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1. Introduction

The split feasibility problem (SFP) is:

Find x ∈ H1 such that x ∈ C and Ax ∈ Q, (1.1)

where C and Q are nonempty closed and convex subsets of real Hilbert spaces
H1 and H2 respectively and A : H1 → H2 is a bounded linear operator. We
shall denote the solution set of SFP (1.1) by Ω. The split-feasibility problem (1.1)
was first studied by Censor and Elfving [16]. The SFP has applications in many
important problems such as signal processing, image reconstruction, intensity
modulated radiation therapy (IMRT) treatment planning, and many well-known it-
erative algorithms for solving the SFP (1.1) has been established [6, 14, 16, 15, 17, 18].
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In [16], the authors used their multidistance idea to obtain iterative algorithms for
solving the SFP (1.1). Their algorithms as well as some other algorithms obtained
later (see [12]) involve matrix inverses at each iteration. Byrne [14, 13] was among
the first to propose the so-called CQ algorithm which generates a sequence {xn} by
the recursive procedure,

xn+1 = PC(xn − τnA∗(I − PQ)Axn), (1.2)

where the stepsize τn is chosen in the interval (0, 2
‖A‖2 ), PC and PQ are the

orthogonal projections onto C and Q which are closed and convex subsets of Rn and
Rm respectively and A∗ is the transpose of the m × n matrix A. Compared with
Censor and Elfving’s algorithm [16] where the matrix inverse A−1 is involved, the
CQ algorithm (1.2) seems more easily executed since it only deals with orthogonal
projections with no need to compute matrix inverses.

Now consider the nonempty closed convex subsets in (1.1) having the following form:

C = {x ∈ Rn : c(x) ≤ 0}, Q = {y ∈ Rm : q(y) ≤ 0},

where c : Rn → R and q : Rm → R are both convex functions. In this situation, the
efficiency of the CQ method is extremely affected because in general the computation
of projections onto such subsets is very difficult. Motivated by Fukushima’s relaxed
projection method in [21], Yang [44] suggested calculating the projection onto a half
space containing the original subset instead of the latter set itself. More precisely,
Yang [44] introduced the following relaxed CQ algorithm:

xn+1 = PCn(xn − τnA∗(I − PQn)Axn), (1.3)

where Cn and Qn are constructed as follows

Cn = {x ∈ Rn : c(xn) ≤ 〈ξn, xn − x〉}, (1.4)

with ξn ∈ ∂c(xn) and

Qn = {x ∈ Rm : q(Axn) ≤ 〈ζn, Axn − x〉}, (1.5)

with ζn ∈ ∂q(Axn). We note that both the CQ algorithm and the relaxed CQ
algorithm use a fixed stepsize related to the matrix norm, which sometimes affects
convergence of the algorithms especially if A is a dense matrix and has a high
dimension.

In order to remove this setback, López et al. [27] introduced a new method for
selecting the variable stepsize. They defined the stepsize λn as follows:

λn =
1
2ρn‖(I − PQn)Axn‖2

‖A∗(I − PQn
)Axn‖2

(1.6)

where {ρn} is a sequence in (0, 4) such that inf
n∈N

ρn(4 − ρn) > 0 and proved that the

sequence {xn} generated by (1.3) converges weakly to a solution of SFP (1.1).
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Recently, Kesornprom et al. [26] proposed the following algorithm which can be seen
as an improvement over the algorithm of Gibali et al. [22] in the sense that it only
involves one projection per iteration.{

yn = xn − λnA∗(I − PQn
)Axn,

xn+1 = PCn
(yn − ϕn(A∗(I − PQn

)Ayn),
(1.7)

where λn =
1
2ρn‖(I−PQn )Axn‖2

‖A∗(I−PQn )Axn‖2+θn and ϕn =
1
2ρn‖(I−PQn )Axn‖2

‖A∗(I−PQn )Ayn‖2+θn , 0 < ρn < 4,

0 < θn < 1.

In iterative methods, it is always desirable to develop more efficient and faster
iterative algorithms. In order to obtain iterative algorithms with better rate of
convergence than the previous ones in the literature, many authors have studied
inertial type algorithms ( see, e.g., [1, 2, 4, 3, 5, 7, 10, 8, 9, 19, 28, 29, 32, 34]). These
results analysed the convergence properties of inertial extrapolation type algorithms
and demonstrated their improved performance numerically on some imaging and
data analysis problems.

In particular, many authors have proposed a variety of inertial-type methods for
solving SFPs, see [20, 36, 38, 37] and some of the references therein. One thing that
is very evident with respect to the inertial-type methods in [20, 36, 38, 37], is that the
sequence {xn} generated does not yield Fejér monotonicity of {‖xn − x∗‖}, x∗ ∈ Ω
and can move or swing back and forth around Ω, see, for example, [7, 28]. This is
the reason such inertial extrapolation step sometimes does not converge faster than
its counterpart non-inertial methods, see, e.g., [30]. The alternated inertial method
introduced recently in [31] has partially resolved this problem as it has shown some
improvements over the vanilla inertial methods, see [24, 25, 35], for details.

The purpose of this paper is to propose an alternated inertial relaxed CQ algo-
rithm for solving SFPs in real Hilbert spaces. Our contribution in this paper includes:

(1) Our proposed inertial method regains the Fejér monotonicity of {‖xn−x∗‖},
x∗ ∈ Ω, in some sense.

(2) The algorithm can be considered as an alternated inertial relaxed version of
the splitting-relaxed projection method studied in [42] for solving SFPs.

(3) We give some numerical examples to show the comparative advantage of our
proposed method over some recent related methods.

2. Preliminaries

Let H1 and H2 be real Hilbert spaces, ωw(xn) the set of cluster points of {xn} in the
weak topology, ”→ ” strong convergence and ” ⇀ ” weak convergence. Let T be an
operator on H. Then T is called
(i) κ-inverse strongly monotone (κ-ism) if there is κ > 0 such that

〈Tx− Ty, x− y〉 ≥ κ‖Tx− Ty‖2, x, y ∈ H;
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(ii) L-Lipschitz continuous if there is L > 0 such that

‖Tx− Ty‖ ≤ L‖x− y‖, x, y ∈ H;

(iii) firmly nonexpansive if it is 1-ism;
(iv) nonexpansive if it is 1-Lipschitz continuous.

Lemma 2.1. (Gobel-Kirk [23]). Let T be an operator on H. Then the following are
equivalent.
(i) T is firmly nonexpansive;
(ii) I − T is firmly nonexpansive;
(iii) ‖Tx− Ty‖2 ≤ 〈x− y, Tx− Ty〉, x, y ∈ H.

Let C be a nonempty closed and convex subset of a Hilbert space H. The projection
mapping from H onto C is denoted by PC and defined by

PC(x) = arg min
y∈C
‖x− y‖, x ∈ H.

It is well known that the projection mapping is firmly nonexpansive and is character-
ized by the following variational inequality:

〈PC(x)− x, PC(x)− y〉 ≤ 0,∀y ∈ C. (2.1)

Lemma 2.2. (Byrne [14]). Let A : H1 → H2 be a bounded linear operator and Q a
nonempty closed and convex subset of H2, then the operator A∗(I−PQ)A is 1

‖A‖2 -ism

and hence ‖A‖2-Lipschitz continuous.

Lemma 2.3. (See [39]) Assume that {an} and {bn} are two sequences of non-negative
numbers such that

an+1 ≤ an + bn ∀n ∈ N.

If
∑∞
n=1 bn < +∞, then limn→∞ an exists.

We recall that a function f : H → R is called convex if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y),∀α ∈ [0, 1] and ∀x, y ∈ H.

A function f : H → R is called subdifferentiable at x if there exists at least one
subgradient at x. The set of subgradients of f at the point x is called the subdifferential
of f at x, and is denoted by ∂f(x). A function f is called subdifferentiable if it is
subdifferentiable at all points in H. A convex function f : H → R is called weakly
lower semicontinuious at x if xn ⇀ x implies

f(x) ≤ lim inf
n→∞

f(xn);

weakly lower semicontinuous if it is weakly lower semicontinuous at all points in H.

Definition 2.4. A sequence {xn} in H is said to converge weakly to x̄ ∈ H if ∀z ∈ H,

lim
n→∞

〈xn, z〉 = 〈x̄, z〉.
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Lemma 2.5. ([33]) Let C be a non empty subset of H and {xn} be a sequence in H
such that the following conditions hold:
(i) for every x ∈ C, limn→∞ ‖xn − x‖ exists;
(ii) every sequential weak cluster point of {xn} is in C.
Then {xn} converges weakly to a point in C.

Lemma 2.6. ([17]) Let {Ci}ti=1 and {Qj}rj=1 be nonempty closed and convex subsets
of H1 and H2 respectively and A : H1 → H2 a bounded linear operator. Let P (x) :=∑t
i=1 li(x − PCi(x)) +

∑r
j=1 λjA

∗(I − PQj )Ax where li(i = 1, · · · , t) and λj(j =

1, · · · , r) are all positive constants. Then P (x) is Lipschitz continuous with L :=∑t
i=1 li + ||A||2

∑r
j=1 λj .

3. Main results

In this section we consider the nonempty closed convex subsets in the SFP (1.1) with
the following form:

C = {x ∈ H1 : c(x) ≤ 0}, Q = {y ∈ H2 : q(y) ≤ 0},

where c : H1 → R and q : H2 → R are both weakly lower semicontinuous convex
functions. Assume that both ∂c and ∂q are nonempty and bounded on bounded sets.
We note that in finite dimensional Hilbert spaces, every convex function is subdiffer-
entiable everywhere and its subdifferentials are uniformly bounded on bounded sets
(see [6]). So our assumptions are automatically satisfied in finite dimensional Hilbert
spaces setting. Define Cn and Qn as follows:

Cn = {x ∈ H1 : c(wn) ≤ 〈ξn, wn − x〉}, (3.1)

where ξn ∈ ∂c(wn), and

Qn = {y ∈ H2 : q(Awn) ≤ 〈ζn, Awn − y〉} (3.2)

where ζn ∈ ∂q(Awn). Observe that for every n ≥ 0, C ⊆ Cn and Q ⊆ Qn. We also
set fn(x) = A∗(I − PQn)Ax.

Algorithm 3.1. Initialization : Choose four parameters τ1 > 0, θ ∈ (0, 1], µ ∈ (0, 1)

and αn such that 0 ≤ αn ≤
(

1−µ
1+µ

)2
. Select initial x0, x1 ∈ H1 and set n := 1.

Step 1: Given xn−1 and xn (n ≥ 1), compute

wn =

{
xn, n = even
xn + αn(xn − xn−1), n = odd,

(3.3)

Step 2:

yn = PCn(wn − τnfn(wn)), (3.4)

if yn = wn, then stop and wn is the solution of the SFP. Otherwise,
Step 3: Compute

xn+1 = (1− θ)wn + θyn + θτn(fn(wn)− fn(yn)) (3.5)
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and update

τn+1 =

{
min

{
τn,

µ‖wn−yn‖
‖fn(wn)−fn(yn)‖

}
, if ‖fn(wn)− fn(yn)‖ 6= 0,

τn, Otherwise.
(3.6)

Set n := n+ 1 and return to Step 1.

Remark 3.2. The stepsize τn+1 is found at each iteration by a cheap computation
and does not depend on the operator norm. From the definition, we see that if
fn(wn) = fn(yn), then τn+1 = τn. Otherwise since fn is Lipschitz continuous with
Lipschitz constant ‖A‖2, then

µ‖wn − yn‖
‖fn(wn)− fn(yn)‖

≥ µ‖wn − yn‖
‖A‖2‖wn − yn‖

=
µ

‖A‖2
.

Thus, we have that {τn} is bounded below by min{τ1, µ
‖A‖2 }. Moreover, from defini-

tion, the sequence {τn} is monotonically non-increasing. Thus there exists τ > 0 such
that limn→∞ τn = τ.

Lemma 3.3. If yn = wn for some n ≥ 1, then wn is a solution of the SFP (1.1), i.e.
wn ∈ Ω.

Proof. Let yn = wn, and pick x∗ ∈ Ω. Substituting wn = x in (3.1) yeilds c(wn) ≤
0, i.e. wn ∈ C. Also, by (3.5) and (2.1), we have

〈wn − λnfn(wn)− wn, y − wn〉 ≤ 0, ∀y ∈ C.

Therefore,

〈fn(wn), wn − x∗〉 ≤ 0. (3.7)

Since I − PQn
is firmly nonexpansive, then

‖(I − PQn)Awn‖2 = ‖(I − PQn)Awn − (I − PQn)Ax∗‖2

≤ 〈(I − PQn)Awn, Awn −Ax∗〉
= 〈fn(wn), wn − x∗〉 ≤ 0. (3.8)

Thus Awn ∈ Qn, by the definition of Qn, we have q(Awn) ≤ 0, i.e., Awn ∈ Q and
therefore wn is a solution of the SFP (1.1). �

Theorem 3.4. Let {xn} be the sequence generated by Algorithm 3.1 and Ω 6= ∅.
Then {xn} converges weakly to a point in Ω.

Proof. Let x∗ ∈ Ω. From the definition of yn and (2.1), we obtain

〈y2n+1 − (w2n+1 − τ2n+1f2n+1(w2n+1)), y2n+1 − x∗〉 ≤ 0,

which gives

2〈w2n+1 − y2n+1, y2n+1 − x∗〉 − 2τ2n+1〈f2n+1(w2n+1)− f2n+1(y2n+1), y2n+1 − x∗〉
− 2τ2n+1〈f2n+1(y2n+1), y2n+1 − x∗〉 ≥ 0. (3.9)
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Using the identity 2〈a, b〉 = ‖a + b‖2 − ‖a‖2 − ‖b‖2 with a = w2n+1 − y2n+1 and
b = y2n+1 − x∗, we get

2〈w2n+1 − y2n+1, y2n+1 − x∗〉 = ‖w2n+1 − x∗‖2 − ‖w2n+1 − y2n+1‖2 − ‖y2n+1 − x∗‖2.
(3.10)

Moreover, since x∗ ∈ Ω, then f2n+1(x∗) = 0. Therefore, it follows from f2n+1 being
monotone that

〈f2n+1(y2n+1), y2n+1 − x∗〉 ≥ 〈f2n+1(x∗), y2n+1 − x∗〉 = 0. (3.11)

Combining the relations (3.9), (3.10) and (3.11), we obtain

‖y2n+1 − x∗‖2 ≤ ‖w2n+1 − x∗‖2 − ‖w2n+1 − y2n+1‖2

−2τ2n+1〈f2n+1(w2n+1)− f2n+1(y2n+1), y2n+1 − x∗〉. (3.12)

But

‖x2n+2 − x∗‖2

= ‖(1− θ)w2n+1 + θy2n+1 + θτ2n+1(f2n+1(w2n+1)− f2n+1(y2n+1))− x∗‖2

= (1− θ)2‖w2n+1 − x∗‖2 + θ2‖y2n+1 − x∗‖2

+θ2τ22n+1‖f2n+1(w2n+1)− f2n+1(y2n+1)‖2

+2θ(1− θ)〈w2n+1 − x∗, y2n+1 − x∗〉
+2τ2n+1θ(1− θ)〈w2n+1 − x∗, f2n+1(w2n+1)− f2n+1(y2n+1)〉
+2τ2n+1θ

2〈y2n+1 − x∗, f2n+1(w2n+1)− f2n+1(y2n+1)〉. (3.13)

From the identity 2〈a, b〉 = ‖a‖2+‖b‖2−‖a−b‖2 for a = w2n+1−x∗ and b = y2n+1−x∗,
we have

2〈w2n+1 − x∗, y2n+1 − x∗〉 = ‖w2n+1 − x∗‖2 + ‖y2n+1 − x∗‖2

−‖w2n+1 − y2n+1‖2. (3.14)

Substituting (3.14) into (3.13), we get

‖x2n+2 − x∗‖2 = (1− θ)2‖w2n+1 − x∗‖2 + θ2‖y2n+1 − x∗‖2

+ θ2τ22n+1‖f2n+1(w2n+1)− f2n+1(y2n+1)‖2

+ θ(1− θ)[‖w2n+1 − x∗‖2 + ‖y2n+1 − x∗‖2 − ‖w2n+1 − y2n+1‖2]

+ 2τ2n+1θ(1− θ)〈w2n+1 − x∗, f2n+1(w2n+1)− f2n+1(y2n+1)〉
+ 2τ2n+1θ

2〈y2n+1 − x∗, f2n+1(w2n+1)− f2n+1(y2n+1)〉
= (1− θ)‖w2n+1 − x∗‖2 + θ‖y2n+1 − x∗‖2

− θ(1− θ)‖w2n+1 − y2n+1‖2

+ θ2τ22n+1‖f2n+1(w2n+1)− f2n+1(y2n+1)‖2

+ 2τ2n+1θ(1− θ)〈w2n+1 − x∗, f2n+1(w2n+1)− f2n+1(y2n+1)〉
+ 2τ2n+1θ

2〈y2n+1 − x∗, f2n+1(w2n+1)− f2n+1(y2n+1)〉. (3.15)
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Thus from (3.12) and (3.15), we have

‖x2n+2 − x∗‖2 ≤ (1− θ)‖w2n+1 − x∗‖2 + θ[‖w2n+1 − x∗‖2 − ‖w2n+1 − y2n+1‖2

−2τ2n+1〈f2n+1(w2n+1)− f2n+1(y2n+1), y2n+1 − x∗〉]
−θ(1− θ)‖w2n+1 − y2n+1‖2

+θ2τ22n+1‖f2n+1(w2n+1)− f2n+1(y2n+1)‖2

+2τ2n+1θ(1− θ)〈w2n+1 − x∗, f2n+1(w2n+1)− f2n+1(y2n+1)〉
+2τ2n+1θ

2〈y2n+1 − x∗, f2n+1(w2n+1)− f2n+1(y2n+1)〉.
= ‖w2n+1 − x∗‖2 − θ(2− θ)‖w2n+1 − y2n+1‖2

+θ2τ22n+1‖f2n+1(w2n+1)− f2n+1(y2n+1)‖2

+2τ2n+1θ(1− θ)〈w2n+1 − y2n+1, f2n+1(w2n+1)− f2n+1(y2n+1)〉
≤ ‖w2n+1 − x∗‖2 − θ(2− θ)‖w2n+1 − y2n+1‖2

+θ2τ22n+1

µ2

τ22n+2

‖w2n+1 − y2n+1‖2

+2τ2n+1θ(1− θ)
µ

τ2n+2
‖w2n+1 − y2n+1‖2.

= ‖w2n+1 − x∗‖2 − θ
[
2− θ − 2µ(1− θ)τ2n+1

τ2n+2

−θµ2 τ
2
2n+1

τ22n+2

]
‖w2n+1 − y2n+1‖2. (3.16)

Moreover,

‖w2n+1 − x∗‖2 = ‖x2n+1 + α2n+1(x2n+1 − x2n)− x∗‖2

= ‖(1 + α2n+1)(x2n+1 − x∗)− α2n+1(x2n − x∗)‖2

= (1 + α2n+1)‖x2n+1 − x∗‖2 − α2n+1‖x2n − x∗‖2

+α2n+1(1 + α2n+1)‖x2n+1 − x2n‖2. (3.17)

Using similar arguments in showing (3.16), we have

‖x2n+1 − x∗‖2 ≤ ‖w2n − x∗‖2 − θ
[
2− θ − 2µ(1− θ) τ2n

τ2n+1

−θµ2 τ22n
τ22n+1

]
‖w2n − y2n‖2.

= ‖x2n − x∗‖2 − θ
[
2− θ − 2µ(1− θ) τ2n

τ2n+1

−θµ2 τ22n
τ22n+1

]
‖x2n − y2n‖2. (3.18)
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Substituting (3.17) and (3.18) into (3.16), gives

‖x2n+2 − x∗‖2 ≤ ‖x2n − x∗‖2 − (1 + α2n+1)θ
[
2− θ − 2µ(1− θ) τ2n

τ2n+1

− θµ2 τ22n
τ22n+1

]
‖x2n − y2n‖2 + α2n+1(1 + α2n+1)‖x2n+1 − x2n‖2

− θ
[
2− θ − 2µ(1− θ)τ2n+1

τ2n+2
− θµ2 τ

2
2n+1

τ22n+2

]
‖w2n+1 − y2n+1‖2. (3.19)

Also,

‖x2n+1 − x2n‖ = ‖(1− θ)w2n + θy2n + θτ2n(f2n(w2n)− f2n(y2n))− x2n‖
≤ θ‖w2n − y2n‖+ θτ2n‖f2n(w2n)− f2n(y2n)‖

≤ θ‖w2n − y2n‖+ θτ2n
µ

τ2n+1
‖w2n − y2n‖

= θ
(

1 + τ2n
µ

τ2n+1

)
‖x2n − y2n‖. (3.20)

Therefore, from (3.19) and (3.20), we have

‖x2n+2 − x∗‖2 ≤ ‖x2n − x∗‖2 − (1 + α2n+1)θ
[
2− θ − 2µ(1− θ) τ2n

τ2n+1

−θµ2 τ22n
τ22n+1

− α2n+1θ
(

1 + τ2n
µ

τ2n+1

)2]
‖x2n − y2n‖2

−θ
[
2− θ − 2µ(1− θ)τ2n+1

τ2n+2
− θµ2 τ

2
2n+1

τ22n+2

]
‖w2n+1 − y2n+1‖2

≤ ‖x2n − x∗‖2 − (1 + α2n+1)θ
[
2− θ − 2µ(1− θ) τ2n

τ2n+1

−θµ2 τ22n
τ22n+1

− θ
(1− µ

1 + µ

)2(
1 + τ2n

µ

τ2n+1

)2]
‖x2n − y2n‖2

−θ
[
2− θ − 2µ(1− θ)τ2n+1

τ2n+2
− θµ2 τ

2
2n+1

τ22n+2

]
‖w2n+1 − y2n+1‖2.

(3.21)

Since τn → τ > 0, we have

lim
n→∞

[
2− θ − 2µ(1− θ) τ2n

τ2n+1
− θµ2 τ22n

τ22n+1

− θ
(1− µ

1 + µ

)2(
1 + τ2n

µ

τ2n+1

)2]
=
[
2− θ − 2µ(1− θ)− θµ2 − θ

(1− µ
1 + µ

)2
(1 + µ)2

]
= [2− θ − 2µ(1− θ)− θµ2 − θ(1− µ)2]

= (1− µ)[2− 2θ + 2θµ]

= 2(1− µ)[1− θ(1− µ)] > 0. (3.22)
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Also,

lim
n→∞

[
2− θ − 2µ(1− θ)τ2n+1

τ2n+2
− θµ2 τ

2
2n+1

τ22n+2

]
= 2− θ − 2µ(1− θ)− θµ2

= (1− µ)(2− θ + θµ) > 0. (3.23)

Let ε be fixed such that

0 < ε < 2− θ − 2µ(1− θ)− θµ2 − θ(1− µ)2 ≤ 2− θ − 2µ(1− θ)− θµ2.

Then, it follows from the relations (3.22) and (3.23) that there exists n0 > 1 such
that

2− θ − 2µ(1− θ)τ2n+1

τ2n+2
− θµ2 τ

2
2n+1

τ22n+2

> 2− θ − 2µ(1− θ) τ2n
τ2n+1

− θµ2 τ22n
τ22n+1

− θ
(1− µ

1 + µ

)2(
1 + τ2n

µ

τ2n+1

)2
≥ ε > 0,∀n ≥ n0. (3.24)

This together with (3.21), implies that

‖x2n+2 − x∗‖2 ≤ ‖x2n − x∗‖2 − (1 + α2n+1)θε‖x2n − y2n‖
−θε‖w2n+1 − y2n+1‖2, ∀n ≥ n0, (3.25)

which implies

‖x2n+2 − x∗‖2 ≤ ‖x2n − x∗‖2, ∀n ≥ n0. (3.26)

Therefore, we have that limn→∞ ‖x2n − x∗‖ exists and that {x2n} is bounded. Fur-
thermore, we get from (3.25) that

lim
n→∞

‖x2n − y2n‖ = 0 (3.27)

and

lim
n→∞

‖w2n+1 − y2n+1‖ = 0. (3.28)

Again, from (2.1) and the definition of yn, we have

〈w2n − τ2nf2n(w2n)− y2n, x∗ − y2n〉 ≤ 0,

which implies

〈f2n(w2n), y2n − x∗〉 ≤
1

τ2n
〈w2n − y2n, y2n − x∗〉

≤ 1

τ2n
‖w2n − y2n‖‖y2n − x∗‖. (3.29)

Furthermore, since f2n is ‖A‖2-Lipschitz, then

〈f2n(w2n), w2n − y2n〉 ≤ ‖f2n(w2n)− f2n(x∗)‖‖y2n − w2n‖
≤ ‖A‖2‖w2n − x∗‖‖y2n − w2n‖. (3.30)
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Combining (3.29) and (3.30), we have

〈f2n(w2n), w2n − x∗〉 ≤M‖y2n − w2n‖, (3.31)

where M = sup{‖A‖2‖w2n − x∗‖ + 1
τ2n
‖y2n − x∗‖}. However, since f2n is 1

‖A‖2 -ism,

we have

〈f2n(w2n), w2n − x∗〉 = 〈f2n(w2n)− f2n(x∗), w2n − x∗〉

≥ 1

‖A‖2
‖f2n(w2n)− f2n(x∗)‖2

=
1

‖A‖2
‖f2n(w2n)‖2. (3.32)

From (3.31) and (3.32), we get

‖f2n(w2n)‖2 ≤ ‖A‖2M‖y2n − w2n‖
= ‖A‖2M‖y2n − x2n‖ → 0, n→∞. (3.33)

Now, since I − PQ2n
is firmly nonexpansive, it follows that

‖(I − PQ2n)Aw2n‖2 = ‖(I − PQ2n)Aw2n − (I − PQ2n)Ax∗‖2

≤ 〈(I − PQ2n)Aw2n, Aw2n −Ax∗〉
= 〈A∗(I − PQ2n)Aw2n, w2n − x∗〉
≤ ‖f2n(w2n)‖‖w2n − x∗‖ → 0, n→∞. (3.34)

Similarly, one can show that

lim
n→∞

‖(I − PQ2n+1)Aw2n+1‖ = 0. (3.35)

Since, ∂q is bounded on bounded sets, we have that there exists ζ > 0 such that
‖ζ2n‖ ≤ ζ. Since PQ2n

Aw2n ∈ Q2n, we obtain from (3.2) and (3.34) that,

q(Aw2n) ≤ 〈ζ2n, Aw2n − PQ2n
Aw2n〉

≤ ζ‖(I − PQ2n
)Aw2n‖ → 0, n→∞. (3.36)

Since {x2n} is bounded, there exists a subsequence {x2nj
} of {x2n} such that x2nj

⇀
x̄ ∈ H1. Thus, the weak continuity of A yields that Ax2nj

⇀ Ax̄, which together
with the weak lower semicontinuity of q yields

q(Ax̄) ≤ lim inf
j→∞

q(Ax2nj ) = lim inf
j→∞

q(Aw2nj ) ≤ 0,

that is Ax̄ ∈ Q. Since y2nj ∈ C2nj , then by definition of C2nj , we have

c(w2nj ) + 〈ξ2nj , y2nj − w2nj 〉 ≤ 0,

where ξ2nj ∈ ∂c(w2nj ). By the boundedness of {ξ2nj}, there exists ξ > 0 such that
‖ξ2nj‖ ≤ ξ. Thus form (3.27), we have

c(x2nj ) = c(w2nj ) ≤ 〈ξ2nj , w2nj − y2nj 〉
≤ ‖ξ2nj‖‖w2nj − y2nj‖
≤ ξ‖w2nj − y2nj‖
= ξ‖x2nj − y2nj‖ → 0, j →∞. (3.37)
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Since x2nj
⇀ x̄, then by the weakly lower semicontinuity of c and (3.37), we have

c(x̄) ≤ lim inf
j→∞

c(x2nj
) ≤ 0,

which implies x̄ ∈ C. Thus, we have x̄ ∈ Ω and from Lemma 2.5 it follows that {x2n}
converges weakly to a point in Ω.

On the other hand, from (3.20) and (3.27), we have

‖x2n+1 − x2n‖ ≤ θ
(

1 +
τ2nµ

τ2n+1

)
‖x2n − y2n‖ → 0, n→∞, (3.38)

Suppose {x2n} converges weakly to x̄ ∈ Ω and {x2n} converges weakly to x∗ ∈ Ω.
Then

‖x̄− x∗‖2 = 〈x̄− x∗, x̄− x∗〉
= 〈x̄, x̄− x∗〉 − 〈x∗, x̄− x∗〉
= lim

n→∞
〈x2n, x̄− x∗〉 − lim

n→∞
〈x2n, x̄− x∗〉

= lim
n→∞

〈x2n − x2n, x̄− x∗〉 = 0.

Therefore, the weak limit x̄ is unique. By definition, we have that for all y ∈ H1,

lim
n→∞

〈x2n − x̄, y〉 = 0.

Thus, from ‖x2n+1 − x2n‖ → 0, n→∞, we have for all y ∈ H1

|〈x2n+1 − x̄, y〉| = |〈x2n+1 − x̄+ x2n − x2n, y〉|
≤ |〈x2n − x̄, y〉|+ |〈x2n+1 − x2n, y〉|
≤ |〈x2n − x̄, y〉|+ ‖x2n+1 − x2n‖‖y‖ → 0, n→∞.

Hence, {x2n+1} converges weakly to x̄ ∈ Ω and therefore, {xn} converges weakly to
a point x̄ ∈ Ω. �

We now give an extension of our results to the multiple-sets split feasibility problem
(MSFP) [17], which is mathematically formulated as the problem of finding a point
x∗ such that:

x∗ ∈ C := ∩ti=1Ci, Ax
∗ ∈ Q := ∩rj=1Qj , (3.39)

where t ≥ 1 and r ≥ 1 are given integers, {Ci}ti=1 and {Qj}rj=1 are nonempty closed
and convex subsets of Hilbert spaces H1 and H2 respectively and A : H1 → H2 is
a bounded linear operator. Let us denote the solution set of the MSFP (3.39) by
ΩMSFP . Our results in this paper can easily be extended to solving the MSFP (3.39)
where the nonempty closed and convex subsets Ci(i = 1, · · · , t) and Qj(j = 1 · · · , r)
are level sets of convex functions given are follows:

Ci := {x ∈ H1 : ci(x) ≤ 0}
and

Qj = {y ∈ H2 : qj(y) ≤ 0},
where ci : H1 → R, i = 1, · · · , t and qj : H2 → R, j = 1, · · · , r are convex functions
such that ci(i = 1, · · · , t) and qj(j = 1, · · · , r) are subdifferentiable on H1 and H2
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respectively and ∂ci(i = 1, · · · , t) and ∂qj(j = 1, · · · , r) are bounded on bounded sets.

Define Ci,n and Qj,n as follows:

Ci,n = {x ∈ H1 : ci(wn) ≤ 〈ξi,n, wn − x〉}, (3.40)

where ξi,n ∈ ∂ci(wn), and

Qj,n = {y ∈ H2 : qj(Awn) ≤ 〈ζj,n, Awn − y〉} (3.41)

where ζj,n ∈ ∂qj(Awn). Observe that for every n ≥ 0, Ci ⊆ Ci,n and Qj ⊆ Qj,n.
We then modify Algorithm 3.1 accordingly for solving the MSFP (3.39) as follows:

Algorithm 3.5. Initialization : Choose four parameters τ1 > 0, θ ∈ (0, 1], µ ∈ (0, 1)

and αn such that 0 ≤ αn ≤
(

1−µ
1+µ

)2
. Select initial x0, x1 ∈ H1 and set n := 1.

Step 1: Given xn−1 and xn (n ≥ 1), Compute

wn =

{
xn, n = even
xn + αn(xn − xn−1), n = odd,

(3.42)

Step 2:

yn = wn − τnPn(wn), (3.43)

if yn = wn, then stop and wn is the solution of the MSFP. Otherwise,
Step 3: Compute

xn+1 = (1− θ)wn + θyn + θτn(Pn(wn)− Pn(yn)) (3.44)

and update

τn+1 =

{
min

{
τn,

µ‖wn−yn‖
‖Pn(wn)−Pn(yn)‖

}
, if ‖Pn(wn)− Pn(yn)‖ 6= 0,

τn, Otherwise,
(3.45)

where

Pn(x) =

t∑
i=1

li(x− PCi,n
(x)) +

r∑
j=1

λjA
∗(I − PQj,n

)Ax.

Set n := n+ 1 and return to Step 1.

Remark 3.6. Since Pn is Lipschitz continuous, then just as in Remark 3.2, we
have that {τn} is monotonically non-increasing and is bounded below by min{τ1, µL}
(L =

∑t
i=1 li + ‖A‖2

∑r
j=1 λj). Thus there exists τ̄ > 0 such that limn→∞ τn = τ̄ .

Lemma 3.7. If yn = wn for some n ≥ 1, then wn is a solution of the MSFP (3.39),
i.e. wn ∈ ΩMSFP .

Proof. Let yn = wn, and pick x∗ ∈ ΩMSFP . Then from (3.43), we have

〈wn − λnPn(wn)− wn, x∗ − wn〉 = 0,

which implies

〈Pn(wn), wn − x∗〉 = 0. (3.46)
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Since I − PCi,n
, (i = 1, · · · , t) and I − PQj,n

, (j = 1, · · · , r) are firmly nonexpansive,
then

t∑
i=1

li‖(I − PCi,n)wn‖2 +

r∑
j=1

λj‖(I − PQj,n)Awn‖2

≤
t∑
i=1

li〈(I − PCi,n)wn, wn − x∗〉+

r∑
j=1

λj〈(I − PQj,n)Awn, Awn −Ax∗〉

=
〈 t∑
i=1

li(I − PCi,n)wn +

r∑
j=1

λjA
∗(I − PQj,n)Awn, Awn −Ax∗

〉
= 〈Pn(wn), wn − x∗〉 = 0. (3.47)

Thus, wn ∈ Ci,n, (i = 1, · · · , t) and Awn ∈ Qj,n, (j = 1, · · · , r). It then follows from
the definitions of Ci,n, (i = 1, · · · , t) and Qj,n, (j = 1, · · · , r) that ci(wn) ≤ 0, (i =
1, · · · , t) and qj(Awn) ≤ 0, (j = 1, · · · , r), which implies wn ∈ Ci(i = 1, · · · , t) and
Awn ∈ Qj , (j = 1, · · · , r). Thus, we have wn ∈ ∩ti=1Ci and Awn ∈ ∩rj=1Qj which
means wn is a solution of MSFP (3.39). �

Theorem 3.8. Let {xn} be the sequence generated by Algorithm 3.5 and ΩMSFP 6= ∅.
Then {xn} converges weakly to a point in ΩMSFP .

Proof. Let x∗ ∈ Ω. From the definition of yn, we obtain

〈y2n+1 − (w2n+1 − τ2n+1P2n+1(w2n+1)), y2n+1 − x∗〉 = 0,

which gives

2〈w2n+1 − y2n+1, y2n+1 − x∗〉 − 2τ2n+1〈P2n+1(w2n+1)− P2n+1(y2n+1), y2n+1 − x∗〉
− 2τ2n+1〈P2n+1(y2n+1), y2n+1 − x∗〉 = 0. (3.48)

Using the identity 2〈a, b〉 = ‖a + b‖2 − ‖a‖2 − ‖b‖2 with a = w2n+1 − y2n+1 and
b = y2n+1 − x∗, we get

2〈w2n+1 − y2n+1, y2n+1 − x∗〉 = ‖w2n+1 − x∗‖2 − ‖w2n+1 − y2n+1‖2 − ‖y2n+1 − x∗‖2.
(3.49)

Moreover, since x∗ ∈ Ω, then f2n+1(x∗) = 0. Therefore, it follows from f2n+1 being
monotone that

〈f2n+1(y2n+1), y2n+1 − x∗〉 ≥ 〈f2n+1(x∗), y2n+1 − x∗〉 = 0. (3.50)

Combining the relations (3.9), (3.10) and (3.11), we obtain

‖y2n+1 − x∗‖2 ≤ ‖w2n+1 − x∗‖2 − ‖w2n+1 − y2n+1‖2

− 2τ2n+1〈f2n+1(w2n+1)− f2n+1(y2n+1), y2n+1 − x∗〉. (3.51)

Thus by similar steps as in (3.13) to (3.26), we have

‖x2n+2 − x∗‖2 ≤ ‖x2n − x∗‖2, ∀n ≥ n0. (3.52)
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Therefore, we have that limn→∞ ‖x2n − x∗‖ exists and that {x2n} is bounded. Fur-
thermore, we get from (3.25) that

lim
n→∞

‖x2n − y2n‖ = 0 (3.53)

and

lim
n→∞

‖w2n+1 − y2n+1‖ = 0. (3.54)

Again, from the definition of yn, we have

〈w2n − τ2nP2n(w2n)− y2n, x∗ − y2n〉 = 0,

which implies

〈P2n(w2n), y2n − x∗〉 =
1

τ2n
〈w2n − y2n, y2n − x∗〉

≤ 1

τ2n
‖w2n − y2n‖‖y2n − x∗‖. (3.55)

Furthermore, since P2n is L =
∑t
i=1 li + ‖A‖2

∑r
j=1 λj-Lipschitz, then

〈P2n(w2n), w2n − y2n〉 ≤ ‖P2n(w2n)− P2n(x∗)‖‖y2n − w2n‖
≤ L‖w2n − x∗‖‖y2n − w2n‖. (3.56)

Combining (3.55) and (3.56), we have

〈P2n(w2n), w2n − x∗〉 ≤ K‖y2n − w2n‖, (3.57)

where K = sup{L‖w2n−x∗‖+ 1
τ2n
‖y2n−x∗‖}. However, since P2n is 1

L -ism, we have

〈P2n(w2n), w2n − x∗〉 = 〈P2n(w2n)− P2n(x∗), w2n − x∗〉

≥ 1

L
‖P2n(w2n)− P2n(x∗)‖2

=
1

L
‖P2n(w2n)‖2. (3.58)

From (3.57) and (3.58), we get

‖P2n(w2n)‖2 ≤ LK‖y2n − w2n‖
= LK‖y2n − x2n‖ → 0, n→∞. (3.59)
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Since I − PCi,2n
, (i = 1, · · · , t) and I − PQj,2n

, (j = 1, · · · , r) are firmly nonexpansive,
then

t∑
i=1

li‖(I − PCi,2n
)w2n‖2 +

r∑
j=1

λj‖(I − PQj,2n
)Aw2n‖2

≤
t∑
i=1

li〈(I − PCi,2n
)w2n, w2n − x∗〉+

r∑
j=1

λj〈(I − PQj,2n
)Aw2n, Aw2n −Ax∗〉

=
〈 t∑
i=1

li(I − PCi,2n
)w2n +

r∑
j=1

λjA
∗(I − PQj,2n

)Aw2n, Aw2n −Ax∗
〉

= 〈P2n(w2n), w2n − x∗〉
≤ ‖P2n(w2n)‖‖w2n − x∗‖ → 0, n→∞, (3.60)

which gives

‖(I − PCi,2n
)w2n‖ → 0, n→∞, (i = 1, · · · , t) (3.61)

and

‖(I − PQj,2n
)Aw2n‖ → 0, n→∞, (j = 1, · · · , r). (3.62)

Since, ∂ci, (i = 1, · · · , t) are bounded on bounded sets, we have that there exists
ξi > 0, (i = 1, · · · , t) such that ‖ξi,2n‖ ≤ ξi. Since PCi,2nw2n ∈ Ci,2n, we obtain from
(3.40) and (3.61) that,

ci(w2n) ≤ 〈ξi,2n, w2n − PCi,2n
w2n〉

≤ ξi‖(I − PCi,2n
)w2n‖ → 0, n→∞, (i = 1, · · · , t). (3.63)

Similarly, we have

qj(Aw2n) ≤ 〈ζj,2n, Aw2n − PQj,2n
Aw2n〉

≤ ζj‖(I − PQj,2n
)Aw2n‖ → 0, n→∞, (j = 1, · · · , r). (3.64)

Since {x2n} is bounded, there exists a subsequence {x2nk
} of {x2n} such that x2nk

⇀
x̄ ∈ H1. Therefore by the weakly lower semicontinuity of ci and (3.63), we have

ci(x̄) ≤ lim inf
k→∞

c(x2nk
) ≤ 0,

which implies x̄ ∈ Ci, (i = 1, · · · , t), that is x̄ ∈ ∩ti=1Ci

Also, the weak continuity of A yields that Ax2nj
⇀ Ax̄, which together with the weak

lower semicontinuity of qj , (j = 1, · · · , r), yields

qj(Ax̄) ≤ lim inf
k→∞

q(Ax2nk
) = lim inf

j→∞
q(Aw2nk

) ≤ 0,

that is Ax̄ ∈ Qj .(j = 1, · · · , r), that is Ax̄ ∈ ∩rj=1Qj . Since x2nk
⇀ x̄, and

x̄ ∈ ΩMSFP , then from Lemma 2.5 it follows that {x2n} converges weakly to a point
in ΩMSFP .
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Suppose {x2n} converges weakly to x̄ ∈ Ω and {x2n} converges weakly to x∗ ∈ Ω and
since just as in (3.38), we have

‖x2n+1 − x2n‖ ≤ θ
(

1 +
τ2nµ

τ2n+1

)
‖x2n − y2n‖ → 0, n→∞, (3.65)

Then

‖x̄− x∗‖2 = 〈x̄− x∗, x̄− x∗〉
= 〈x̄, x̄− x∗〉 − 〈x∗, x̄− x∗〉
= lim

n→∞
〈x2n, x̄− x∗〉 − lim

n→∞
〈x2n, x̄− x∗〉

= lim
n→∞

〈x2n − x2n, x̄− x∗〉 = 0.

Therefore, the weak limit x̄ is unique. By definition, we have that for all y ∈ H1,

lim
n→∞

〈x2n − x̄, y〉 = 0.

Thus, from ‖x2n+1 − x2n‖ → 0, n→∞, we have for all y ∈ H1

|〈x2n+1 − x̄, y〉| = |〈x2n+1 − x̄+ x2n − x2n, y〉|
≤ |〈x2n − x̄, y〉|+ |〈x2n+1 − x2n, y〉|
≤ |〈x2n − x̄, y〉|+ ‖x2n+1 − x2n‖‖y‖ → 0, n→∞.

Hence, {x2n+1} converges weakly to x̄ ∈ Ω and therefore, {xn} converges weakly to
a point x̄ ∈ Ω. �

4. Numerical Examples

In this section, in order to show the validity of Algorithms 3.1 and 3.5, we present
some preliminary numerical results for solving the SFP and MSFP respectively in
the setting of finite dimensional Hilbert spaces. All the codes are written in MAT-
LAB R2015a and run on HP Intel(R) Core(TM) i3-5005U CPU @ 2.00GHz 2.00GHz;
4.00GB Ram laptop.

Example 4.1. Let H1 = H2 = R3. We take

C = {x = (x1, x2, x3)T ∈ R3|x1 +
1

2
x22 + x23 ≤ 0},

Q = {x = (x1, x2, x3)T ∈ R3|x21 + x2 +
1

2
x23 ≤ 0}

and

A =

 3 1 −2
3 2 2
2 0 1

 .

For this example, we take αn =
(

1−µ
1+µ

)2
n+1
n+5 , µ = 1

5 , θ = 0.6, τ1 = 1 and stopping

rule ‖wn − yn‖ < ε. For the algorithm (1.3) of Yang [44], we take τn = 0.04
‖A‖2 and for

the algorithms López et al. [27] and Kesornprom et al. [26], we take ρn = 0.01 and
θn = 1

n+1 . We for the algorithms of Yang [44], López et al. [27] and Kesornprom et

al. [26], we take the stopping rule ‖xn+1 − xn‖ < ε.
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Table 1. ε = 10−5

No. of iterations CPU Time.

Alg. 3.1 144 0.045504

Yang [44] 287 0.033093

López et al. [27] 820 0.092272

Kesornprom et al. [26] 498 0.088831

Table 2. ε = 10−7

No. of iterations CPU Time.

Alg. 3.1 237 0.045504

Yang [44] 557 0.064735

López et al. [27] 1740 0.19157

Kesornprom et al. [26] 3085 0.54775

Figure 1. ε = 10−5 Figure 2. ε = 10−7

Example 4.2. In this example, we compare the performance of Algorithm 3.5 and
Algorithm of Tang et al. [40] Let H1 = H2 = R3 and r = t = 2. We take

C1 = {x = (x1, x2, x3)T ∈ R3|x1 + x22 + 2x3 ≤ 0},



A NEW RELAXED ALGORITHM WITH INERTIAL 267

C2 = {x = (x1, x2, x3)T ∈ R3|x
2
1

16
+
x22
9

+
x23
4
− 1 ≤ 0},

Q1 = {x = (x1, x2, x3)T ∈ R3|x21 + x2 − x3 ≤ 0},

Q2 = {x = (x1, x2, x3)T ∈ R3|x
2
1

4
+
x22
4

+
x23
9
− 1 ≤ 0}

and

A =

 3 1 −2
3 2 2
2 0 1

 .

For this example, we take

αn =
(1− µ

1 + µ

)2n+ 1

n+ 5
, µ =

1

5
, θ = 0.6, τ1 = 1,

l1 = l2 = λ1 = λ2 =
1

2

and stopping rule ‖wn − yn‖ < 10−2. Algorithm of Tang et al. [40], we take

ρk1 = ρn1 = ρn2 =
1

5
, α1 = α2 = β1 = β2 =

1

2

and stopping rule ‖xn+1 − xn‖ < 10−2. We choose x0 = [ 12 ,
1
2 ,

1
2 ]T , x1 = [1, 1, 1]T for

each case but take x1 = [1, 1, 1]T and x0 = [ 12 ,
1
2 ,

1
2 ]T respectively.

Table 3. x1 = [1, 1, 1]T for Tang et al. [40]

No. of iterations CPU Time.

Alg. 3.5 9 0.0039859

Tang et al [40] 16 0.0054634

Table 4. x1 = [ 12 ,
1
2 ,

1
2 ]T for Tang et al. [40]

No. of iterations CPU Time.

Alg. 3.5 9 0.0061113

Tang et al [40] 12 0.0023727
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Figure 3. x1 = [1, 1, 1]T

for Tang et al. [40]

Figure 4. x1 =
[ 12 ,

1
2 ,

1
2 ]T for Tang et

al. [40]
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