =\left\langle T_{\operatorname{Ind}(n)} x_{n+1}-T_{\operatorname{Ind}(n)} x_{n}, J_{E_{\operatorname{Ind}(n)}}\left(y_{n}-z_{n}\right)\right\rangle+\left\|z_{n}-y_{n}\right\|^{2} \\
& \geq-\frac{1}{2}\left(\left\|T_{\operatorname{Ind}(n)} x_{n+1}-T_{\operatorname{Ind}(n)} x_{n}\right\|^{2}+\left\|z_{n}-y_{n}\right\|^{2}\right)+\left\|z_{n}-y_{n}\right\|^{2} \\
& \geq-\frac{1}{2}\left(\left\|T_{\operatorname{Ind}(n)}\right\|^{2}\left\|x_{n+1}-x_{n}\right\|^{2}+\left\|z_{n}-y_{n}\right\|^{2}\right)+\left\|z_{n}-y_{n}\right\|^{2}
\end{aligned}
$$

This, in its turn, implies that

$$
\begin{equation*}
\left\|z_{n}-y_{n}\right\|^{2} \leq\left\|T_{\operatorname{Ind}(n)}\right\|^{2}\left\|x_{n+1}-x_{n}\right\|^{2}+2 \mu_{n} \varepsilon_{n} \tag{3.4}
\end{equation*}
$$

It now follows from (3.4), $\left\|x_{n+1}-x_{n}\right\| \rightarrow 0$ (see Step 4) and $\mu_{n} \varepsilon_{n} \rightarrow 0$ (assumption (C2)) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-y_{n}\right\|=0 \tag{3.5}
\end{equation*}
$$

as claimed.
Claim 6. All weak cluster points of the sequence $\left\{x_{n}\right\}$ belong to Ω.
Indeed, suppose that q is an arbitrary cluster point of the sequence $\left\{x_{n}\right\}$. Then there exists a subsequence $\left\{x_{m_{n}}\right\}$ of $\left\{x_{n}\right\}$ such that $\left\{x_{m_{n}}\right\}$ converges weakly to q.

We now claim that $q \in \Omega$. Indeed, for any $i \in \mathcal{N}=\{0,1, \ldots, N\}$, there exists a natural number M_{i} such that

$$
i \in\left\{\operatorname{Ind}\left(m_{n}\right), \operatorname{Ind}\left(m_{n}+1\right), \ldots, \operatorname{Ind}\left(m_{n}+M_{i}-1\right)\right\} \text { for all } n
$$

We can remove some elements of the subsequence $\left\{x_{m_{n}}\right\}$, if necessary, to obtain a new subsequence, which is also denoted by $\left\{x_{m_{n}}\right\}$, such that $m_{n+1} \geq m_{n}+M_{i}$. Then there is another subsequence $\left\{x_{p_{n}}\right\}$ of $\left\{x_{n}\right\}$, where

$$
m_{n} \leq p_{n} \leq m_{n}+M_{i}-1<m_{n+1} \leq p_{n+1}, i=\operatorname{Ind}\left(p_{n}\right)
$$

We have

$$
\left\|x_{p_{n}}-x_{m_{n}}\right\| \leq \sum_{l=m_{n}}^{m_{n}+M_{i}-2}\left\|x_{l+1}-x_{l}\right\| \leq\left(M_{i}-1\right) \max _{m_{n} \leq l \leq m_{n}+M_{i}-2}\left\|x_{l+1}-x_{l}\right\|
$$

Combining this with $\left\|x_{n+1}-x_{n}\right\| \rightarrow 0$, we see that $x_{p_{n}}-x_{m_{n}} \rightarrow 0$. It now follows from $x_{m_{n}} \rightharpoonup q$ that $x_{p_{n}} \rightharpoonup q$. Since T_{i} is a bounded linear operator, we also have $T_{i} x_{p_{n}} \rightharpoonup T_{i} q$.

It follows from (3.5) that $\left\|z_{p_{n}}-y_{p_{n}}\right\| \rightarrow 0$. Combining this with $y_{p_{n}}=T_{i} x_{p_{n}} \rightharpoonup T_{i} q$, we infer that $z_{p_{n}} \rightharpoonup T_{i} q$. It now follows from (3.1), the fact that $\operatorname{Ind}\left(p_{n}\right)=i$ for all n and condition (C1) that

$$
A_{i}^{\varepsilon_{p_{n}}}\left(z_{p_{n}}\right) \ni \frac{1}{\mu_{n}} J_{E_{i}}\left(y_{p_{n}}-z_{p_{n}}\right) \rightarrow 0 .
$$

Applying Lemma 2.5 ii) to the sequences $\left\{z_{p_{n}}\right\}$ and $\left\{\frac{1}{\mu_{n}} J_{E_{i}}\left(y_{p_{n}}-z_{p_{n}}\right) \in A_{i}^{\varepsilon_{p_{n}}}\left(z_{p_{n}}\right)\right\}$, we conclude that $T_{i} q \in \operatorname{Zer}\left(A_{i}\right)$. Since $i \in\{0,1, \ldots, N\}$ is arbitrary, we can infer that $T_{i} q \in \operatorname{Zer}\left(A_{i}\right)$ for all $i=0,1, \ldots, N$, that is, $q \in \Omega$, as claimed.
Claim 7. $\lim _{n \rightarrow \infty} x_{n}=P_{\Omega} x_{0}$.
Suppose $\left\{x_{k_{n}}\right\}$ is a subsequence of $\left\{x_{n}\right\}$ such that $x_{k_{n}} \rightharpoonup q$. It follows form Claim 6 that $q \in \Omega$.

Now, let $x^{\dagger}=P_{\Omega} x_{0}$. From (3.3), the fact that $x_{0}-x_{k_{n}} \rightharpoonup x_{0}-q$ and Lemma 2.6, it follows that

$$
\begin{aligned}
\left\|x_{0}-x^{\dagger}\right\| & \leq\left\|x_{0}-q\right\| \\
& \leq \liminf _{n \rightarrow \infty}\left\|x_{0}-x_{k_{n}}\right\| \\
& \leq \limsup _{n \rightarrow \infty}\left\|x_{0}-x_{k_{n}}\right\| \\
& \leq\left\|x_{0}-x^{\dagger}\right\| .
\end{aligned}
$$

This implies that $\lim _{n \rightarrow \infty}\left\|x_{0}-x_{k_{n}}\right\|=\left\|x_{0}-q\right\|=\left\|x_{0}-x^{\dagger}\right\|$. Using the definition of x^{\dagger}, we obtain $x^{\dagger}=q$. Since E is a uniformly convex Banach space, it has the Kadec-Klee property. Using now the facts that $\lim _{n \rightarrow \infty}\left\|x_{0}-x_{k_{n}}\right\|=\left\|x_{0}-q\right\|$ and $x_{0}-x_{k_{n}} \rightharpoonup x_{0}-q$, we infer that $x_{k_{n}} \rightarrow q=x^{\dagger}$. Using the uniqueness of x^{\dagger}, we can immediately deduce that $x_{n} \rightarrow x^{\dagger}$, as claimed.
This completes the proof.
In Theorem 3.2, if $\varepsilon_{n}=0$ for all n, then we obtain the following algorithm for solving Problem (SCZPPMOS).

Corollary 3.3. If condition (C1) is satisfied, then the sequence $\left\{x_{n}\right\}$ generated by Algorithm 2 converges strongly to $P_{\Omega} x_{0}$.

Algorithm 2 The hybrid projection algorithm for solving Problem (SCZPPMOS) with $\varepsilon_{n}=0$
For any initial guess $x_{0} \in E$, define the sequence $\left\{x_{n}\right\}$ as follows:
Step 1 Compute $y_{n}=T_{\operatorname{Ind}(n)} x_{n}$.
Step 2 Compute $z_{n}=Q_{\mu_{n}}^{A_{\text {Ind } n)}}\left(y_{n}\right)$.
Step 3 Define the subsets C_{n} and Q_{n} by

$$
\begin{aligned}
& C_{n}=\left\{z \in E:\left\langle T_{\operatorname{Ind}(n)} z-z_{n}, J_{E_{\operatorname{Ind}(n)}}\left(y_{n}-z_{n}\right)\right\rangle \leq 0\right\}, \\
& Q_{n}=\left\{z \in E:\left\langle z-x_{n}, J_{E}\left(x_{0}-x_{n}\right)\right\rangle \leq 0\right\}
\end{aligned}
$$

Step 4 Compute $x_{n+1}=P_{C_{n} \cap Q_{n}} x_{0}, n \geq 0$, and go to Step 1 .
3.2. Shrinking projection algorithm. Let $E_{0}=E, A_{0}=A$, and let $T_{0}=I^{E}$ be the identity operator on E. We now introduce the following algorithm for solving Problem (SCZPPMOS).

Algorithm 3 The shrinking projection algorithm for solving Problem (SCZPPMOS)
For any initial guess $x_{0} \in E$, let $C_{0}=E$ and define the sequence $\left\{x_{n}\right\}$ as follows:
Step 1 Compute $y_{n}=T_{\operatorname{Ind}(n)} x_{n}$.
Step 2 Find an element z_{n} such that

$$
0 \in J_{E_{\operatorname{Ind}(n)}}\left(z_{n}-y_{n}\right)+\mu_{n} A_{\operatorname{Ind}(n)}^{\varepsilon_{n}}\left(z_{n}\right)
$$

Step 3 Define the subset C_{n+1} by

$$
C_{n+1}=\left\{z \in C_{n}:\left\langle T_{\operatorname{Ind}(n)} z-z_{n}, J_{E_{\operatorname{Ind}(n)}}\left(y_{n}-z_{n}\right)\right\rangle \leq \mu_{n} \varepsilon_{n}\right\}
$$

Step 4 Compute $x_{n+1}=P_{C_{n+1}} x_{0}, n \geq 0$, and go to Step 1 .
The strong convergence of Algorithm 3 is established in the following theorem.
Theorem 3.4. If the sequences $\left\{\mu_{n}\right\}$ and $\left\{\varepsilon_{n}\right\}$ satisfy conditions (C 1$)$ and $(\mathrm{C} 2)$, then the sequence $\left\{x_{n}\right\}$ generated by Algorithm 3 converges strongly to $P_{\Omega} x_{0}$.
Proof. We divide the proof of this theorem into five claims as follows.
Claim 1. The sequence $\left\{x_{n}\right\}$ is well defined
First, we show that C_{n} is a closed and convex subset of E for each n. We prove this by mathematical induction. Indeed, it is easy to see that $C_{0}=E$ is a closed and convex set. Suppose now that C_{n} is a closed and convex set for some $n \geq 0$. It follows from

$$
\begin{aligned}
C_{n+1} & =C_{n} \cap\left\{z \in E:\left\langle z, T_{\operatorname{Ind}(n)}^{*} J_{E_{\operatorname{Ind}(n)}}\left(y_{n}-z_{n}\right)\right\rangle\right. \\
& \left.\leq\left\langle z_{n}, J_{E_{\operatorname{Ind}(n)}}\left(y_{n}-z_{n}\right)\right\rangle+\mu_{n} \varepsilon_{n}\right\}
\end{aligned}
$$

that C_{n+1} is a closed and convex subset of E. Thus, we can conclude that C_{n} is a closed and convex subset of E for all $n \geq 0$.

We next prove that $\Omega \subset C_{n}$ for all $n \geq 0$. Obviously, $C_{0}=E \supset \Omega$. Suppose that $\Omega \subset C_{n}$ for some $n \geq 0$. Take any $p \in \Omega$, that is, $T_{i} p \in \operatorname{Zer}\left(A_{i}\right)$ for all $i=0,1, \ldots, N$.

It follows from $0 \in A_{\operatorname{Ind}(n)}\left(T_{\operatorname{Ind}(n)} p\right)$,

$$
\frac{1}{\mu_{n}} J_{E_{\operatorname{Ind}(n)}}\left(y_{n}-z_{n}\right) \in A_{\operatorname{Ind}(n)}^{\varepsilon_{n}}\left(z_{n}\right)
$$

and the definition of $A_{\operatorname{Ind}(n)}^{\varepsilon_{n}}$ that

$$
\left\langle T_{\operatorname{Ind}(n)} p-z_{n},-\frac{1}{\mu_{n}} J_{E_{\operatorname{Ind}(n)}}\left(y_{n}-z_{n}\right)\right\rangle \geq-\varepsilon_{n}
$$

This is equivalent to

$$
\left\langle T_{\operatorname{Ind}(n)} p-z_{n}, J_{E_{\operatorname{Ind}(n)}}\left(y_{n}-z_{n}\right)\right\rangle \leq \varepsilon_{n} \mu_{n}
$$

Combining this with $p \in \Omega \subset C_{n}$, we obtain

$$
p \in C_{n+1}=C_{n} \cap\left\{z \in E:\left\langle T_{\operatorname{Ind}(n)} z-z_{n}, J_{E_{\operatorname{Ind}(n)}}\left(y_{n}-z_{n}\right)\right\rangle \leq \mu_{n} \varepsilon_{n}\right\} .
$$

This implies that $\Omega \subset C_{n+1}$. Thus, using mathematical induction, we infer that $\Omega \subset C_{n}$ for all $n \geq 0$.

Consequently, for each n, C_{n} is a nonempty, closed and convex subset of E, and hence the nearest point projection of x_{0} onto C_{n} always exists, that is, the sequence $\left\{x_{n}\right\}$ is well defined, as claimed.
Claim 2. The sequence $\left\{x_{n}\right\}$ is bounded. Indeed, for each $p \in \Omega$, it follows from $p \in C_{n}$ and $x_{n}=P_{C_{n}} x_{0}$ that

$$
\begin{equation*}
\left\|x_{n}-x_{0}\right\| \leq\left\|p-x_{0}\right\| \tag{3.6}
\end{equation*}
$$

This implies that the sequence $\left\{x_{n}\right\}$ is bounded, as claimed.
Claim 3. The sequence $\left\{x_{n}\right\}$ converges strongly to some point $q \in E$.
For every $m \geq n$, it follows from $x_{m}=P_{C_{m}} x_{0} \in C_{m} \subset C_{n}, x_{n}=P_{C_{n}} x_{0} \in C_{n}$ and the convexity of C_{n} that $\left(x_{n}+x_{m}\right) / 2 \in C_{n}$. Let $r=\sup _{n}\left\{\left\|x_{n}-x_{0}\right\|\right\}<\infty$. Using $x_{n}=P_{C_{n}} x_{0}$ and applying Lemma 2.3 to $k=2, t=1 / 2$, and $x=x_{n}-x_{0}$ and $y=x_{m}-x_{0}$, we see that there exists a strictly increasing convex function $g_{r}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that $g_{r}(0)=0$ and

$$
\begin{aligned}
\left\|x_{n}-x_{0}\right\|^{2} & \leq\left\|\frac{x_{n}+x_{m}}{2}-x_{0}\right\|^{2} \\
& =\left\|\frac{1}{2}\left(x_{n}-x_{0}\right)+\frac{1}{2}\left(x_{n+1}-x_{0}\right)\right\|^{2} \\
& \leq \frac{1}{2}\left\|x_{n}-x_{0}\right\|^{2}+\frac{1}{2}\left\|x_{n+1}-x_{0}\right\|^{2}-\frac{1}{4} g_{r}\left(\left\|x_{m}-x_{n}\right\|\right)
\end{aligned}
$$

This implies that

$$
\begin{equation*}
\frac{1}{2} g_{r}\left(\left\|x_{m}-x_{n}\right\|\right) \leq\left\|x_{m}-x_{0}\right\|^{2}-\left\|x_{n}-x_{0}\right\|^{2} \tag{3.7}
\end{equation*}
$$

This, in its turn, implies that $\left\|x_{n+1}-x_{0}\right\| \geq\left\|x_{n}-x_{0}\right\|$ for all $n \geq 0$, that is, the sequence $\left\{\left\|x_{n}-x_{0}\right\|\right\}$ is decreasing. Combining this with the boundedness of the sequence $\left\{x_{n}\right\}$, we infer that there exists the finite limit $\lim _{n \rightarrow \infty}\left\|x_{n}-x_{0}\right\|=l$. Thus, it follows from (3.7) and the properties of the function g_{r} that $\left\|x_{n+1}-x_{n}\right\| \rightarrow 0$ as $n, m \rightarrow \infty$. Hence, $\left\{x_{n}\right\}$ is a Cauchy sequence. Since E is a Banach space, it follows that the sequence $\left\{x_{n}\right\}$ converges strongly to some point $q \in E$, as claimed.

Claim 4. $\lim _{n \rightarrow \infty}\left\|z_{n}-y_{n}\right\|=0$.
It follows from the strong convergence of the sequence $\left\{x_{n}\right\}$ that $\left\|x_{n+1}-x_{n}\right\| \rightarrow 0$. So, by an argument similar to the one employed in the proof of Claim 5 in Theorem 3.2, we can now finish the proof of this claim.

Claim 5. $\lim _{n \rightarrow \infty} x_{n}=P_{\Omega} x_{0}$.
Using the fact that $x_{n} \rightarrow q$ and an argument similar to the one used in the proof of Claim 6 of Theorem 3.2, we obtain that $q \in \Omega$. It now follows from (3.6) that

$$
\left\|x_{0}-q\right\| \leq\left\|x_{0}-p\right\|, \forall p \in \Omega
$$

This inequality implies that $q=x^{\dagger}=P_{\Omega} x_{0}$, as claimed.
This completes the proof of the theorem.
Remark 3.5. We can prove the strong convergence of the sequence $\left\{x_{n}\right\}$ generated by Algorithm 3 in another way as follows. Since $C_{n+1} \subset C_{n}$ and $C_{n} \supset \Omega \neq \emptyset$ for all $n \geq 0$, there exists the limit of the sequence $\left\{C_{n}\right\}$ in the sense of Mosco and $M-\lim _{n \rightarrow \infty} C_{n}=C=\cap_{n=1}^{\infty} C_{n}$ (see, for example, [43, Remark 2.1]). Thus the sequence $\left\{x_{n}\right\}$ generated by $x_{n}=P_{C_{n}} x_{0}$ converges strongly to $q=P_{C} x_{0}$ (see, for example, [38, Theorem 3.2]).

In Theorem 3.4, if $\varepsilon_{n}=0$ for all n, then we have the following algorithm for solving Problem (SCZPPMOS).

```
Algorithm 4 The shrinking projection algorithm for solving Problem (SCZPPMOS)
with \(\varepsilon_{n}=0\)
```

For any initial guess $x_{0} \in E$, let $C_{0}=E$ and define the sequence $\left\{x_{n}\right\}$ as follows:
Step 1 Compute $y_{n}=T_{\operatorname{Ind}(n)} x_{n}$.
Step 2 Compute $z_{n}=Q_{\mu_{n}}^{A_{\text {Ind } n)}}\left(y_{n}\right)$.
Step 3 Define the subset C_{n+1} by

$$
C_{n+1}=\left\{z \in C_{n}:\left\langle T_{\operatorname{Ind}(n)} z-z_{n}, J_{E_{\operatorname{Ind}(n)}}\left(y_{n}-z_{n}\right)\right\rangle \leq 0\right\} .
$$

Step 4 Compute $x_{n+1}=P_{C_{n+1}} x_{0}, n \geq 0$, and go to Step 1 .

Corollary 3.6. If condition (C 1$)$ is satisfied, then the sequence $\left\{x_{n}\right\}$ generated by Algorithm 4 converges strongly to $P_{\Omega} x_{0}$.

4. Applications

In this section we introduce some applications of our main results. They involve the split minimum point problem and the split feasibility problem with multiple output sets.
4.1. Split minimum point problem. Let E be a Banach space and let $f: E \rightarrow(-\infty, \infty]$ be a proper, lower semicontinuous and convex function. Recall that the subdifferential of f is a set-valued mapping $\partial f: E \rightrightarrows E^{*}$ which is defined by

$$
\partial f(x):=\left\{g \in E^{*}: f(y)-f(x) \geq\langle y-x, g\rangle \forall y \in E\right\}
$$

for all $x \in E$. It is well known that ∂f is a maximal monotone operator (see, for example, [34]) and that $x_{0} \in \arg \min _{E} f(x)$ if and only if $\partial f\left(x_{0}\right) \ni 0$.

Now, let E be a uniformly convex and smooth Banach space and let $E_{i}, i=$ $1,2, \ldots, N$, be smooth Banach spaces. Let $f: E \rightarrow(-\infty, \infty]$ and $f_{i}: E_{i} \rightarrow$ $(-\infty, \infty], i=1,2, \ldots, N$, be proper, lower semicontinuous and convex functions. Let $T_{i}: E \rightarrow E_{i}, i=1,2, \ldots, N$, be bounded linear operators. Suppose that

$$
\Omega^{S M P P}:=\arg \min _{E} f(x) \bigcap\left(\cap_{i=1}^{N} T_{i}^{-1}\left(\arg \min _{E_{i}} f_{i}(x)\right)\right) \neq \emptyset
$$

We consider the following problem:
Find an element in $\Omega^{S M P P}$.
Let $E_{0}=E, f_{0}=f$ and $T_{0}=I^{E}$. It follows from Algorithm 1 and Algorithm 3 that we have the following two algorithms for solving Problem (4.1).

```
Algorithm 5 The hybrid projection algorithm for solving Problem (4.1)
For any initial guess \(x_{0} \in E\), define the sequence \(\left\{x_{n}\right\}\) as follows:
Step 1 Compute \(y_{n}=T_{\operatorname{Ind}(n)} x_{n}\).
Step 2 Define an element \(z_{n}\) by
\[
0 \in J_{E_{\operatorname{Ind}(n)}}\left(z_{n}-y_{n}\right)+\mu_{n} \partial^{\varepsilon_{n}} f_{\operatorname{Ind}(n)}\left(z_{n}\right)
\]
```

Step 3 Define the subsets C_{n} and Q_{n} by

$$
\begin{aligned}
& C_{n}=\left\{z \in E:\left\langle T_{\operatorname{Ind}(n)} z-z_{n}, J_{E_{\operatorname{Ind}(n)}}\left(y_{n}-z_{n}\right)\right\rangle \leq 0\right\}, \\
& Q_{n}=\left\{z \in E:\left\langle z-x_{n}, J_{E}\left(x_{0}-x_{n}\right)\right\rangle \leq 0\right\} .
\end{aligned}
$$

Step 4 Compute $x_{n+1}=P_{C_{n} \cap Q_{n}} x_{0}, n \geq 0$, and go to Step 1 .

```
Algorithm 6 The shrinking projection algorithm for solving Problem (4.1)
For any initial guess \(x_{0} \in E\), let \(C_{0}=E\) and define the sequence \(\left\{x_{n}\right\}\) as follows:
Step 1 Compute \(y_{n}=T_{\operatorname{Ind}(n)} x_{n}\).
Step 2 Define an element \(z_{n}\) by
\[
0 \in J_{E_{\operatorname{Ind}(n)}}\left(z_{n}-y_{n}\right)+\mu_{n} \partial^{\varepsilon_{n}} f_{\operatorname{Ind}(n)}\left(z_{n}\right)
\]
```

Step 3 Define the subset C_{n+1} by

$$
C_{n+1}=\left\{z \in C_{n}:\left\langle T_{\operatorname{Ind}(n)} z-z_{n}, J_{E_{\operatorname{Ind}(n)}}\left(y_{n}-z_{n}\right)\right\rangle \leq 0\right\}
$$

Step 4 Compute $x_{n+1}=P_{C_{n+1}} x_{0}, n \geq 0$, and go to Step 1 .

Remark 4.1. If $\varepsilon_{n}=0$ for all n, then the element z_{n} in Step 2 of Algorithm 5 and Algorithm 6 is defined by

$$
z_{n}=\arg \min _{E_{\operatorname{Ind}(n)}}\left\{f_{\operatorname{Ind}(n)}(y)+\frac{1}{2 \mu_{n}}\left\|y-y_{n}\right\|^{2}\right\}
$$

The strong convergence of the sequences generated by Algorithm 5 and Algorithm 6 is established in the following theorem.

Theorem 4.2. If the sequences $\left\{\mu_{n}\right\}$ and $\left\{\varepsilon_{n}\right\}$ satisfy conditions (C 1$)$ and (C2), then the sequence $\left\{x_{n}\right\}$ generated by either Algorithm 5 or Algorithm 6 converges strongly to $P_{\Omega^{S M P P}} x_{0}$.
4.2. Split feasibility problem. Let C be a nonempty, closed and convex subset of E. Let i_{C} be the indicator function of C, that is,

$$
i_{C}(x)=\left\{\begin{array}{l}
0, \text { if } x \in C \\
\infty, \text { if } x \notin C
\end{array}\right.
$$

It is not difficult to see that i_{C} is a proper, semicontinuous and convex function. Therefore its subdifferential ∂i_{C} is a maximal monotone operator (see, for example, [34]). It is known that

$$
\partial i_{C}(u)=N(u, C)=\left\{f \in E^{*}:\langle y-u, f\rangle \leq 0 \quad \forall y \in C\right\}
$$

where $N(u, C)$ is the normal cone of C at u.
We denote the metric resolvent of ∂i_{C} by $Q_{r}^{\partial i_{C}}$, where $r>0$. Suppose $u=Q_{r}^{\partial i_{C}} x$ for $x \in E$, that is,

$$
\frac{J_{E}(x-u)}{r} \in \partial i_{C}(u)=N(u, C)
$$

Then we have

$$
\left\langle y-u, J_{E}(x-u)\right\rangle \leq 0
$$

for all $y \in C$. Using Lemma 2.4, we see that $u=P_{C} x$.
Let E be a uniformly convex and smooth Banach space, and let $E_{i}, i=1,2, \ldots, N$, be smooth Banach spaces. Let L and L_{i} be nonempty, closed and convex subsets of E and $E_{i}, i=1,2, \ldots, N$, respectively. Let $T_{i}: E \rightarrow E_{i}, i=1,2, \ldots, N$, be bounded linear operators. Suppose that

$$
\Omega^{S F P}:=L \bigcap\left(\cap_{i=1}^{N} T_{i}^{-1}\left(L_{i}\right)\right) \neq \emptyset
$$

We consider the following problem:

$$
\begin{equation*}
\text { Find an element in } \Omega^{S F P} \text {. } \tag{4.2}
\end{equation*}
$$

Let $E_{0}=E, L_{0}=L$, and $T_{0}=I^{E}$. Using Algorithm 3 and Algorithm 4, we arrive at the following two algorithms for solving Problem (4.2).

The strong convergence of the sequence $\left\{x_{n}\right\}$ generated by either Algorithm 7 or 8 is provided by the following theorem.

Theorem 4.3. The sequence $\left\{x_{n}\right\}$ generated by either Algorithm 7 or Algorithm 8 converges strongly to $P_{\Omega^{S F P}} x_{0}$.

```
Algorithm 7 The hybrid projection algorithm for solving Problem (SCZPPMOS)
with \(\varepsilon_{n}=0\)
```

For any initial guess $x_{0} \in E$, define the sequence $\left\{x_{n}\right\}$ as follows:
Step 1 Compute $y_{n}=T_{\operatorname{Ind}(n)} x_{n}$.
Step 2 Compute $z_{n}=P_{L_{\operatorname{Ind}(n)}}\left(y_{n}\right)$.
Step 3 Define the subsets C_{n} and Q_{n} by

$$
\begin{aligned}
& C_{n}=\left\{z \in E:\left\langle T_{\operatorname{Ind}(n)} z-z_{n}, J_{E_{\operatorname{Ind}(n)}}\left(y_{n}-z_{n}\right)\right\rangle \leq 0\right\}, \\
& Q_{n}=\left\{z \in E:\left\langle z-x_{n}, J_{E}\left(x_{0}-x_{n}\right)\right\rangle \leq 0\right\} .
\end{aligned}
$$

Step 4 Compute $x_{n+1}=P_{C_{n} \cap Q_{n}} x_{0}, n \geq 0$, and go to Step 1 .

Algorithm 8 The shrinking projection algorithm for solving Problem (SCZPPMOS)
with $\varepsilon_{n}=0$
For any initial guess $x_{0} \in E$, let $C_{0}=E$ and define the sequence $\left\{x_{n}\right\}$ as follows:
Step 1 Compute $y_{n}=T_{\operatorname{Ind}(n)} x_{n}$.
Step 2 Compute $z_{n}=P_{L_{\operatorname{Ind}(n)}}\left(y_{n}\right)$.
Step 3 Define the subset C_{n+1} by

$$
C_{n+1}=\left\{z \in C_{n}:\left\langle T_{\operatorname{Ind}(n)} z-z_{n}, J_{E_{\operatorname{Ind}(n)}}\left(y_{n}-z_{n}\right)\right\rangle \leq 0\right\}
$$

Step 4 Compute $x_{n+1}=P_{C_{n+1}} x_{0}, n \geq 0$, and go to Step 1 .

5. NuMERICAL EXPERIMENTS

In this section our algorithms are implemented in MATLAB 14a running on DESKTOP-9RLTPS0, $\operatorname{Intel}(\mathrm{R})$ Core(TM) i5-10210U CPU @ 1.60 GHz with 2.11 GHz and 8GB RAM.

We consider the split feasibility problem with multiple output sets in a finite dimensional Euclidean space and compare our new algorithms (Algorithm 7 and Algorithm 8) with our previous algorithms (Algorithms (1.5) and (1.6) in [33], and the algorithms defined by Corollaries 4.3 and 4.4 in [28]).

Let $L_{i}, i=0,1,2,3$, be closed and convex subsets of $\mathbb{R}^{100}, \mathbb{R}^{200}, \mathbb{R}^{300}$ and \mathbb{R}^{400}, respectively. Suppose that the subset L_{i} is defined by $L_{i}=\left\{x \in \mathbb{R}^{100(i+1)}:\left\langle a_{i}, x\right\rangle \leq\right.$ $\left.b_{i}\right\}$, where the coordinates of the vector a_{i} and the real number b_{i} are chosen randomly in the closed intervals $[10,50]$ and $[0,0.5]$, respectively, for all $i=0,1,2,3$.

Let $T_{i}: \mathbb{R}^{100} \rightarrow \mathbb{R}^{100(i+1)}, i=1,2,3$, be bounded linear operators the elements of their representing matrices are generated randomly in the closed interval $[-5,5]$.

Since $0 \in \Omega^{S F P}$, it is easy to check that $\Omega^{S F P}=L_{0} \cap\left(\cap_{i=1}^{3} T_{i}^{-1}\left(L_{i}\right)\right) \neq \emptyset$.
The control parameters for each algorithm (iterative method) are chosen as follows.

- Algorithm A: Algorithm 7.
- Algorithm B: Algorithm 8.
- Algorithm C (The iterative method (1.5) in [24]):

$$
\gamma_{n}=\frac{1}{5\left(\left\|T_{1}\right\|^{2}+\left\|T_{2}\right\|^{2}+\left\|T_{3}\right\|^{2}\right)}, \text { for all } n \geq 0
$$

Table 1. Table of numerical results

Algorithms	$\varepsilon=10^{-3}$		$\varepsilon=10^{-4}$	
	Σ_{n}	n	Σ_{n}	n
Algorithm A	8.118826×10^{-4}	59	6.354513×10^{-5}	71
Algorithm B	2.340168×10^{-25}	4	2.340168×10^{-25}	4
Algorithm C	9.916995×10^{-4}	1040	9.851878×10^{-5}	1228
Algorithm D	9.980770×10^{-4}	1105	9.861496×10^{-5}	1159
Algorithm E	9.719251×10^{-4}	134	9.847986×10^{-5}	152
Algorithm F	9.110554×10^{-4}	112	9.909748×10^{-5}	132

- Algorithm D (The iterative method (1.6) in [24]):

$$
\gamma_{n}=\frac{1}{5\left(\left\|T_{1}\right\|^{2}+\left\|T_{2}\right\|^{2}+\left\|T_{3}\right\|^{2}\right)}, \alpha_{n}=(n+1)^{-0.5}
$$

for all $n \geq 0$, and $f(x)=0.85 x$ for all $x \in \mathbb{R}^{10}$.

- Algorithm E (The iterative method in Corollary 4.3 of [28]): $\beta_{i, n}=0.25$, $\theta_{i, n}=10^{-3}, \alpha_{n}=(n+1)^{-0.5}$ for all $i=0,1,2,3$ and for all $n \geq 0$, and $\mathfrak{f}(x)=0.85 x$ for all $x \in \mathbb{R}^{10}$.
- Algorithm F (The iterative method in Corollary 4.4 of [28]): $\theta_{i, n}=10^{-3}$, $\alpha_{n}=(n+1)^{-0.5}$ for all $i=0,1,2,3$ and for all $n \geq 0$, and $\mathfrak{f}(x)=0.85 x$ for all $x \in \mathbb{R}^{10}$.
Using the initial guess u_{0}, the coordinates of which are randomly generated in the closed interval $[-50,50]$, and the stopping rule $\Sigma_{n}<\varepsilon$ to stop the iterative process, where

$$
\begin{aligned}
\Sigma_{n}=\frac{1}{4}\left(\left\|u_{n}-P_{L_{0}} u_{n}\right\|^{2}\right. & +\left\|T_{1} u_{n}-P_{L_{1}} T_{1} u_{n}\right\|^{2} \\
& \left.+\left\|T_{2} u_{n}-P_{L_{2}} T_{2} u_{n}\right\|^{2}+\left\|T_{3} u_{n}-P_{L_{3}} T_{3} u_{n}\right\|^{2}\right)
\end{aligned}
$$

and ε is a given error, we obtain the following table of numerical results.
The behavior of the function Σ_{n} in Table 1 is described in the figures below (Figure 1 and Figure 2).

Acknowledgments. The first author was partially supported by the Israel Science Foundation (Grant 820/17), by the Fund for the Promotion of Research at the Technion and by the Technion General Research Fund. The second author was supported by the Science and Technology Fund of Thai Nguyen University of Sciences. Both authors are grateful to an anonymous referee for pertinent comments and helpful suggestions.

References

[1] R.P. Agarwal, D. O'Regan, D.R. Sahu, Fixed Point Theory for Lipschitzian-type Mappings with Applications, Springer, 2009.
[2] Y. Alber, I. Ryazantseva, Nonlinear Ill-Posed Problems of Monotone Type, Springer, 2006.
[3] H.H. Bauschke, P.L. Combettes, Construction of best Bregman approximations in reflexive Banach spaces, Proc. Amer. Math. Soc., 131(12)(2003), 3757-3766.

Figure 1. The behavior of Σ_{n} with the stopping rule $\Sigma_{n}<10^{-3}$

Figure 2. The behavior of Σ_{n} with the stopping rule $\Sigma_{n}<10^{-4}$ without Algorithm B (Algorithm 8)
[4] F.E. Browder, Nonlinear maximal monotone operators in Banach spaces, Math. Ann., 175(1968), 89-113.
[5] R.S. Burachik, B.F. Svaiter, ε-Enlargements of maximal monotone operators in Banach spaces, Set-Valued Anal., 7(1999), 117-132.
[6] C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Problems, 18(2002), 441-453.
[7] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Problems, 18(2004), 103-120.
[8] C. Byrne, Y. Censor, A. Gibali, S. Reich, The split common null point problem, J. Nonlinear Convex Anal., 13(2012), 759-775.
[9] C. Byrne, A. Moudafi, Extensions of the $C Q$ algorithm for the split feasibility and split equality problems, hal-00776640-version 1, (2013).
[10] L.C. Ceng, Q.H. Ansari, J.C. Yao, An extragradient method for solving split feasibility and fixed point problems, Comput. Math. Appl., 64(2012), 633-642.
[11] Y. Censor, T. Bortfeld, B. Martin, A. Trofimov, A unified approach for inversion problems in intensity modulated radiation therapy, Phys. Med. Biol., 51(2006), 2353-2365.
[12] Y. Censor, T. Elfving, A multi projection algorithm using Bregman projections in a product space, Numer. Algorithms, 8(1994), 221-239.
[13] Y. Censor, T. Elfving, N. Kopf, T. Bortfeld, The multiple-sets split feasibility problem and its application, Inverse Problems, 21(2005), 2071-2084.
[14] Y. Censor, A. Gibali, S. Reich, Algorithms for the split variational inequality problems, Numer. Algorithms, 59(2012), 301-323.
[15] Y. Censor, A. Segal, The split common fixed point problem for directed operators, J. Convex Anal., 16(2009), 587-600.
[16] S.-S. Chang, L. Yang, L. Qin, Z. Ma, Strongly convergent iterative methods for split equality variational inclusion problems in Banach spaces, Acta Mathematica Scientia, 36(2016), 16411650.
[17] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer, Dordrecht, 1990.
[18] K. Goebel, W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math., 28, Cambridge Univ. Press, Cambridge, UK, 1990.
[19] K. Goebel, S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York, 1984.
[20] J.K. Kim, T.M. Tuyen, M.T.N. Ha, Two projection methods for solving the split common fixed point problem with multiple output sets in Hilbert spaces, Numerical Functional Analysis and Optimization, 42(2021), 973-988.
[21] E. Masad, S. Reich, A note on the multiple-set split convex feasibility problem in Hilbert space, J. Nonlinear Convex Anal., 8(2007), 367-371.
[22] A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., 241(2000), 46-55.
[23] S. Reich, Book review: Geometry of Banach spaces, duality mappings and nonlinear problems, Bull. Amer. Math. Soc., 26(1992), 367-370.
[24] S. Reich, M.T. Truong, T.N.H. Mai, The split feasibility problem with multiple output sets in Hilbert spaces, Optimizaton Letters, 14(2020), 2335-2353.
[25] S. Reich, T.M. Tuyen, Iterative methods for solving the generalized split common null point problem in Hilbert spaces, Optimization, 69(2020), 1013-1038.
[26] S. Reich, T.M. Tuyen, Two projection methods for solving the multiple-set split common null point problem in Hilbert spaces, Optimization, 69(2020), 1913-1934.
[27] S. Reich, T.M. Tuyen, A new algorithm for solving the split common null point problem in Hilbert spaces, Numer Algor., 83(2020), 789-805.
[28] S. Reich, T.M. Tuyen, Two new self-adaptive algorithms for solving the split common null point problem with multiple output sets in Hilbert spaces, J. Fixed point Theory Appl., 23(2021), Paper No. 16, 19 pp.
[29] S. Reich, T.M. Tuyen, Projection algorithms for solving the split feasibility problem with multiple output sets, J. Optim. Theory Appl., 190(2021), 861-878.
[30] S. Reich, T.M. Tuyen, M.T.T. Ha, A product space approach to solving the split common fixed point problem in Hilbert spaces, J. Nonlinear Convex Anal., 21(11)(2020), 2571-2588.
[31] S. Reich, T.M. Tuyen, M.T.N. Ha, An optimization approach to solving the split feasibility problem in Hilbert spaces, J. Glob. Optim., 79(2021), 837-852.
[32] S. Reich, T.M. Tuyen, N.T.T. Thuy, M.T.N. Ha, A new self-adaptive algorithm for solving the split common fixed point problem with multiple output sets in Hilbert spaces, Numer Algor., 89(2022), 1031-1047.
[33] S. Reich, T.M. Tuyen, N.M. Trang, Parallel iterative methods for solving the split common fixed point problem in Hilbert spaces, Numerical Functional Analysis and Optimization, 41(2020), 778-805.
[34] R.T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J. Math., 33(1970), 209-216.
[35] S. Takahashi, W. Takahashi, The split common null point problem and the shrinking projection method in Banach spaces, Optimization, 65(2016), 281-287.
[36] W. Takahashi, The split feasibility problem and the shrinking projection method in Banach spaces, J. Nonlinear Convex Anal., 16(2015), 1449-1459.
[37] W. Takahashi, The split common null point problem in Banach spaces, Arch. Math., 104(2015), 357-365.
[38] M. Tsukada, Convergence of best approximations in a smooth Banach space, J. Approximation Theory, 40(1984), 301-309.
[39] T.M. Tuyen, A strong convergence theorem for the split common null point problem in Banach spaces, Appl. Math. Optim., 79(2019), 207-227.
[40] T.M. Tuyen, N.S. Ha, A strong convergence theorem for solving the split feasibility and fixed point problems in Banach spaces, J. Fixed Point Theory Appl., 20(2018), 140.
[41] T.M. Tuyen, N.S. Ha, N.T.T. Thuy, A shrinking projection method for solving the split common null point problem in Banach spaces, Numerical Algorithms, 81(2019), 813-832.
[42] T.M. Tuyen, N.T.T. Thuy, N.M. Trang, A strong convergence theorem for a parallel iterative method for solving the split common null point problem in Hilbert spaces, Journal of Optimization Theory and Applications, 138(2019), 271-291.
[43] T.M. Tuyen, N.M. Trang, Two strong convergence theorems for the common null point problem in Banach spaces, Acta Math., 44(2019), 935-953.
[44] F. Wang, H.-K. Xu, Cyclic algorithms for split feasibility problems in Hilbert spaces, Nonlinear Anal., 74(2011), 4105-4111.
[45] H.-K. Xu, A variable Krasnosel'skii-Mann algorithm and the multiple-set split feasibility problem, Inverse Problems, 22(2006), 2021-2034.
[46] H.-K. Xu, Iterative methods for the split feasibility problem in infinite dimensional Hilbert spaces, Inverse Problems, 26(2010), 105018.
[47] Q. Yang, The relaxed $C Q$ algorithm for solving the split feasibility problem, Inverse Problems, $\mathbf{2 0 (2 0 0 4) , ~ 1 2 6 1 - 1 2 6 6 . ~}$

Received: May 9, 2022; Accepted: January 22, 2023.

