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1. Introduction

The concept of iterated function system (IFS for short) was introduced forty years
ago by J. Hutchinson in [9], popularized by Michael Barnsley in [1] and it repre-
sents one of the most important methods of constructing fractals. In the last years
there have been considered many generalizations of this concept. A first direction of
generalization consists of using weaker contractivity conditions. Along these lines of
research let us mention some papers. For example, in [10] L. Ioana and A. Mihail
introduced and studied IFSs consisting of ϕ-contractions and in [19] I. Savu stud-
ied IFSs consisting of continuous functions satisfying Banach’s orbital condition. In
[6] F. Georgescu generalized the concept of IFS consisting of convex contractions
and in [21] N. A. Secelean introduced a new type of IFS, namely IFS consisting of
F -contractions. The fractal operator associated to IFSs with weaker contractivity
conditions could have the same properties as the component functions (see [12]) or
not (see [17]). In this case, it may appear some difficulties. For example, in [23] N.
Van Dung and A. Petruşel pointed out the problems in providing some results of IFSs
consisting of Kannan maps, Reich maps and Chatterjea type maps.
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A second way to generalize the notion of IFS was to consider systems with an
arbitrary number (finite or infinite) of functions. For example, in [5] H. Fernau
studied infinite IFSs, in [7] G. Gwóźdź-Lukowska and J. Jachymski presented the
Hutchinson-Barnsley theory for infinite IFSs and in [4] D. Dumitru studied arcwise
connected attractors of infinite IFSs. Also, I. Jaksztas in [11] studied the infinite IFSs
depending on a parameter and F. Mendivil in [15] constructed a generalization of IFS
with probabilities to infinitely many maps. The infinite IFSs were also studied in [2],
[8], [13] and [16].

Another way to generalize the IFSs was to change the structure of component
functions or the structure of space. For example, R. D. Mauldin and M. Urbański
in [14] studied graph directed Markov systems and in [18] the authors studied the
canonical projection of generalized IFSs.

Related to the concept of IFS is the notion of shift (or code) space. The shift space
of an iterated function system and the address of the points lying on the attractor
of the IFS are very good tools to get a more precise description of the invariant
dynamics of the IFS and of the topological properties of the attractor. For example,
in [3] D. Dumitru studied the topological properties of the attractors of IFS and in
[22] F. Strobin studied this problem in the framework of generalized iterated function
systems.

In this paper we use the notion of parent-child contractivity condition to define the
notion of ϕ-contractive parent-child possibly infinite iterated function system (pcI-
IFS). The parent-child contractivity condition was also used in [24] by R. Zaharopol
to study IFS with probabilities. Another notion introduced in this paper is that of
orbital ϕ-contractive possibly infinite iterated function system (oIIFS).

In the first part of the main results we study the fractal operator associated to
a pcIIFS and we prove that it is weakly Picard. Also, we construct the canonical
projection and we study its properties. We define a continuous function Θ (which is
uniformly continuous on bounded sets) which describes the dynamics of a possibly
infinite iterated function system (IIFS for short) better than the canonical projection.
Using the function Θ, we obtain the canonical projection and we define an extended
canonical projection, πt.

If we consider a pcIIFS S =
(
(X, d) , (fi)i∈I

)
such that the fractal operator as-

sociated to S is a Picard operator, then as SΛ(I) =
(
Λ (I) , (Fi)i∈I

)
is a univer-

sal model for the pcIIFS S restricted to its fixed point, we have that the system
SΛt(I) = (Λt (I) × X, (F ti )i∈I) is a universal model for the pcIIFS S (see Remark
3.27).

The second part of the main results is dedicated to the study of oIIFSs. We study
similar properties with those presented in the first part.

We now present a simple example. Let us consider the normed space
(
R2, ‖.‖2

)
,

I = {0, 1} and the functions fi : R2 → R2 given by fi (x, y) =
(
x
4 + 3i

4 , y
)

for all

(x, y) ∈ R2 and i ∈ I. Then, S =
(
(X, d) , (fi)i∈I

)
is a pcIIFS. We note that

fi1 ◦ fi2 ◦ ... ◦ fin (x, y) =

(
1

4n
x+ 3

(
i1
4

+
i2
42

+ ...+
in
4n

)
, y

)
for all n ∈ N∗, i1, i2, ..., in ∈ I and (x, y) ∈ R2.
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If α = i1i2...in..., we have

aα (x, y) = lim
n→∞

fi1 ◦ fi2 ◦ ... ◦ fin (x, y) =

3
∑
n≥1

in
4n
, y


for all (x, y) ∈ R2. Therefore,

Θ (α,B) =

{
{aα (x, y) | (x, y) ∈ B} , if α = i1i2...in...

fα (B) , if α = i1i2...in

for all B ∈ Pcl,b (X).

2. Preliminaries

Notations and terminology

Given a set X, a function f : X → X and n ∈ N∗, by fn we mean f ◦ f ◦ ... ◦ f for
n times. By IdX : X → X we mean the function defined by IdX (x) = x for every
x ∈ X.

Given a metric space (X, d) , by:
- diam (A) we mean the diameter of the subset A of X;
- Pb (X) we mean the set of non-empty bounded subsets of X;
- Pcl,b (X) = {A ∈ Pb (X) | A is closed} ;
- B [A, r] = {x ∈ X | d (A, x) ≤ r}, where A ∈ Pb (X) and r > 0;
- a weakly Picard operator we mean a function f : X → X having the property

that, for every x ∈ X, the sequence (fn (x))n∈N is convergent to a fixed point of f ;
- a Picard operator we mean a function f : X → X having the property that the

sequence (fn (x))n∈N is convergent to the unique fixed point of f , for all x ∈ X;
- a continuous weakly Picard operator we mean a function f : X → X which is a

weakly Picard operator and the function x→ lim
n→∞

fn (x) for all x ∈ X is continuous.

Let (X, dX) and (Y, dY ) be two metric spaces. By
- C (X,Y ) we mean the set of continuous functions from X to Y ;
- Cb (X,Y ) = {f ∈ C (X,Y ) | f is bounded} ;
- dmax we mean the metric on X × Y defined by dmax ((x1, y1) , (x2, y2)) =

max {dX (x1, x2) , dY (y1, y2)} for all (x1, y1) , (x2, y2) ∈ X × Y .
Given a metric space (X, d) and f, g : X → X, by du (f, g) we mean the uniform

distance between f and g, namely du (f, g) = sup
x∈X

d (f (x) , g (x)) .

Definition 2.1. Let (X, dX) and (Y, dY ) be two metric spaces. A family of functions
(fi)i∈I is said to be

1) bounded if the set ∪i∈Ifi (B) ∈ Pb (X) for every B ∈ Pb (X),
2) equi-uniformly continuous if for every ε > 0 there exists δε > 0 such that for all

x, y ∈ X with dX (x, y) < δε we have dY (fi (x) , fi (y)) < ε, for all i ∈ I.

Definition 2.2. For a metric space (X, d), we consider the generalized Hausdorff-
Pompeiu pseudometric h : Pb (X)× Pb (X)→ [0,∞) defined by

h (A,B) = max {d (A,B) , d (B,A)}
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for all A,B ∈ Pb (X) , where d (A,B) = sup
x∈A

inf
y∈B

d (x, y).

Definition 2.3. The restriction of h to Pcl,b (X) is called the Hausdorff-Pompeiu
metric and it is also denoted by h.

Results regarding the Hausdorff-Pompeiu semidistance

Proposition 2.4. [see [20]] For a metric space (X, d), we have:
1) If H, K ∈ Pb (X), then

h (H,K) = h
(
H,K

)
; (2.1)

2) If (Hi)i∈I and (Ki)i∈I are families of elements from Pb (X) such that ∪i∈IHi ∈
Pb (X) and ∪i∈IKi ∈ Pb (X), then

h (∪i∈IHi,∪i∈IKi) ≤ sup
i∈I

h (Hi,Ki) ; (2.2)

3) If f : X → X is a uniformly continuous function, A ∈ Pb (X) and (An)n∈N ⊂
Pb (X) with lim

n→∞
h (An, A) = 0, then lim

n→∞
h (f (An) , f (A)) = 0.

Proposition 2.5. [see [20]] If the metric space (X, d) is complete, then the metric
space (Pcl,b (X) , h) is complete.

Notations and terminology for the shift space

N denotes the natural numbers, N∗ = N� {0} and N∗n = {1, 2, ..., n}, where n ∈ N∗.
Given two sets A and B, by BA we mean the set of all functions from A to B.

For a set I, by Λ (I) we mean the set IN
∗
. The elements of Λ (I) can be written

as infinite words, namely ω = ω1ω2...ωn... . For ω ∈ Λ (I) and n ∈ N∗, by [ω]n
we mean the word formed with the first n letters from ω. By Λn (I) we mean the
set IN

∗
n . The elements of Λn (I) are finite words with n letters: ω = ω1ω2...ωn. In

this case, n is called the length of ω and it is denoted by |ω|. For ω ∈ Λm (I) and
n ∈ N∗, by [ω]n we mean the word formed with the first n letters from ω if m ≥ n,
or the word ω if m ≤ n. For two words α ∈ Λn (I) and β ∈ Λm (I) or β ∈ Λ (I),
by αβ we mean the concatenation of α and β, i.e. αβ = α1α2...αnβ1β2...βm and
αβ = α1α2...αnβ1β2...βmβm+1... respectively.

For a family of functions (fi)i∈I , where fi : X → X and ω = ω1ω2...ωn ∈ Λn (I),
we use the following notation: fω = fω1 ◦ ... ◦ fωn . For a set B ⊂ X and ω ∈ Λn (I)
we use the notation Bω = fω (B). For y, z ∈ B, we say that z is a child of y (or
y is a parent of z) if there exist n ∈ N∗, ω1, ω2, ..., ωn+1 ∈ I and x ∈ B such that
y = fω1

◦ ... ◦ fωn
(x) and z = fω1

◦ ... ◦ fωn
◦ fωn+1

(x).
By Λ∗ (I) we mean the set of all finite words, Λ∗ (I) = (∪n∈N∗Λn (I))∪{λ}, where

λ is the empty word. By Λt (I) we mean the set of all words with letters from I ,
namely the set Λ∗ (I) ∪ Λ (I).

For a fixed element τ /∈ I, we denote by Ĩ = I ∪{τ}. Let us consider c ∈ [0, 1). We

define dc : Λ(Ĩ) × Λ(Ĩ) → [0,∞) by dc (α, β) =
∑
n≥1

cnd (αn, βn) , for all α, β ∈ Λ(Ĩ),
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where by αn we mean the letter on position n in α and

d (αn, βn) =

{
0, if αn = βn
1, if αn 6= βn

for all n ∈ N∗. Λt (I) can be seen as a subset of Λ(Ĩ), by defining the injective function

ι : Λt (I)→ Λ(Ĩ),

ι (α) =

 α, if α ∈ Λ (I)
αττ...τ... if α ∈ Λ∗ (I)
ττ...τ... if α = λ

.

(Λt (I) , dc) is a complete metric space, Λ (I) is a closed subset of Λt (I) and Λ∗ (I)
contains only isolated points.

Possibly infinite iterated function systems

Definition 2.6. Let (X, d) be a metric space. A function ϕ : [0,∞) → [0,∞) is
called

1) comparison function if ϕ(r) < r for all r > 0 and ϕ is an increasing function on
[0,∞);

2) summable comparison function if ϕ is a comparison function and

∞∑
n=0

ϕn (r) is

convergent for every r > 0;
3) right continuous function if lim

r→r0
r>r0

ϕ (r) = ϕ (r0) for all r0 ∈ [0,∞).

Remark 2.7. If ϕ : [0,∞) → [0,∞) is a summable or right continuous comparison
function, then ϕ (0) = 0 and lim

n→∞
ϕn (r) = 0 for every r > 0.

Definition 2.8. Let (X, d) be a metric space and ϕ : [0,∞) → [0,∞) a comparison
function. f : X → X is called ϕ-contraction if for every x, y ∈ X

d (f (x) , f (y)) ≤ ϕ (d (x, y)) .

Theorem 2.9. Let (X, d) be a complete metric space, ϕ : [0,∞) → [0,∞) a right
continuous comparison function and f : X → X a ϕ-contraction. Then, f has a
unique fixed point denoted by η. For every x0 ∈ X, the sequence (fn (x0))n∈N is
convergent to η and for all m ∈ N, we have

d (fm (x0) , η) ≤ ϕm (d (x0, η)) .

Definition 2.10. Let (X, d) be a complete metric space and (fi)i∈I a family of

functions, where fi : X → X for all i ∈ I. The pair denoted by S =
(
(X, d) , (fi)i∈I

)
is called possibly infinite iterated function system (IIFS) if

i) fi : X → X is a continuous function for every i ∈ I,
ii) the family (fi)i∈I is equi-uniformly continuous on bounded sets, i.e. for every

B ∈ Pb (X) and every ε > 0 there exists δε,B > 0 such that for all x, y ∈ B with
d (x, y) < δε,B we have d (fi (x) , fi (y)) < ε, for all i ∈ I,

iii) (fi)i∈I is a bounded family of functions.
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Given an IIFS S =
(
(X, d) , (fi)i∈I

)
, we consider the fractal operator FS : Pb (X) →

Pb (X) defined by

FS (B) = ∪i∈Ifi (B)

for every B ∈ Pb (X). FS restricted to Pcl,b (X) will still be denoted by FS .

Notation 2.11. For a set B ∈ Pb (X), by the orbit of B we mean the set O (B)
= ∪n∈NFnS (B). If B = {x}, we denote its orbit by O (x).

Definition 2.12. Let S =
(
(X, d) , (fi)i∈I

)
be an IIFS. S is called

1) ϕ-contractive parent-child possibly infinite iterated function system (pcIIFS) if
ϕ : [0,∞)→ [0,∞) is a summable comparison function and

d (fω (x) , fωi (x)) ≤ ϕ|ω| (d (x, fi (x))) , (2.3)

for every i ∈ I, ω ∈ Λ∗ (I) and x ∈ X;
2) orbital ϕ-contractive possibly infinite iterated function system (oIIFS) if ϕ :

[0,∞)→ [0,∞) is a right-continuous comparison function and

d (fi (y) , fi (z)) ≤ ϕ (d (y, z))

for every i ∈ I, x ∈ X and y, z ∈ O (x).

Remark 2.13. If S =
(
(X, d) , (fi)i∈I

)
is an oIIFS, then

d (fω (y) , fω (z)) ≤ ϕ|ω| (d (y, z)) , (2.4)

for every ω ∈ Λ∗ (I), x ∈ X and y, z ∈ O (x).

Remark 2.14. IfB ∈ Pb (X) and (Bn)n∈N ⊂ Pb (X) such that lim
n→∞

h (Bn, B) = 0, we

deduce that the sequence (Bn)n is bounded. Therefore, there exists a set M ∈ Pb (X)
such that (∪n∈NBn) ∪B ⊂M .

Let S =
(
(X, d) , (fi)i∈I

)
be an IIFS. Using ii) and iii) from Definition 2.10, we

deduce that the family (fα)α∈Λn(I) is equi-uniformly continuous on M and as a con-

sequence, FnS is uniformly continuous on Pb(M) for every n ∈ N.

3. Main results

ϕ−Contractive parent-child possibly infinite iterated function systems
(pcIIFSs)

Theorem 3.1. For a pcIIFS S =
(
(X, d) , (fi)i∈I

)
, FS is a weakly Picard opera-

tor. More precisely, for every B ∈ Pcl,b (X), there exists AB ∈ Pcl,b (X) such that
lim
n→∞

FnS (B) = AB and FS (AB) = AB. Moreover, for all m ∈ N,

h (FmS (B) , AB) ≤
∑
k≥m

ϕk (diam (B ∪ FS (B))) . (3.1)

Proof. We note that sup
x∈B

(
sup
i∈I

d (x, fi (x))

)
is finite for all B ∈ Pcl,b (X).

Claim 3.2. For all n ∈ N and x ∈ B, we have

h
(
FnS ({x}) , Fn+1

S ({x})
)
≤ ϕn

(
sup
i∈I

d (x, fi (x))

)
. (3.2)
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Justification: Indeed, for all n ∈ N,

h
(
FnS ({x}) , Fn+1

S ({x})
)

= h
(
∪α∈Λn(I) ∪i∈I {fα (x)} ,∪α∈Λn(I) ∪i∈I {fα (fi (x))}

)
(2.2)

≤ sup
α∈Λn(I)

sup
i∈I

h ({fα (x)} , {fα (fi (x))}) ≤ ϕn
(

sup
i∈I

d (x, fi (x))

)
.

Claim 3.3. (FnS (B))n∈N is a Cauchy sequence. Moreover,

h (FmS (B) , FnS (B)) ≤
n−1∑
k=m

ϕk (diam (B ∪ FS (B))) (3.3)

for all B ∈ Pcl,b (X) and m,n ∈ N, m < n.

Justification: Let B ∈ Pcl,b (X). For each n ∈ N, we have

h
(
FnS (B) , Fn+1

S (B)
)

= h
(
∪x∈BFnS ({x}) ,∪x∈BFn+1

S ({x})
)

(2.2)

≤ sup
x∈B

h
(
FnS ({x}) , Fn+1

S ({x})
) (3.2)

≤ sup
x∈B

ϕn
(

sup
i∈I

d (x, fi (x))

)
Def 2.6 1)

≤ ϕn
(

sup
x∈B

sup
i∈I

d (x, fi (x))

)
≤ ϕn (diam (B ∪ FS (B))) .

From the triangle inequality we obtain (3.3) and from Definition 2.6 2) we deduce
that (FnS (B))n∈N is Cauchy.

Claim 3.4. O (C) is bounded for every C ∈ Pb (X).

Justification: It follows from

h
(
O (C), C

)
(2.1)
= h (∪n∈NFnS (C) ,∪n∈NC)

(2.2)

≤ sup
n∈N

h (FnS (C) , C)

(3.3)

≤ sup
n∈N

n−1∑
k=0

ϕk (diam (C ∪ FS (C))) =

∞∑
k=0

ϕk (diam (C ∪ FS (C))) <∞.

Claim 3.5. For every B ∈ Pb (X), there exists AB ∈ Pcl,b (X) such that

lim
n→∞

FnS (B) = AB and FS (AB) = AB .

Justification: We have that (FnS ((B)))n∈N is a Cauchy sequence. From Proposition
2.5 and Definition 2.10 iii), there exists AB ∈ Pcl,b (X) such that lim

n→∞
FnS (B) = AB .

Definition 2.10 ii) implies that FS is continuous on O (B). Thus, FS (AB) = AB . By
passing to limit as n→∞ in (3.3), we obtain (3.1). �

Remark 3.6. If we consider B = {x}, then there exists A{x} ∈ Pcl,b (X) such that
lim
n→∞

FnS ({x}) = A{x}. For the sake of simplicity, we will denote A{x} by Ax. In this

case, for every m ∈ N, we have

h (FmS ({x}) , Ax) ≤
∑
k≥m

ϕk (diam ({x} ∪ FS ({x}))) . (3.4)
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Proposition 3.7. Let S =
(
(X, d) , (fi)i∈I

)
be a pcIIFS. Then, AB = ∪x∈BAx for

every B ∈ Pcl,b (X).

Proof. Let us consider B ∈ Pcl,b (X). We have

h
(
FnS (B) ,∪x∈BAx

) (2.1),(2.2)

≤ sup
x∈B

h (FnS ({x}) , Ax)

(3.4)

≤ sup
x∈B

∑
k≥n

ϕk (diam ({x} ∪ FS ({x})))
Def 2.6 1)

≤
∑
k≥n

ϕk (diam (B ∪ FS (B)))

for all n ∈ N. Hence,

h
(
FnS (B) ,∪x∈BAx

)
≤
∑
k≥n

ϕk (diam (B ∪ FS (B))) (3.5)

for all n ∈ N. We deduce

h
(
AB ,∪x∈BAx

)
≤ h (AB , F

n
S (B)) + h

(
FnS (B) ,∪x∈BAx

)
(3.1),(3.5)

≤ 2 ·
∑
k≥n

ϕk (diam (B ∪ FS (B))) ,

for all n ∈ N. By passing to limit as n→∞ and applying 2) from Definition 2.6, we
conclude that AB = ∪x∈BAx. �

The following result shows that FS is a continuous weakly Picard operator.

Proposition 3.8. Let S =
(
(X, d) , (fi)i∈I

)
be a pcIIFS and F : Pcl,b (X)→ Pcl,b (X)

given by F (B) = AB, for all B ∈ Pcl,b (X). Then, F is continuous on Pcl,b (X) and
uniformly continuous on Pcl,b (B), for all B ∈ Pcl,b (X).

Proof. Using relation (3.5) and Proposition 3.7, we deduce that (FnS )n∈N converges
uniformly to F on Pcl,b (B), for all B ∈ Pcl,b (X). As FS is continuous on Pcl,b (X) and
uniformly continuous on Pcl,b (B), for all B ∈ Pcl,b (X), it results that F is uniformly
continuous on Pcl,b (B), for all B ∈ Pcl,b (X). Applying Remark 2.14, we obtain that
F is continuous on Pcl,b (X). �

Proposition 3.9. Let S =
(
(X, d) , (fi)i∈I

)
be a pcIIFS. Then, for every B ∈ Pb (X)

and α ∈ Λ (I), the sequence
(
f[α]n (B)

)
n

is convergent. If we denote by

aα (B) = lim
n→∞

f[α]n (B),

then, for all m ∈ N, we have

h
(
f[α]m (B), aα (B)

)
= h

(
f[α]m (B) , aα (B)

)
≤
∞∑
k=m

ϕk (diam (O (B))) . (3.6)

Proof. Let B ∈ Pb (X). We have

h
(
f[α]n (B), f[α]n+1

(B)
)

= h
(
∪x∈B

{
f[α]n (x)

}
,∪x∈B

{
f[α]n+1

(x)
})

(2.1),(2.2)

≤ sup
x∈B

h
({
f[α]n (x)

}
,
{
f[α]n+1

(x)
})

= sup
x∈B

d
(
f[α]n (x) , f[α]n+1

(x)
)
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Def 2.12 1)

≤ sup
x∈B

ϕn
(

sup
i∈I

d (x, fi (x))

)
Def 2.6 1)

≤ ϕn (diam (O (B))) , (3.7)

for every n ∈ N. Applying (3.7) and Definition 2.6, we have that
(
f[α]n (B)

)
n

is

Cauchy and from Proposition 2.5 we obtain that
(
f[α]n (B)

)
n

is convergent. Using

Definition 2.10, we deduce that there exists aα (B) ∈ Pb (X) such that

lim
n→∞

f[α]n (B) = aα (B) .

Let m,n ∈ N, with m < n. We have

h
(
f[α]m (B), f[α]n (B)

) (3.7)

≤
n−1∑
k=m

ϕk (diam (O (B)))

for every m,n ∈ N, m < n. By passing to limit as n → ∞ and using the fact that
∞∑
k=m

ϕk (diam (O (B))) is convergent, we obtain (3.6). �

Remark 3.10. If B = {x}, then there exists a set aα({x}) such that

lim
n→∞

f[α]n ({x}) = aα ({x}) .

Since f[α]n ({x}) = {f[α]n (x)} and this set has one element, it follows that aα ({x})
has one element denoted by aα(x).

Lemma 3.11. Let S =
(
(X, d) , (fi)i∈I

)
be a pcIIFS. Then, aα (B) = ∪x∈B {aα (x)}

for every B ∈ Pb (X) and α ∈ Λ (I).

Proof. Let B ∈ Pb (X) and α ∈ Λ (I). We have

h
(
aα (B) ,∪x∈B {aα (x)}

)
≤ h

(
aα (B) , f[α]n (B)

)
+ h

(
f[α]n (B),∪x∈B {aα (x)}

)
(3.6),(2.1),(2.2)

≤
∞∑
k=n

ϕk (diam (O (B))) + sup
x∈B

h
({
f[α]n (x)

}
, {aα (x)}

)
(3.6)

≤ 2 ·
∞∑
k=n

ϕk (diam (O (B)))

for every n ∈ N. By passing to limit as n→∞, we obtain the conclusion. �

Lemma 3.12. Let S =
(
(X, d) , (fi)i∈I

)
be a pcIIFS. Then, for every α ∈ Λ (I) and

B ∈ Pcl,b (X), the function aα is uniformly continuous on B.

Proof. Let B ∈ Pcl,b (X) and α ∈ Λ (I). Since

d
(
aα (x) , f[α]m (x)

)
≤
∞∑
k=m

ϕk (diam (O (B)))

for every m ∈ N and x ∈ B, we have f[α]m
u.c.→ aα. Applying ii) from Definition 2.10,

it results that f[α]m is uniformly continuous on B for all m ∈ N. We obtain that the
function aα is uniformly continuous on B. �
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Lemma 3.13. Let S =
(
(X, d) , (fi)i∈I

)
be a pcIIFS. Then, fω (aα (B)) = aωα (B)

for every α ∈ Λ (I), ω ∈ Λn (I), n ∈ N∗ and B ∈ Pb (X).

Proof. Let B ∈ Pb (X), i ∈ I and α ∈ Λ (I). As lim
n→∞

f[α]n (B) = aα (B), applying Def-

inition 2.10 and Proposition 2.4 3), we deduce that lim
n→∞

fi
(
f[α]n (B)

)
= fi (aα(B)).

Uniqueness of the limit assures us that aiα (B) = fi (aα(B)). By mathematical in-
duction, we have

fω (aα (B)) = aωα (B) (3.8)

for every α ∈ Λ (I), ω ∈ Λn (I), n ∈ N∗ and B ∈ Pb (X). �

Lemma 3.14. Let S =
(
(X, d) , (fi)i∈I

)
be a pcIIFS. Then, aα (x) = aα (y) for every

x ∈ X, y ∈ O (x) and α ∈ Λ (I).

Proof. Let x ∈ X, y ∈ O (x) and α ∈ Λ (I). As

O (x) = ∪n∈NFnS ({x}) = ∪n∈N∪ω∈Λn(I) {fω (x)} = ∪n∈N ∪ω∈Λn(I) {fω (x)},

we distinguish two cases.
Case 1. There exist m ∈ N∗ and ω ∈ Λm (I) such that y = fω (x). For all n ∈ N, we
have

d (aα (x) , aα (fω (x))) ≤ d
(
aα (x) , f[α]n (x)

)
+d
(
f[α]n (x) , f[α]n ((fω (x)))

)
+ d

(
f[α]n (fω (x)) , aα (fω (x))

)
. (3.9)

Using the triangle inequality and (2.3), we deduce

d
(
f[α]n (x) , f[α]n ((fω (x)))

)
≤
m−1∑
k=0

d
(
f[α]n[ω]k (x) , f[α]n[ω]k+1

(x)
)

≤
n+m−1∑
k=n

ϕk (diam (O (x))) (3.10)

for every n ∈ N. Applying relation (3.6) for B = {fω (x)} and B = {x}, relations
(3.9) and (3.10), we have

d (aα (x) , aα (fω (x))) ≤
∞∑
k=n

ϕk (diam (O (x)))

for every n ∈ N. We conclude that aα (x) = aα (fω (x)).
Case 2. There exists a sequence (ym)m∈N ⊂ ∪n∈N ∪ω∈Λn(I) {fω (x)} such that
lim
m→∞

d (ym, y) = 0. For every m ∈ N, we have

d (aα (y) , aα (x)) ≤ d (aα (y) , aα (ym)) + d (aα (ym) , aα (x)) .

Using the first case, we have aα (ym) = aα (x) for every m ∈ N. Hence,

d (aα (y) , aα (x)) ≤ d (aα (y) , aα (ym))

for every m ∈ N and applying Lemma 3.12 we infer that aα (y) = aα (x). �
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Theorem 3.15. Let S =
(
(X, d) , (fi)i∈I

)
be a pcIIFS. Then,

AB = ∪α∈Λ(I)aα (B) = ∪x∈B ∪α∈Λ(I) {aα (x)}
for every B ∈ Pcl,b (X).

Proof. Let us consider B ∈ Pcl,b (X) and x ∈ B. We have

h
(
FnS ({x}) , {aα (x) | α ∈ Λ (I)}

) (2.1),(2.2)

≤ sup
α∈Λ(I)

h
({
f[α]n (x)

}
, {aα (x)}

)
= sup
α∈Λ(I)

d
(
f[α]n (x) , aα (x)

) (3.6)

≤
∞∑
k=n

ϕk (diam (O (B))) (3.11)

for every n ∈ N. We deduce

h
(
Ax, {aα (x) | α ∈ Λ (I)}

)
≤ h (Ax, F

n
S ({x}))

+h
(
FnS ({x}) , {aα (x) | α ∈ Λ (I)}

)
(3.4),(3.11)

≤
∞∑
k=n

ϕk (diam (B ∪ FS (B))) +

∞∑
k=n

ϕk (diam (O (B)))

for every n ∈ N. By passing to limit as n→∞, we obtain that

Ax = {aα (x) | α ∈ Λ (I)} (3.12)

and

AB
Prop 3.7

= ∪x∈BAx
(3.12)

= ∪x∈B{aα (x) | α ∈ Λ (I)} Lemma 3.11
= ∪α∈Λ(I)aα (B).

�

Proposition 3.16. Let S =
(
(X, d) , (fi)i∈I

)
be a pcIIFS. Then, AB = Ax for every

x ∈ X and B ∈ Pcl,b
(
O (x)

)
.

Proof. Let x ∈ X and B ∈ Pcl,b

(
O (x)

)
. As lim

n→∞
FnS ({x}) = Ax, we deduce

that lim
n→∞

∪k≥nF kS ({x}) = Ax. But ∪k≥nF kS ({x}) = FnS (O (x)) and we obtain that

lim
n→∞

FnS

(
O (x)

)
= Ax. As B ⊂ O (x) it results that FnS (B) ⊂ FnS

(
O (x)

)
for every

n ∈ N. As lim
n→∞

FnS (B) = AB , we infer that AB ⊂ Ax. Now, let us consider y ∈ B.

Using Lemma 3.14 and relation (3.12), it results that Ax = Ay. As y ∈ B, we have
that Ay ⊂ AB and we deduce that Ax ⊂ AB . The conclusion holds from the two
inclusions. �

Proposition 3.17. Let S =
(
(X, d) , (fi)i∈I

)
be a pcIIFS. Then, for every x, y ∈ X

such that O (x) ∩ O (y) 6= ∅, we have Ax = Ay. In particular, if O (x) ∩ O (y) 6= ∅
for all x, y ∈ X, we have that FS is a Picard operator.

Proof. Let z ∈ O (x) ∩ O (y). It results that z ∈ O (x). From Proposition 3.16 we
have Ax = Az. Similarly, Ay = Az. We conclude that Ax = Ay. �
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Proposition 3.18. Let S =
(
(X, d) , (fi)i∈I

)
be a pcIIFS. Then, the sequence(

diam
(
A[α]n,x

))
n∈N is convergent to 0.

Proof. We are using the notation C = {aα (x) | α ∈ Λ (I)}. We have

diam
(
A[α]n,x

) (3.12)
= diam

(
f[α]n

(
C
))

= diam
(
f[α]n

(
C
))

= diam
(
f[α]n (C)

)
= diam

(
f[α]n (C)

)
= sup
u,v∈C

d
(
f[α]n (u) , f[α]n (v)

)
for every n ∈ N. As u, v ∈ C, we deduce that there exist β,γ ∈ Λ (I) such that
u = aβ (x) and v = aγ (x). For every n ∈ N, we obtain

d
(
f[α]n (u) , f[α]n (v)

)
= d

(
f[α]n (aβ (x)) , f[α]n (aγ (x))

) (3.8)
= d

(
a[α]nβ (x) , a[α]nγ (x)

)
≤ d

(
a[α]nβ (x) , f[α]n (x)

)
+ d

(
f[α]n (x) , a[α]nγ (x)

) (3.6)

≤ 2 ·
∞∑
k=n

ϕk (diam (O (x))) .

By passing to limit as n→∞, we have lim
n→∞

diam
(
A[α]n,x

)
= 0. �

Proposition 3.19. Let S =
(
(X, d) , (fi)i∈I

)
be a pcIIFS. Then

{aα (x)} = lim
n→∞

A[α]n,x

for every x ∈ X and α ∈ Λ (I).

Proof. Let x ∈ X and α ∈ Λ (I). Easily, one can prove that A[α]n+1,x ⊂ A[α]n,x for

every n ∈ N. From lim
n→∞

diam
(
A[α]n,x

)
= 0, it results that there exists an element

cα (x) ∈ X such that ∩n≥1A[α]n,x = {cα (x)}. Thus, lim
n→∞

f[α]n (Ax) = {cα (x)}. We

prove that cα (x) = aα (x). We consider α = α1α2...αnαn+1... and ωn = αn+1αn+2....
∈ Λ (I) for every n ∈ N∗. As aωn

(x) ∈ {aα (x) | α ∈ Λ (I)} for every n ∈ N∗,
applying relation (3.12) we deduce f[α]n (aωn

(x)) ∈ A[α]n,x for every n ∈ N∗. But
f[α]n (aωn

(x)) = aα (x) for every n ∈ N∗ and we obtain aα (x) ∈ A[α]n,x for all n ∈ N∗.
Therefore, {aα (x)} ⊂ ∩n≥1A[α]n,x = {cα (x)} and in conclusion cα (x) = aα (x). �

Theorem 3.20. Let S =
(
(X, d) , (fi)i∈I

)
be a pcIIFS. Then the function Θ : Λt (I)×

Pcl,b (X)→ Pcl,b (X) defined by

Θ (α,B) =

 aα (B) , if α ∈ Λ (I)
fα (B) , if α ∈ Λ∗ (I) \ {λ}

B, if α = λ

for all (α,B) ∈ Λt (I)×Pcl,b (X) is uniformly continuous on bounded sets. In partic-
ular, Θ is continuous.

Proof. For α ∈ Λ∗(I) we make the notation aα (B) := fα (B). Let us consider
M ∈ Pcl,b(X), B,C ∈ Pcl,b(M) ⊂ Pcl,b(X), α,β ∈ Λt(I) and ε > 0.
Remarks.
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1) If α ∈ Λ(I), then using (3.6), we have that for every m ∈ N,

h
(
Θ (α,B) , f[α]m (B)

)
= h

(
aα (B) , f[α]m (B)

)
≤
∞∑
k=m

ϕk (diam (O (M))) .

2) If α ∈ Λ∗(I), then using again (3.6), we have that for every m ∈ N,

h
(
Θ (α,B) , f[α]m (B)

)
= h

(
fα (B) , f[α]m (B)

)
≤


0 if |α| ≤ m

|α|∑
k=m

ϕk (diam (O (M)))
≤
∞∑
k=m

ϕk (diam (O (M))) .

For α, β ∈ Λt(I) and B,C ∈ Pcl,b(M), using the triangle inequality, we obtain

h (Θ (α,B) ,Θ (β,C)) = h (aα (B) , aβ (C)) ≤ h
(
aα (B) , f[α]m (B)

)
+h
(
f[α]m (B) , f[β]m (B)

)
+ h

(
f[β]m (B) , f[β]m (C)

)
+ h

(
f[β]m (C) , aβ (C)

)
for every m ∈ N. Applying the above remarks, we deduce

h (Θ (α,B) ,Θ (β,C)) ≤
∞∑
k=m

ϕk (diam (O (M))) + h
(
f[α]m (B) , f[β]m (B)

)
+h
(
f[β]m (B) , f[β]m (C)

)
+

∞∑
k=m

ϕk (diam (O (M))) (3.13)

for every m ∈ N. We take mε such that

∞∑
k=m

ϕk (diam (O (M))) <
ε

3
(3.14)

for every m ≥ mε. Let us fix m ≥ mε. If dc(α, β) < cm, we have [α]m = [β]m which
implies

h
(
f[α]m (B) , f[β]m (B)

)
= 0. (3.15)

As M is bounded, the function f[α]m is uniformly continuous on M . So, there exists
δε > 0 such that for all x, y ∈M with d(x, y) < δε we have

d(f[β]m(x), f[β]m(y)) <
ε

3
.

Hence, for h(B,C) < δε we deduce that

h(f[β]m(B), f[β]m(C)) ≤ ε

3
. (3.16)

Therefore, if dc(α, β) < cm and h(B,C) < δε, using relations (3.13), (3.14), (3.15)
and (3.16), it results

h (Θ (α,B) ,Θ (β,C)) <
ε

3
+ 0 +

ε

3
+
ε

3
= ε.

In conclusion, Θ is uniformly continuous on M . �
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Corollary 3.21. Let S =
(
(X, d) , (fi)i∈I

)
be a pcIIFS. We consider the functions

g : X → Pcl,b (X) defined by g (x) = {x} for every x ∈ X and h : g (X)→ X defined
by h ({x}) = x. We now consider a function π : Λ (I) × X → Pcl,b (X) given by
π = h ◦Θ ◦

(
IdΛ(I) × g

)
. This function is uniformly continuous on bounded sets.

Remark 3.22. 1) We note that

π (α, x) = h ◦Θ ◦
(
IdΛ(I) × g

)
(α, x) = h ◦Θ (α, {x}) = h ({aα (x)}) = aα (x) .

2) If S has only one attractor, then π is independent of x and it represents the
canonical projection for a classical IIFS.

Corollary 3.23. Let S =
(
(X, d) , (fi)i∈I

)
be a pcIIFS. Let us consider the function

IdΛt(I) × F : Λt (I)× Pcl,b (X)→ Λt (I)× Pcl,b (X) defined by

IdΛ(I) × F (α,B) = (α,AB)

for all (α,B) ∈ Λt (I)× Pcl,b (X). We define Ψ : Λt (I)× Pcl,b (X)→ Pcl,b (X) given
by Ψ = Θ ◦ IdΛ(I) × F . Then Ψ is continuous.

Remark 3.24. We note that for all (α,B) ∈ Λt (I)× Pcl,b (X),

Ψ (α,B) =
(
Θ ◦ IdΛ(I) × F

)
(α,B) = Θ (α,AB)

=

 aα(AB) if α ∈ Λ (I)
fα (AB) if α ∈ Λ∗ (I)� {λ}

AB if α = λ
.

Corollary 3.25. Let S =
(
(X, d) , (fi)i∈I

)
be a pcIIFS. We consider the functions

g : X → Pcl,b (X) defined by g (x) = {x} for every x ∈ X and h : g (X) → X
defined by h ({x}) = x. Then, the function πt : Λt (I) × X → Pcl,b (X) given by
πt = h ◦Θ ◦

(
IdΛt(I) × g

)
is continuous.

Remark 3.26. We note that for all (α, x) ∈ Λt (I)×X,

πt (α, x) = h ◦Θ ◦
(
IdΛt(I) × g

)
(α, x) = h ◦Θ (α, {x})

=

 aα (x) , if α ∈ Λ (I)
fα (x) , if α ∈ Λ∗ (I) \ {λ}

x, if α = λ
.

Remark 3.27. Let us consider S =
(
(X, d) , (fi)i∈I

)
a pcIIFS such that the fractal

operator associated to S is a Picard operator. We denote its fixed point by A. For
every i ∈ I, we consider the functions Fi : Λ (I) → Λ (I) defined by Fi(α) = iα, for
all α ∈ Λt (I) and F ti : Λt (I) × X → Λt (I) × X given by F ti (α, x) = (iα, x) for all
(α, x) ∈ Λt (I)×X. Then the following diagrams are commutative:

Λ (I) Fi−−−−−−−−→Λ (I) Λt (I)×X F ti−−−−−−−−→
Λt (I)×Xyπ yπ yπt yπt

A fi−−−−−−−→
A X fi−−−−−−−−−−−→

X
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This fact reveals that as SΛ(I) =
(
Λ (I) , (Fi)i∈I

)
is a universal model for the pcIIFS

S restricted to its fixed point, the system SΛt(I) = (Λt (I)×X, (F ti )i∈I) is a universal
model for the pcIIFS S.

Orbital ϕ− contractive possibly infinite iterated function systems (oIIFSs)

Proposition 3.28. [see [12]] Let S =
(
(X, d) , (fi)i∈I

)
be an oIIFS. For every x ∈ X,

we consider the IIFS denoted by Sx =
((
O (x), d

)
, (fi)i∈I

)
and let FSx be its fractal

operator. Then, Sx is a system consisting of ϕ−contractions and for all B,C ∈
Pcl,b

(
O (x)

)
, we have h (FSx (B) , FSx (C)) ≤ ϕ (h (B,C)) .

Remark 3.29. Applying Proposition 3.28, we obtain that FSx is a ϕ-contraction on

Pcl,b

(
O (x)

)
. As (X, d) is a complete metric space, it results that

(
O (x), d

)
is a

complete metric space. From Proposition 2.5 and Theorem 2.9 we deduce that FSx
has a unique fixed point (which will be denoted by Ax). Moreover, the sequence(
FnSx (B)

)
n∈N is convergent to Ax and

h
(
FnSx (B) , Ax

)
≤ ϕn (h (B,Ax)) (3.17)

for every n ∈ N and B ∈ Pcl,b
(
O (x)

)
. In particular, for every x ∈ X,

(
FnSx ({x})

)
n∈N

is convergent to Ax and it results that O (x) is bounded.

Remark 3.30. If S =
(
(X, d) , (fi)i∈I

)
is an oIIFS, then

(
diam

(
f[α]n (O (x))

))
n∈N

is convergent to 0 for every x ∈ X. Hence, there exists an element aα (x) ∈ X such

that lim
n→∞

f[α]n (O (x)) = {aα (x)}. In this case, for all m ∈ N, we have

h
(
f[α]m (O (x)) , {aα (x)}

)
≤ ϕm (diam (O (x))) . (3.18)

Lemma 3.31. [see [12]] Let S =
(
(X, d) , (fi)i∈I

)
be an oIIFS, x ∈ X and aα (x) ∈

X such that lim
n→∞

f[α]n (O (x)) = {aα (x)}. Then, lim
n→∞

f[α]n (B) = {aα (x)} for all

α ∈ Λ (I) and B ∈ Pb
(
O (x)

)
.

In particular, if B = {y} ⊂ O (x), we have lim
n→∞

f[α]n (y) = aα (x) and for every

m ∈ N,
d
(
f[α]m (y) , aα (x)

)
≤ ϕm (diam (O (x))) . (3.19)

Let B ∈ Pb (X). ĈB := {f : B → X | f is continuous and bounded}. On ĈB we
consider the metric du defined by du (f, g) = sup

x∈B
d (f (x) , g (x)). For every i ∈ I, we

define the function F̂i : ĈB → ĈB given by F̂i (f) = fi ◦ f for every f ∈ ĈB . The

orbit of a function h ∈ ĈB is defined by O ({h}) = ∪n≥0F̂
n
S ({h}), where F̂S is the

fractal operator associated to the system Ŝ =
(

(ĈB , du), (F̂i)i∈I

)
.

Proposition 3.32. Let S =
(
(X, d) , (fi)i∈I

)
be an oIIFS. Then the system

Ŝ =
(

(ĈB , du), (F̂i)i∈I

)
is an oIIFS.
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Proof. Let h ∈ ĈB and g ∈ O ({h}).

Claim 3.33. g (x) ∈ O ({h (x)}) for every g ∈ O ({h}) and x ∈ B.

Justification: As g ∈ O ({h}), we have

g ∈ ∪n≥0F̂
n
S ({h}) = ∪n≥0∪α∈Λn(I)F̂α ({h}) = ∪n≥0∪α∈Λn(I) {fα ◦ h}.

Thus, there exists n0 ∈ N such that g ∈ ∪α∈Λn0
(I) {fα ◦ h}. We distinguish two cases:

1) g ∈ ∪α∈Λn0
(I) {fα ◦ h}. It results that there exists α ∈ Λn0

(I) such that

g = fα ◦ h.

Hence, g (x) = fα (h (x)) ⊂ Fn0

S ({h (x)}) ∈ O ({h (x)}). So, g (x) ∈ O ({h (x)}).
2) g /∈ ∪α∈Λn0 (I) {fα ◦ h}. In this case, there exists a sequence (gm)m∈N ⊂

∪α∈Λn0
(I) {fα ◦ h} such that lim

m→∞
du (gm, g) = 0. We have that for every m ∈ N,

there is αm ∈ Λn0 (I) such that gm = fαm ◦ h. We have gm (x) = fαm (h (x)) ∈
Fn0

S ({h (x)}) and using the fact that Fn0

S ({h (x)}) is a closed set, we deduce that
g (x) ∈ Fn0

S ({h (x)}) ∈ O ({h (x)}). So, g (x) ∈ O ({h (x)}).

Claim 3.34. Ŝ =
(

(ĈB , du), (F̂i)i∈I

)
is an oIIFS.

Justification: Let us consider h ∈ ĈB and f, g ∈ O ({h}). Then,

f (x) , g (x) ∈ O ({h (x)})

for all x ∈ B. Using this, we have

du

(
F̂i1...in (f) , F̂i1...in (g)

)
= sup
x∈B

d (fi1...in (f (x)) , fi1...in (g (x)))

(2.4)

≤ sup
x∈B

ϕn (d (f (x) , g (x))) = ϕn (du (f, g))

for every n ∈ N. We deduce that Ŝ =
(

(ĈB , du), (F̂i)i∈I

)
is an oIIFS. �

Remark 3.35. The set O ({h}) is bounded for every h ∈ ĈB .

Lemma 3.36. Let S =
(
(X, d) , (fi)i∈I

)
be an oIIFS. Then, O (B) is bounded for

every B ∈ Pb (X).

Proof. Let B ∈ Pb (X) and α ∈ Λ∗ (I). We have F̂α (IdB) = fα ◦ IdB ∈ O ({IdB}).
As O ({IdB}) is bounded, we deduce that ∪α∈Λ∗(I) {fα ◦ IdB} is bounded, so

∪α∈Λ∗(I) {fα ◦ IdB (B)} is bounded. But ∪α∈Λ∗(I) {fα ◦ IdB (B)} = O (B) and we
infer that O (B) is bounded. �

Theorem 3.37. Let S =
(
(X, d) , (fi)i∈I

)
be an oIIFS and FS the associated fractal

operator. Then, FS is a weakly Picard operator. Moreover,

h (FnS (B) , AB) ≤ ϕn
(
diam

(
O (B)

))
(3.20)

for all n ∈ N and B ∈ Pcl,b (X), where AB = ∪x∈BAx.
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Proof. Let us consider B ∈ Pcl,b (X) and AB = ∪x∈BAx. We have

h (FnS ({x}) , Ax)
(3.17)

≤ ϕn (h ({x} , Ax)) ≤ ϕn (diam (O (x))) (3.21)

for every n ∈ N. We deduce

h (FnS (B) , AB) = h (∪x∈BFnS ({x}) ,∪x∈BAx)
(2.2)

≤ sup
x∈B

h (FnS ({x}) , Ax)

(3.21)

≤ sup
x∈B

ϕn
(
diam

(
O (x)

)) Def 2.6 1)

≤ ϕn
(
diam

(
O (B)

))
for every n ∈ N. By passing to limit as n → ∞, we have lim

n→∞
h (FnS (B) , AB) = 0.

Using ii) from Definition 2.10, we deduce that FS is uniformly continuous on bounded
subsets of X. Hence, FS (AB) = AB . �

Remark 3.38. If S =
(
(X, d) , (fi)i∈I

)
is an oIIFS, then AB = Ax for every x ∈ X

and B ∈ Pcl,b
(
O (x)

)
.

Proposition 3.39. Let S =
(
(X, d) , (fi)i∈I

)
be an oIIFS. Then, for all B ∈ Pb (X)

and α ∈ Λ (I), the sequence
(
f[α]n (B)

)
n∈N is convergent. If we denote its limit by

aα (B), then for all m ∈ N, we have

h
(
f[α]m (B) , aα (B)

)
≤ ϕm (diam (O (B))) . (3.22)

Proof. Let us consider B ∈ Pb (X) and α ∈ Λ (I). We use the notation

aα (B) = ∪x∈B {aα (x)}.

Then, for all n ∈ N,

h
(
f[α]n (B) , aα (B)

)
= h

(
∪x∈B

{
f[α]n (x)

}
,∪x∈B {aα (x)}

)
(2.2)

≤ sup
x∈B

d
(
f[α]n (x) , aα (x)

) (3.19)

≤ sup
x∈B

ϕm (diam (O (x))) .

We deduce that for all n ∈ N,

h
(
f[α]n (B) , aα (B)

)
≤ sup
x∈B

ϕn (diam (O (x)))
Def 2.6 1)

≤ ϕn (diam (O (B))) .

Thus, we obtain that the sequence
(
f[α]n (B)

)
n∈N is convergent to aα (B). �

Using (3.19), (3.20) and a technique similar with the one used for a pcIIFS, one
can prove the following:

Proposition 3.40. Let S =
(
(X, d) , (fi)i∈I

)
be an oIIFS and F : Pcl,b (X) →

Pcl,b (X) defined by F (B) = AB for all B ∈ Pcl,b (X). Then, F is continuous.

Lemma 3.41. Let S =
(
(X, d) , (fi)i∈I

)
be an oIIFS. For every α ∈ Λ (I) and B ∈

Pcl,b (X), the function aα is uniformly continuous on B.

Lemma 3.42. Let S =
(
(X, d) , (fi)i∈I

)
be an oIIFS. Then, fi (aα (B)) = aiα (B)

for every B ∈ Pb (X), α ∈ Λ (I) and i ∈ I.
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Theorem 3.43. Let S =
(
(X, d) , (fi)i∈I

)
be an oIIFS. Then,

AB = ∪α∈Λ(I)aα (B) = ∪x∈B ∪α∈Λ(I) {aα (x)}

for every B ∈ Pcl,b (X).

Proof. Using a technique similar with the one used for a pcIIFS, one can prove that

h
(
FnS ({x}) , {aα (x) | α ∈ Λ (I)}

) (3.22)

≤ ϕn (diam (O (x))) (3.23)

and

h
(
Ax, {aα (x) | α ∈ Λ (I)}

)
≤ h (Ax, F

n
S ({x}))

+h
(
FnS ({x}) , {aα (x) | α ∈ Λ (I)}

) (3.21),(3.23)

≤ 2 · ϕn (diam (O (x)))

for every n ∈ N. Hence,

Ax = {aα (x) | α ∈ Λ (I)} (3.24)

and we obtain that

AB = ∪x∈B{aα (x) | α ∈ Λ (I)} = ∪x∈B ∪α∈Λ(I) {aα (x)}

= ∪α∈Λ(I){aα (x) | x ∈ B} = ∪α∈Λ(I)aα (B).

�
Using Remark 3.38, relations (3.18), (3.24) and a technique similar with the one

used for a pcIIFS, one can prove the following:

Lemma 3.44. Let S =
(
(X, d) , (fi)i∈I

)
be an oIIFS. Then aα (x) = aα (y) for all

y ∈ O (x). Moreover, for every x, y ∈ X such that O (x) ∩ O (y) 6= ∅, we have
Ax = Ay.

Proposition 3.45. Let S =
(
(X, d) , (fi)i∈I

)
be an oIIFS. Then the sequence(

diam
(
A[α]n,x

))
n∈N is convergent to 0.

Proposition 3.46. Let S =
(
(X, d) , (fi)i∈I

)
be an oIIFS. Then

{aα (x)} = lim
n→∞

A[α]n,x

for every x ∈ X and α ∈ Λ (I).

Theorem 3.47. Let S =
(
(X, d) , (fi)i∈I

)
be an oIIFS. Then the function Θ : Λt (I)×

Pcl,b (X)→ Pcl,b (X) defined by

Θ (α,B) =

 aα (B) , if α ∈ Λ (I)
fα (B) , if α ∈ Λ∗ (I) \ {λ}

B, if α = λ

for all (α,B) ∈ Λt (I)× Pcl,b (X) is uniformly continuous on bounded sets.
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Proof. Let B ∈ Pcl,b (X). We have

h
(
aα (B) , f[α]m (B)

)
≤ ϕm (diam (O (B)))

for every m ∈ N, (α,B) ∈ Λ (I)× Pcl,b (X) and

h
(
fα (B) , f[α]m (B)

)
≤
{

0 if |α| ≤ m
ϕm (diam (O (B)))

≤ ϕm (diam (O (B)))

for every m ∈ N and (α,B) ∈ Λ∗ (I) × Pcl,b (X). Using these relations and a tech-
nique similar with the one used in Theorem 3.20, one can prove that Θ is uniformly
continuous. �

Remark 3.48. Corollaries 3.21, 3.23 and 3.25 remain true for an oIIFS.
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[23] N. Van Dung, A. Petruşel, On iterated function systems consisting of Kannan maps, Reich
maps, Chatterjea type maps, and related results, J. Fixed Point Theory Appl., 19(2017), 2271-

2285.

[24] R. Zaharopol, Equicontinuity and existence of attractive probability measures for some iterated
function systems, Rev. Roumaine Math. Pures Appl., 52(2)2007.

Received: July 15, 2021; Accepted: June 8, 2022.


