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1. Problem description

The concept of monotonicity is a valuable tool in the study of problems associated
with optimization, equilibrium point, variational inequality, convex analysis, partial
differential equations, game theory, etc. In particular, the inclusion problem

finding x ∈ D(A) such that 0 ∈ A(x), (1.1)

plays a fundamental role in the monotone operator theory.
There are basically two problems associated with the monotone inclusion problem

(1.1), as follows.

• To give conditions for the existence and boundedness of solutions to monotone
inclusion problem (1.1).
• To design algorithms for approximating solutions of the monotone inclusion

problem (1.1), whenever those exist.

The design of algorithms to approximate the zeros of monotone operators has al-
ways been of interest to many authors in Hilbert spaces, Banach spaces, Hadamard
spaces, etc.; see, for example, [7, 9, 14, 16, 19, 21, 24, 26, 28, 29, 30] and references
therein. The conditions for the existence and boundedness of solutions to monotone
inclusion problem (1.1) have been investigated by many authors but not to the extent
of designing an algorithm to approximate the solutions of the monotone inclusion
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problem (1.1), (see, [3, 9, 14, 19, 22, 33]). Recently, Zhang et al. [33], using the
coercivity conditions introduced in [6] and [11], proved that the coercivity condition
A (see, [33, Section 2]) is a necessary and sufficient condition for a solution of the
inclusion problem (1.1) in the setting of Hilbert spaces. They also showed the coerciv-
ity condition B (see, [33, Section 2]) is equivalent to the boundedness of the solution
set of the inclusion problem (1.1) if the domain of the maximal monotone operator
is convex. Very recently, in the setting of Hadamard manifolds, Ansari and Babu [3]
considered the coercivity conditions (I) and (II) (see, [3, Section 3]) which respectively
are equivalent to the nonemptiness of solution set and the boundedness of solution
set of the inclusion problem (1.1).

Motivated and inspired by the research going on in this direction, we propose the
coercivity conditions R1 and R2 (see Section 3 below) in Hadamard spaces which
are studied in [3, 33]. The equivalence between nonemptiness of the solution set of
the inclusion problem (1.1) and the coercivity condition R1 is established. Moreover,
we show the coercivity condition R2 is a sufficient and necessary condition for the
boundedness of the solution set of the inclusion problem (1.1). Some applications in
convex minimization and fixed point theory are also presented to support the main
results.
Our results improve and extend the previous corresponding results. These results
improve and generalize the results of Ansari and Babu [3] and Zhang et al. [33] from
Hilbert spaces and Hadamard manifolds to Hadamard spaces and also the convexity
condition on the domain of the maximal monotone operator in [33, Theorem 4.1] is
removed, (see Section 5 below).

2. Basic definitions and preliminaries

Let (X, d) be a metric space, x, y ∈ X and I = [0, d(x, y)]. A geodesic path
connecting x to y in X is an isometry c : I −→ X such that c(0) = x, c(d(x, y)) = y
and d(c(a), c(b)) = |a − b| for all a, b ∈ I. The image of a geodesic c is called a
geodesic segment connecting x and y. When it is unique, this geodesic is denoted
by [x, y]. We denote the unique point z ∈ [x, y] such that d(x, z) = td(x, y) and
d(y, z) = (1 − t)d(x, y), by (1 − t)x ⊕ ty, where 0 ≤ t ≤ 1. The metric space (X, d)
is called a geodesic space if x and y are joined by a geodesic, for each x, y ∈ X.
The (X, d) is said to be uniquely geodesic if there is exactly one geodesic segment
connecting x and y for each x, y ∈ X. A subset K of X is called convex if [x, y] ⊆ K
for all x, y ∈ K.

Definition 2.1. [4, 8] A non-positive curvature metric space or a CAT(0) space (in
honour of E. Cartan, A.D. Alexandrov and V.A. Toponogov) is a geodesic space
(X, d) which comes up to the following (CN) inequality:

d2(tx⊕ (1− t)y, z) ≤ td2(x, z) + (1− t)d2(y, z)− t(1− t)d2(x, y), (2.1)

for all x, y, z ∈ X and t ∈ [0, 1].

In particular, if x, y, z, w are points in X and t ∈ [0, 1], then

• d(tx⊕ (1− t)y, z) ≤ td(x, z) + (1− t)d(y, z),
• d(tx⊕ (1− t)y, tz ⊕ (1− t)w) ≤ td(x, z) + (1− t)d(y, w),
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It is known that a CAT(0) space is a uniquely geodesic space.
A complete CAT(0) space is called a Hadamard space. A Hadamard space X is a

flat Hadamard space if and only if the inequality in (2.1) is an equality. Every closed
convex subset of a Hilbert space is a flat Hadamard space. For other equivalent
definitions and basic properties, we refer the reader to the standard texts such as
[4, 8, 10, 15, 18]. The following are the main examples of Hadamard spaces:
Hilbert spaces, Hadamard manifolds (i.e. simply connected complete Riemannian
manifolds with non-positive sectional curvature which can be of infinite dimension),
R-trees as well as examples that have been built out of given Hadamard spaces such
as closed convex subsets, direct products, warped products, L2-spaces, direct limits,
and Reshetnyak’s gluing (see [31], Section 3). Berg and Nikolaev [5] have introduced
the concept of quasilinearization for the CAT(0) space X. They denoted a pair

(a, b) ∈ X ×X by
−→
ab and called it a vector. Then the quasilinearization map 〈., .〉 :

(X ×X)× (X ×X)→ R is defined by

〈
−→
ab,
−→
cd〉 = 1

2 (d2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)), (a, b, c, d ∈ X).

It can be easily verified that 〈
−→
ab,
−→
ab〉 = d2(a, b), 〈

−→
ba,
−→
cd〉 = −〈

−→
ab,
−→
cd〉 and 〈

−→
ab,
−→
cd〉 =

〈−→ae,
−→
cd〉 + 〈

−→
eb,
−→
cd〉 are satisfied for all a, b, c, d, e ∈ X. Also, we can formally add

compatible vectors, more precisely −→ac +
−→
cb =

−→
ab, for all a, b, c ∈ X.

Lemma 2.1. [32] Let (X, d) be a CAT(0) space. For any t ∈ [0, 1] and u, v ∈ X, let
z = tu⊕ (1− t)v. Then, for all x, y ∈ X:

(i) 〈−→zx,−→zy〉 ≤ t〈−→ux,−→zy〉+ (1− t)〈−→vx,−→zy〉
(ii) 〈−→zx,−→uy〉 ≤ t〈−→ux,−→uy〉+ (1− t)〈−→vx,−→uy〉

We say that X satisfies the Cauchy-Schwartz inequality if

〈
−→
ab,
−→
cd〉 ≤ d(a, b)d(c, d), (a, b, c, d ∈ X).

Berg and Nikolaev [5] have proved the following result.

Theorem 2.1. [5, Corollary 3] A geodesic metric space is a CAT(0) space if and only
if it satisfies the Cauchy-Schwartz inequality.

Ahmadi Kakavandi and Amini [2] have introduced the concept of dual space of a
Hadamard space X, based on a work of Berg and Nikolaev [5], as follows.
Consider the map Θ : R×X ×X → C(X,R) defined by

Θ(t, a, b)(x) = t〈
−→
ab,−→ax〉, (t ∈ R, a, b, x ∈ X),

where C(X,R) is the space of all continuous real-valued functions on X. Then the
Cauchy-Schwartz inequality implies that Θ(t, a, b) is a Lipschitz function with Lips-
chitz semi-norm L(Θ(t, a, b)) = |t|d(a, b), (t ∈ R, a, b ∈ X), where

L(ϕ) = sup

{
ϕ(x)− ϕ(y)

d(x, y)
: x, y ∈ X,x 6= y

}
is the Lipschitz semi-norm for any function ϕ : X → R. A pseudometric D on
R×X ×X is defined by

D((t, a, b), (s, c, d)) = L(Θ(t, a, b)−Θ(s, c, d)), (t, s ∈ R, a, b, c, d ∈ X).
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For a Hadamard space (X, d), the pseudometric space (R × X × X,D) can be con-
sidered as a subspace of the pseudometric space of all real-valued Lipschitz functions
(Lip(X,R), L).

Lemma 2.2. [2, Lemma 2.1] D((t, a, b), (s, c, d)) = 0 if and only if

t〈
−→
ab,−→xy〉 = s〈

−→
cd,−→xy〉, for all x, y ∈ X.

By Lemma 2.2, D induces an equivalence relation on R×X ×X, where the equiv-
alence class of (t, a, b) is

[t
−→
ab] = {s

−→
cd : D((t, a, b), (s, c, d)) = 0}.

The set X∗ = {[t
−→
ab] : (t, a, b) ∈ R × X × X} is a metric space with metric

D([t
−→
ab], [s

−→
cd]) := D((t, a, b), (s, c, d)), which is called the dual space of (X, d). It

is clear that [−→aa] = [
−→
bb] for all a, b ∈ X. Fix o ∈ X, we write 0 = [−→oo] as the zero of

the dual space. In [2], it is shown that the dual of a closed and convex subset of Hilbert

space H with nonempty interior is H and t(b − a) ≡ [t
−→
ab] for all t ∈ R, a, b ∈ H.

Note that X∗ acts on X ×X by

〈x∗,−→xy〉 = t〈
−→
ab,−→xy〉, (x∗ = [t

−→
ab] ∈ X∗, x, y ∈ X).

Also, we use the following notation:

〈αx∗ + βy∗,−→xy〉 := α〈x∗,−→xy〉+ β〈y∗,−→xy〉, (α, β ∈ R, x, y ∈ X, x∗, y∗ ∈ X∗).

Lemma 2.3. [17, Lemma 3.3] Let X be a Hadamard space with dual X∗, then

|〈x∗ − y∗,−→yx〉| ≤ D(x∗, y∗)d(x, y), for all x, y ∈ X, x∗, y∗ ∈ X∗.

A notion of convergence in Hadamard spaces is ∆-convergence which was intro-
duced by Lim [25] and has been studied by many authors (e.g. [1, 2, 13] and references
therein).

Ahmadi Kakavandi [1] proved the following characterization for ∆-convergence.

Theorem 2.2. [1, Theorem 2.6] Let (X, d) be a Hadamard space, (xn) be a sequence
in X and x ∈ X. Then (xn) ∆-converges to x if and only if

lim sup
n→∞

〈−−→xxn,−→xy〉 ≤ 0, for all y ∈ X.

Obviously, by the Cauchy-Schwartz inequality, strong convergence implies ∆-
convergence.

Lemma 2.4. [13] Every bounded sequence in a complete CAT(0) space has a ∆-
convergence subsequence.

Proposition 2.3. [23, Proposition 5.2] If a sequence (xn) in a Hadamard space
(X, d), ∆-converges to x ∈ X, then

x ∈
⋂∞
k=1 conv{xk, xk+1, ...},

where conv(A) =
⋂
{B : B ⊇ A, where B is closed and convex} for any A ⊂ X.

Proposition 2.3 states that every closed convex subset of X is ∆-closed.

Definition 2.2. Let K be a nonempty subset of an Hadamard space X and T :
K −→ K be a mapping. The mapping T is called
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• Nonexpansive if d(Tx, Ty) ≤ d(x, y), for all x, y ∈ K.

• Firmly nonexpansive if d2(Tx, Ty) ≤ 〈
−−−→
TxTy,−→xy〉, for all x, y ∈ K.

The fixed point set of T is denoted by F (T ), (i.e. F (T ) = {x ∈ K : x = Tx}). It
is well-known that if T is a nonexpansive mapping on subset K of CAT(0) space X
then F (T ) is closed and convex.

Remark 2.1. From the Cauchy-Schwartz inequality, it is clear that the class of
nonexpasive mappings includes the class of firmly nonexpansive mappings.

Lemma 2.5. [12] Let X be a complete CAT(0) space and T : X −→ X be a non-
expansive mapping, then the conditions that (xn) ∆-converges to x and (d(xn, Txn))
converges strongly to 0, imply that x = Tx.

Definition 2.3. Let X be a Hadamard space with dual space X∗. The multi-valued
operator A : X → 2X

∗
with domain D(A) := {x ∈ X : A(x) 6= ∅}, range R(A) :=⋃

x∈X Ax, A−1(x∗) := {x ∈ D(A) : x∗ ∈ Ax} and graph gra(A) := {(x, x∗) ∈ X×X∗ :
x ∈ D(A), x∗ ∈ Ax}, is called

• monotone if for any x, y ∈ D(A) and for all x∗ ∈ Ax, y∗ ∈ Ay,

〈x∗ − y∗,−→yx〉 ≥ 0,

• pseudomonotone if for any x, y ∈ D(A) and for all x∗ ∈ Ax, y∗ ∈ Ay,

〈x∗,−→xy〉 ≥ 0 implies 〈y∗,−→yx〉 ≤ 0.

In the following, we present some properties of the resolvent operator of a monotone
operator in CAT(0) spaces which were given in [21].

Definition 2.4. [21, Definition 3.4] Let X be a Hadamard space with dual X∗,
λ > 0 and A : X → 2X

∗
be a multi-valued operator. The resolvent and the Yosida

approximation of order λ of the operator A are the multi-valued mappings JAλ : X →
2X and Aλ : X → 2X

∗
defined respectively by JAλ (x) := {z ∈ X | [ 1λ

−→zx] ∈ Az} and

Aλ(x) := {[ 1λ
−→yx] | y ∈ JAλ (x)}.

Theorem 2.4. [21, Theorem 3.9] Let X be a CAT(0) space and A : X → 2X
∗
.

Suppose JAλ and Aλ are respectively the resolvent and the Yosida approximation of
order λ of the operator A. We have:

(i) For any λ > 0, R(JAλ ) ⊂ D(A), F (JAλ ) = A−1(0) = A−1λ (0), where R(JAλ ) is
the range of JAλ .

(ii) If JAλ is single-valued, then Aλ is single-valued and Aλ(x) ⊂ A(JAλ (x)).
(iii) If A is monotone, then JAλ is a single-valued and firmly nonexpansive map-

ping.
(iv) If A is monotone, then Aλ is a monotone operator.

(v) If A is monotone and 0 < λ ≤ µ, then d2(JAλ x, J
A
µ x) ≤ µ−λ

µ+λd
2(x, JAµ x), which

implies d(x, JAλ x) ≤ 2d(x, JAµ x).

Now, we present the following remark which is essential for getting to main results.

Remark 2.2. Let X be a Hadamard space with dual X∗, A : X → 2X
∗

be a
monotone operator and λ > 0. Then
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(i) Remark 2.1, Lemma 2.5 and parts (i) and (iii) of Theorem 2.4 imply that if
the sequence (xn) is ∆-convergent to x and (d(xn, J

A
λ xn)) converges strongly

to 0, then x ∈ A−1(0).
(ii) Definition 2.4 and parts (ii) and (iii) of Theorem 2.4 imply that if x ∈ D(JAλ ),

then [ 1λ
−−−−−→
JAλ (x)x] ∈ A(JAλ (x)).

(iii) Since the fixed point set of a nonexpansive mapping is closed and convex,
Remark 2.1 and part (i) of Theorem 2.4 imply A−1(0) is closed and convex.
Therefore, by Proposition 2.3, A−1(0) is ∆-closed.

3. Coercivity conditions

Let (X, d) be a Hadamard space with dual X∗ and A : X → 2X
∗

be an operator
with domain D(A). Suppose δ > 0 and z ∈ X. We denote by Bδ[z] the closed ball at
z with radius δ and Bδ(z) the open ball at z with radius δ which are defined by

Bδ[z] := {x ∈ X : d(x, z) ≤ δ} and Bδ(z) := {x ∈ X : d(x, z) < δ}.
We now propose the following coercivity conditions for the operator A:

R1: there exists δ > 0 and z ∈ X such that for every x ∈ D(A) − Bδ[z], there
exists y ∈ D(A) ∩Bd(x,z)(z) satisfying infx∗∈Ax〈x∗,−→yx〉 ≥ 0.

R2: there exists δ > 0 and z ∈ X such that for every x ∈ D(A) − Bδ[z], there
exists y ∈ D(A) ∩Bd(x,z)(z) satisfying supy∗∈Ay〈y∗,−→yx〉 > 0.

Proposition 3.1. Let X be a Hadamard space with dual X∗ and A : X → 2X
∗

be a
pseudomonotone operator. Then R2 implies R1.

Proof. If R2 holds, then there exists δ > 0 and z ∈ X such that for every x ∈ D(A)−
Bδ[z], there exists y ∈ D(A) ∩ Bd(x,z)(z) satisfying supy∗∈Ay〈y∗,−→yx〉 > 0. By pseu-

domonotonicity of A, we get supx∗∈Ax〈x∗,−→xy〉 ≤ 0 which implies infx∗∈Ax〈x∗,−→yx〉 ≥ 0.
Hence R1 is established. �

Remark 3.1. Let (X, d) be a Hadamard space with dual X∗ and A : X → 2X
∗

be
an operator with domain D(A). Then

• Clearly, monotonicity of the operator A implies pseudomonotonicity of A.
Therefore, Proposition 3.1 implies that if A is a monotone operator, then R2
implies R1.
• If D(A) = X, then, obviously, the coercivity conditions (I) and (II) in [3,

Section 3] imply R1 and R2, respectively.
• It can be easily seen that the coercivity conditions A and B in [33, Section 2]

imply R1 and R2, respectively.

4. Existence of solutions

Let X be a Hadamard space with dual X∗. We say that the operator A : X → 2X
∗

satisfies the range condition if for every λ > 0, D(JAλ ) = X, (see [21]). Minty in
[27] proved that if A is a maximal monotone operator on the Hilbert space H then
R(I + λA) = H, ∀λ > 0, where I is the identity operator. Thus, every maximal
monotone operator A on a Hilbert space satisfies the range condition. As considered
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in [3, 24], if A is a maximal monotone operator on a Hadamard manifold, then A
satisfies the range condition. For presenting some examples of monotone operators
that satisfy the range condition in CAT(0) spaces, we refer to [21, Sections 5 and 6].

The following lemma proves the demiclosedness of the monotone operator A in
Hadamard spaces.

Lemma 4.1. Let X be a Hadamard space with dual X∗ and A : X → 2X
∗

be a
monotone operator that satisfies the range condition. Suppose (xn, x

∗
n) ∈ gra(A) for

all n ∈ N such that (xn) is ∆-convergent to p ∈ X and (x∗n) converges to 0 ∈ X∗ with
respect to the metric D. Then p ∈ A−1(0).

Proof. Let λ > 0 be fixed. Set zn = JAλ (xn), for all n ∈ N. Therefore [ 1λ
−−−→znxn] ∈

A(zn), for all n ∈ N. If there exists M > 0 such that zn = xn for all n > M , then
part (iii) of Remark 2.2 implies p ∈ A−1(0). Otherwise, by monotonecity of A, we
get

0 ≤ 〈x∗n − [
1

λ
−−−→znxn],−−−→znxn〉.

This, together with Lemma 2.3, yields that

1
λd

2(zn, xn) ≤ D(x∗n,0)d(zn, xn),

from where

1
λd(zn, xn) ≤ D(x∗n,0).

Therefore, by the assumptions, we obtain

limn→∞ d(JAλ (xn), xn) = limn→∞ d(zn, xn) = 0.

Now, by part (i) of Remark 2.2, we conclude p ∈ A−1(0). �

In the following theorem, we prove that the coercivity condition R1 is a sufficient
and necessary condition for the nonemptiness of the solution set of the inclusion
problem (1.1).

Theorem 4.1. Let X be a Hadamard space with dual X∗ and A : X → 2X
∗

be a
monotone operator satisfying the range condition. Then the coercivity condition R1
holds if and only if A−1(0) 6= ∅, (i.e. there exists p ∈ D(A) satisfying 0 ∈ A(p)).

Proof. Assume that the coercivity condition R1 holds. Then there exists δ > 0 and
z ∈ X such that for every x ∈ D(A) − Bδ[z], there exists y ∈ D(A) ∩ Bd(x,z)(z)
satisfying infx∗∈Ax〈x∗,−→yx〉 ≥ 0. By the range condition and part (iii) of Theorem
2.4, we can construct the sequence (xn) in X such that xn = JAn (z), for all n ∈ N.
Then [ 1n

−−→xnz] ∈ A(xn), for all n ∈ N and xn ∈ D(A), for all n ∈ N. Now, we show
that the sequence (xn) is bounded. For this, suppose there exists s ∈ N such that
δ < d(xs, z). Then, xs ∈ D(A) − Bδ[z]. Using the coercivity condition R1, there
exists y ∈ D(A) ∩ Bd(xs,z)(z) such that 0 ≤ infx∗∈Axs〈x∗,−→yxs〉. This together with

[ 1s
−→xsz] ∈ A(xs) implies

0 ≤ 1

s
〈−→xsz,−→yxs〉. (4.1)
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On the other hand, we have

1

s
〈−→xsz,−→yxs〉 =

1

s
〈−→xsz,−→yz〉+

1

s
〈−→xsz,−→zxs〉

≤ 1

s
d(xs, z)d(y, z)− 1

s
d2(xs, z)

= −1

s
d(xs, z)(d(xs, z)− d(y, z))

< 0,

which contradicts (4.1). Therefore, d(xn, z) ≤ δ, for all n ∈ N. Hence, (xn) is
bounded. Hence,

lim
n→∞

D([
1

n
−−→xnz],0) = lim

n→∞

1

n
d(xn, z) = 0. (4.2)

Moreover, by Lemma 2.4, there exists a subsequence (xnk) of (xn) such that (xnk)
is ∆-convergent to an element p in X and for all k ∈ N, we have (xnk , [

1
nk

−−→xnkz]) ∈
gra(A). Hence, by (4.2) and Lemma 4.1, p ∈ A−1(0).
Now assume that A−1(0) 6= ∅. Let p ∈ A−1(0). By monotonicity of A, we get

〈x∗,−→px〉 ≥ 0, for all x ∈ D(A), x∗ ∈ A(x) (4.3)

Let z ∈ X be fixed. Set δ = d(p, z)+1 and y = p. Then for every x ∈ D(A)−Bδ[z]
and x∗ ∈ A(x), we have

d(y, z) = d(p, z) < d(p, z) + 1 = δ < d(x, z),

which implies y ∈ D(A) ∩ Bd(x,z)(z) and by (4.3), 〈x∗,−→yx〉 ≥ 0, ∀ x∗ ∈ A(x). Thus,

infx∗∈Ax〈x∗,−→yx〉 ≥ 0. Hence, there exists z ∈ X and 0 < δ = d(p, z) + 1 such
that for every x ∈ D(A) − Bδ[z], there exists y = p ∈ D(A) ∩ Bd(x,z)(z) satisfying

infx∗∈Ax〈x∗,−→yx〉 ≥ 0. This indicates R1 holds and completes the proof. �

Remark 4.1. By Remark 3.1, Theorem 4.1 improves the conditions in [3, Theorem1]
and generalizes [3, Theorem1] from Hadamrad manifolds to Hadamard spaces. More-
over, Theorem 4.1 improves and extends [33, Theorem 3.1] from Hilbert spaces to
Hadamard spaces.

5. Boundedness of the solution set

In the following theorem, the equivalence between coercivity condition R2 and
boundedness of the solution set of inclusion problem (1.1) is established without the
convexity condition on the domain of the monotone operator.

Theorem 5.1. Let X be a Hadamard space with dual X∗ and A : X → 2X
∗

be a
monotone operator that satisfies the range condition. Then the coercivity condition
R2 holds if and only if the set A−1(0) = {x ∈ D(A) : 0 ∈ Ax} is nonempty and
bounded.

Proof. Suppose the coercivity condition R2 holds. Then, by Remark 3.1 and Theorem
4.1, A−1(0) is nonempty. Suppose A−1(0) is not bounded. Then, there exists p ∈
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A−1(0) such that d(p, z) > δ. Therefore, p ∈ D(A)−Bδ[z]. Hence, by R2, for x = p,
there exists y ∈ D(A) ∩Bd(p,z)(z) satisfying

sup
y∗∈Ay

〈y∗,−→yp〉 > 0. (5.1)

On the other hand, by monotonicity of A, for all y ∈ D(A) and y∗ ∈ Ay, we have
〈y∗,−→yp〉 ≤ 0, which implies supy∗∈Ay〈y∗,−→yp〉 ≤ 0. This contradicts (5.1). Hence

A−1(0) is bounded.
Now assume that A−1(0) is nonempty and bounded and R2 does not hold. Let
p ∈ A−1(0) and δ > 0 be fixed and arbitrary. There exists x ∈ D(A)−Bδ[p] such that
supy∗∈Ay〈y∗,−→yx〉 ≤ 0, for all y ∈ D(A) ∩Bd(x,p)(p). Set λ > 0 and ut = tp⊕ (1− t)x
where t ∈ (0, 1). By Theorem 2.4, we get

d(JAλ ut, p) ≤ d(ut, p) = (1− t)d(x, p) < d(x, p),

which, by part (ii) of Remark 2.2, implies

〈
−−−−→
JAλ utut,

−−−−→
JAλ utx〉 ≤ λ sup

y∗∈A(JAλ ut)

〈y∗,
−−−−→
JAλ utx〉 ≤ 0. (5.2)

By firmly nonexpansiveness of JAλ and (5.2), we obtain

d2(JAλ ut, J
A
λ x) ≤ 〈

−−−−−−→
JAλ utJ

A
λ x,
−→utx〉

= 〈
−−−−→
JAλ utut,

−→utx〉+ 〈
−−−−→
utJ

A
λ x,
−→utx〉

= 〈
−−−−→
JAλ utut,

−−−−→
utJ

A
λ ut〉+ 〈

−−−−→
JAλ utut,

−−−−→
JAλ utx〉+ 〈

−−−−→
utJ

A
λ x,
−→utx〉

= −d2(ut, J
A
λ ut) + 〈

−−−−→
JAλ utut,

−−−−→
JAλ utx〉+ 〈

−−−−→
utJ

A
λ x,
−→utx〉

≤ −d2(ut, J
A
λ ut) + 〈

−−−−→
utJ

A
λ x,
−→utx〉,

which, by Lemma 2.1, implies

d2(ut, J
A
λ ut) ≤ 〈

−−−−→
utJ

A
λ x,
−→utx〉 − d2(JAλ ut, J

A
λ x)

≤ t〈
−−−→
pJAλ x,

−→utx〉+ (1− t)〈
−−−→
xJAλ x,

−→utx〉 − d2(JAλ ut, J
A
λ x)

≤ t(t〈
−−−→
pJAλ x,

−→px〉+ (1− t)〈
−−−→
pJAλ x,

−→xx〉)

+ (1− t)(t〈
−−−→
xJAλ x,

−→px〉+ (1− t)〈
−−−→
xJAλ x,

−→xx〉)− d2(JAλ ut, J
A
λ x)

= t2(〈
−−−→
pJAλ x,

−→px〉+ 〈
−−−→
JAλ xx,

−→px〉) + t〈
−−−→
JAλ xx,

−→xp〉 − d2(JAλ ut, J
A
λ x)

= t2d2(p, x)− td2(JAλ x, x) + t〈
−−−→
JAλ xx,

−−−→
JAλ xp〉 − d2(JAλ ut, J

A
λ x).

This, together with monotonicity of A, yields that

d2(ut, J
A
λ ut) ≤ t2d2(p, x)− td2(JAλ x, x)− d2(JAλ ut, J

A
λ x). (5.3)

Let (tn) be a sequence in (0, 1) such that tn → 0, as n→∞. Then (5.3) implies

lim
n→∞

d(utn , J
A
λ utn) = 0. (5.4)



348 SAJAD RANJBAR

On the other hand limn→∞ d(utn , x) = limn→∞ tnd(p, x) = 0 which implies (utn)
∆-converges to x, as n→∞. Therefore, by (5.4) and part (i) of Remark 2.2, we get
x ∈ A−1(0). This, together with x ∈ D(A) − Bδ[p], contradicts the boundedness of
A−1(0). Hence, the coercivity condition R2 holds. �

Remark 5.1. By Remark 3.1, Theorem 5.1 generalizes Theorem 2 of [3] and Theorem
4.1 of [33] to Hadamard spaces and improves the conditions in [3, Theorem 2] and
[33, Theorem 4.1]. In particular, this theorem shows that the convexity condition on
the maximal monotone operator’s domain in [32, Theorem 4.1] is removable.

6. Application to convex minimization

One of the most widely used examples of monotone operators that satisfies the
range condition, is subdifferential of a convex, proper and lower semicontinuous func-
tion. In [2], the subdifferential of a proper function on a Hadamard space X was
defined, as follows.

Definition 6.1. [2] Let X be a Hadamard space with dual X∗ and f : X →
(−∞,+∞] be a proper function with efficient domain D(f ) := {x : f (x ) < +∞},
then the subdifferential of f is the multi-valued function ∂f : X → 2X

∗
defined by

∂f(x) = {x∗ ∈ X∗ : f(z)− f(x) ≥ 〈x∗,−→xz〉 (z ∈ X)},
when x ∈ D(f ) and ∂f(x) = ∅, otherwise.

The following theorem shows that subdifferential of a convex, proper and lower
semicontinuous function is a monotone operator satisfies the range condition in
Hadamard spaces.

Theorem 6.1. [2, Theorem 4.2] [21, Proposition 5.2] Let f : X → (−∞,+∞] be a
proper, lower semicontinuous and convex function on a Hadamard space X with dual
X∗, then
(i) f attains its minimum at x ∈ X if and only if 0 ∈ ∂f(x).
(ii) ∂f : X → 2X

∗
is a monotone operator.

(iii) for any y ∈ X and α > 0, there exists a unique point x ∈ X such that [α−→xy] ∈
∂f(x). (i.e. D(J∂fλ ) = X, for all λ > 0).

Khatibzadeh and the author in [21, Proposition 5.3.] proved that if f : X →
(−∞,+∞] is a proper, lower semicontinuous and convex function on a Hadamard
space X with dual X∗, then

J∂fλ x = Argminz∈X{f(z) +
1

2λ
d2(z, x)}, for all λ > 0, x ∈ X.

Suppose f : X → (−∞,+∞] is a proper, lower semicontinuous and convex function
on a Hadamard space X with dual X∗. Using this together with Theorem 6.1, the
inclusion problem (1.1) in the case of A = ∂f turns into

finding x ∈ D(f), such that f(x) = min
y∈X

f(y). (6.1)

The solution set of the problem (6.1) is

(∂f)−1(0) = {x ∈ X : f(x) ≤ f(y), for all y ∈ X}.
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Using Theorems 4.1 and 5.1, the coercivity condition R1, in the case of A = ∂f , is
equivalent to the existence of a solution to the minimization problem (6.1), and the
coercivity condition R2, in the case of A = ∂f , is equivalent to boundedness of a
solution set of the minimization problem (6.1).

Corollary 6.2. Let X be a Hadamard space with dual X∗ and f : X → (−∞,+∞]
be a proper, lower semicontinuous and convex function. Then the coercivity condition
R1, in the case of A = ∂f , holds if and only if the solution set of the problem (6.1)
is nonempty, (i.e. (∂f)−1(0) 6= ∅).

Proof. Proof is deducted from Theorem 4.1 and Theorem 6.1. �

Corollary 6.3. Let X be a Hadamard space with dual X∗ and f : X → (−∞,+∞]
be a proper, lower semicontinuous and convex function. Then the coercivity condition
R2, in the case of A = ∂f , holds if and only if the solution set of the problem (6.1)
(i.e. (∂f)−1(0)) is nonempty and bounded.

Proof. Proof is deducted from Theorem 5.1 and Theorem 6.1. �

Example 6.1. Let (X, d) be a Hadamard space with dual X∗ and x0 ∈ X. Define
f : X −→ (−∞,∞] by f(x) = 1

2d
2(x, x0). Then f is proper, convex and continuous.

By Definition 6.1, for all x ∈ X, we have

∂f(x) = {x∗ ∈ X∗ : 1
2d

2(y, x0)− 1
2d

2(x, x0) ≥ 〈x∗,−→xy〉 (y ∈ X)}.
For all x ∈ X, [−−→x0x] ∈ ∂f(x). Thus, D(∂f) = X. By Theorem 6.1, the operator ∂f is
monotone and satisfies the range condition. We show that the operator ∂f satisfies
the coercivity condition R1. For this, in R1, put z = x0 and δ > 0 is fixed. Suppose
x ∈ X − Bδ[x0] is arbitrary. Choose 0 < t < 1 and set y = tx ⊕ (1 − t)x0. Then
d(y, x0) = td(x, x0) < d(x, x0), which implies y ∈ X ∩Bd(x,x0)(x0). Therefore, for all
x∗ ∈ ∂f(x), we get

〈x∗,−→xy〉 ≤ 1

2
d2(y, x0)− 1

2
d2(x, x0) < 0,

which implies infx∗∈∂f(x)〈x∗,−→yx〉 ≥ 0.

Remark 6.1. By Remark 3.1, Corollaries 6.2 and 6.3 improve and extend, respec-
tively, Theorem 3 and Theorem 4 of [3] to Hadamard spaces.

7. Application to fixed point theory

Let (X, d) be a Hadamard space with dual X∗ and T : X → X be a nonexpansive

mapping. Define A : X −→ 2X
∗

with Az = [
−−→
Tzz], then F (T ) = A−1(0) and Propo-

sition 4.2 of [20] shows the operator Az = [
−−→
Tzz] is a monotone operator. The range

condition for this operator was studied in [21].

In the case of Az = [
−−→
Tzz], the inclusion problem (1.1) turns into

finding x ∈ X, such that x ∈ F (T ). (7.1)

The solution set of the problem (6.1) is F (T ).
In the sequel, we give the consequences of Theorems 4.1 and 5.1 which state that

the coercivity condition R1, in the case of Az = [
−−→
Tzz], is a sufficient and necessary
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condition for the nonemptiness of the solution set of the fixed point problem (7.1),

(i.e. F (T )), and the coercivity condition R2, in the case of Az = [
−−→
Tzz], is equivalent

to boundedness of a solution set of the fixed point problem (7.1), (i.e. F (T )). The
following corollaries are easily derived from Theorems 4.1 and 5.1.

Corollary 7.1. Let X be a Hadamard space with dual X∗ and T : X → X be a

nonexpansive mapping. Suppose the operator A : X → 2X
∗

with Az = [
−−→
Tzz] satisfies

the range condition. Then the coercivity condition R1 holds if and only if F (T ) 6= ∅.

Corollary 7.2. Let X be a Hadamard space with dual X∗ and T : X → X be a

nonexpansive mapping. Suppose the operator A : X → 2X
∗

with Az = [
−−→
Tzz] satisfies

the range condition. Then the coercivity condition R2 holds if and only if the set
F (T ) is nonempty and bounded.

Example 7.1. Let (X, d) be a flat Hadamard space with dual X∗, x0 ∈ X and
0 < t < 1. Define T : X −→ X by Tx = tx ⊕ (1 − t)x0. Then, for all x, y ∈ X , we
obtain

d(Tx, Ty) = d(tx⊕ (1− t)x0, ty ⊕ (1− t)x0) = td(x, y) < d(x, y),

which implies T is a nonexpansive mapping. Define A : X −→ 2X
∗

by A(x) = [
−−→
Txx].

By [21, Section 6], the operator A is monotone and satisfies the range condition. We
show that the operator A satisfies the coercivity condition R2. For this, in R2, put
z = x0 and δ > 0 is fixed. Suppose x ∈ X−Bδ[x0] is arbitrary. Set y = tx⊕ (1− t)x0.
Then d(y, x0) = td(x, x0) < d(x, x0), which implies y ∈ X ∩ Bd(x,x0)(x0). On the
other hand,

2〈[
−−→
Tyy],−→yx〉 = 2〈

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(t(tx⊕ (1− t)x0)⊕ (1− t)x0)(tx⊕ (1− t)x0),

−−−−−−−−−−−−→
(tx⊕ (1− t)x0)x〉

= d2(t(tx⊕ (1− t)x0)⊕ (1− t)x0, x)

− d2(t(tx⊕ (1− t)x0)⊕ (1− t)x0, tx⊕ (1− t)x0)

− d2(tx⊕ (1− t)x0, x)

= t(1− t)2d2(x, x0) + (1− t)d2(x, x0)− t3(1− t)d2(x, x0)

− (1− t)2t2d2(x, x0)− (1− t)2d2(x, x0)

= 2t(1− t)2d2(x, x0) > 0,

which implies supy∗∈A(y)〈y∗,−→yx〉 > 0.
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