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1. Introduction

Let (X,d) be a metric space. Let N, R and R+ be the set of positive integers, real
numbers and nonnegative real numbers, respectively. Let C be a nonempty closed
and convex subset of X. A mapping T : C → X is said to be nonexpansive if for all
x, y ∈ C, we have

d(Tx, Ty) ≤ d(x, y).

In 2011, Aoyama and Kohsaka [3] introduced an important generalization of nonex-
pansive mappings called α-nonexpansive mappings. For α < 1, they said T : C → X
is α-nonexpansive mapping if for any x, y ∈ C,

d2(Tx, Ty) ≤ αd2(Tx, y) + αd2(Ty, x) + (1− 2α)d2(x, y) holds. (1.1)

Ariza et al. [4] noted that the case of α < 0 is trivial. Particularly, they showed that
T = I, the identity mapping, if α < 0. Among various generalizations of nonexpansive
mapping, this class is important because it contains several nonlinear mappings with
application to minimization problem, variational inequality and zeros of maximal
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operators. Recently, Song et al. [27] defined T to be α-nonexpansive mapping if it
satisfies

d(Tx, Ty) ≤ αd(Tx, y) + αd(Ty, x) + (1− 2α)d(x, y) for all x, y ∈ C. (1.2)

Using convexity of the mapping t→ t2, it is easy to see that (1.2) implies (1.1). We
give an example to show that the class of mappings satisfying (1.2) is indeed a proper
subclass of the class of mappings satisfying (1.1). Define a mapping T : [0, 3]→ [0, 3]
by

Tx =

{
0 , x 6= 3
2 , x = 3 .

It is easy to see that 2‖Tx − Ty‖2 ≤ ‖Tx − y‖2 + ‖x − Ty‖2( See [11]). However,
there is no α < 1 such that for x, y ∈ [0, 3], ‖Tx− Ty‖ ≤ α‖Tx− y‖+ α‖Ty − x)‖+
(1− 2α)‖x− y‖ holds. Indeed, for x = 2, y = 3

‖Tx− Ty‖ = 2 , ‖x− y‖ = 1 , ‖x− Ty‖ = 0, ‖y − Tx‖ = 3

and ‖Tx− Ty‖ ≤ α‖Tx− y‖+ α‖Ty − x‖+ (1− 2α)‖x− y‖ holds only if α ≥ 1.
In this paper, we consider α-nonexpansive mapping in the sense of Aoyama et al.

[4] i.e. mapping for which (1.1) holds.
Definition 1.1. A one-parameter α-nonexpansive semigroup is a family T = {T (t) :
t ∈ R+} of mappings on a closed and convex subset C of X satisfying :

(i) T (0)x = x for all x ∈ C.
(ii) T(t+s) = T(t)T(s) for all s, t ≥ 0.

(iii) for each t > 0, T(t) is α-nonexpansive i.e. for some 0 ≤ α < 1 and x, y ∈ C,

d2(Tx, Ty) ≤ αd2(Tx, y) + αd2(Ty, x) + (1− 2α)d2(x, y).

Finding common fixed point for classical nonexpansive semigroup has been extensively
studied by several authors in different spaces under different conditions. Xu [30]
studied the following implicit iteration for the nonexpansive semigroup in a Hilbert
space,

xn = αnu+ (1− αn)σtn(xn)

for each n ≥ 1, where σt(x) is the average given by

σt(x) =
1

t

∫ t

0

T (s)xds for any t > 0.

Later, Benavides et al. [5] and Aleyner et al. [2] studied strong convergence of the
Halpern’s iteration

xn+1 = αnu+ (1− αn)T (tn)xn

under the assumption that the semigroup T satisfies uniform asymptotic regularity
condition. Over the years, many researchers have extended the classical semigroup
of nonexpansive mappings for a wider class of nonlinear mappings and spaces using
various iterative schemes. For example, Cho and Kang [9] studied pseudo contrac-
tion semigroups in Banach spaces; Cho et al. [8] studied nonexpansive semigroup in
CAT (0) space and Zegeye et al. [32] studied asymptotically nonexpansive semigroup
in Banach spaces.
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Inspired by work of Naraghirad [22] and Song et al. [27], we consider Halpern’s type
iteration for an α-nonexpansive semigroup T and establish strong convergence of this
iteration in Banach spaces as well as CAT (0) spaces.

2. Preliminaries and Notation

Let X be a Banach space with dual X∗. For sequences, we denote strong conver-
gence, weak convergence and weak star convergence by→ ,⇀ , and ⇀∗, respectively.
X is said to be uniformly convex if for each r ∈ (0, 2], the modulus of convexity of X,
given by

δ(r) = inf{1− 1

2
‖x+ y‖ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ r}

satisfies the inequality δ(r) > 0. Let SX = {x ∈ X : ‖x‖ = 1}. X is said to be
smooth if the norm of X is Gateaux differentiable i.e. for each x, y ∈ SX , the limit

limt→0
‖x+ty‖−‖x‖

t exists.

The normalized duality mapping J : X → 2X
∗

is defined by

J(x) = {f ∈ X∗ : 〈x, f〉 = ‖x‖2, ‖x‖ = ‖f‖}, ∀x ∈ X.

J is said to be weakly sequentially continuous if {xn} ⊂ X and xn ⇀ x ∈ X, then
J(xn) ⇀∗ J(x). If a Banach space X admits a sequentially continuous duality
mapping J from weak topology to weak-star topology, then J is single-valued and
X is smooth( See [15] for more details). If X = H, Hilbert space, then J = I, the
identity mapping on H.

A Banach space X is said to satisfy the Opial condition [14] if for any se-
quence {xn}, xn ⇀ x implies that lim sup

n→∞
‖xn − x‖ < lim sup

n→∞
‖xn − y‖ for all

y ∈ X with y 6= x. It is well-known that all Hilbert spaces , all finite dimen-
sional Banach spaces and the Banach spaces lp(1 ≤ p < ∞) satisfy the Opial
condition. Moreover, if X admits a weakly sequentially continuous duality map-
ping, then X is smooth and enjoys the Opial condition(See [15], [28] for more details).

The class of α-nonexpansive mappings contains the classes of mappings defined
below:
Definition 2.1. Let C be a nonempty subset of a metric space (X, d). A mapping
T : C → X is :

(i) mean nonexpansive if there exists a, b ≥ 0 with a + b ≤ 1 and
d(Tx, Ty) ≤ ad(x, y) + bd(x, Ty) ∀x, y ∈ C.

(ii) Nonspreading if 2d2(Tx, Ty) ≤ d2(x, Ty) + d2(y, Tx) ∀x, y ∈ C.

(ii) Hybird if 3d2(Tx, Ty) ≤ d2(x, Ty) + d2(y, Tx) + d2(x, y) ∀x, y ∈ C.

The following lemmas would be instrumental for the development of our results.
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Lemma 2.2. [13] Let C be a nonempty subset of a metric space (X, d). Let T : C →
X be an α-nonexpansive mapping for some 0 ≤ α < 1. Then

d2(x, Ty) ≤ 1 + α

1− α
d2(x, Tx)+

2

1− α
[αd(x, y)+d(Tx, Ty)]d(x, Tx)+d2(x, y) ∀x, y ∈ C.

Lemma 2.3. [23] Let C be a nonempty subset of a uniformly convex Banach space
X with the Opial conditon. Let T : C → C be an α-nonexpansive mapping for some
0 ≤ α < 1.

(i) If F (T ) 6= ∅. then T is quasi-nonexpansive and F (T ) is closed and convex.

(ii) If {xn} converges weakly to y and lim
n→∞

‖xn − Txn‖ = 0, then Ty = y.

Lemma 2.4. [29] Let r > 0 be a fixed real number. If X is a uniformly convex
Banach space, then there exists a continuous strictly increasing convex function g :
[0,∞)→ [0,∞) with g(0) = 0 such that

‖λx+ (1− λ)y‖2 ≤ λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)g(‖x− y‖)

for any ‖x‖ , ‖y‖ ≤ r and λ ∈ [0, 1].
Definition 2.5. Let C and D be nonempty subsets of a real Banach space X with
D ⊂ C. A mapping QD : C → D is said to be :

(a) sunny if QD(QDx+ t(x−QDx)) = QDx for each x ∈ X and t ≥ 0.
(b) a retraction if QDx = x for each x ∈ D.

If X = H(real Hilbert space), then QD = PD, the metric projection of C onto D.
Lemma 2.6. [26] Let C and D be nonempty subsets of a real Banach space X with
D ⊂ C and QD : C → D be a retraction. Then QD is sunny nonexpansive if and only
if

〈z −QD(z), J(y −QD(z))〉 ≤ 0

for all z ∈ C and y ∈ D, where J is the normalized duality mapping of X.
Lemma 2.7. [26] Let X be a real Banach space and J be the normalized duality
mapping of X. Then,

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, J(x+ y)〉

for all x, y ∈ X.
Definition 2.8. A one-parameter semigroup T = {T (t) : t ≥ 0} is said to be
uniformly asymptotically regular (u.a.r.) if for any s > 0 and any bounded subset K
of C, we have

lim
t→∞

sup
x∈K

d(T (s)T (t)x, T (t)x) = 0.

The following are examples of uniformly asymptotically regular semigroup
Examples 2.9. ([5]) Let C be a nonempty bounded, closed and convex subset of a
Hilbert space H and T : C → C a contraction operator with Lipschitz constant k < 1.
Then T = {Tn : n ∈ N} is a u.a.r. contraction semigroup.
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Example 2.10. ([1]) Let X = l2(N) be Hilbert space consisting of all functions x
from N into R satisfying

∑
k∈N
|x(k)|2 <∞ with inner product

〈x, y〉 =
∑
k∈N

x(k)y(k).

Define a bounded, closed and convex subset C of X by

C = {x ∈ X : 0 ≤ x(k) ≤ pk}

where pk = 2
−k
2 . Then {T (t) : t ≥ 0} defined by

(T (t)x)(k) = max
{
x(k)− tp2k, 0

}
is a u.a.r. nonexpansive semigroup.
The concept of uniform asymptotic regularity extends to a sequence of mappings as
follows:
Definition 2.11. A family {Tn} of self-mappings on a nonempty set C is said to
be uniformly asymptotically regular (u.a.r.) if, for each positive integer m and any
bounded subset K ⊂ C, we have

lim
n→∞

sup
x∈K

d(Tm(Tnx), Tnx) = 0.

Lemma 2.12. [31] If {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− bn)an + bncn ∀n ≥ 1

where 0 ≤ bn ≤ 1 and cn ∈ R satisfy the following conditions:

1.

∞∑
n=1

bn =∞ 2. lim sup
n→∞

cn ≤ 0 or

∞∑
n=1

|bncn| <∞,

then lim
n→∞

an = 0.

Lemma 2.13. [21] Let {an} be a real sequence that has a subsequence {ank
} which

satisfies ank
< ank+1 for all k. Then there exists an increasing sequence of integers

{mk} ⊂ N such that

1. lim
k→∞

mk =∞ 2. amk
≤ amk+1 3. ak ≤ amk+1

for all (sufficiently large) numbers k ∈ N.
Throughout this paper, we denote the set of fixed point of T (t), t ≥ 0 by F (T (t))
and set F = ∩t≥0F (T (t)).

3. Convergence Results in Banach space

Theorem 3.1. Let X be a real uniformly convex Banach space which admits weakly
sequentially continuous duality mapping J and C a nonempty closed and convex subset
of X. Let T = {T (t) : t ≥ 0} be the u.a.r. semigroup of α-nnexpansive mappings
from C into itself with F 6= ∅. Let {xn} be the sequence defined byu ∈ C, x1 ∈ C (chosen arbitrarily)

xn+1 = αnu+ (1− αn)[λnxn + (1− λn)T (tn)xn].
(3.1)
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Let {αn}, {λn} be sequences in [0, 1] and tn > 0 satisfy the following assumptions:

(i) lim
n→∞

αn = 0

(ii)
∞∑
n=1

αn =∞

(iii) 0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn < 1

(iv) lim
n→∞

tn =∞

Then, the sequence {xn} defined in (3.1) converges to QFu, where QF is a sunny
nonexpansive retraction from X onto F .
Proof. By Lemma 2.3(i), it follows that T (tn) is a quasi nonexpansive mappping and
the sunny nonexpansive retraction from X onto F is well defined. Define z = QFu.

Step 1: {xn} and {T (tn)xn} are bounded.
Let yn = λnxn + (1− λn)T (tn)xn. Then xn+1 = αnu+ (1−αn)yn. Let p ∈ F . By

Lemma 2.4, there exists a continuous strictly increasing convex function g : [0,∞)→
[0,∞) with g(0) = 0 such that

‖yn − p‖2 = ‖λn(xn − p) + (1− λn)(T (tn)xn − p)‖2

≤ λn‖xn − p‖2 + (1− λn)‖T (tn)xn − p‖2 − λn(1− λn)g(‖xn − T (tn)xn‖)
≤ λn‖xn − p‖2 + (1− λn)‖xn − p‖2 − λn(1− λn)g(‖xn − T (tn)xn‖)
= ‖xn − p‖2 − λn(1− λn)g(‖xn − T (tn)xn‖).

Hence,

‖yn − p‖2 ≤ ‖xn − p‖2 − λn(1− λn)g(‖xn − T (tn)xn‖) (3.2)

and

‖yn − p‖ ≤ ‖xn − p‖. (3.3)

Now, (3.3) implies that

‖xn+1 − p‖ = ‖αnu+ (1− αn)yn − p‖
= ‖αn(u− p) + (1− αn)(yn − p)‖
≤ αn‖u− p‖+ (1− αn)‖yn − p‖
≤ αn‖u− p‖+ (1− αn)‖xn − p‖.

By induction, we have

‖xn+1 − p‖ ≤ max{‖u− p‖, ‖x1 − p‖}

for all n ∈ N. Thus {xn} is bounded. Since ‖T (tn)xn − p‖ ≤ ‖xn − p‖, we also have
that {T (tn)xn} is bounded.
Step 2: For any n ∈ N, we prove that

‖xn+1 − z‖2 ≤ (1− αn)‖xn − z‖2 + 2αn〈x− z, J(xn+1 − z)〉. (3.4)

By (3.1), we have

‖xn+1 − z‖2 = ‖αnu+ (1− αn)yn − z‖2

≤ αn‖u− z‖2 + (1− αn)‖yn − z‖2.
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Using (3.2), we get

‖xn+1−z‖2 ≤ αn‖u−z‖2 +(1−αn)[‖xn−p‖2−λn(1−λn)g(‖xn−T (tn)xn‖)]. (3.5)

Setting M = sup{‖u− z‖2−‖xn− z‖2 +λn(1−λn)g(‖xn−T (tn)xn‖)}, we have that

λn(1− λn)g(‖xn − T (tn)xn‖) ≤ ‖xn − z‖2 − ‖xn+1 − z‖2 + αnM . (3.6)

By Lemma 2.7 and (3.1), we can deduce that

‖xn+1 − z‖2 = ‖αnu+ (1− αn)yn − z‖2

≤ ‖αnu+ (1− αn)yn − z − αn(u− z)‖2 + 2〈αn(u− z), J(xn+1 − z)〉
= (1− αn)‖yn − z‖2 + 2αn〈u− z, J(xn+1 − z)〉
≤ (1− αn)‖xn − z‖2 + 2αn〈u− z, J(xn+1 − z)〉.

Step 3: If lim
n→∞

‖xn − T (tn)xn‖ = 0, then lim
n→∞

‖xn − T (s)xn‖ = 0 for any s > 0.

By(3.1), we have that

yn − xn = (1− λn)(xn − T (tn)xn) and xn+1 − yn = αn(u− yn).

With the aid of the assumption lim
n→∞

‖xn − T (tn)xn‖ = 0 and condition (i), we can

deduce that as n→∞,

‖yn − xn‖ → 0 and ‖xn+1 − yn‖ → 0. (3.7)

Since ‖xn+1 − xn‖ ≤ ‖xn+1 − yn‖+ ‖yn − xn‖, we have that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.8)

Using T is u.a.r. and condition (iv), it follows that for any s > 0

lim
n→∞

‖T (s)T (tn)xn − T (tn)xn‖ ≤ lim
n→∞

sup
x∈K
‖T (s)T (tn)x− T (tn)x‖ = 0 (3.9)

where K is any bounded subset of C containing {xn} and {T (tn)xn}.
For any s > 0, let x = T (tn)xn, y = xn , T = T (s) and

V = sup{α‖T (tn)xn − xn‖+ ‖T (s)T (tn)xn − T (s)T (tn)xn‖.
Now by Lemma 2.2, we have

‖T (tn)xn − T (s)xn‖2 ≤ 1 + α

1− α
‖T (tn)xn − T (s)T (tn)xn‖2 + ‖T (tn)xn − xn‖2

+
2α

1− α
‖T (tn)xn − xn‖‖T (tn)xn − T (s)T (tn)xn‖

+
2

1− α
‖T (s)xn − T (s)T (tn)xn‖‖T (tn)xn − T (s)T (tn)xn‖

≤ 1 + α

1− α
‖T (tn)xn − T (s)T (tn)xn‖2 + ‖T (tn)xn − xn‖2

+
2

1− α
V ‖T (tn)xn − T (s)T (tn)xn‖.

Using the assumption lim
n→∞

‖xn − T (tn)xn‖ = 0 of Step 3 above and (3.9), we have

lim
n→∞

‖T (tn)xn − T (s)xn‖ = 0. (3.10)
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Also,

‖xn+1 − T (s)xn‖2 = ‖αnu+ (1− αn)yn − T (s)xn‖2

= ‖αnu+ (1− αn)[λnxn + (1− λn)T (tn)xn]− T (s)xn‖2

= ‖αn(u− T (tn)xn) + (1− αn)λn(xn − T (tn)xn)

+T (tn)xn − T (s)xn‖2

≤ 2αn‖u− T (tn)xn‖+ 4(1− αn)λn‖xn − T (tn)xn‖2

+ 4‖T (tn)xn − T (s)xn‖2

By lim
n→∞

‖xn − T (tn)xn‖ = 0, condition (i) and (3.10), we get

lim
n→∞

‖xn+1 − T (s)xn‖ = 0. (3.11)

Hence for any s > 0,

‖xn − T (s)xn‖ = ‖xn − xn+1 + xn+1 − T (s)xn‖
≤ ‖xn − xn+1‖+ ‖xn+1 − T (s)xn‖ .

From (3.8) and (3.11), we conclude that

lim
n→∞

‖xn − T (s)xn‖ = 0. (3.12)

Step 4: We prove that xn → z as n→∞.
Case 1: Suppose that there exists n0 ∈ N such that {‖xn−z‖}∞n=no

is nonincreasing.
Then lim

n→∞
‖xn − z‖ exists. Using conditions (i),(iii) and (3.6), we deduce that

lim
n→∞

g(‖xn − T (tn)xn‖) = 0

By the properties of g, we have that

lim
n→∞

‖xn − T (tn)xn‖ = 0. (3.13)

Thus By Step 3, (3.12) holds. Since {xn} is bounded, there exists a subsequence
{xnk

} of {xn} such that {xnk+1}converges weakly to y. It follows from (3.12) and
Lemma 2.3 that y ∈ F . We have that

lim sup
n→∞

〈u− z, J(xn+1 − z)〉 = lim
k→∞

〈u− z, J(xnk+1 − z)〉

= 〈u− z, J(y − z)〉 .

Using Lemma 2.6, we conclude that

lim sup
n→∞

〈u− z, J(xn+1 − z)〉 ≤ 0. (3.14)

Let an = ‖xn+1 − z‖2, bn = αn and cn = 〈u − z, J(xn+1 − z)〉 in (3.4). Then, we
deduce by conditions (i), (ii) and Lemma 2.12 that xn → z.
Case 2: Suppose {‖xn− z‖}∞n=no

is not nonincreasing, i.e. that there exists a subse-
quence {nk} of {n} such that

‖xnk
− z‖ < ‖xnk+1 − z‖ ∀k ∈ N.
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Then by Lemma 2.13, there exists an increasing sequence of integers {mk} ⊂ N such
that

1. lim
k→∞

mk =∞ 2. ‖xmk
− z‖ ≤ ‖xmk+1 − z‖ 3. ‖xk − z‖ ≤ ‖xmk+1 − z‖

for all (sufficiently large) numbers k ∈ N. This, together with (3.6) implies that

λmk
(1− λmk

)g(‖xmk
− T (tmk

)xmk
‖) ≤ ‖xmk

− z‖2 − ‖xmk+1 − z‖2 + αmk
M

≤ αmk
M.

Conditions (i),(iii) and properties of g imply

lim
k→∞

‖xmk
− T (tmk

)xmk
‖ = 0.

As shown before, we have

lim sup
k→∞

〈u− z, J(xmk+1 − z)〉 ≤ 0 . (3.15)

From (3.4), we obtain

‖xmk+1 − z‖2 ≤ (1− αmk
)‖xmk

− z‖2 + 2αmk
〈x− z, J(xmk+1 − z)〉. (3.16)

This together with ‖xmk
− z‖ ≤ ‖xmk+1 − z‖ implies that

αmk
‖xmk

− z‖2 ≤ 2αmk
〈x− z, J(xmk+1 − z)〉

and thus,
‖xmk

− z‖2 ≤ 2〈x− z, J(xmk+1 − z)〉 .
It follows from (3.15) that

lim
k→∞

‖xmk
− z‖ = 0.

Consequently, (3.16) ensures that

lim
k→∞

‖xmk+1 − z‖ = 0 .

Recalling that for sufficiently large k ∈ N,

‖xk − z‖ ≤ ‖xmk+1 − z‖,
and so we conclude that lim

n→∞
‖xk − z‖ = 0. Hence, xn → z as n→∞.

Corollary 3.2. Let X be a real uniformly convex Banach space which admits weakly
sequentially continuous duality mapping J and C a nonempty closed and convex subset
of X. Let T = {T (t) : t ≥ 0} be the u.a.r. semigroup of α-nnexpansive mappings
from C into itself with F 6= ∅. Let {xn} be the sequence defined byu ∈ C, x1 ∈ C (chosen arbitrarily)

xn+1 = αnu+ (1− αn)Sλ(tn)xn,
(3.17)

where Sλx = λx + (1 − λ)T (t)x for any λ ∈ (0, 1) and t > 0. Let {αn} in [0, 1] and
tn > 0 satisfy the following assumptions:

(i) lim
n→∞

αn = 0

(ii)
∞∑
n=1

αn =∞
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(iii) lim
n→∞

tn =∞

Then, the sequence {xn} defined in (3.17) converges to QFu, where QF is a sunny
nonexpansive retraction from X onto F .
Proof. Put λn = λ for all n in Theorem 3.1.
Corollary 3.3. Let X be a real uniformly convex Banach space which admits weakly
sequentially continuous duality mapping J and C a nonempty closed and convex subset
of X. Let T = {T (t) : t ≥ 0} be the u.a.r. semigroup of any of the following self
mappings on C :

(1) Mean nonexpansive mappings.
(2) Nonspreading mappings.
(3) Hybird mappings.

Suppose that F 6= ∅. Let {xn} be the sequence defined by{
u ∈ C, x1 ∈ C (chosen arbitrarily)
xn+1 = αnu+ (1− αn)[λnxn + (1− λn)T (tn)xn].

(3.18)

Let {αn}, {λn} in [0, 1] and tn > 0 satisfy :

(i) lim
n→∞

αn = 0

(ii)
∞∑
n=1

αn =∞

(iii) 0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn < 1

(iv) lim
n→∞

tn =∞

Then, the sequence {xn} defined in (3.18) converges to QFu, where QF is a sunny
nonexpansive retraction from X onto F .
Proof. (1). Put α = b

2 in Theorem 3.1 .

(2). Put α = 1
2 in Theorem 3.1 .

(3). Put α = 1
3 in Theorem 3.1 .

Remark 3.4. Theorem 3.1 and Corollaries 3.2- 3.3 extend and improve Theorem 3.3
of Song et al. [27], Theorem 3.2 of Benavides et al. [5] and Theorem 20 of Aleyner et
al. [2].
Replacing the terms T (tn) and T (s) of Theorem 3.1 with the terms Tn and Tm,
respectively, we have the following result which improves and extends ([27], Theorem
3.4) and ([24], Theorem 4.1).
Theorem 3.5. Let X be a real uniformly convex Banach space which admits weakly
sequentially continuous duality mapping J and C a nonempty closed and convex subset
of X. Let {Tn} be the sequence of u.a.r. α-nonexpansive mappings from C into itself
with F 6= ∅. Let {xn} be the sequence defined byu ∈ C, x1 ∈ C (chosen arbitrarily)

xn+1 = αnu+ (1− αn)[λnxn + (1− λn)Tnxn].
(3.19)
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Let {αn}, {λn} be sequences in [0, 1] and satisfy the following conditions:

1. lim
n→∞

αn = 0, 2.

∞∑
n=1

αn =∞, 3. 0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn < 1 .

Then, the sequence {xn} defined in (3.19) converges to QFu, where QF is a sunny
nonexpansive retraction from X onto F .

4. Preliminaries for CAT (0) Spaces

Let (X, d) be a metric space and I = [0, 1] ⊂ R. A mapping ϕ : I → X with the
property that ϕ(0) = a, ϕ(1) = b, and d(ϕ(s), ϕ(t)) = |s − t| for all 0 ≤ t, s ≤ 1
is known as a geodesic path from a to b. Geodesic segment connecting a and b is
the image of ϕ. If a geodesic segment connects any two points of X, then (X, d) is
called a geodesic space. Moreover, X is uniquely geodesic if such a segment is unique
for every pair of elements of X. The unique segment joining a to b is represented by
[a, b]. A geodesic triangle 4(y1, y2, y3) comprises of three points y1, y2, y3 in X as well
as geodesic segments connecting any two of the points y1, y2, y3 . For any geodesic
triangle 4(y1, y2, y3) in (X, d), a comparison triangle is defined as 4(y1, y2, y3) :=
4(y1, y2, y3) in R2 with dR2(yi, yj) = d(yi, yj) for i, j = 1, 2, 3. A CAT (0) space is a
metric space in which every two points are connected by a geodesic segment and for
every x, y ∈ 4(y1, y2, y3) in X and x, y ∈ 4 := 4(y1, y2, y3) in R2,

d(x, y) ≤ dR2(x, y) holds.

By u = (1 − t)x1 ⊕ tx2, we mean u is a point on the geodesic segment joining x1 to
x2 where d(x2, u) = (1− t)d(x1, x2) and d(x1, u) = td(x1, x2).
Some well-known examples of CAT (0) space are complete,simply connected Riemann-
ian manifold having nonpositive sectional curvature, Pre-Hilbert spaces, R-trees, Eu-
clidean spaces, the complex Hilbert ball with a hyperbolic metric (See [18] for more
details). Complete CAT (0) spaces are often called Hadamard spaces.
In 2008, Berg and Nikolaev[6] introduced the concept of quasilinearization as follows:

Denote a pair (a, b) ∈ X ×X by
−→
ab and call it a vector. The quasilinearization is the

map 〈., .〉 : (X ×X)× (X ×X)→ R defined by

〈
−→
ab,
−→
cd〉 =

1

2

[
d2(a, b) + d2(b, c)− d2(a, c)− d2(b, d)

]
, (a, b, c, c, d ∈ X). (4.1)

It is easy to verify that for any a, b, c, d, x ∈ X,

〈
−→
ab,
−→
cd〉 = 〈

−→
cd,
−→
ab〉, 〈

−→
ab,
−→
cd〉 = −〈

−→
ba,
−→
cd〉 and 〈−→ax,

−→
cd〉+ 〈

−→
xb,
−→
cd〉 = 〈

−→
ab,
−→
cd〉 (4.2)

Moreover, we say that X satisfies the Cauchy-Schwartz inequality if 〈
−→
ab,
−→
cd〉 ≤

d(a, b)d(c, d) for all a, b, c, d ∈ X. It is known ([6]) that a geodesically connected
metric space is CAT (0) space if and only if it satisfies the Cauchy-Schwartz inequal-
ity.
Recently, Dehghan and Rooin [10] introduced the duality mapping in CAT (0) spaces
and studied its relation with subdifferential, by using the concept of quasilinearization.
Then they presented a characterization of metric projection in CAT (0) spaces as
follows:
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Let (X, d) be a complete CAT(0) space and C a nonempty closed and convex subset
of X. Let u ∈ C and x ∈ X. Then u = PCx if and only if

〈−→yu,−→ux〉 ≥ 0 for all y ∈ C.

The concept of 4-convergence was introduced by Lim [20]. Kirk and Panyanak[19]
showed that4-convergence in CAT (0) space is similar to weak convergence in Banach
space setting.
Next, we explain the concept of4-convergence and collect some of its basic properties.
Definition 4.1. Let {xn} be a bounded sequence in a CAT (0) space (X, d). For
x ∈ X, we set

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X)}

and asymptotic center of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.

Definition 4.2. A sequence {xn} in X is said to 4− converge to x ∈ X if x is the
unique asymptotic center of every subsequence {un} of {xn}. In this case, we write
4− lim

n→∞
xn = x and call x, the 4−limit of {xn}.

The following known lemmas are needed to prove our result in CAT (0) space.
Lemma 4.3. [19] Every bounded sequence in a complete CAT (0) space X has a
4-convergent subsequence.
Lemma 4.4. [17] Let X be a complete CAT (0) space, {xn} a sequence in X and
x ∈ X. Then {xn} 4-converges to x if and only if lim supn→∞〈xxn, xy〉 ≤ 0 for all
y ∈ X.
Lemma 4.5. [25] Let X be a complete CAT (0) space, {xn} a sequence in X and
x ∈ X. Suppose there exists a nonempty subset K of X satisfying :

(i) For every z ∈ K, lim
n→∞

d(xn, z) exists,

(ii) If a subsequence {xnk
} of {xn} is 4-convergent to x ∈ X, then x ∈ K.

Then {xn} 4-converges to x ∈ K.
Lemma 4.6. [12] Let X be a CAT (0) space. For any x, y, z, w ∈ X and λ ∈ [0, 1],
we have the following:

(a) d(λx⊕ (1− λ)y, z) ≤ λd(x, z) + (1− λ)d(y, z).
(b) d2(λx⊕ (1− λ)y, z) ≤ λd2(x, z) + (1− λ)d2(y, z)− λ(1− λ)d2(x, y).

The above inequality (b) is called the (CN) inequality of Bruhat and Tits(For more
details, see [7]).
Lemma 4.7. (see [16], [12] ) Let X be a CAT (0) space. For any x, y, z, w ∈ X and
t ∈ [0, 1] with ut = λz ⊕ (1− t)w, we have the following:

(i) 〈−→utx,−→uty〉 ≤ t〈−→zx,−→uty〉+ (1− t)〈−→wx,−→uty〉.
(ii) 〈−→utx,−→zy〉 ≤ t〈−→zx,−→zy〉+ (1− t)〈−→wx,−→zy〉.
(iii) 〈−→utx,−→wy〉 ≤ t〈−→zx,−→wy〉+ (1− t)〈−→wx,−→wy〉.
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Lemma 4.8. [10] Let X be a CAT (0) space and x, y, z,∈ X. Then for each λ ∈ [0, 1],
we have

d2(λx⊕ (1− λ)y, z) ≤ λ2d2(x, z) + (1− λ)2d2(y, z) + 2λ(1− λ)〈−→xz,−→yz〉.

Lemma 4.9. [23] Let C be a nonempty subset of a CAT (0) space X. Let T : C → X
be an α-nonexpansive mapping for some 0 ≤ α < 1.

(i) If F (T ) 6= ∅, then T is quasi-nonexpansive. Moreover, F (T ) is closed and
convex.

(ii) If {xn} is a sequence in C such that lim
n→∞

d(xn, Txn) = 0 and 4− lim
n→∞

xn = z

for some z ∈ X, then z ∈ C and Tz = z.

5. Convergence Results in CAT (0) space

Theorem 5.1. Let X be a complete CAT (0) space and C a nonempty closed and
convex subset of X. Let T = {T (t) : t ≥ 0} be the u.a.r semigroup of α-nonexpansive
mappings from C into itself with F 6= ∅. Let {xn} be the sequence defined byu ∈ C, x1 ∈ C (chosen arbitrary)

xn+1 = αnu⊕ (1− αn)[λnxn ⊕ (1− λn)T (tn)xn].
(5.1)

Let {αn}, {λn} in [0, 1] and tn > 0 satisfy the following conditions :

(i) lim
n→∞

αn = 0

(ii)
∞∑
n=1

αn =∞

(iii) 0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn < 1

(iv) lim
n→∞

tn =∞

Then, the sequence {xn} defined in (5.1) converges to x = PFu, where PF is the
metric projection of X onto F .
Proof. Let z ∈ F and yn = λnxn ⊕ (1− λn)T (tn)xn.
Step 1: {xn} and {T (tn)xn} are bounded.
By Lemma 4.6 and Lemma 4.9(i), we obtain

d2(yn, z) ≤ λnd
2(xn, z) + (1− λn)d2(T (tn)xn, z)− λn(1− λn)d2(xn, T (tn)xn)

≤ λnd
2(xn, z) + (1− λn)d2(xn, z)− λn(1− λn)d2(x, T (tn)xn)

= d2(xn, z)− λn(1− λn)d2(x, T (tn)xn)

≤ d2(xn, z).

By replacing ‖.− .‖ with d(., .) in Step 1 of the proof of Theorem 3.1, we have

d(xn+1, z) ≤ max{d(u, z), d(x1, z)}

Hence, {xn} and {T (tn)xn} are bounded.
Step 2: If lim

n→∞
d(xn, T (tn)xn) = 0, then lim

n→∞
d(xn, T (s)xn) = 0 for any s > 0.
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By replacing ‖. − .‖ with d(., .) in Step 3 of the proof of Theorem 3.1 and using
properties of d in a CAT (0) space, it is easy to verify that

lim
n→∞

d(xn, yn) = 0 and lim
n→∞

d(xn, xn+1) = 0. (5.2)

Moreover, using arguments similar to those in Step 3 of the proof of Theorem 3.1 and
replacing ‖.− .‖ with d(., .), we get

lim
n→∞

d(T (tn)xn, T (s)xn) = 0 and lim
n→∞

d(T (s)T (tn)xn, T (tn)xn) = 0. (5.3)

Now,

d(yn, T (s)xn) ≤ d(yn, T (tn)xn) + d(T (tn)xn, T (s)xn)

= λnd(xn, T (tn)xn) + d(T (tn)xn, T (s)xn).

Taking limit as n→∞, we have

lim
n→∞

d(yn, T (s)xn) = 0 (5.4)

By Lemma 4.6, we have

d2(xn+1, T (s)xn) = d2(αnu⊕ (1− αn)yn, T (s)xn)

≤ αnd
2(u, T (s)xn) + (1− αn)d2(yn, T (s)xn)

−αn(1− αn)d2(u, yn)

≤ αnd
2(u, T (s)xn) + (1− αn)d2(yn, T (s)xn).

By condition (i) and (5.4), it follows that

lim
n→∞

d(xn+1, T (s)xn) = 0. (5.5)

Hence, for any s > 0,

d(xn, T (s)xn) ≤ d(xn, xn+1) + d(xn+1, T (s)xn)

and

lim
n→∞

d(xn, T (s)xn) = 0. (5.6)

Step 3: xn → x ∈ F as n→∞ .
Case 1: Suppose that there exists n0 ∈ N such that {d(xn, z)}∞n=no

is nonincreasing.
Then lim

n→∞
d(xn, z) exists. With the aid of Lemma 4.6 and reasoning as in Step 2 of

the proof of Theorem 3.1, we can show that

λn(1− λn)d2(xn, T (tn)xn) ≤ d2(xn − z)− d2(xn+1, z) + αnM.

Since lim
n→∞

d(xn, z) exists, it follows from conditions (i) and (iii) that

lim
n→∞

d(xn, T (tn)xn) = 0. (5.7)

Consequently, we deduce from Step 2 above that

lim
n→∞

d(xn, T (s)xn) = 0 and lim
n→∞

d(xn, yn) = 0. (5.8)
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Since {xn} is bounded, it follows by Lemma 4.3 that there exists a subsequence {xnk
}

of {xn} that 4-converges to x ∈ X. Using (5.6) and Lemma 4.9, we have that x ∈ F .
Now, Lemma 4.5 ensures that {xn} 4-converges to x ∈ F .
Exploiting properties of quasilinearization in (4.2), Cauchy-Schwartz inequality and
Lemma 4.8, we have

d2(xn+1, x) = d2(αnu⊕ (1− αn)yn, x)

≤ α2
nd

2(u, x) + (1− αn)2d2(yn, x) + 2(αn(1− αn)〈−→ux,−−→ynx〉
≤ α2

nd
2(u, x) + (1− αn)2d2(xn, x) + 2αn(1− αn)[〈−→ux,−−−→ynxn〉+ 〈−→ux,−−→xnx〉]

≤ (1− αn)d2(xn, x) + αn

[
αnd

2(u, x) + 2(1− αn)[d(u, x)d(ynxn) + 〈−→ux,−−→xnx〉]
]
.

Since {xn} 4-converges to x, it follows by Lemma 4.4 that lim sup
n→∞

〈ux, xnx〉 ≤ 0.

This inequality, (5.8) and condition(i) imply

lim sup
n→∞

[
αnd

2(u, x) + 2(1− αn)[d(u, x)d(ynxn) + 〈−→ux,−−→xnx〉]
]

= 0.

By Lemma 2.12, we have that lim
n→∞

d(xn, x) = 0 . Hence xn → x ∈ F as n→∞.

Case 2: Suppose {d(xn, z)}∞n=no
is not nonincreasing. So, there exists a subsequence

{nk} of {n} such that

d(xnk
, z) < d(xnk+1, z) ∀k ∈ N.

Then by Lemma 2.13, there exists an increasing sequence of integers {mk} ⊂ N such
that

1. lim
k→∞

mk =∞ 2. d(xmk
, z) ≤ d(xmk+1, z) 3. d(xk, z) ≤ d(xmk+1, z)

for all (sufficiently large) numbers k ∈ N. As shown before, we have

λmk
(1− λmk

)d2(xmk
, T (tmk

)xmk
) ≤ d2(xmk

, z)− d2(xmk+1, z) + αnM.

This inequality, condition (i) and d(xmk
, z) ≤ d(xmk+1, z) imply

lim
k→∞

d(xmk
, T (tmk

)xmk
) = 0.

Moreover, we have from Step 2 that for any s > 0,

lim
k→∞

d(xmk
, ymk

) = 0 and lim
k→∞

d(xmk
, T (s)xmk

) = 0.

As in Case 1 above, {xmk
} 4-converges to x ∈ F and

d2(xmk+1, x) ≤ (1− αmk
)d2(xmk

, x)

+ αmk

[
αmk

d2(u, x) + 2(1− αmk
)[d(u, x)d(ymk

, xmk
) + 〈−→ux,−−−→xmk

x〉]
]
.

Since d(xmk
, z) ≤ d(xmk+1, z), we have that

d2(xmk
, x) ≤ αmk

d2(u, x) + 2(1− αmk
)[d(u, x)d(ymk

, xmk
) + 〈−→ux,−−−→xmk

x〉.
Condition (i) and the fact that lim sup

n→∞
〈ux, xmk

x〉 ≤ 0 imply that lim
k→∞

d(xmk
, x) = 0

and consequently, lim
k→∞

d(xmk+1, x) = 0. Finally,

d(xk, x) ≤ d(xmk+1, x) implies that lim
k→∞

d(xk, x) = 0
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Hence the desired result follows.
Step 4: Now we show that x ∈ F is the nearest common fixed point of T to u i.e.
x = PFu.
For any z ∈ F , it follows by Lemma 4.6(ii) that

d2(xn, z) = d2(αnu⊕ (1− αn)yn, z)

≤ αnd2(u, z) + (1− αn)d2(yn, z)− αn(1− αn)d2(u, yn)

≤ d2(u, z) + d2(xn, z)− αn(1− αn)d2(u, yn).

(5.9)

Since d(yn, x) ≤ d(xn, x), we have that yn → x as n→∞. Taking limit as n→∞ in
(5.9), we have

d2(x, z) ≤ d2(u, z) + d2(xn, z)− αn(1− αn)d2(u, yn) .

This implies d(u, x) ≤ d(u, z) ∀z ∈ F . Hence x = PFu.
Remark 5.2. An analogue of Theorem 3.3 for a sequence of u.a.r. α-nonexpansive
mappings on a CAT (0) space can be easily established on the lines of its proof.
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