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1. Introduction

It is widely agreed that the theory and applications of differential equations with
impulsive effects are an important area of research, because it is significantly richer
than the corresponding theory of differential equations without impulsive effects. Sev-
eral models such as population, ecology, biological system, pharmacokinetics, biotech-
nology, and optimum control can be stated using impulsive differential equations. In
addition, impulsive differential equations provide for a more realistic approach to
modeling many real-world issues in areas including control theory, electronics, chem-
istry, mechanics, economics, medicine, electrical circuits, and population dynamics.
We recommend the reader to references [1, 2, 3, 15, 24, 25] for an introduction to
the general theory of impulsive differential equations, and [7, 18] for applications of
impulsive differential equations.

Many authors have investigated second-order impulsive boundary value problems
in the literature; for a list of such, see [5, 6, 9, 12, 13, 17, 16, 27, 28, 29, 30] in ref-
erences. See [12, 27] in the references for some recent studies on second-order with
m-point impulsive boundary value problems. In addition, some authors have been
interested in systems of second-order impulsive boundary value problems, for these,
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we refer to reader to [6, 9, 17, 16]. On the other hand, because of the importance of
both theory and applications, achieving optimal eigenvalue intervals for the existence
of positive solutions of iterative systems with nonlinear boundary value problems has
gained a lot of interest by an application of Guo–Krasnosel’skii fixed point theorem.
[4, 10, 14, 11, 19, 21, 20, 22, 23, 26] are a few papers in this line. However, there is no
work concerning the eigenvalues for iterative system of nonlinear second-order with
m-point impulsive boundary value problem.

Motivated by the mentioned above result, in this study, we consider the following
iterative system of nonlinear second-order with m-point impulsive boundary value
problem (IBVP):

z′′i (t) + λipi(t)gi(zi+1(t)) = 0, t ∈ J = [0, 1], 1 ≤ i ≤ n,
zn+1(t) = z1(t),

4zi|t=tk = λiIik(zi+1(tk)), t 6= tk, k = 1, 2, ..., p,

4z′i|t=tk = −λiJik(zi+1(tk)),

azi(0)− bz′i(0) =

m−2∑
j=1

αjzi(ξj),

czi(1) + dz′i(1) =

m−2∑
j=1

βjzi(ξj)

(1.1)

where J = [0, 1], t 6= tk, k = 1, 2, ..., p with 0 < t1 < t2 < ... < tp < 1. For 1 ≤ i ≤ n,
4zi|t=tk and 4z′i|t=tk represent the jump of zi(t) and z′i(t) at t = tk, i.e.,

4zi|t=tk = zi(t
+
k )− zi(t−k ), 4z′i|t=tk = z′i(t

+
k )− z′i(t−k ),

where zi(t
+
k ), z′i(t

+
k ) and zi(t

−
k ), z′i(t

−
k ) symbolize the right-hand limit and left-hand

limit of zi(t) and z′i(t) at t = tk, k = 1, 2, ..., p, respectively.

Throughout this paper, we suppose that the following conditions are provided.

(H1) a, b, c, d ∈ [0,∞) with ac + ad + bc > 0; αj , βj ∈ [0,∞), ξj ∈ (0, 1), for
j ∈ {1, ...,m− 2},

(H2) gi : R+ → R+ is continuous, for 1 ≤ i ≤ n,
(H3) pi ∈ C([0, 1],R+). On any closed subinterval of [0, 1], for 1 ≤ i ≤ n, pi does

not vanish identically.
(H4) Iik ∈ C(R,R+) and Jik ∈ C(R,R+) are bounded functions such that

[d+ c(1− tk)]Jik(τ) > cIik(τ), t < tk, k = 1, 2, ..., p, for 1 ≤ i ≤ n, where τ
be any nonnegative number.

(H5) Each of

g0i = lim
z→0+

gi(z)

z
, I0ik = lim

z→0+

Iik(z)

z
, J0

ik = lim
z→0+

Jik(z)

z
,

g∞i = lim
z→∞

gi(z)

z
, I∞ik = lim

z→∞

Iik(z)

z
, J∞ik = lim

z→∞

Jik(z)

z
, 1 ≤ i ≤ n,

exists as positive real number.
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The goal of this study is to determine the eigenvalue intervals of λi, 1 ≤ i ≤ n, for
which the iterative system of nonlinear second-order with m-point IBVP (1.1) has
positive solutions. For this, the main tool relied upon is the Guo-Krasnosel’skii fixed
point theorem.

This paper’s main structure is as follows. We present several definitions and basic
lemmas in Section 2, which are important tools for our main result. In Section 3,
we find the eigenvalue intervals for which the iterative system of the IBVP (1.1) has
positive solutions. We provide an example in Section 4 to show the applicability of
our main results.

2. Preliminaries

In this section, we first introduce some background definitions in Banach spaces,
and then present auxiliary lemmas that will be useful later.
Let J ′ = J\{t1, t2, ..., tp}. C(J) indicate the Banach space of all continuous mapping
z : J → R with the norm ‖z‖ = sup

t∈J
|z(t)|, PC(J) = {z : J → R : z ∈ C(J ′), z(t+k )

and z(t−k ) exist and z(t−k ) = z(tk), k = 1, 2, ..., p} is also a Banach space with norm
‖z‖PC = sup

t∈J
|z(t)|. Let B = PC(J)∩C2(J ′). A function (z1, ..., zn) ∈ Bn is referred a

solution of the iterative system of the IBVP (1.1) provided that it yields the iterative
system of the IBVP (1.1).

We will first consider the case of i = 1 in the iterative system of the IBVP (1.1).
So, we will give the solution z1 of the IBVP (2.1). Then, we can find zn, since z1 is
known. If this argument continues, we can obtain zn−1, then zn−2 etc. and finally
z2. As a result, the solution (z1, ..., zn) for the iterative system of the IBVP (1.1) is
obtained.

Let h ∈ C[0, 1], then we consider the following IBVP:

−z′′1 (t) = h(t), t ∈ J = [0, 1], t 6= tk, k = 1, 2, ..., p,

4z1|t=tk = λ1I1k(z2(tk)),

4z′1|t=tk = −λ1J1k(z2(tk)),

az1(0)− bz′1(0) =

m−2∑
j=1

αjz1(ξj),

cz1(1) + dz′1(1) =

m−2∑
j=1

βjz1(ξj).

(2.1)

The solutions of the corresponding homogeneous equation are denoted by θ and φ.

−z′′1 (t) = 0, t ∈ [0, 1], (2.2)

under the initial conditions{
θ(0) = b, θ′(0) = a,

φ(1) = d, φ′(1) = −c.
(2.3)
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Using the initial conditions (2.3), we can deduce from equation (2.2) for θ and φ the
following equations:

θ(t) = b+ at, φ(t) = d+ c(1− t). (2.4)

Set

ρ := ad+ ac+ bc, (2.5)

and

4 =

∣∣∣∣∣∣∣∣∣∣
−
m−2∑
j=1

αj(b+ aξj) ρ−
m−2∑
j=1

αj [d+ c(1− ξj)]

ρ−
m−2∑
j=1

βj(b+ aξj) −
m−2∑
j=1

βj [d+ c(1− ξj)]

∣∣∣∣∣∣∣∣∣∣
. (2.6)

Lemma 2.1. Let (H1)-(H5) hold. Suppose that
(H6) 4 6= 0.
If z1 ∈ B is a solution of the equation

z1(t) =

∫ 1

0

G(t, s)h(s)ds+

p∑
k=1

W1k(t, tk) + (b+ at)A1(h) + (d+ c(1− t))B1(h),(2.7)

where

G(t, s) =
1

ρ

{
(b+ as)[d+ c(1− t)], s ≤ t,
(b+ at)[d+ c(1− s)], t ≤ s,

(2.8)

W1k(t, tk)=
1

ρ

{
(b+at)[−cλ1I1k(z2(tk))+(d+c(1− tk))λ1J1k(z2(tk))], t < tk,

(d+ c(1− t))[aλ1I1k(z2(tk)) + (b+ atk)J1k(z2(tk))], tk < t,
(2.9)

A1(h) =
1

4

∣∣∣∣∣∣∣∣∣∣

m−2∑
j=1

αjK1j ρ−
m−2∑
j=1

αj [d+ c(1− ξj)]

m−2∑
j=1

βjK1j −
m−2∑
j=1

βj [d+ c(1− ξj)]

∣∣∣∣∣∣∣∣∣∣
, (2.10)

B1(h) =
1

4

∣∣∣∣∣∣∣∣∣∣
−
m−2∑
j=1

αj(b+ aξj)

m−2∑
j=1

αjK1j

ρ−
m−2∑
j=1

βj(b+ aξj)

m−2∑
j=1

βjK1j

∣∣∣∣∣∣∣∣∣∣
, (2.11)

and

K1j =

∫ 1

0

G(ξj , s)h(s)ds+

p∑
k=1

W1k(ξj , tk), (2.12)

then z1 is a solution of the IBVP (2.1).



EIGENVALUE INTERVALS FOR ITERATIVE SYSTEMS 293

Proof. Let z1 satisfies the integral equation (2.7), then we get

z1(t) =

∫ 1

0

G(t, s)h(s)ds+

p∑
k=1

W1k(t, tk) + (b+ at)A1(h) + (d+ c(1− t))B1(h),

i.e.,

z1(t) =
1

ρ

∫ t

0

(b+ as)[d+ c(1− t)]h(s)ds+
1

ρ

∫ 1

t

(b+ at)[d+ c(1− s)]h(s)ds

+
1

ρ

∑
0<tk<t

(d+ c(1− t))[aλ1I1k(z2(tk)) + (b+ atk)J1k(z2(tk))]

+
1

ρ

∑
t<tk<1

(b+ at)[−cλ1I1k(z2(tk)) + (d+ c(1− tk))λ1J1k(z2(tk))]

+(b+ at)A1(h) + (d+ c(1− t))B1(h),

z′1(t) =
1

ρ

∫ t

0

(−c)(b+ as)h(s)ds+
1

ρ

∫ 1

t

(a)[d+ c(1− s)]h(s)ds

+
1

ρ

∑
0<tk<t

(−c)[aλ1I1k(z2(tk)) + (b+ atk)J1k(z2(tk))]

+
1

ρ

∑
t<tk<1

(a)[−cλ1I1k(z2(tk)) + (d+ c(1− tk))λ1J1k(z2(tk))]

+aA1(h) + (−c)B1(h).

Thus

z′′1 (t) =
1

ρ
(−ct− (d+ c(1− t)))h(t) = −h(t),

i.e.,

z′′1 (t) + h(t) = 0.

Since

z1(0) =
1

ρ

∫ 1

0

b[d+ c(1− s)]h(s)ds

+
1

ρ

p∑
k=1

b[−cλ1I1k(z2(tk)) + (d+ c(1− tk))λ1J1k(z2(tk))]

+bA1(h) + (c+ d)B1(h)
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and

z′1(0) =
1

ρ

∫ 1

0

(a)[d+ c(1− s)]h(s)ds

+
1

ρ

p∑
k=1

(a)[−cλ1I1k(z2(tk)) + (d+ c(1− tk))λ1J1k(z2(tk))]

+aA1(h) + (−c)B1(h),

we get

az1(0)− bz′1(0) = ρB1(h) =

m−2∑
j=1

αj

[ ∫ 1

0

G(ξj , s)h(s)ds+

p∑
k=1

W1k(ξj , tk)

+ (b+ aξj)A1(h) + (d+ c(1− ξj))B1(h)

]
.

(2.13)

Since

z1(1) =
1

ρ

∫ 1

0

(b+ as)(c+ d)h(s)ds

+
1

ρ

p∑
k=1

(c+ d)[aλ1I1k(z2(tk)) + (b+ atk)J1k(z2(tk))]

+(a+ b)A1(h) + dB1(h)

and

z′1(1) =
1

ρ

∫ 1

0

(−c)(b+ as)h(s)ds

+
1

ρ

p∑
k=1

(−c)[aλ1I1k(z2(tk)) + (b+ atk)J1k(z2(tk))]

+aA1(h) + (−c)B1(h),

we get

cz1(1) + dz′(1) = ρA1(h) =

m−2∑
j=1

βj

[ ∫ 1

0

G(ξj , s)h(s)ds+

p∑
k=1

W1k(ξj , tk)

+ (b+ aξj)A1(h) + (d+ c(1− ξj))B1(h)

]
.

(2.14)
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From equations (2.13) and (2.14), we have the following equations:

−
[m−2∑
j=1

αj(b+ aξj)

]
A1(h) +

[
ρ−

m−2∑
j=1

αj(d+ c(1− ξj))
]
B1(h) =

m−2∑
j=1

αjK1j ,

[
ρ−

m−2∑
j=1

βj(b+ aξj)

]
A1(h) +

[
−
m−2∑
i=1

βj(d+ c(1− ξj))
]
B1(h) =

m−2∑
j=1

βjK1j

which yields that A1(h) and B1(h) satisfy (2.10) and (2.11), respectively. �
Lemma 2.2. Let (H1)-(H6) hold. Suppose that

(H7) 4 < 0, ρ−
m−2∑
j=1

βj(b+ aξj) > 0, ρ−
m−2∑
j=1

αj(d+ c(1− ξj)) > 0.

Then for z1 ∈ B with h ≥ 0, the solution z1 of the IBVP (2.1) satisfies z1(t) ≥ 0 for
t ∈ [0, 1].
Proof. Firstly, it is clear that the Green’s function G1 is positive for t, s ∈ [0, 1]×[0, 1].
In addition, with the condition (H7), A1(h) and B1(h) are positive. Lastly, since I1k
and J1k are positive, we obtain the positivity of W1k. As a result, z1(t) is positive for
t ∈ [0, 1]. �
Lemma 2.3. Let (H1)-(H7) hold. Suppose that

(H8) c−
m−2∑
j=1

βj < 0.

Then the solution z1 ∈ B, of the IBVP (2.1) satisfies z′1(t) ≥ 0 for t ∈ [0, 1].
Proof. The proof of this lemma is presented in [11]. �
Lemma 2.4. Assume that (H1)-(H8) hold, then for any t, s ∈ J, we have

0 ≤ G(t, s) ≤ G(s, s). (2.15)

Proof. It is easily obtained from equation (2.8). �
Lemma 2.5. Let (H1)-(H6) hold. Let σ ∈ (0, 12 ). Then for any t, s ∈ J, we have

G(t, s) ≥ γG(s, s) (2.16)

where γ := min

{
b+ aσ

b+ a
,
d+ cσ

d+ c

}
.

Proof. [11] provides the proof for this lemma. �
Let P = {z1 ∈ PC(J) : z1(t) is nonnegative, nondecreasing and concave on J}. So,

P is a cone of PC(J).
Lemma 2.6. Let (H1)-(H8) hold and z1(t) ∈ P, σ ∈ (0, 12 ). Then,

min
t∈[σ,1−σ]

z1(t) ≥ σ‖z1‖PC (2.17)

where ‖z1‖PC = sup
t∈J
|z1(t)|.

Proof. We know that z1(t) is concave on J because of z1 ∈ P. As a result,

min
t∈[σ,1−σ]

z1(t) = z1(σ) and ‖z1‖PC = sup
t∈J
|z1(t)| = z1(1).
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Because the graph of z1 is concave down on J, we obtain

z1(1)− z1(0)

1− 0
≤ z1(σ)− z1(0)

σ − 0
,

i.e., z1(σ) ≥ σz1(1) + (1− σ)z1(0). So, z1(σ) ≥ σz1(1). The proof is completed. �
We note that an n- tuple (z1(t), z2(t), ..., zn(t)) is a solution of the iterative system

of the IBVP (1.1) if and only if

z1(t) =λ1

∫ 1

0

G(t, s1)p1(s1)g1

(
λ2

∫ 1

0

G(s1, s2)p2(s2)g2

(
λ3

∫ 1

0

G(s2, s3)p3(s3)g3...

gn−1

(
λn

∫ 1

0

G(sn−1, sn)pn(sn)gn(z1(sn))dsn +

p∑
k=1

Wnk(sn−1, tk)

+An(b+ asn−1) +Bn(d+ c(1− sn−1))

)
dsn−1 +

p∑
k=1

Wn−1,k(sn−2, tk)

+An−1(b+ asn−2) +Bn−1(d+ c(1− sn−2))

)
dsn−2 + ...

+

p∑
k=1

W3k(s2, tk) +A3(b+ as2) +B3(d+ c(1− s2))

)
ds2

+

p∑
k=1

W2k(s1, tk) +A2(b+ as1) +B2(d+ c(1− s1))

)
ds1

+

p∑
k=1

W1k(t, tk) +A1(b+ at) +B1(d+ c(1− t)).

zi(t) =λi

∫ 1

0

G(t, s)pi(s)gi(zi+1(s))ds+

p∑
k=1

Wik(t, tk) +Ai(b+ at)

+Bi(d+ c(1− t)), t ∈ J,

zn+1(t) = z1(t),

and

Ai := A(λipi(.)gi(zi+1(.))), Bi := B(λipi(.)gi(zi+1(.))),

where

A(λipi(.)gi(zi+1(.)))

=
1

4

∣∣∣∣∣∣∣∣∣∣∣

m−2∑
j=1

αj

[ ∫ 1

0
G(ξj , s)λipi(s)gi(zi+1(s))ds+

p∑
k=1

Wik(ξj , tk)

]
ρ−

m−2∑
j=1

αj [d+ c(1− ξj)]

m−2∑
j=1

βj

[ ∫ 1

0
G(ξj , s)λipi(s)gi(zi+1(s))ds+

p∑
k=1

Wik(ξj , tk)

]
−

m−2∑
j=1

βj [d+ c(1− ξj)]

∣∣∣∣∣∣∣∣∣∣∣
,
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B(λipi(.)gi(zi+1(.)))

=
1

4

∣∣∣∣∣∣∣∣∣∣
−

m−2∑
j=1

αj(b+ aξj)+

m−2∑
j=1

αj

[ ∫ 1

0

G(ξj , s)λipi(s)gi(zi+1(s))ds+

p∑
k=1

Wik(ξj , tk)

]
ρ−

m−2∑
j=1

βj(b+ aξj)

m−2∑
j=1

βj

[ ∫ 1

0

G(ξj , s)λipi(s)gi(zi+1(s))ds+

p∑
k=1

Wik(ξj , tk)

]
∣∣∣∣∣∣∣∣∣∣
,

Wik(t, tk) =
1

ρ

{
(b+ at)[−cλiIik(zi+1(tk)) + (d+ c(1− tk))λiJik(zi+1(tk))], t < tk,

(d+ c(1− t))[aλiIik(zi+1(tk)) + (b+ atk)Jik(zi+1(tk))], tk < t.

To identify the eigenvalue intervals for which the iterative system of the IBVP (1.1) has
at least one positive solution in a cone, we will apply the following Guo-Krasnosel’skii’s
fixed point theorem [8].
Theorem 2.1. [8] Let X be a Banach space, and P ⊂ X be cone in X. Assume
that Ω1 and Ω2 are two bounded open subsets of X with 0 ∈ Ω1, Ω̄1 ⊂ Ω2. Let
A : P ∩ (Ω̄2\Ω1)→ P be a completely continuous operator, satisfying either

(i)‖Ax‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω1, ‖Ax‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω2,

or

(ii)‖Ax‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω1, ‖Ax‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω2.

Then A has at least one fixed point in P ∩ (Ω̄2\Ω1).

3. Main results

In this section, we establish criteria to determine the eigenvalues for which the
iterative system of the IBVP (1.1) has at least one positive solution in a cone.

Now, we define an integral operator P → B, for z1 ∈ P, by

Tz1(t)=λ1

∫ 1

0

G(t, s1)p1(s1)g1

(
λ2

∫ 1

0

G(s1, s2)p2(s2)g2

(
λ3

∫ 1

0

G(s2, s3)p3(s3)g3...

gn−1

(
λn

∫ 1

0

G(sn−1, sn)pn(sn)gn(z1(sn))dsn +

p∑
k=1

Wnk(sn−1, tk)

+An(b+ asn−1)+Bn(d+c(1−sn−1))

)
dsn−1+

p∑
k=1

Wn−1,k(sn−2, tk)

+An−1(b+ asn−2) +Bn−1(d+ c(1− sn−2))

)
dsn−2 + ...

+

p∑
k=1

W3k(s2, tk) +A3(b+ as2) +B3(d+ c(1− s2))

)
ds2

(3.1)
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+

p∑
k=1

W2k(s1, tk) +A2(b+ as1) +B2(d+ c(1− s1))

)
ds1

+

p∑
k=1

W1k(t, tk) +A1(b+ at) +B1(d+ c(1− t)).

Notice from (H1)-(H8) and Lemmas 2.2, 2.3 and the definition of T that, for
z1 ∈ P, T z1(t) ≥ 0, (Tz1)′(t) ≥ 0 and (Tz1)′(t) is concave on J. Therefore, T (P) ⊂
P. In addition, the Arzela-Ascoli theorem shows that the operator T is completely
continuous.

Now, we investigate the appropriate fixed points of T which belong to the cone P.
The following notations are presented for the convenience. Let

N1 := max
1≤i≤n

{[
γµ

∫ 1−µ

µ

G(s, s)pi(s)dsg
∞
i

]−1}
and

N2 := min
1≤i≤n

{[(∫ 1

0

G(s, s)pi(s)ds+
p

ρ
(2a+ b)(c+ d) + Āi(a+ b) + B̄i(c+ d)

)

·
(

max{g0i , I0ik, J0
ik}
)]−1}

,

where

Āi :=
1

4

∣∣∣∣∣∣∣∣∣∣

m−2∑
j=1

αj

[ ∫ 1

0

G(ξj , s)pi(s)ds+
p

ρ
(2a+ b)(c+ d)

]
ρ−

m−2∑
j=1

αj [d+ c(1− ξj)]

m−2∑
j=1

βj

[ ∫ 1

0

G(ξj , s)pi(s)ds+
p

ρ
(2a+ b)(c+ d)

]
−

m−2∑
j=1

βj [d+ c(1− ξj)]

∣∣∣∣∣∣∣∣∣∣
,

B̄i :=
1

4

∣∣∣∣∣∣∣∣∣∣
−

m−2∑
j=1

αj(b+ aξj)+

m−2∑
j=1

αj

[ ∫ 1

0

G(ξj , s)pi(s)ds+
p

ρ
(2a+ b)(c+ d)

]
ρ−

m−2∑
j=1

βj(b+ aξj)

m−2∑
j=1

βj

[ ∫ 1

0

G(ξj , s)pi(s)ds+
p

ρ
(2a+ b)(c+ d)

]
∣∣∣∣∣∣∣∣∣∣
.

It also appears that

Ai := A(λipi(s)gi(zi+1(s))) ≤ λiĀi max{gi(zi+1), Iik(zi+1), Jik(zi+1)}

and

Bi := B(λipi(s)gi(zi+1(s))) ≤ λiB̄i max{gi(zi+1), Iik(zi+1), Jik(zi+1)}.

Theorem 3.1. Assume that conditions (H1)-(H8) are satisfied. Then, for each
λ1, λ2, ..., λn satisfying

N1 < λi < N2, 1 ≤ i ≤ n, (3.2)

there exists an n-tuple (z1, z2, ..., zn) satisfying (1.1) such that zi(t) > 0, 1 ≤ i ≤ n,
on J.
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Proof. Let λr, 1 ≤ r ≤ n, be as in (3.2). Now, let ε > 0 be chosen such that

max
1≤i≤n

{[
γµ

∫ 1−µ

µ

G(s, s)pi(s)ds(g
∞
i − ε)

]−1}
≤ min

1≤r≤n
λr

and

max
1≤r≤n

λr ≤ min
1≤i≤n

{[(∫ 1

0

G(s, s)pi(s)ds+
p

ρ
(2a+ b)(c+ d) + Āi(a+ b) + B̄i(c+ d)

)
·
(

max{g0i + ε, I0ik + ε, J0
ik + ε}

)]−1}
.

The fixed points of the completely continuous operator T : P → P defined by (3.1)
are investigated. Based on the definitions of g0i , I

0
ik, J

0
ik, 1 ≤ i ≤ n, there is a K1 > 0

such that, for each 1 ≤ i ≤ n,

gi(z) ≤ (g0i + ε)z, Iik(z) ≤ (I0ik + ε)z, Jik(z) ≤ (J0
ik + ε)z, 0 < z < K1.

Let z1 ∈ P with ‖z1‖ = K1. We obtain from Lemma 2.4 and the choice of ε,
for 0 ≤ sn−1 ≤ 1,

λn

∫ 1

0

G(sn−1, sn)pn(sn)gn(z1(sn))dsn +

p∑
k=1

Wnk(sn−1, tk)

+An(b+ asn−1) +Bn(d+ c(1− sn−1))

≤ λn
[(∫ 1

0

G(sn, sn)pn(sn)dsn +
p

ρ
(2a+ b)(c+ d) + Ān(a+ b) + B̄n(c+ d)

)
·
(

max{g0n + ε, I0nk + ε, J0
nk + ε}

)]
‖z1‖

≤ K1.

It continues in a similar manner from Lemma 2.4, for 0 ≤ sn−2 ≤ 1, that

λn−1

∫ 1

0

G(sn−2, sn−1)pn−1(sn−1)gn−1

(
λn

∫ 1

0

G(sn−1, sn)pn(sn)gn(z1(sn))dsn

+

p∑
k=1

Wnk(sn−1, tk) +An(b+ asn−1) +Bn(d+ c(1− sn−1))

)
dsn−1

+

p∑
k=1

Wn−1,k(sn−2, tk) +An−1(b+ asn−2) +Bn−1(d+ c(1− sn−2))

≤ λn−1
[(∫ 1

0

G(sn−1, sn−1)pn−1(sn−1)dsn−1 +
p

ρ
(2a+ b)(c+ d)

+ Ān−1(a+ b) + B̄n−1(c+ d)

)
·
(

max{g0n−1 + ε, I0n−1,k + ε, J0
n−1k + ε}

)]
‖z1‖

≤ ‖z1‖ = K1.
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If we continue this bootstrapping argument, we get, for 0 ≤ t ≤ 1,

λ1

∫ 1

0

G(t, s1)p1(s1)g1(λ2...)ds1 +

p∑
k=1

W1k(t, tk) +A1(b+ at) +B1(d+ c(1− t))

≤ λ1
[(∫ 1

0

G(s1, s1)p1(s1)ds1 +
p

ρ
(2a+ b)(c+ d) + Ā1(a+ b) + B̄1(c+ d)

)
·
(

max{g01 + ε, I01k + ε, J0
1k + ε}

)]
K1

≤ K1 = ‖z1‖.

Thus, ‖Tz1‖ ≤ K1 = ‖z1‖. If we established Ω1 = {z ∈ B : ‖z‖ < K1}, then

‖Tz1‖ ≤ ‖z1‖ for z1 ∈ P ∩ ∂Ω1. (3.3)

Next, from the definitions of g∞i , 1 ≤ i ≤ n, there is a K̄2 > 0 such that, for each
1 ≤ i ≤ n,

gi(z) ≥ (g∞i − ε)z, z ≥ K̄2.

Let

K2 = max

{
2K1,

K̄2

µ

}
.

Let z1 ∈ P and ‖z1‖ = K2. Therefore, from Lemmas 2.5 and 2.6,

min
t∈[µ,1−µ]

z1(t) ≥ µ‖z1‖ ≥ K̄2

is obtained.
As a consequence, with the help of Lemmas 2.5, 2.6 and the choice of ε,
for 0 ≤ sn−1 ≤ 1, we get

λn

∫ 1

0

G(sn−1, sn)pn(sn)gn(z1(sn))dsn +

p∑
k=1

Wnk(sn−1, tk)

+An(b+ asn−1) +Bn(d+ c(1− sn−1))

≥ λnγ
∫ 1−µ

µ

G(sn, sn)pn(sn)gn(z1(sn))dsn

≥ λnγ
∫ 1−µ

µ

G(sn, sn)pn(sn)(g∞n − ε)z1(sn)dsn

≥ λnγµ
∫ 1−µ

µ

G(sn, sn)pn(sn)dsn(g∞n − ε)‖z1‖

≥ ‖z1‖ = K2.
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It continues in a similar manner from Lemmas 2.5, 2.6 and the choice of ε,
for 0 ≤ sn−2 ≤ 1,

λn−1

∫ 1

0

G(sn−2, sn−1)pn−1(sn−1)gn−1

(
λn

∫ 1

0

G(sn−1, sn)pn(sn)gn(z1(sn))dsn

+

p∑
k=1

Wnk(sn−1, tk) +An(b+ asn−1) +Bn(d+ c(1− sn−1))

)
dsn−1

+

p∑
k=1

Wn−1,k(sn−2, tk) +An−1(b+ asn−2) +Bn−1(d+ c(1− sn−2))

≥ λn−1γ
∫ 1−µ

µ

G(sn−1, sn−1)pn−1(sn−1)dsn−1(g∞n−1 − ε)K2

≥ λn−1γµ
∫ 1−µ

µ

G(sn−1, sn−1)pn−1(sn−1)dsn−1(g∞n−1 − ε)K2

≥ K2.

Again, if we use a bootstrapping argument, we obtain

λ1

∫ 1

0

G(t, s1)p1(s1)g1(λ2...)ds1 +

p∑
k=1

W1k(t, tk) +A1(b+ at) +B1(d+ c(1− t))

≥ K2,

thus,

Tz1(t) ≥ K2 = ‖z1‖.

Therefore, ‖Tz1‖ ≥ ‖z1‖. If we put Ω2 = {z ∈ B : ‖z‖ < K2}, then

‖Tz1‖ ≥ ‖z1‖ for z1 ∈ P ∩ ∂Ω2. (3.4)

We can see that T has a fixed point z1 ∈ P∩(Ω̄2\Ω1) by applying Theorem 2.1 to (3.3)
and (3.4). As a result, by setting zn+1 = z1, we get a positive solution (z1, z2, ..., zn)
of the iterative system of the IBVP (1.1) given iteratively by

zr(t) = λr

∫ 1

0

G(t, s)pr(s)gr(zr+1(s))ds+

p∑
k=1

Wrk(t, tk) +Ar(b+ at)

+Br(d+ c(1− t)), r = n, n− 1, ..., 1.

The proof is completed.
The positive numbers N3 and N4 are defined as follows for our next result:

N3 := max
1≤i≤n

{[
γµ

∫ 1−µ

µ

G(s, s)pi(s)dsg
0
i

]−1}
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and

N4 := min
1≤i≤n

{[(∫ 1

0

G(s, s)pi(s)ds+
p

ρ
(2a+ b)(c+ d) + Āi(a+ b) + B̄i(c+ d)

)

·
(

max{g∞i , I∞ik , J∞ik }
)]−1}

.

Theorem 3.2. Assume that conditions (H1)-(H8) are satisfied. Then, for each
λ1, λ2, ..., λn satisfying

N3 < λi < N4, 1 ≤ i ≤ n, (3.5)

there exists an n-tuple (z1, z2, ..., zn) satisfying (1.1) such that zi(t) > 0, 1 ≤ i ≤ n,
on J.
Proof. Let λk, 1 ≤ k ≤ n, be as in (3.5). Now, let ε > 0 be chosen such that

max
1≤i≤n

{[
γµ

∫ 1−µ

µ

G(s, s)pi(s)ds(g
0
i − ε)

]−1}
≤ min

1≤r≤n
λr

and

max
1≤r≤n

λr ≤ min
1≤i≤n

{[(∫ 1

0

G(s, s)pi(s)ds+
p

ρ
(2a+ b)(c+ d) + Āi(a+ b) + B̄i(c+ d)

)
·
(

max{g∞i + ε, I∞ik + ε, J∞ik + ε}
)]−1}

.

Let T be completely continuous, cone-preserving operator defined by (3.1). From
the definitions of g0i , I

0
ik, J

0
ik, 1 ≤ i ≤ n, there exists an K̄3 > 0 such that, for each

1 ≤ i ≤ n,

gi(z) ≥ (g0i − ε)z, Iik(z) ≥ (I0ik − ε)z, Jik(z) ≥ (J0
ik − ε)z, 0 < z ≤ K̄3.

Besides, from the definitions of g0i , I
0
ik, J

0
ik, it follows that

gi(0) = Iik(0) = Jik(0) = 0, 1 ≤ i ≤ n,

and so there exist 0 < Mn < Mn−1 < ... < M2 < K̄3 such that

λi max{gi(t),Iik(zi+1(tk)), Jik(zi+1(tk))}

≤ Mi−1∫ 1

0

G(s, s)pi(s)ds+
p

ρ
(2a+ b)(c+ d) + Āi(a+ b) + B̄i(c+ d)

,

for t ∈ [0,Mi], 3 ≤ i ≤ n

and

λ2 max{g2(t),I2k(z3(tk)), J2k(z3(tk))}

≤ K̄3∫ 1

0

G(s, s)p2(s)ds+
p

ρ
(2a+ b)(c+ d) + Ā2(a+ b) + B̄2(c+ d)

,

for t ∈ [0,M2].
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Let z1 ∈ P with ‖z1‖ = Mn. We obtain from Lemma 2.4, for 0 ≤ sn−1 ≤ 1,

λn

∫ 1

0

G(sn−1, sn)pn(sn)gn(z1(sn))dsn +

p∑
k=1

Wnk(sn−1, tk)

+An(b+ asn−1) +Bn(d+ c(1− sn−1))

≤ λn
[(∫ 1

0

G(sn, sn)pn(sn)dsn +
p

ρ
(2a+ b)(c+ d) + Ān(a+ b) + B̄n(c+ d)

)
·max{‖gn(z1)‖, ‖Ink(z1)‖, ‖Jnk(z1)‖}

]

≤

(∫ 1

0

G(sn, sn)pn(sn)dsn +
p

ρ
(2a+ b)(c+ d) + Ān(a+ b) + B̄n(c+ d)

)
Mn−1(∫ 1

0

G(sn, sn)pn(sn)dsn +
p

ρ
(2a+ b)(c+ d) + Ān(a+ b) + B̄n(c+ d)

)
= Mn−1.

If we continue with this bootstrapping argument, we have

λ2

∫ 1

0

G(s1, s2)p2(s2)g2

(
λ3

∫ 1

0

G(s2, s3)p3(s3)...gn(z1(sn))dsn...ds3

+

p∑
k=1

W3k(s2, tk) +A3(b+ as2) +B3(d+ c(1− s2))

)
ds2

+

p∑
k=1

W2k(s1, tk) +A2(b+ as1) +B2(d+ c(1− s1))

≤ K̄3.

Then

Tz1(t) ≥ λ1
∫ 1

0

G(t, s1)p1(s1)g1

(
λ2

∫ 1

0

G(s1, s2)p2(s2)...gn(z1(sn))dsn...ds2

+

p∑
k=1

W2k(s1, tk) +A2(b+ as1) +B2(d+ c(1− s1))

)
ds1

+

p∑
k=1

W1k(t, tk) +A1(b+ at) +B1(d+ c(1− t))

≥ λ1γµ
∫ 1−µ

µ

G(s, s)p1(s1)(g01 − ε)‖z1‖ds1

≥ ‖z1‖.

Thus, ‖Tz1‖ ≥ ‖z1‖. If we set Ω3 = {z ∈ B|‖z‖ < Kn}, then

‖Tz1‖ ≥ ‖z1‖ for z1 ∈ P ∩ ∂Ω3. (3.6)

Because each g∞i , I
∞
ik , J

∞
ik are assumed to be a positive real number, it follows that

gi, Iik, Jik, 1 ≤ i ≤ n, is unbounded at ∞.
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For each 1 ≤ i ≤ n, set

g∗i (z) = sup
0≤s≤z

gi(s), I∗ik(z) = sup
0≤s≤z

Iik(s), J∗ik(z) = sup
0≤s≤z

Jik(s).

Then, for each 1 ≤ i ≤ n, g∗i , I
∗
ik, J

∗
ik are nondecreasing real-valued functions,

gi ≤ g∗i , Iik ≤ I∗ik, Jik ≤ J∗ik, and

lim
z→∞

g∗i (z)

z
= g∞i , lim

z→∞

I∗ik(z)

z
= I∞ik , lim

z→∞

J∗ik(z)

z
= J∞ik .

Then, according to the definitions of g∞i , I
∞
ik , J

∞
ik , 1 ≤ i ≤ n, there exists K̄4 such

that, for each 1 ≤ i ≤ n,

g∗i (z) ≤ (g∞i + ε)z, I∗ik(z) ≤ (I∞ik + ε)z, J∗ik(z) ≤ (J∞ik + ε)z, z ≥ K̄4.

As a result, there exists K4 > max{2K̄3, K̄4} such that, for each 1 ≤ i ≤ n,

g∗i (z) ≤ g∗i (K4), I∗ik(z) ≤ I∗ik(K4), J∗ik(z) ≤ J∗ik(K4), 0 < x ≤ K4.

Let z1 ∈ P with ‖z1‖ = K4. Then, with the help of the bootstrapping argument,
we get

Tz1(t) ≤ λ1
∫ 1

0

G(t, s1)p1(s1)g1(λ2...)ds1 +

p∑
k=1

W1k(t, tk)

+A1(b+ at) +B1(d+ c(1− t))

≤ λ1
(∫ 1

0

G(s1, s1)p1(s1)ds1 +
p

ρ
(2a+ b)(c+ d) + Ā1(a+ b) + B̄1(c+ d)

)
·max{g∗1(z2), I∗1k(z2), J∗1k(z2)}

≤ λ1
(∫ 1

0

G(s1, s1)p1(s1)ds1 +
p

ρ
(2a+ b)(c+ d) + Ā1(a+ b) + B̄1(c+ d)

)
·max{g∗1(K4), I∗1k(K4), J∗1k(K4)}

≤ λ1
(∫ 1

0

G(s1, s1)p1(s1)ds1 +
p

ρ
(2a+ b)(c+ d) + Ā1(a+ b) + B̄1(c+ d)

)
·max{(g∞1 + ε)K4, (I

∞
1k + ε)K4, (J

∞
1k + ε)K4}

≤ K4 = ‖z1‖.

Thus, ‖Tz1‖ ≤ ‖z1‖. So, if we put Ω4 = {z ∈ B|‖z‖ < K4}, then

‖Tz1‖ ≤ ‖z1‖ for z1 ∈ P ∩ ∂Ω4. (3.7)

By applying Theorem 2.1 to (3.6) and (3.7), we can see that T includes a fixed point
z1 ∈ P∩(Ω̄4\Ω3), whereby we can get an n-tuple (z1, z2, ..., zn) satisfying the iterative
system of the IBVP (1.1) for the chosen values of λi, 1 ≤ i ≤ n, by using zn+1 = z1.
The proof is completed.
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4. An Example

Example 4.1. In the iterative system of the IBVP (1.1), suppose that n = m = p =

3, pi(t) = 2 for 1 ≤ i ≤ 3, a = c = 4, b = d = 2, ξ1 =
1

3
, µ =

1

3
, α1 = 1 and β1 = 6 i.e.,

z′′i (t) + 2λigi(zi+1(t)) = 0, t ∈ J = [0, 1], t 6= tk, 1 ≤ i, k ≤ 3,

4zi|t=tk = λiIik(zi+1(tk)),

4z′i|t=tk = −λiJik(zi+1(tk)),

4zi(0)− 2z′i(0) = zi(
1
3 ),

4zi(1) + 2z′i(1) = 6zi(
1
3 ).

(4.1)

where
g1(z2) = z2(104 − 9999e−z2), g2(z3) = z3(2.104 − 19999e−2z3),
g3(z1) = z1(104 − (9999, 5)e−z1),

I1k(z2) =
2z22 + 3z2

6 + z2
, I2k(z3) =

z33 + 2z3
4 + z23

, I3k(z1) =
3z21 + z1
4 + 3z1

,

J1k(z2) =
4z22 + 6z2

1 + z2
, J2k(z3) =

2z33 + 4z3
1 + z23

, J3k(z1) =
6z21 + 2z1
2 + 3z1

.

It is clear that (H1)-(H8) has been satisfied. By simple calculation, we get

ρ = 32, θ(t) = 2 + 4t, φ(t) = 6− 4t, 4 = −704

3
, γ =

5

9
, Āi =

3656

704
, B̄i =

1828

2112

for 1 ≤ i ≤ 3 and

G(t, s) =
1

32

{
(2 + 4s)(6− 4t), s ≤ t,
(2 + 4t)(6− 4s), t ≤ s.

We obtain

g01 = 1, g02 = 1, g03 =
1

2
, g∞1 = 104, g∞2 = 2.104, g∞3 = 104,

I01k =
1

2
, I02k =

1

2
, I03k =

1

4
, I∞1k = 2, I∞2k = 1, I∞3k = 1,

J0
1k = 6, J0

2k = 4, J0
3k = 1, J∞1k = 4, J∞2k = 2, J∞3k = 2,

N1 = max{0, 0016351401869159, 0, 0008175700934579439}
and
N2 = min{0, 003885552808195, 0, 0233133168491699, 0, 0058283292122925}.

Using Theorem 2.1, we obtain the optimal eigenvalue interval of

0, 0016351401869159 < λi < 0, 003885552808195, i = 1, 2, 3,

which has a positive solution to the impulsive boundary value problem (4.1).
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