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1. Introduction

Let H be a Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖, and
let C be a closed convex and nonempty subset of H. Suppose that A : H → H
and F : H → H are two single-valued mappings. In this paper, we investigate the
following bilevel inequality variational problem (BVIP) in space H:

find p ∈ V I(C,A) such that 〈Fp, y − p〉 ≥ 0, ∀y ∈ V I(C,A), (BVIP)

where V I(C,A) denotes the solution set of the following variational inequality problem
(VIP):

find x∗ ∈ C such that 〈Ax∗, z − x∗〉 ≥ 0, ∀z ∈ C. (VIP)

It is known that the (VIP) is a hot spot in various research fields by its particular
advantage in analysis and applications, see [3, 6, 9, 10, 16, 26, 27, 28, 29]. There are
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many methods have been proposed to solve the (VIP), and one of the most common
ways is the gradient projection method:

xn+1 = PC(xn − λAxn),

where λ ∈ (0, 2αL2 ) and L is the Lipschitz constant of the operator A. One knows
that the sequence generated by the gradient projection method converges to some
solution of the (VIP) when A is L-Lipschitz continuous and α-strongly monotone. In
order to weaken the constraint of the operator A, Korpelevich [15] introduced the
extragradient method which bases on calculating two projections onto the feasible
set: {

yn = PC(xn − λAxn),

xn+1 = PC(xn − λAyn),

where λ ∈ (0, 1
L ) and A is L-Lipschitz continuous and monotone. Thereafter, this

method has been studied and extended in many ways, see [4, 7, 8] and the references
therein. Since each iteration needs to compute two projections onto the feasible set,
it may seriously affect the efficiency of the extragradient method if the projection
onto C is hard to evaluate. To overcome this barrier, Tseng [25] proposed the Tseng’s
extragradient method, and Censor, Gibali and Reich [5] proposed the subgradient
extragradient method. In their algorithms, each iteration only needs to compute one
projection on the feasible set. But there is a faultiness in these methods: when the
associated mapping in the (VIP) is not Lipschitz continuous or the Lipschitz constant
is very difficult to compute, the methods mentioned above are not applicable to im-
plement because the step size cannot be determined. For avoiding the use of Lipschitz
continuous condition, Thong, Shehu and Iyiola [22] proposed a strong convergence al-
gorithm for solving the (VIP) with non-Lipschitz continuous of associated mappings.
The iterative scheme of their algorithm is devised as follows:
Initialization: Given γ > 0, l ∈ (0, 1), µ ∈ (0, 1). Let x1 ∈ H be arbitrary.
Step 1. Compute yn = PC(xn − λnAxn), where λn = γlmn with mn is the smallest
nonnegative integer m satisfying

γlmn〈Axn −Ayn, xn − yn〉 ≤ µ‖xn − yn‖2.
Step 2. Compute xn+1 = αnf(xn) + (1− αn)PCn

(xn), where

Cn := {x ∈ H : sn(x) ≤ 0} and sn(x) = 〈xn − yn − λn(Axn −Ayn), x− yn〉.
Set n← n+ 1 and go to Step 1.

As a modeling tool, bilevel variational inequality problem plays an important role
in many fields, such as economy, signal processing, engineering mechanics, convex pro-
gramming models and so on, see [21, 24]. Therefore, it is necessary to study some fast
and effective iterative methods to solve the (BVIP). In recent years, many iterative
methods for solving the (BVIP) and related applications have been constructed, see
[1, 12, 17, 20, 23]. In 2020, Thong et al. [23] proposed an extragradient method for
solving the (BVIP) in real Hilbert spaces. They declared that their iterative method
converges strongly under certain assumptions on parameters. Base on this method,
Tan, Liu and Qin [20] introduced an inertial extragradient algorithm for solving the
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(BVIP) in real Hilbert spaces. For any two initial values, the iterative scheme of their
algorithm is devised as follows:





wn = xn + θn(xn − xn+1),

yn = PC(wn − λnAwn),

zn = yn − λn(Ayn −Awn),

xn+1 = zn − αnγFzn,

where θn and λn are updated as

θn =

{
min{ εn

‖xn−xn−1‖ , θ}, if xn 6= xn−1,

θ, otherwise,

and

λn+1 =

{
min

{
µ(‖wn−yn‖)
‖Awn−Ayn‖ , λn

}
, if Awn −Ayn 6= 0,

λn, otherwise,

respectively. The sequence {xn} generated by their algorithm also converges strongly.
However, we find that all the algorithms mentioned above have a constraint: the
operator A is Lipschitz-continuous whether the Lipschitz constant needs to be known
or not. Therefore, a natural question is arisen:

How to design a algorithm to solve the (BVIP) without the Lipschitz
continuity of A?

The purposes of this paper is to answer this question in the affirmative. In order
to answer the question, we give a new self adaptive inertial algorithm for solving the
(BVIP) without Lipschitz continuity of pseudo-monotone mapping A. More precisely,
the contributions of this paper are stated as follows.

(1) We construct a new algorithm for solving the (BVIP) that converges strongly
under a weaker condition in infinite-dimensional Hilbert spaces. Moreover,
our proposed algorithm uses the inertial technique and a self adaptive Armijo-
type linesearch to accelerate the convergence speed.

(2) The associated mapping A in our algorithm is not a monotone and Lips-
chitz continuous mapping, but a pseudo-monotone and uniformly continuous
mapping.

(3) We give several numerical experiments to illustrate the convergence of our
proposed algorithm. By comparing our algorithm with the related algorithm
in the literature, we find that our algorithm outperforms the comparison
algorithm according to the numerical results.

The structure of the paper is stated as follows. In the next section, we give some
conclusions and definitions, which will be used in our analysis. Section 3 deals with
the convergence analysis of our proposed algorithm. In Section 4, we illustrate the
effectiveness of the proposed algorithm and compare our algorithm with previously
known algorithm. In the last section, Section 5, a concluding remark is given.
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2. Preliminaries

Throughout this paper, we suppose that H is a Hilbert space and C is a nonempty
closed convex subset of H. The inner product and norm of H are denoted by 〈·, ·〉 and
‖ · ‖, respectively. The sequence {xn} converges weakly to x∗ is denoted by xn ⇀ x∗,
and {xn} converges strongly to x∗ is denoted by xn → x∗. The following are some
definitions and lemmas that will be used in our paper.

Definition 2.1. Let A : H → H be a mapping. For all x, y ∈ H, A is said to be

(1) strongly monotone if there exists η > 0 such that

〈Ax−Ay, x− y〉 ≥ η‖x− y‖2.
(2) monotone if

〈Ax−Ay, x− y〉 ≥ 0.

(3) maximal monotone if A is monotone and there exists no monotone mapping B
such that gra(B) properly contains gra(A), where gra(A) and gra(B) denote
the graph of A and B, respectively.

(4) pseudomonotone if

〈Ax, y − x〉 ≥ 0⇒ 〈Ay, x− y〉 ≤ 0.

(5) L-Lipshhitz continuous if there exists L > 0 such that

‖Ax−Ay‖ ≤ L‖x− y‖, ∀x, y ∈ C.
Lemma 2.2. [22] Let τ be a number in (0, 1] and λ > 0. Let F : H → H be a
L-Lipschitz and α-strongly monotone mapping with 0 < α ≤ L and let S : H → H be
a nonexpansive mapping. Define a mapping Sλ : H → H by

Sλx := (I − τλF )(Sx),∀x ∈ H.

Then Sλ is a contraction provided λ <
2α

L2
, that is,

‖Sλx− Sλy‖ ≤ (1− τθ)‖x− y‖,∀x, y ∈ H,
where θ = 1−

√
1− λ(2α− λL2) ∈ (0, 1).

Lemma 2.3. [2] Given x, u ∈ H and u 6= 0. Let S = {y ∈ H, 〈u, y − x〉 ≤ 0}. Then,
for all z ∈ H, the projection PS(z) is defined by

PS(z) = z −max

{
0,
〈u, z − x〉
‖u‖2

}
u.

If z /∈ S, then we have

PS(z) = z − 〈u, z − x〉‖u‖2 u.

Lemma 2.4. [11] Let f be a real-valued function on H. Let C := {x ∈ H : f(x) ≤ 0}.
If C is nonempty and f is Lipschitz continuous on H with modulus L. Then
Dist(x,C) ≥ L−1 max{f(x), 0}, ∀x ∈ H, where Dist(x,C) denotes the distance func-
tion from x to C.
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Lemma 2.5. [18] Let {sn} be a sequence of nonnegative real numbers and let {cn}
be a sequence of real numbers. Let {δn} be a sequence in (0, 1) with

∑∞
n=1 δn = ∞.

Assume that

sn+1 ≤ (1− δn)sn + δncn,∀n ≥ 1.

If lim supk→∞ cnk
≤ 0 for every subsequence {snk

} of {sn} satisfying
lim infk→∞(snk+1 − snk

) ≥ 0, then limn→∞ sn = 0.

3. Main results

In this section, we introduce a new self adaptive inertial algorithm for solving the
(BVIP) without Lipschitz continuity of associated mappings. In order to obtain our
main results, we assume that the following conditions hold.

Condition 3.1.

(1) The feasible set C is a nonempty closed convex subset of H and the solution
set of (VIP) is nonempty, that is, V I(C,A) 6= ∅.

(2) A : H → H is pseudo-monotone, uniformly continuous on H and sequentially
weakly continuous on C. In finite dimensional spaces, it is sufficient to assume
that A : H → H is continuous pseudo-monotone on H.

(3) F : H → H is η-strongly monotone and L-Lipschitz continuous on H such
that L ≥ η. In addition, we denote x∗ the unique solution of the (BVIP).

(4) Let {θn} be a positive sequence such that limn→∞
θn
αn

= 0, where {αn} ⊂
(0, 1) satisfying

∑∞
n=1 αn =∞ and limn→∞ αn = 0.

Based on this formulation, our algorithm is constructed as follows.

Algorithm 1

Initialization: Choose δ ≥ 0, γ > 0, l ∈ (0, 1), µ ∈ (0, 1) and 0 < τ < 2η
L2 . Let

x0, x1 ∈ H be arbitrary.
Iterative Steps: Calculate xn+1 as follows:
Step 1. Compute wn = xn + δn(xn − xn−1), where

δn =





min

{
δ,

θn
‖xn − xn−1‖

}
, xn − xn−1 6= 0,

δ, otherwise.
(3.1)

Step 2. Compute yn = PC(wn − λnAwn), where λn = γlrn and rn is the smallest
nonnegative integer such that

λn〈Awn −Ayn, wn − yn〉 ≤ µ‖wn − yn‖2. (3.2)

Step 3. Compute zn = PQn
(wn), where Qn := {x ∈ H : sn(x) ≤ 0} and

sn(x) = 〈wn − yn − λn(Awn −Ayn), x− yn〉. (3.3)

Step 4. Compute
xn+1 = zn − αnτFzn.

Set n← n+ 1 and go to Step 1.
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Remark 3.2. Since limn→∞
θn
αn

= 0, from (3.1), it is easy to verify that

limn→∞ δn‖xn − xn−1‖ = 0 and limn→∞
δn
αn
‖xn − xn−1‖ ≤ limn→∞

θn
αn

= 0.

Now we give some lemmas, which are essential to show the convergence analysis of
our algorithm.

Lemma 3.3. [22, Lemma 3.1] Suppose that Condition 3.1 holds. Then Armijo-line
search rule (3.2) is well defined.

Lemma 3.4. [22, Lemma 3.2] Suppose that Condition 3.1 holds and p ∈ V I(C,A).
Let sn(x) = 〈wn − yn − λn(Awn −Ayn), wn − yn〉. Then

sn(p) ≤ 0 and sn(wn) ≥ (1− µ)‖wn − yn‖2.
In particular, if wn 6= yn, then sn(wn) > 0.

Remark 3.5. We get from Lemma 3.4 that wn /∈ Qn. Hence, by Lemma 2.3, we
have

zn = wn −
〈wn − yn − λn(Awn −Ayn), wn − yn〉
‖wn − yn − λn(Awn −Ayn)‖2 (wn − yn − λn(Awn −Ayn)).

Lemma 3.6. [22, Lemma 3.3] Let {xn} be a sequence generated by Algorithm 1. Sup-
pose that Condition 3.1 holds. If there exists a subsequence {wnj

} of {wn} such that
{wnj

} converges weakly to p̃ ∈ H and limj→∞ ‖wnj
− ynj

‖ = 0, then p̃ ∈ V I(C,A).

The following theorem states the convergence of the sequence generated by Algo-
rithm 1.

Theorem 3.7. Suppose that Condition 3.1 holds. Then the sequence {xn} generated
by Algorithm 1 converges strongly to the unique solution of (BV IP ).

Proof. The proof is split into three steps.
Step 1. We show that {xn} is bounded. For any x∗ ∈ V I(C,A), we have

‖zn − x∗‖2 = ‖PQn
wn − x∗‖2

≤ ‖wn − x∗‖2 − ‖PQnwn − wn‖2

= ‖wn − x∗‖2 − d2(wn, Qn),

(3.4)

which implies that

‖zn − x∗‖ ≤ ‖wn − x∗‖. (3.5)

By the construction of wn, we obtain

‖wn − x∗‖ ≤ ‖xn − x∗‖+ δn‖xn − xn−1‖. (3.6)

Substituting (3.6) back into (3.5) gives

‖zn − x∗‖ ≤ ‖xn − x∗‖+ δn‖xn − xn−1‖. (3.7)

According to Remark 3.2, we see that limn→∞
δn
αn
‖xn − xn−1‖ = 0. Hence, there

exists an M0 > 0 such that δn
αn
‖xn − xn−1‖ ≤M0, ∀n ≥ 1. So, by (3.7) we get

‖zn − x∗‖ ≤ ‖wn − x∗‖ ≤ ‖xn − x∗‖+ αnM0. (3.8)
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By Lemma 2.2 and (3.7), we have

‖xn+1 − x∗‖ = ‖(I − αnτF )zn − (I − αnτF )x∗ − αnτFx∗‖
≤ ‖(I − αnτF )zn − (I − αnτF )x∗‖+ ‖αnτFx∗‖
≤ (1− αnθ)‖zn − x∗‖+ αnθ ·

τ

θ
‖Fx∗‖

≤ (1− αnθ)‖xn − x∗‖+ αnθ ·
M0

θ
+ αnθ ·

τ

θ
‖Fx∗‖

≤ max{‖xn − x∗‖,
M0 + τ‖Fx∗‖

θ
}

≤ · · · ≤ max{‖x0 − x∗‖,
M0 + τ‖Fx∗‖

θ
},

where θ = 1−
√

1− τ(2η − τL2) ∈ (0, 1). This implies that {xn} is bounded. Hence,
{wn}, {Awn} and {zn} are also bounded. Since yn = PC(wn − λnAwn), we deduce
that {yn} and {Ayn} are also bounded.
Step 2. We show that

‖xn+1 − x∗‖2 ≤ (1− αnθ)‖xn − x∗‖2 + αnθ[
2‖xn − x∗‖

θ
· δn‖xn − xn−1‖

αn

+
δ

θ
· δn‖xn − xn−1‖

2

αn
+

2τ

θ
〈Fx∗, x∗ − xn+1〉].

Since {wn}, {Awn}, {yn} and {Ayn} are bounded and A is uniformly continuous, by
the choice of {λn}, we see that there exists M1 > 0 such that

‖wn − yn − λn(Awn −Ayn)‖ ≤M1,∀n ≥ 1,

from which we deduce that

‖sn(x)− sn(y)‖ = ‖〈wn − yn − λn(Awn −Ayn), x− y〉‖
≤ ‖wn − yn − λn(Awn −Ayn)‖‖x− y‖
≤M1‖x− y‖,∀x, y ∈ H.

Thus sn(·) is M1-Lipschitz continuous on H, which together with Lemma 2.4 gives

d(wn, Qn) ≥ 1

M1
sn(wn).

Therefore, one yields from (3.4) that

d(wn, Qn) ≥ 1

M1
(1− µ)‖wn − yn‖2. (3.9)

Combining (3.5) and (3.9), we get

‖zn − x∗‖2 ≤ ‖wn − x∗‖2 −
[

1

M1
(1− µ)‖wn − yn‖2

]2
. (3.10)
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By the boundedness of {xn}, we see that

‖xn+1 − x∗‖2 = ‖zn − αnFzn − x∗‖2

= ‖(1− αnτ)Fzn − (1− αnτ)Fx∗ − αnτFx∗‖2

≤ ‖(1− αnτ)Fzn − (1− αnτ)Fx∗‖2 + 2αnτ〈Fx∗, x∗ − xn+1〉
≤ ‖zn − x∗‖2 + 2αnτ〈Fx∗, x∗ − xn+1〉
≤ ‖zn − x∗‖2 + αnM3,

(3.11)

for some M3 > 0. Substituting (3.10) into (3.11) gives
[

1

M1
(1− µ)‖wn − yn‖2

]2
≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + αnM2. (3.12)

On the other hand, by (3.8), one yields the inequality

‖xn+1 − x∗‖2 ≤ ‖(1− αnτ)Fzn − (1− αnτ)Fx∗‖2 + 2αnτ〈Fx∗, x∗ − xn+1〉
≤ (1− αnθ)2‖zn − x∗‖2 + 2αnτ〈Fx∗, x∗ − xn+1〉

≤ (1− αnθ)‖xn − x∗‖2 + αnθ[
2‖xn − x∗‖

θ
· δn‖xn − xn−1‖

αn

+
δ

θ
· δn‖xn − xn−1‖

2

αn
+

2τ

θ
〈Fx∗, x∗ − xn+1〉].

(3.13)

Step 3. Now, we show that {‖xn − x∗‖} converges to zero. By Lemma 2.5 and
Condition 3.1, we only need to show that lim supk→∞〈Fx∗, x∗−xnk+1〉 ≤ 0 for every
subsequence {‖xnk

− x∗‖} of {‖xn − x∗‖} satisfying

lim inf
k→∞

(‖xnk+1 − x∗‖ − ‖xnk
− x∗‖) ≥ 0.

To this end, we assume that {‖xnk
− x∗‖} is a subsequence of ‖xn − x∗‖ such that

lim infk→∞(‖xnk+1 − x∗‖ − ‖xnk
− x∗‖) ≥ 0. Then, we can estimate that

lim inf
k→∞

(‖xnk+1 − x∗‖2 − ‖xnk
− x∗‖2)

= lim inf
k→∞

[(‖xnk+1 − x∗‖+ ‖xnk
− x∗‖)× (‖xnk+1 − x∗‖ − ‖xnk

− x∗‖)] ≥ 0.
(3.14)

By the inequality (3.12), we obtain

lim sup
k→∞

[
1

M1
(1− µ)‖wnk

− ynk
‖2
]

≤ lim sup
k→∞

[
‖xnk

− x∗‖2 − ‖xnk+1 − x∗‖2 + αnk
M3

]
≤ 0.

Thus,
lim
k→∞

‖wnk
− ynk

‖ = 0. (3.15)

On the other hand, we see that

‖zn − x∗‖2 = ‖PQn
(wn)− x∗‖2 ≤ ‖wn − x∗‖2 − ‖zn − wn‖2. (3.16)

Substituting (3.11) into (3.16), it is easy to get

‖xn+1 − x∗‖2 ≤ ‖wn − x∗‖2 − ‖zn − wn‖2 + αnM2.
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That is,

‖zn − wn‖2 ≤ ‖wn − x∗‖2 − ‖xn+1 − x∗‖2 + αnM2. (3.17)

Hence it follows from (3.6) and Remark 3.2 that

lim
k→∞

‖znk
− wnk

‖ = 0. (3.18)

Since

lim
n→∞

‖wn − xn‖ = lim
n→∞

δn‖xn − xn−1‖ = 0,

from (3.18) we have

lim
k→∞

‖znk
− xnk

‖ ≤ lim
k→∞

(‖znk
− wnk

‖+ ‖wnk
− xnk

‖) = 0. (3.19)

In addition, we see that

lim
k→∞

‖xnk+1 − znk
‖ ≤ lim

k→∞
αnk

τ‖Fznk
‖ = 0. (3.20)

From (3.19) and (3.20), we get

lim
k→∞

‖xnk+1 − xnk
‖ ≤ lim

k→∞
(‖xxk+1 − znk

‖+ ‖xnk
− znk

‖) = 0.

Since {xn} is bounded, there exists a subsequence {xnki
} of {xnk

}, which converges
weakly to some p̃ ∈ H, such that

lim sup
k→∞

〈Fx∗, x∗ − xnk
〉 = lim sup

i→∞
〈Fx∗, x∗ − xnki

〉 = 〈Fx∗, x∗ − p̃〉. (3.21)

According to (3.6), we have that {wnki
} also converges weakly to p̃. According to

(3.15) and the fact of Lemma 3.6, we get that p̃ ∈ V I(C,A). Since x∗ is the unique
solution of the (BVIP), we obtain

lim sup
k→∞

〈Fx∗, x∗ − xnk
〉 = 〈Fx∗, x∗ − p̃〉 ≤ 0. (3.22)

Due to (3.21) and (3.22), one gets

lim sup
k→∞

〈Fx∗, x∗ − xnk+1〉 = lim sup
k→∞

〈Fx∗, x∗ − xnk
〉

= 〈Fx∗, x∗ − p̃〉 ≤ 0.
(3.23)

Then Lemma 2.5 together with (3.13) and (3.23) gives limn→∞ ‖xn − x∗‖ = 0. �

Let F (x) = x− x̃, where x̃ ∈ H. Then we see that F is 1-Lipschitz continuous and
1-strongly monotone on H. Take τ = 1. We get the following algorithm.
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Algorithm 2

Initialization: Choose δ ≥ 0, γ > 0, l ∈ (0, 1) and µ ∈ (0, 1). Let x0, x1 ∈ H be
arbitrary.
Iterative Steps: Calculate xn+1 as follows:





wn = xn + δn(xn − xn−1),

yn = PC(wn − λnAwn),

zn = PQn
(wn),

xn+1 = αnx̃+ (1− αn)zn,

where the calculation of {δn}, {λn} and {αn} is the same as Algorithm 1.

In this situation, we get the following result.

Corollary 3.8. Suppose that Condition 3.1 holds. Then the sequence {xn} generated
by Algorithm 2 converges strongly to x∗ ∈ V I(C,A), where x∗ = PV I(C,A) ◦ x̃.

Remark 3.9. Let δ = 0 in Corollary 3.8. Then we get the Corollary 3.7 in [22].

Let F (x) = x − f(x), where f : H → H is a contraction with constant k ∈ [0, 1).
Then we see that F is (1 + k)-Lipschitz continuous and (1− k)-strongly monotone on
H. Take τ = 1, we get the following algorithm.

Algorithm 3

Initialization: Choose δ ≥ 0, γ > 0, l ∈ (0, 1) and µ ∈ (0, 1). Let x0, x1 ∈ H be
arbitrary.
Iterative Steps: Calculate xn+1 as follows:





wn = xn + δn(xn − xn−1),

yn = PC(wn − λnAwn),

zn = PQn(wn),

xn+1 = αnf(zn) + (1− αn)zn,

where the calculation of {δn}, {λn} and {αn} is the same as Algorithm 1.

Corollary 3.10. Suppose that Condition 3.1 holds. Then the sequence {xn} generated
by Algorithm 3 converges strongly to x∗ ∈ V I(C,A), where x∗ = PV I(C,A) ◦ f(x∗).

Remark 3.11. Let δ = 0 in Algorithm 3. Then we get the Algorithm 3 in [22].

4. Numerical examples

In this section, we provide some numerical examples to show the numerical behavior
of our proposed algorithms and compare with Algorithm 3.2 in [20]. All the programs
were implemented in MATLAB 2018a on a Intel(R) Core(TM) i5-8250U CPU @
1.60GHz computer with RAM 8.00GB.
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Example 4.1. In this example, the convergence of our algorithms is illustrated by
numerical experiments. Set F (x) = 0.5x. Then F is 0.5-strongly monotone and
0.5-Lipschitz continuous. The choice of the operator A is as follows:

A(x) =

[
1
2x1x2 − 2x2 − 107

−4x1 + 1
10x

2
2 − 107

]
,

and the feasible set C is defined by

C = {x ∈ R2 : (x1 − 2)2 + (x2 − 2)2 ≤ 1}.
It is known that A is pseudo-monotone on C but not monotone, for details, see [13]. In
the numerical experiment, the choice of initial values are random and the parameters
of the algorithm are as follows. We set τ = 1.5η

L2 , δ = 0.1, αn = 1
(n+1) , and

thetan = 10
(n+1)2 , l = 0.2 and γ = 0.1. The numerical results are showed in Fig. 1.

Bilevel pseudomonotone variational inequality problems with non-Lipschitz mappings 11
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0 50 100 150 200

Number of iterations

10-5

10-4

10-3

10-2

10-1

100

101

Alg.1

(d) Case IV µ = 0.8

Figure 1: The behavior of Algorithm 3.1 under different µ

Example 2 In this example, we compare the convergence behavior of our algorithm with the related
algorithm in [23]. We consider the following classical fractional programming problem, which has
been considered by many authors, see [22, 23].

min f (x) =
xT Nx+aT x+a0

bT x+b0
,

subject to x ∈C := {x ∈ R4 : bT x+b0 > 0},

where

N =




5 −1 2 0

−1 5 −1 3

2 −1 3 0

0 3 0 5



, a =




1

−2

−2

1



, b =




2

1

1

0



, a0 =−2, b0 = 4.

It can be easily verify that N is symmetric and positive define and f is pseudo-convex on C = {x ∈
R4 : bT x+b0 > 0}. Set

Ax := ∇ f (x) =
(bT x+b0)(2Nx+a)−b(xT Nx+aT x+a0)

(bT x+b0)2 .

Figure 1. The behavior of Algorithm 1 under different µ

According to Fig. 1, we find that Algorithm 1 is efficient and easy to implement.
In this example, the choice of initial values are random. Hence, we see that the choice
of initial value has no significant effect on the convergence of the proposed algorithm.
It is worth noting that Algorithm 1 do not need the Lipshchitz continuous condition
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of the associated mapping. So it is not necessary to know the Lipshchitz constant of
the associated mappings in the implementation of numerical experiments.

Example 4.2. In this example, we compare the convergence behavior of our algo-
rithm with the related algorithm in [20]. We consider the following classical fractional
programming problem, which has been considered by many authors, see [20, 23].

min f(x) =
xTNx+ aTx+ a0

bTx+ b0
,

subject to x ∈ C := {x ∈ R4 : bTx+ b0 > 0},
where

N =




5 −1 2 0
−1 5 −1 3
2 −1 3 0
0 3 0 5


 , a =




1
−2
−2
1


 , b =




2
1
1
0


 , a0 = −2, b0 = 4.

It can be easily verify that N is symmetric and positive define and f is pseudo-convex
on C = {x ∈ R4 : bTx+ b0 > 0}. Set

Ax := ∇f(x) =
(bTx+ b0)(2Nx+ a)− b(xTNx+ aTx+ a0)

(bTx+ b0)2
.

It is known that A is pseudo-monotone, for details, see [14, 19]. The operator F :
Rm → Rm (m = 4) is defined as F (x) = Mx + q0, where M = BBT + D + H, B is
an m ×m matrix with their entries in (0, 1), D is a m ×m skew-symmetric matrix
with their entries in (−1, 1), H is a m ×m diagonal matrix, whose diagonal entries
are positive in (0, 1) and q0 ∈ Rm is a vector with entries in (0, 1). It is easy to verify
that M is positive semidefinite and F is α-monotone and L-Lipschitz continuous with
α = min{eig(M)}, L = max{eig(M)}, where eig(M) represents all eigenvalues of M .

We compare our Algorithm 1 with Algorithm 3.2 in [20], which proposed by Tan,
Liu and Qin. Here, we denote their algorithm by Tan Alg.3.2. In the numerical
experiment, the choice of initial values are random and the parameters of the two
algorithms are as follows. We take αn = 1

(n+1)2 and θn = 10
(n+1)2.5 in the numerical

example, and other parameters are the same as example 4.1. In Tan Alg.3.2, we set
λ1 = 0.3. We use En = ‖xn − xn−1‖2 to denote the error of the n-th iteration of
the two algorithms, and the maximal iteration is 200, as the stopping criterion. The
numerical results are showed in Fig. 2 and Table 1.

Table 1. Compare the behavior of Algorithm 1 and Tan
Alg.3.2 under different µ

Algorithm Algorithm 1 Tan Alg.3.2

CPU(time) Iter. En CPU(time) Iter. En

µ = 0.1 2.5666 74 10−5 5.0532 200 2.912× 10−3

µ = 0.2 2.0581 65 10−5 5.0660 200 5.227× 10−3

µ = 0.6 1.5218 53 10−5 5.1411 200 3.9497× 10−2

µ = 0.8 3.0745 68 10−5 5.7479 200 1.6384× 10−2
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It is known that A is pseudo-monotone, for details, see [28, 29]. The operator F : Rm→ Rm (m = 4)

is defined as F(x) = Mx+ q0, where M = BBT +D+H, B is an m×m matrix with their entries in
(0,1), D is a m×m skew-symmetric matrix with their entries in (−1,1), H is a m×m diagonal
matrix, whose diagonal entries are positive in (0,1) and q0 ∈ Rm is a vector with entries in (0,1). It
is easy to verify that M is positive semidefinite and F is α-monotone and L-Lipschitz continuous
with α = min{eig(M)}, L = max{eig(M)}, where eig(M) represents all eigenvalues of M.

We compare our Algorithm 3.1 with Algorithm 3.2 in [23], which proposed by Tan, Liu and Qin.
Here, we denote their algorithm by Tan Alg.3.2. In the numerical experiment, the choice of initial
values are random and the parameters of the two algorithms are as follows. We take αn =

1
(n+1)2

and δn =
10

(n+1)2.5 in the numerical example, and other parameters are the same as example 1. In
Tan Alg.3.2, we set λ1 = 0.3. We use En = ∥xn− xn−1∥2 to denote the error of the n-th iteration
of the two algorithms, and the maximal iteration is 200, as the stopping criterion. The numerical
results are showed in Fig. 2 and Table 4.1.
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Figure 2: Compare the behavior of Algorithm 3.1 and Tan Alg. 3.2 under different µ

According to Fig. 2 and Table 4.1, we find that our proposed Algorithm 3.1 performs better
than Tan Alg.3.2 both in the number of iterations and CPU time. It is worth noting that our

Figure 2. Compare the behavior of Algorithm 1 and Tan Alg. 3.2
under different µ

According to Fig. 2 and Table 1, we find that Algorithm 1 performs better than
Tan Alg.3.2 both in the number of iterations and CPU time. It is worth noting
that Algorithm 1 do not need the Lipshchitz continuous condition of the associated
mapping, while Tan Alg.3.2 needs this condition.

5. Conclusions

In this paper, we proposed a new self-adaptive inertial algorithm for finding the
solution of the bilevel pseudo-monotone variational inequality problem in real Hilbert
spaces. Our approaches can solve the (BVIP) without Lipschitz continuity condition
on the associated mappings. The strong convergence theorem of the new algorithm is
proved under some suitable conditions. Numerical results were present to demonstrate
the performance of our proposed algorithm.
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