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1. Introduction

Let E and F be two Banach spaces and let (P1) and (P2) be two given problems on
E and F , respectively. Let T : E → F be a given operator which we call the transfer
mapping. The split problem corresponding to (P1) and (P2) on the two Banach spaces
E and F is to find an element x ∈ E such that x is a solution to Problem (P1) and its
image under the transfer mapping T is a solution to Problem (P2). We denote this
split problem by (P ). This model problem was first introduced by Censor and Elfving
[12] in 1994 for modeling certain inverse problems. More precisely, they considered
the following split feasibility problem (SFP): Find an element in a given nonempty,
closed and convex subset of a real Hilbert space such that its image under a given
transfer mapping belongs to a given nonempty, closed and convex subset of the image
space. It is well known by now that the SFP plays an important role in medical
image reconstruction and in signal processing (see, for example, [6, 7]). Since then,
the SFP has attracted the attention of many mathematicians, who have proposed
and studied many algorithms and iterative methods for solving it. See, for example,
[6, 7, 9, 11, 12, 10, 24, 31, 44, 45, 46, 47] and references therein.

As a matter of fact, several problems of the SFP type have been studied. We
mention, for instance, the multiple-set SFP (MSSFP) (see, for example, [13, 21]), the
split common fixed point problem (SCFPP) (see, for example, [15, 22, 33, 26, 30]),
the split variational inequality problem (SVIP) (see, for example, [14, 16]) and the
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split common null point problem (SCNPP) (see, for example, [8, 25, 27, 28, 35, 36,
37, 42, 39, 41, 40]).

In 2020 Reich and Tuyen [25] studied a general case of Problem (P ) and proposed
a model split feasibility type problem. More precisely, they considered the following
model problem: Let E1, E2, . . . , EN be Banach or Hilbert spaces and let the trans-
fer mappings Ti : Ei → Ei+1, i = 1, 2, . . . , N − 1, be given. Suppose that (Pi),
i = 1, 2, . . . , N , are N given problems on Ei, respectively. The general case of Prob-
lem (P ) is to find an element x in E1 such that x is a solution to (P1), T1(x) is
a solution to (P2), ..., and TN−1(TN−2(...T2(T1(x)))) is a solution to (PN ). This
problem is denoted by (GP ).

Next, Reich et al. [24, 31, 28] introduced and studied the following model of the
split feasibility problem with multiple output sets in different image spaces. Let E
and Ei, i = 1, 2, . . . , N , be Banach or Hilbert spaces and let the transfer mappings
Ti : E → Ei, i = 1, 2, . . . , N , be given. Suppose that (P0) and (Pi), i = 1, 2, . . . , N ,
are given N + 1 problems on E and Ei, respectively. Then the problem is to find an
element x in E such that x is a solution to (P0), and Ti(x) is a solution to (Pi) for
all i = 1, 2, . . . , N . We denote this problem by GPMOS. It is not difficult to see that
Problem GPMOS is a general case of Problem (GP ) (see, for example, [24, Remark
1.1]). Some other results regarding this type of problem can be found in [20, 29, 32].

In this paper, we study the model of Problem GPMOS where E is a uniformly
convex and smooth Banach space, Ei, i = 1, 2, . . . , N , are smooth Banach spaces, and
(P0) and (Pi), i = 1, 2, . . . , N , are the problems of finding a zero point of a maximal
monotone operator on E and Ei, respectively. More precisely, we study Problem
SCZPPMOS. By using the definition of an enlargement of a maximal monotone op-
erator (see, for example, [5]), we propose two new projection algorithms for finding
a solution to Problem SCZPPMOS (see Section 3). Our algorithms do not depend
on the norm of the transfer mappings. In Section 4 we introduce two applications of
our main results to solving the split minimum point problem and the split feasibility
problem with multiple output sets. Finally, in Section 5, we implement a numerical
example and compare the effectiveness of the proposed algorithms with some previous
results.

2. Preliminaries

Let E be a real Banach space with norm ‖ · ‖ and let E∗ be its dual. We denote
by 〈x, f〉 the value of f ∈ E∗ at the point x ∈ E. When {xn} is a sequence in E, we
use the symbols xn → x and xn ⇀ x to denote the strong convergence and the weak
convergence of the sequence {xn} to x, respectively.

Let JE denote the normalized duality mapping from E into 2E
∗

given by

JE(x) =
{
f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2

}
, ∀x ∈ E.

Remark 2.1. In any Banach space, we have JE(x) = ∂(‖x‖2/2) for all x ∈ E, where
∂(‖x‖2/2) is the subdifferential of the function ‖x‖2/2 (see, for example, [17, Example
2.9, page 16]). In a Hilbert space H it is easy to see that JH(x) = x for all x ∈ H
(see, for example, [17, Proposition 4.8, page 29]).
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We always use SE to denote the unit sphere of a Banach space E, that is,

SE = {x ∈ E : ‖x‖ = 1}.

A Banach space E is said to be strictly convex if for all x, y ∈ SE with x 6= y, we
have ‖x+ y‖ < 2 or equivalently, ‖(1− t)x+ ty‖ < 1 for all t ∈ (0, 1).

A Banach space E is said to be uniformly convex (see, for example, [17, 19]) if for
any ε ∈ (0, 2] and for all x, y ∈ E with ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε, there exists a
positive real number δ = δ(ε) > 0 such that ‖x+ y‖/2 ≤ 1− δ.

Remark 2.2. If E is a uniformly convex Banach space and if {xn} and {yn} are two
sequences in E such that

lim
n→∞

‖xn‖ = lim
n→∞

‖yn‖ = d ≥ 0 and lim
n→∞

‖xn + yn‖
2

= d,

then limn→∞ ‖xn − yn‖ = 0.

Recall that a Banach space E is said to have the Kadec-Klee property if for any
sequence {xn} ⊂ E such that ‖xn‖ → ‖x‖ and xn ⇀ x as n → ∞, we have xn → x
as n → ∞. It is well known that every uniformly convex Banach space has the
Kadec-Klee property (see, for example, [17, Proposition 2.8] or [23]).

A Banach space E is said to be smooth if for each x in SE there exists a unique
linear functional jx ∈ E∗ such that 〈x, jx〉 = ‖x‖ and ‖jx‖ = 1 (see, for example, [1,
Definition 2.6.1, page 91]).

Next, we recall several properties of the normalized duality mapping JE of a real
Banach space E (see, for example, [1, 17, 18]):

i) E is reflexive if and only if JE is surjective;
ii) If E is smooth or E∗ is strictly convex, then JE is single-valued;

iii) If E is a smooth, strictly convex and reflexive Banach space, then JE is a
single-valued bijection;

iv) If E∗ is uniformly convex, then JE is uniformly continuous on each bounded
subset of E.

It is also known that, if E is a smooth, strictly convex and reflexive Banach space,
and C is a nonempty, closed and convex subset of E, then for each x ∈ E, there exists
a unique point z ∈ C such that ‖x− z‖ = infy∈C ‖x− y‖. The mapping PC : E → C
defined by PCx = z for all x ∈ E is called the metric projection from E onto C.

Let A : E ⇒ E∗ be an operator. The effective domain of A is denoted by D(A),
that is, D(A) := {x ∈ E : Ax 6= ∅}. Recall that A is called a monotone operator if
〈x− y, u− v〉 ≥ 0 for all x, y ∈ D(A) and for all u ∈ Ax, v ∈ A(y). The graph of A is
denoted by Gr(A). It is defined by Gr(A) := {(x, u) ∈ E×E∗ : x ∈ D(A), u ∈ A(x)}.
A monotone operator A on E is called maximal monotone if its graph is not properly
contained in the graph of any other monotone operator on E. It is known that if A
is a maximal monotone operator on E, and if E is a uniformly convex and smooth
Banach space, then R(JE + rA) = E∗ for all r > 0, where R(JE + rA) is the range
of JE + rA (see, for example, [4], [2, Theorem 1.7.13, page 57]). For each x ∈ E and
r > 0, there exists a unique point xr ∈ E such that 0 ∈ JE(xr−x) + rAxr. We define
a mapping QAr by QAr x := xr. The mapping QAr is called the metric resolvent of A.
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The zero point set of a maximal monotone operator A is defined as follows:
Zer(A) := {z ∈ E : 0 ∈ Az}. It is known that Zer(A) is a closed and convex
subset of E (see, for example, [2, Corollary 1.4.10, page 31]).

Let A : ⇒ E∗ be a maximal monotone operator. In [5], for each ε ≥ 0, Burachik
and Svaiter defined Aε(x), an ε-enlargement of A, as follows:

Aεx := {u ∈ E∗ : 〈y − x, v − u〉 ≥ −ε ∀y ∈ E, v ∈ Ay}.
It is easy to see that A0x = Ax and if 0 ≤ ε1 ≤ ε2, then Aε1x ⊆ Aε2x for any x ∈ E
(see, for example, [5, Lemma 3.1]). The use of elements in Aε instead of A allows us
an extra degree of freedom which is very useful in various applications.

The following lemmas are needed in the sequel for the proof of our main theorems.

Lemma 2.3. (see, for example, [1, Theorem 2.8.17, page 105]) Let E be a Banach
space. Then the following statements are equivalent:

i) E is uniformly convex.
ii) For any 1 < k < ∞ and r > 0, there exists a strictly increasing convex

function gr : R+ → R+ such that gr(0) = 0 and

‖tx+ (1− t)y‖k ≤ t‖x‖k + (1− t)‖y‖k − t(1− t)gr(‖x− y‖)
for all t ∈ [0, 1] and for all x, y ∈ E with max{‖x‖, ‖y‖} ≤ r.

Lemma 2.4. (see, for example, [19, Proposition 3.4, page 13]) Let E be a smooth,
strictly convex and reflexive Banach space. Let C be a nonempty, closed and convex
subset of E, and let x1 ∈ E and z ∈ C. Then the following conditions are equivalent:

i) z = PCx1;
ii) 〈y − z, JE(x1 − z)〉 ≤ 0 ∀y ∈ C.

Lemma 2.5. (see, for example, [5, Proposition 3.4]) The graph of Aε : R+×E ⇒ E∗

is demiclosed, that is, the statements below hold:

i) If the sequence {xn} ⊂ E converges strongly to x0, the sequence {un ∈ Aεnxn}
converges weakly to u0 in E∗ and the sequence {εn} ⊂ R+ converges to ε, then
u0 ∈ Aεx0;

ii) If the sequence {xn} ⊂ E converges weakly to x0, the sequence {un ∈ Aεnxn}
converges strongly to u0 in E∗ and the sequence {εn} ⊂ R+ converges to ε,
then u0 ∈ Aεx0.

Lemma 2.6. (see, for example, [1, Theorem 1.9.10, page 39]) Let E be a Banach
space and let {xn} be a sequence in E. Suppose that {xn} converges weakly to some
point x ∈ E. Then we have ‖x‖ ≤ lim infn→∞ ‖xn‖.

3. Main results

Let E be a uniformly convex and smooth Banach space, and let Ei, i = 1, 2, . . . , N ,
be smooth Banach spaces. Let A : E ⇒ E∗ and Ai : Ei ⇒ E∗i , i = 1, 2, . . . , N , be
maximal set-valued operators. Let Ti : E → Ei, i = 1, 2, . . . , N , be bounded linear
operators. Assume that

Ω := Zer(A)
⋂(
∩Ni=1 T

−1
i (Zer(Ai)

)
6= ∅.
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We consider the following problem:

Find an element in Ω. (SCZPPMOS)

Assume that {µn} is a sequence of positive real numbers and that {εn} is a se-
quence of nonnegative real numbers. We study the strong convergence of the proposed
algorithms in this paper under the following conditions on the parameters µn and εn.

(C1) infn{µn} = µ > 0;
(C2) limn→∞ εnµn = 0.

Let N = {0, 1, . . . , N}. We recall that a mapping Ind : N→ N is called an index
control mapping if for each i ∈ N , there is a natural number Mi such that

i ∈ {Ind(n), Ind(n+ 1), . . . , Ind(n+Mi − 1)} ∀n ∈ N.
Example 3.1. Let N = {0, 1, 2, . . . , N}.

The mapping Ind : N→ N defined by

Ind(n) = n mod (N + 1) ∀n ∈ N
is an index control mapping (see, for example, [3]).

3.1. Hybrid projection algorithm. Let E0 = E, A0 = A, and let T0 = IE be
the identity operator on E. Below we propose an algorithm for solving Problem
(SCZPPMOS).

Algorithm 1 The hybrid projection algorithm for solving Problem (SCZPPMOS)

For any initial guess x0 ∈ E, define the sequence {xn} as follows:
Step 1 Compute yn = TInd(n)xn.
Step 2 Find an element zn ∈ EInd(n) such that

0 ∈ JEInd(n)
(zn − yn) + µnA

εn
Ind(n)(zn). (3.1)

Step 3 Define the subsets Cn and Qn by

Cn = {z ∈ E : 〈TInd(n)z − zn, JEInd(n)
(yn − zn)〉 ≤ µnεn},

Qn = {z ∈ E : 〈z − xn, JE(x0 − xn)〉 ≤ 0}.
Step 4 Compute xn+1 = PCn∩Qnx0, n ≥ 0, and go to Step 1.

The strong convergence of the sequences generated by Algorithm 1 is established
in the following theorem.

Theorem 3.2. If the sequences {µn} and {εn} satisfy conditions (C1) and (C2), then
the sequence {xn} generated by Algorithm 1 converges strongly to PΩx0.

Proof. We divide the proof of this theorem into seven claims as follows.
Claim 1. The sequence {xn} is well defined.

First, we show that Cn and Qn are closed half-spaces of E.
Indeed, we rewrite the definitions of the subsets Cn and Qn in the following forms:

Cn = {z ∈ E : 〈TInd(n)z, JEInd(n)
(yn − zn)〉 ≤ 〈zn, JEInd(n)

(yn − zn)〉+ µn}
= {z ∈ E : 〈z, T ∗Ind(n)JEInd(n)

(yn − zn)〉 ≤ 〈zn, JEInd(n)
(yn − zn)〉+ µnεn}
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and

Qn = {z ∈ E : 〈z, JEInd(n)
(x0 − xn)〉 ≤ 〈xn, JEInd(n)

(x0 − xn)〉}.
Now it is clear that Cn and Qn are indeed closed half-spaces of E.

We next show that Ω ⊂ Cn ∩Qn for all n ≥ 0. Indeed, take any p ∈ Ω. It follows
from (3.1) that

1

µn
JEInd(n)

(yn − zn) ∈ AεnInd(n)(zn). (3.2)

Thus, using (3.2), 0 ∈ AInd(n)TInd(n)p and the definition of AεnInd(n), we obtain

〈TInd(n)p− zn,−
1

µn
JEInd(n)

(yn − zn)〉 ≥ −εn.

This is equivalent to

〈TInd(n)p− zn, JEInd(n)
(yn − zn)〉 ≤ εnµn,

which implies that p ∈ Cn.
It is clear that Q0 = E and hence Ω ⊂ Q0. Suppose that Ω ⊂ Qn for some n ≥ 0.

It follows from xn+1 = PCn∩Qn
x0, p ∈ Ω ⊂ Cn ∩Qn and Lemma 2.4 that

〈p− xn+1, JEInd(n)
(x0 − xn+1)〉 ≤ 0.

This implies that p ∈ Qn+1 and hence Ω ⊂ Qn+1. So, using mathematical induction,
we conclude that Ω ⊂ Qn for all n ≥ 0. Combining this with Ω ⊂ Cn for all n ≥ 0,
we obtain that Ω ⊂ Cn ∩Qn for all n ≥ 0. Thus Cn ∩Qn is a nonempty, closed and
convex subset of E, and hence the metric projection of x0 onto Cn∩Qn always exists.
Therefore the sequence {xn} is well defined, as claimed.
Claim 2. The sequence {xn} is bounded.

Fix an element p ∈ Ω ⊂ Qn. It follows from the definition of Qn and Lemma 2.4
that xn = PQnx0. Thus, using the definition of the metric projection, we have

‖xn − x0‖ ≤ ‖p− x0‖, ∀n ≥ 0. (3.3)

This implies that the sequence {xn} is bounded, as claimed.
Claim 3. There exists the finite limit limn→∞ ‖xn − x0‖ = l.

It follows from xn+1 = PCn∩Qn
x0 ∈ Qn and the definition of Qn that

0 ≥ 〈xn+1 − xn, JEInd(n)
(x0 − xn)〉

= 〈xn+1 − x0 + x0 − xn, JEInd(n)
(x0 − xn)〉

= 〈xn+1 − x0, JEInd(n)
(x0 − xn)〉+ ‖xn − x0‖2.

This implies that

‖xn − x0‖2 ≤ 〈x0 − xn+1, JEInd(n)
(x0 − xn)〉 ≤ ‖xn+1 − x0‖‖xn − x0‖,

which yields that ‖xn− x0‖ ≤ ‖xn+1− x0‖. Combining this with the boundedness of
the sequence {xn}, we infer that there exists the finite limit limn→∞ ‖xn − x0‖ = l,
as claimed.
Claim 4. The sequence {xn} is asymptotically regular, that is,

lim
n→∞

‖xn+1 − xn‖ = 0.
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It follows from the facts that xn and xn+1 belong to Qn, and from the convexity

of Qn that
xn + xn+1

2
also belongs to Qn. Since xn = PQnx0, we have

‖xn − x0‖ ≤
∥∥∥∥xn + xn+1

2
− x0

∥∥∥∥ ≤ 1

2

(
‖xn − x0‖+ ‖xn+1 − x0‖

)
.

Combining this with limn→∞ ‖xn − x0‖ = l, we obtain∥∥∥∥xn + xn+1

2
− x0

∥∥∥∥→ l,

that is,

lim
n→∞

‖(xn − x0) + (xn+1 − x0)‖
2

= l.

Thus, using Remark 2.2, we can deduce that

lim
n→∞

‖xn+1 − xn‖ = 0,

as claimed.
Claim 5. limn→∞ ‖zn − yn‖ = 0.

It follows from the fact that xn+1 = PCn∩Qn
x0 ∈ Cn and the definition of Cn that

〈TInd(n)xn+1 − zn, JEInd(n)
(yn − zn)〉 ≤ µnεn.

This is equivalent to

µnεn ≥ 〈TInd(n)xn+1 − yn + yn − zn, JEInd(n)
(yn − zn)〉

= 〈TInd(n)xn+1 − TInd(n)xn, JEInd(n)
(yn − zn)〉+ ‖zn − yn‖2

≥ −1

2
(‖TInd(n)xn+1 − TInd(n)xn‖2 + ‖zn − yn‖2) + ‖zn − yn‖2

≥ −1

2
(‖TInd(n)‖2‖xn+1 − xn‖2 + ‖zn − yn‖2) + ‖zn − yn‖2.

This, in its turn, implies that

‖zn − yn‖2 ≤ ‖TInd(n)‖2‖xn+1 − xn‖2 + 2µnεn. (3.4)

It now follows from (3.4), ‖xn+1 − xn‖ → 0 (see Step 4) and µnεn → 0 (assumption
(C2)) that

lim
n→∞

‖zn − yn‖ = 0, (3.5)

as claimed.
Claim 6. All weak cluster points of the sequence {xn} belong to Ω.

Indeed, suppose that q is an arbitrary cluster point of the sequence {xn}. Then
there exists a subsequence {xmn

} of {xn} such that {xmn
} converges weakly to q.

We now claim that q ∈ Ω. Indeed, for any i ∈ N = {0, 1, . . . , N}, there exists a
natural number Mi such that

i ∈ {Ind(mn), Ind(mn + 1), . . . , Ind(mn +Mi − 1)} for all n.
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We can remove some elements of the subsequence {xmn
}, if necessary, to obtain a

new subsequence, which is also denoted by {xmn}, such that mn+1 ≥ mn+Mi. Then
there is another subsequence {xpn} of {xn}, where

mn ≤ pn ≤ mn +Mi − 1 < mn+1 ≤ pn+1, i = Ind(pn).

We have

‖xpn − xmn
‖ ≤

mn+Mi−2∑
l=mn

‖xl+1 − xl‖ ≤ (Mi − 1) max
mn≤l≤mn+Mi−2

‖xl+1 − xl‖.

Combining this with ‖xn+1 − xn‖ → 0, we see that xpn − xmn
→ 0. It now follows

from xmn
⇀ q that xpn ⇀ q. Since Ti is a bounded linear operator, we also have

Tixpn ⇀ Tiq.
It follows from (3.5) that ‖zpn−ypn‖ → 0. Combining this with ypn = Tixpn ⇀ Tiq,

we infer that zpn ⇀ Tiq. It now follows from (3.1), the fact that Ind(pn) = i for all n
and condition (C1) that

A
εpn
i (zpn) 3 1

µn
JEi

(ypn − zpn)→ 0.

Applying Lemma 2.5 ii) to the sequences {zpn} and { 1

µn
JEi

(ypn − zpn) ∈ Aεpni (zpn)},

we conclude that Tiq ∈ Zer(Ai). Since i ∈ {0, 1, . . . , N} is arbitrary, we can infer that
Tiq ∈ Zer(Ai) for all i = 0, 1, . . . , N , that is, q ∈ Ω, as claimed.
Claim 7. limn→∞ xn = PΩx0.

Suppose {xkn} is a subsequence of {xn} such that xkn ⇀ q. It follows form Claim 6
that q ∈ Ω.

Now, let x† = PΩx0. From (3.3), the fact that x0 − xkn ⇀ x0 − q and Lemma 2.6,
it follows that

‖x0 − x†‖ ≤ ‖x0 − q‖
≤ lim inf

n→∞
‖x0 − xkn‖

≤ lim sup
n→∞

‖x0 − xkn‖

≤ ‖x0 − x†‖.

This implies that limn→∞ ‖x0 − xkn‖ = ‖x0 − q‖ = ‖x0 − x†‖. Using the definition
of x†, we obtain x† = q. Since E is a uniformly convex Banach space, it has the
Kadec-Klee property. Using now the facts that limn→∞ ‖x0 − xkn‖ = ‖x0 − q‖ and
x0 − xkn ⇀ x0 − q, we infer that xkn → q = x†. Using the uniqueness of x†, we can
immediately deduce that xn → x†, as claimed.
This completes the proof. �

In Theorem 3.2, if εn = 0 for all n, then we obtain the following algorithm for
solving Problem (SCZPPMOS).

Corollary 3.3. If condition (C1) is satisfied, then the sequence {xn} generated by
Algorithm 2 converges strongly to PΩx0.
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Algorithm 2 The hybrid projection algorithm for solving Problem (SCZPPMOS)
with εn = 0

For any initial guess x0 ∈ E, define the sequence {xn} as follows:
Step 1 Compute yn = TInd(n)xn.

Step 2 Compute zn = Q
AInd(n)
µn (yn).

Step 3 Define the subsets Cn and Qn by

Cn = {z ∈ E : 〈TInd(n)z − zn, JEInd(n)
(yn − zn)〉 ≤ 0},

Qn = {z ∈ E : 〈z − xn, JE(x0 − xn)〉 ≤ 0}.
Step 4 Compute xn+1 = PCn∩Qn

x0, n ≥ 0, and go to Step 1.

3.2. Shrinking projection algorithm. Let E0 = E, A0 = A, and let T0 = IE be
the identity operator on E. We now introduce the following algorithm for solving
Problem (SCZPPMOS).

Algorithm 3 The shrinking projection algorithm for solving Problem (SCZPPMOS)

For any initial guess x0 ∈ E, let C0 = E and define the sequence {xn} as follows:
Step 1 Compute yn = TInd(n)xn.
Step 2 Find an element zn such that

0 ∈ JEInd(n)
(zn − yn) + µnA

εn
Ind(n)(zn).

Step 3 Define the subset Cn+1 by

Cn+1 = {z ∈ Cn : 〈TInd(n)z − zn, JEInd(n)
(yn − zn)〉 ≤ µnεn}.

Step 4 Compute xn+1 = PCn+1
x0, n ≥ 0, and go to Step 1.

The strong convergence of Algorithm 3 is established in the following theorem.

Theorem 3.4. If the sequences {µn} and {εn} satisfy conditions (C1) and (C2), then
the sequence {xn} generated by Algorithm 3 converges strongly to PΩx0.

Proof. We divide the proof of this theorem into five claims as follows.
Claim 1. The sequence {xn} is well defined

First, we show that Cn is a closed and convex subset of E for each n. We prove
this by mathematical induction. Indeed, it is easy to see that C0 = E is a closed and
convex set. Suppose now that Cn is a closed and convex set for some n ≥ 0. It follows
from

Cn+1 = Cn ∩ {z ∈ E : 〈z, T ∗Ind(n)JEInd(n)
(yn − zn)〉

≤ 〈zn, JEInd(n)
(yn − zn)〉+ µnεn}

that Cn+1 is a closed and convex subset of E. Thus, we can conclude that Cn is a
closed and convex subset of E for all n ≥ 0.

We next prove that Ω ⊂ Cn for all n ≥ 0. Obviously, C0 = E ⊃ Ω. Suppose that
Ω ⊂ Cn for some n ≥ 0. Take any p ∈ Ω, that is, Tip ∈ Zer(Ai) for all i = 0, 1, . . . , N .
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It follows from 0 ∈ AInd(n)(TInd(n)p),

1

µn
JEInd(n)

(yn − zn) ∈ AεnInd(n)(zn)

and the definition of AεnInd(n) that

〈TInd(n)p− zn,−
1

µn
JEInd(n)

(yn − zn)〉 ≥ −εn.

This is equivalent to

〈TInd(n)p− zn, JEInd(n)
(yn − zn)〉 ≤ εnµn.

Combining this with p ∈ Ω ⊂ Cn, we obtain

p ∈ Cn+1 = Cn ∩ {z ∈ E : 〈TInd(n)z − zn, JEInd(n)
(yn − zn)〉 ≤ µnεn}.

This implies that Ω ⊂ Cn+1. Thus, using mathematical induction, we infer that
Ω ⊂ Cn for all n ≥ 0.

Consequently, for each n, Cn is a nonempty, closed and convex subset of E, and
hence the nearest point projection of x0 onto Cn always exists, that is, the sequence
{xn} is well defined, as claimed.
Claim 2. The sequence {xn} is bounded. Indeed, for each p ∈ Ω, it follows from
p ∈ Cn and xn = PCnx0 that

‖xn − x0‖ ≤ ‖p− x0‖. (3.6)

This implies that the sequence {xn} is bounded, as claimed.
Claim 3. The sequence {xn} converges strongly to some point q ∈ E.

For every m ≥ n, it follows from xm = PCm
x0 ∈ Cm ⊂ Cn, xn = PCn

x0 ∈ Cn
and the convexity of Cn that (xn + xm)/2 ∈ Cn. Let r = supn{‖xn − x0‖} < ∞.
Using xn = PCnx0 and applying Lemma 2.3 to k = 2, t = 1/2, and x = xn − x0

and y = xm − x0, we see that there exists a strictly increasing convex function
gr : R+ → R+ such that gr(0) = 0 and

‖xn − x0‖2 ≤
∥∥∥∥xn + xm

2
− x0

∥∥∥∥2

=

∥∥∥∥1

2
(xn − x0) +

1

2
(xn+1 − x0)

∥∥∥∥2

≤ 1

2
‖xn − x0‖2 +

1

2
‖xn+1 − x0‖2 −

1

4
gr(‖xm − xn‖).

This implies that

1

2
gr(‖xm − xn‖) ≤ ‖xm − x0‖2 − ‖xn − x0‖2. (3.7)

This, in its turn, implies that ‖xn+1 − x0‖ ≥ ‖xn − x0‖ for all n ≥ 0, that is, the
sequence {‖xn − x0‖} is decreasing. Combining this with the boundedness of the
sequence {xn}, we infer that there exists the finite limit limn→∞ ‖xn−x0‖ = l. Thus,
it follows from (3.7) and the properties of the function gr that ‖xn+1 − xn‖ → 0 as
n,m→∞. Hence, {xn} is a Cauchy sequence. Since E is a Banach space, it follows
that the sequence {xn} converges strongly to some point q ∈ E, as claimed.
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Claim 4. limn→∞ ‖zn − yn‖ = 0.
It follows from the strong convergence of the sequence {xn} that ‖xn+1−xn‖ → 0.

So, by an argument similar to the one employed in the proof of Claim 5 in Theorem
3.2, we can now finish the proof of this claim.
Claim 5. limn→∞ xn = PΩx0.

Using the fact that xn → q and an argument similar to the one used in the proof
of Claim 6 of Theorem 3.2, we obtain that q ∈ Ω. It now follows from (3.6) that

‖x0 − q‖ ≤ ‖x0 − p‖, ∀p ∈ Ω.

This inequality implies that q = x† = PΩx0, as claimed.
This completes the proof of the theorem. �

Remark 3.5. We can prove the strong convergence of the sequence {xn} generated
by Algorithm 3 in another way as follows. Since Cn+1 ⊂ Cn and Cn ⊃ Ω 6= ∅ for
all n ≥ 0, there exists the limit of the sequence {Cn} in the sense of Mosco and
M -limn→∞ Cn = C = ∩∞n=1Cn (see, for example, [43, Remark 2.1]). Thus the se-
quence {xn} generated by xn = PCn

x0 converges strongly to q = PCx0 (see, for
example, [38, Theorem 3.2]).

In Theorem 3.4, if εn = 0 for all n, then we have the following algorithm for solving
Problem (SCZPPMOS).

Algorithm 4 The shrinking projection algorithm for solving Problem (SCZPPMOS)
with εn = 0

For any initial guess x0 ∈ E, let C0 = E and define the sequence {xn} as follows:
Step 1 Compute yn = TInd(n)xn.

Step 2 Compute zn = Q
AInd(n)
µn (yn).

Step 3 Define the subset Cn+1 by

Cn+1 = {z ∈ Cn : 〈TInd(n)z − zn, JEInd(n)
(yn − zn)〉 ≤ 0}.

Step 4 Compute xn+1 = PCn+1
x0, n ≥ 0, and go to Step 1.

Corollary 3.6. If condition (C1) is satisfied, then the sequence {xn} generated by
Algorithm 4 converges strongly to PΩx0.

4. Applications

In this section we introduce some applications of our main results. They involve the
split minimum point problem and the split feasibility problem with multiple output
sets.

4.1. Split minimum point problem. Let E be a Banach space and let
f : E → (−∞,∞] be a proper, lower semicontinuous and convex function. Re-
call that the subdifferential of f is a set-valued mapping ∂f : E ⇒ E∗ which is
defined by

∂f(x) := {g ∈ E∗ : f(y)− f(x) ≥ 〈y − x, g〉 ∀y ∈ E}
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for all x ∈ E. It is well known that ∂f is a maximal monotone operator (see, for
example, [34]) and that x0 ∈ arg minE f(x) if and only if ∂f(x0) 3 0.

Now, let E be a uniformly convex and smooth Banach space and let Ei, i =
1, 2, . . . , N , be smooth Banach spaces. Let f : E → (−∞,∞] and fi : Ei →
(−∞,∞], i = 1, 2, . . . , N , be proper, lower semicontinuous and convex functions. Let
Ti : E → Ei, i = 1, 2, . . . , N , be bounded linear operators. Suppose that

ΩSMPP := arg min
E

f(x)
⋂(
∩Ni=1 T

−1
i (arg min

Ei

fi(x))
)
6= ∅.

We consider the following problem:

Find an element in ΩSMPP . (4.1)

Let E0 = E, f0 = f and T0 = IE . It follows from Algorithm 1 and Algorithm 3
that we have the following two algorithms for solving Problem (4.1).

Algorithm 5 The hybrid projection algorithm for solving Problem (4.1)

For any initial guess x0 ∈ E, define the sequence {xn} as follows:
Step 1 Compute yn = TInd(n)xn.
Step 2 Define an element zn by

0 ∈ JEInd(n)
(zn − yn) + µn∂

εnfInd(n)(zn).

Step 3 Define the subsets Cn and Qn by

Cn = {z ∈ E : 〈TInd(n)z − zn, JEInd(n)
(yn − zn)〉 ≤ 0},

Qn = {z ∈ E : 〈z − xn, JE(x0 − xn)〉 ≤ 0}.
Step 4 Compute xn+1 = PCn∩Qnx0, n ≥ 0, and go to Step 1.

Algorithm 6 The shrinking projection algorithm for solving Problem (4.1)

For any initial guess x0 ∈ E, let C0 = E and define the sequence {xn} as follows:
Step 1 Compute yn = TInd(n)xn.
Step 2 Define an element zn by

0 ∈ JEInd(n)
(zn − yn) + µn∂

εnfInd(n)(zn).

Step 3 Define the subset Cn+1 by

Cn+1 = {z ∈ Cn : 〈TInd(n)z − zn, JEInd(n)
(yn − zn)〉 ≤ 0}.

Step 4 Compute xn+1 = PCn+1
x0, n ≥ 0, and go to Step 1.

Remark 4.1. If εn = 0 for all n, then the element zn in Step 2 of Algorithm 5 and
Algorithm 6 is defined by

zn = arg min
EInd(n)

{
fInd(n)(y) +

1

2µn
‖y − yn‖2

}
.
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The strong convergence of the sequences generated by Algorithm 5 and Algorithm
6 is established in the following theorem.

Theorem 4.2. If the sequences {µn} and {εn} satisfy conditions (C1) and (C2), then
the sequence {xn} generated by either Algorithm 5 or Algorithm 6 converges strongly
to PΩSMPP x0.

4.2. Split feasibility problem. Let C be a nonempty, closed and convex subset of
E. Let iC be the indicator function of C, that is,

iC(x) =

{
0, if x ∈ C,
∞, if x /∈ C.

It is not difficult to see that iC is a proper, semicontinuous and convex function.
Therefore its subdifferential ∂iC is a maximal monotone operator (see, for example,
[34]). It is known that

∂iC(u) = N(u,C) = {f ∈ E∗ : 〈y − u, f〉 ≤ 0 ∀y ∈ C},

where N(u,C) is the normal cone of C at u.
We denote the metric resolvent of ∂iC by Q∂iCr , where r > 0. Suppose u = Q∂iCr x

for x ∈ E, that is,

JE(x− u)

r
∈ ∂iC(u) = N(u,C).

Then we have

〈y − u, JE(x− u)〉 ≤ 0

for all y ∈ C. Using Lemma 2.4, we see that u = PCx.
Let E be a uniformly convex and smooth Banach space, and let Ei, i = 1, 2, . . . , N ,

be smooth Banach spaces. Let L and Li be nonempty, closed and convex subsets of
E and Ei, i = 1, 2, . . . , N , respectively. Let Ti : E → Ei, i = 1, 2, . . . , N , be bounded
linear operators. Suppose that

ΩSFP := L
⋂(
∩Ni=1 T

−1
i (Li)

)
6= ∅.

We consider the following problem:

Find an element in ΩSFP . (4.2)

Let E0 = E, L0 = L, and T0 = IE . Using Algorithm 3 and Algorithm 4, we arrive
at the following two algorithms for solving Problem (4.2).

The strong convergence of the sequence {xn} generated by either Algorithm 7 or
8 is provided by the following theorem.

Theorem 4.3. The sequence {xn} generated by either Algorithm 7 or Algorithm 8
converges strongly to PΩSFP x0.
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Algorithm 7 The hybrid projection algorithm for solving Problem (SCZPPMOS)
with εn = 0

For any initial guess x0 ∈ E, define the sequence {xn} as follows:
Step 1 Compute yn = TInd(n)xn.
Step 2 Compute zn = PLInd(n)

(yn).
Step 3 Define the subsets Cn and Qn by

Cn = {z ∈ E : 〈TInd(n)z − zn, JEInd(n)
(yn − zn)〉 ≤ 0},

Qn = {z ∈ E : 〈z − xn, JE(x0 − xn)〉 ≤ 0}.
Step 4 Compute xn+1 = PCn∩Qnx0, n ≥ 0, and go to Step 1.

Algorithm 8 The shrinking projection algorithm for solving Problem (SCZPPMOS)
with εn = 0

For any initial guess x0 ∈ E, let C0 = E and define the sequence {xn} as follows:
Step 1 Compute yn = TInd(n)xn.
Step 2 Compute zn = PLInd(n)

(yn).
Step 3 Define the subset Cn+1 by

Cn+1 = {z ∈ Cn : 〈TInd(n)z − zn, JEInd(n)
(yn − zn)〉 ≤ 0}.

Step 4 Compute xn+1 = PCn+1x0, n ≥ 0, and go to Step 1.

5. Numerical experiments

In this section our algorithms are implemented in MATLAB 14a running on
DESKTOP-9RLTPS0, Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz with 2.11 GHz
and 8GB RAM.

We consider the split feasibility problem with multiple output sets in a finite di-
mensional Euclidean space and compare our new algorithms (Algorithm 7 and Algo-
rithm 8) with our previous algorithms (Algorithms (1.5) and (1.6) in [33], and the
algorithms defined by Corollaries 4.3 and 4.4 in [28]).

Let Li, i = 0, 1, 2, 3, be closed and convex subsets of R100, R200, R300 and R400,
respectively. Suppose that the subset Li is defined by Li = {x ∈ R100(i+1) : 〈ai, x〉 ≤
bi}, where the coordinates of the vector ai and the real number bi are chosen randomly
in the closed intervals [10, 50] and [0, 0.5], respectively, for all i = 0, 1, 2, 3.

Let Ti : R100 → R100(i+1), i = 1, 2, 3, be bounded linear operators the elements of
their representing matrices are generated randomly in the closed interval [−5, 5].

Since 0 ∈ ΩSFP , it is easy to check that ΩSFP = L0 ∩ (∩3
i=1T

−1
i (Li)) 6= ∅.

The control parameters for each algorithm (iterative method) are chosen as follows.

• Algorithm A: Algorithm 7.
• Algorithm B: Algorithm 8.
• Algorithm C (The iterative method (1.5) in [24]):

γn =
1

5(‖T1‖2 + ‖T2‖2 + ‖T3‖2)
, for all n ≥ 0.
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Table 1. Table of numerical results

ε = 10−3 ε = 10−4

Algorithms Σn n Σn n
Algorithm A 8.118826× 10−4 59 6.354513× 10−5 71
Algorithm B 2.340168× 10−25 4 2.340168× 10−25 4
Algorithm C 9.916995× 10−4 1040 9.851878× 10−5 1228
Algorithm D 9.980770× 10−4 1105 9.861496× 10−5 1159
Algorithm E 9.719251× 10−4 134 9.847986× 10−5 152
Algorithm F 9.110554× 10−4 112 9.909748× 10−5 132

• Algorithm D (The iterative method (1.6) in [24]):

γn =
1

5(‖T1‖2 + ‖T2‖2 + ‖T3‖2)
, αn = (n+ 1)−0.5

for all n ≥ 0, and f(x) = 0.85x for all x ∈ R10.
• Algorithm E (The iterative method in Corollary 4.3 of [28]): βi,n = 0.25,
θi,n = 10−3, αn = (n + 1)−0.5 for all i = 0, 1, 2, 3 and for all n ≥ 0, and
f(x) = 0.85x for all x ∈ R10.
• Algorithm F (The iterative method in Corollary 4.4 of [28]): θi,n = 10−3,
αn = (n + 1)−0.5 for all i = 0, 1, 2, 3 and for all n ≥ 0, and f(x) = 0.85x for
all x ∈ R10.

Using the initial guess u0, the coordinates of which are randomly generated in the
closed interval [−50, 50], and the stopping rule Σn < ε to stop the iterative process,
where

Σn =
1

4
(‖un − PL0

un‖2 + ‖T1un − PL1
T1un‖2

+ ‖T2un − PL2T2un‖2 + ‖T3un − PL3T3un‖2)

and ε is a given error, we obtain the following table of numerical results.
The behavior of the function Σn in Table 1 is described in the figures below

(Figure 1 and Figure 2).
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