
Fixed Point Theory, 25(2024), No. 1, 143-162

DOI: 10.24193/fpt-ro.2024.1.09

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.html

TWO GENERALIZED STRONG CONVERGENCE

ALGORITHMS FOR VARIATIONAL INEQUALITY

PROBLEMS IN BANACH SPACES

MOSTAFA GHADAMPOUR∗, EBRAHIM SOORI∗∗,1, RAVI P. AGARWAL∗∗∗∗

AND DONAL O’REGAN∗∗∗∗

∗,∗∗Department of Mathematics, Lorestan University
P.O. Box 465, Khoramabad, Lorestan, Iran

E-mail: sori.e@lu.ac.ir, sori.ebrahim@yahoo.com (E. Soori),

m.ghadampour@gmail.com (M. Ghadampour)

1Corresponding author

∗∗∗Department of Mathematics, Texas A and M University-Kingsville

Texas 78363, USA

E-mail: Ravi.Agarwal@tamuk.edu

∗∗∗∗School of Mathematics, Statistics and Applied Mathematics

National University of Ireland, Galway, Ireland

E-mail: donal.oregan@nuigalway.ie

Abstract. In this paper, two generalized algorithms for solving the variational inequality problem
in Banach spaces are proposed. Then the strong convergence of the sequences generated by these

algorithms will be proved under suitable conditions. Finally, using MATLAB software, we provide

some numerical examples to illustrate our results.
Key Words and Phrases: Variational inequality, relatively nonexpansive mapping, monotone

mapping, asymptotical fixed point.

2020 Mathematics Subject Classification: 47H09, 47H10.

1. Introduction

Let C be a nonempty closed convex subset of a Banach space E with norm ‖.‖ and
let E∗ denotes the dual of E. The variational inequality problem (VIP) is to find a
point x ∈ C such that

〈Ax, y − x〉 ≥ 0 ∀ y ∈ C, (1.1)

where A is a mapping of C into E∗ and 〈., .〉 denotes the pairing between E and E∗.
The solution set of (1.1) is denoted by V I(C,A).
It is well known that variational inequalities cover a variety of fields in optimal control,
optimization, mathematical programming, operational research, partial differential
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equations, engineering, and equilibrium models and hence, it have been studied by
many authors; see the recent papers [16, 24, 26, 6, 28, 11, 12, 18].

The operator A of C to E∗ is said to be
(i) monotone if

〈x− y,Ax−Ay〉 ≥ 0, ∀x, y ∈ C;

(ii) α−inverse strongly monotone if there exists a constant α > 0 such that

〈x− y,Ax−Ay〉 ≥ α‖Ax−Ay‖2 ∀x, y ∈ C;

(iii) L-Lipchitz continuous if there exists L > 0 such that

‖Ax−Ay‖ ≤ L‖x− y‖, ∀x, y ∈ C.

Let f : C ×C → R be a bifunction. The equilibrium problem (GEP) is as follows:
Find x ∈ C such that

f(x, y) + 〈Ax, y − x〉 ≥ 0, ∀ y ∈ C. (1.2)

The set of solutions of (1.2) is denoted by GEP (f,A). Clearly, problem (1.2) is
equivalent to (VIP) if f ≡ 0.

Korpelevich[15] proposed the following algorithm for solving the problem (VIP)
that is known as the extragradient method in (1.3). Let x1 be an arbitrarily element
in H and {

yn = PC(xn − λAxn),

xn+1 = PC(xn − λAyn),
(1.3)

Tseng [25] proposed the following algorithm which was introduced using the mod-
ified front-to-back (F-B) method:{

yn = PC(xn − λAxn),

xn+1 = PX(yn − λ(Ayn −Axn)),
(1.4)

where X = C and X = H if A is Lipschitz continuous. Thong et al [23] proposed the
following convergent algorithm based on the Tseng algorithm:

yn = PC(xn − λnAxn),

zn = yn − λn(Ayn −Axn),

xn+1 = αnf(xn) + (1− αn)zn,

(1.5)

where the operator A is monotone and Lipschitz continuous, γ > 0, l ∈ (0, 1), µ ∈
(0, 1) and λn is chosen to be the largest λ ∈ {γ, γl, γl2, ...} satisfying

λ‖Axn −Ayn‖ ≤ µ‖xn − yn‖. (1.6)

In this paper, we present our algorithms in Banach spaces motivated by the Thong
algorithm and prove the strong convergence of the sequences generated by these al-
gorithms. Finally, using MATLAB software, we provide some numerical examples to
illustrate our claims.
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2. Preliminaries

Let E be a real Banach space with norm ‖.‖ and let E∗ be the dual space of E.
The strong convergence and the weak convergence of the sequence {xn} to x in E are
denoted by xn → x and xn ⇀ x throughout the paper, respectively. The modulus δ
of convexity of E is defined by

δ(ε) = inf{1− ‖x+ y‖
2

: ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε}

for every ε ∈ [0, 2]. A Banach space E is said to be uniformly convex if δ(0) = 0 and
δ(ε) > 0 for every ε > 0. It is known that a Banach space E is uniformly convex if
and only if for any two sequences {xn} and {yn} in E such that

lim
n→∞

‖xn‖ = lim
n→∞

‖yn‖ = 1 and lim
n→∞

‖xn + yn‖ = 2,

limn→∞ ‖xn − yn‖ = 0 holds. Suppose that p is a fixed real number with p ≥ 2. A
Banach space E is said to be p-uniformly convex[22], if there exists a constant c > 0
such that δ ≥ cεp for all ε ∈ [0, 2]. It is also known that a uniformly convex Banach
space has the Kadec-Klee property, that is, xn ⇀ u and ‖xn‖ → ‖u‖ imply that
xn → u(see [10, 19]).
The normalized duality mapping J : E → E∗ is defined by

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2},

for each x ∈ E. Suppose that S(E) = {x ∈ E : ‖x‖ = 1}. A Banach space E is
called smooth if for all x ∈ S(E), there exists a unique functional jx ∈ E∗ such that
〈x, jx〉 = ‖x‖ and ‖jx‖ = 1( see [1]).

The norm of E is said to be Gâteaux differentiable if for each x, y ∈ S(E), the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

(2.1)

exists. In this case, E is called smooth and E is said to be uniformly smooth if the limit
(2.1) is attained uniformly for all x, y ∈ S(E)[21]. If a Banach space E is uniformly
convex, then E is reflexive and strictly convex, and E∗ is uniformly smooth[1]. It
is well known that if E is a reflexive, strictly convex and smooth Banach space and
J∗ : E∗ → E is the duality mapping on E∗, then J−1 = J∗, also, if E is a uniformly
smooth Banach space, then J is uniformly norm to norm continuous on bounded sets
of E and J−1 = J∗ is also uniformly norm to norm continuous on bounded sets of
E∗. Let E be a smooth Banach space and let J be the duality mapping on E. The
function φ : E × E → R is defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, ∀x, y ∈ E. (2.2)

Clearly, from (2.2), we can conclude that

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖+ ‖y‖)2. (2.3)

If E is a reflexive, strictly convex and smooth Banach space, then for all x, y ∈ E

φ(x, y) = 0⇔ x = y. (2.4)
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Also, it is clear from the definition of the function φ that the following conditions
hold for all x, y, z, w ∈ E,

φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉, (2.5)

2〈x− y, Jz − Jw〉 = φ(x,w) + φ(y, z)− φ(x, z)− φ(y, w). (2.6)

φ(x, y) = 〈x, Jx− Jy〉+ 〈y − x, Jy〉 ≤ ‖x‖‖Jx− Jy‖+ ‖y − x‖‖y‖. (2.7)

Now, the function V : E × E∗ → R is defined as follows

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉+ ‖x∗‖2,
for all x ∈ E and x∗ ∈ E∗. Moreover, V (x, x∗) = φ(x, J−1x∗) for all x ∈ E and
x∗ ∈ E∗. If E is a reflexive strictly convex and smooth Banach space with E∗ as its
dual, we can conclude that

V (x, x∗) + 2〈J−1x∗ − x, y∗〉 ≤ V (x, x∗ + y∗), (2.8)

for all x ∈ E and all x∗, y∗ ∈ E∗[14].
An operator A : C → E∗ is hemicontinuous at x0 ∈ C, if for any sequence {xn}

converging to x0 along a line implies that Txn ⇀ Tx0, i.e., Txn = T (x0+tnx) ⇀ Tx0
as tn → 0 for all x ∈ C.
The generalized projection ΠC : E → C is a mapping that assigns to an arbitrary
point x ∈ E, the minimum point of the functional φ(y, x); that is, ΠCx = x0, where
x0 is the solution of the minimization problem

φ(x0, x) = min
y∈C

φ(y, x). (2.9)

The existence and uniqueness of the operator ΠC follows from the properties of the
functional φ(x, y) and strict monotonicity of the mapping J [2]. Suppose that C is
a nonempty closed convex subset of E, and T is a mapping from C into itself. A
point p ∈ C is called an asymptotically fixed point of T if C contains a sequence {xn}
which converges weakly to p such that Txn − xn → 0[1]. The set of asymptotical

fixed points of T will be denoted by F̂ (T ). A mapping T from C into itself is said

to be relatively nonexpansive if F̂ (T ) = F (T ) and φ(p, Tx) ≤ φ(p, x) for all x ∈ C
and p ∈ F (T ). The asymptotic behavior of a relatively nonexpansive mapping was
studied in [4, 5, 7].
We need the following lemmas for the proof of our main results.
Lemma 2.1. ([13]) Let E be a smooth and uniformly convex Banach space and let
{xn} and {yn} be two sequences of E. If φ(xn, yn) → 0 and either {xn} or {yn} is
bounded, then xn − yn → 0.

Lemma 2.2. ([2]) Let C be a nonempty closed convex subset of a smooth, strictly
convex and reflexive Banach space E, let x ∈ E and let z ∈ C. Then

z = ΠCx⇔ 〈y − z, Jx− Jz〉 ≤ 0, for all y ∈ C.

Lemma 2.3. ([2]) Let C be a nonempty closed convex subset of a smooth, strictly
convex and reflexive Banach space E and let y ∈ E. Then

φ(x,ΠCy) + φ(ΠCy, y) ≤ φ(x, y), ∀x ∈ C.
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Lemma 2.4. ([3, 27]) Let E be a 2-uniformly convex and smooth Banach space.
Then, for all x, y ∈ E, we have that

‖x− y‖ ≤ 2

c2
‖Jx− Jy‖,

where 1
c (0 ≤ c ≤ 1)is the 2-uniformly convex constant of E.

Lemma 2.5. ([27]) Let E be a uniformly convex Banach space and r > 0. Then
there exists a continuous strictly increasing convex function g : [0, 2r] → [0,∞) such
that g(0) = 0 and

‖tx+ (1− t)y‖2 ≤ t‖x‖2 + (1− t)‖y‖2 − t(1− t)g(‖x− y‖),

for all x, y ∈ Br(0) = {z ∈ E : ‖z‖ ≤ r} and t ∈ [0, 1].

Lemma 2.6. ([13]) Let E be a uniformly convex Banach space and r > 0. Then
there exists a continuous strictly increasing convex function g : [0, 2r] → [0,∞) such
that g(0) = 0 and

g(‖x− y‖) ≤ φ(x, y),

for all x, y ∈ Br(0) = {z ∈ E : ‖z‖ ≤ r}.

Throughout this paper, we assume that f : C × C → R is a bifunction satisfying
the following conditions

(A1) f(x, x) = 0 for all x ∈ C,
(A2) f is monotone, i.e. f(x, y) + f(y, x) ≤ 0, for all x, y ∈ C,
(A3) lim

t↓0
f(tz + (1− t)x, y) ≤ f(x, y), for all x, y, z ∈ C,

(A4) for each x ∈ C, y 7→ f(x, y) is convex and lower semicontinuous.

Lemma 2.7. ([17]) Let C be a nonempty closed convex subset of a smooth, strictly
convex and reflexive Banach space E. Let A : C −→ E∗ be an α−inverse-strongly
monotone operator and f be a bifunction from C × C to R satisfying (A1) − (A4).
Then for all r > 0 the following hold

(i) for x ∈ E, there exists u ∈ C such that

f(u, x) + 〈Au, y − u〉+
1

r
〈y − u, Ju− Jx〉 ≥ 0, ∀y ∈ C,

(ii) if E is additionally uniformly smooth and Kr : E −→ C is defined as

Kr(x) = {u ∈ C : f(u, y) + 〈Au, y − u〉+
1

r
〈y − u, Ju− Jx〉 ≥ 0, ∀y ∈ C},

then, the following conditions hold:

(1) Kr is single-valued,
(2) Kr is firmly nonexpansive, i.e., for all x, y ∈ E,

〈Krx−Kry, JKrx− JKry〉 ≤ 〈Krx−Kry, Jx− Jy〉,

(3) F (Kr) = ˆF (Kr) = GEP (f,A),
(4) GEP is a closed convex subset of C,
(5) φ(p,Krx) + φ(Krx, x) ≤ φ(p, x), ∀ p ∈ F (Kr).
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The normal cone for C at a point υ ∈ C is denoted by NC(υ), that is

NC(υ) := {x∗ ∈ E∗ : 〈υ − y, x∗〉 ≥ 0,∀y ∈ C}.

Lemma 2.8. ([20]) Let C be a nonempty closed convex subset of a Banach space E
and let T be monotone and hemicontinuous operator of C into E∗ with C = D(T ).
Let B ⊂ E × E∗ be an operator defined as follows:

Bv =

{
Tv +NCv, v ∈ C,
∅, v /∈ C.

Then B is maximal monotone and B−1(0) = SOL(T,C).

3. Main results

In this section, we introduce new iterative algorithms for solving monotone vari-
ational inequality problems which are based on Tseng’s intergradient method. We
prove strong convergence theorems for generated sequences by presenting intergradi-
ent algorithms, under suitable conditions.

Throughout this section, we assume that C is a nonempty closed convex subset of
a real 2-uniformly convex and uniformly smooth Banach space E and E∗ is the dual
space of E, and A : C → E∗ is a α-inverse strongly monotone operator. Assume that

{λn} is a sequence of real numbers such that 0 < λn <
c2α
2 for all n ∈ N, where 1

c is
the 2-uniformly convexity constant of E.
Theorem 3.1 Let x0 ∈ C, Γ := V I(C,A) ∩ F (f) 6= ∅ and

yn = ΠCJ
−1(Jxn − λnAxn),

zn = J−1(Jyn − λnAyn),

xn+1 = ΠCJ
−1(αn,1Jxn + αn,2Jf(xn) + αn,3Jzn),

(3.1)

where {λn} ⊆ [0, 1] such that lim
n→∞

λn = 0. Let {αn,i} ⊂ (0, 1) for i = 1, 2, 3,

αn,1 + αn,2 + αn,3 = 1 and lim inf
n→∞

αn,2αn,3 > 0. Let f be a relatively nonexpansive

self-mapping on C and ‖Ax‖ ≤ ‖Ax − Au‖ for all x ∈ C and u ∈ Γ. Consider the
sequence {xn} generated by the algorithm (3.1). Then the sequence {xn} converges
strongly to q = ΠV I(C,A) ◦ f(q), where PV I(C,A) ◦ f : H → V I(C,A) is the mapping
defined by PV I(C,A) ◦ f(x) = PV I(C,A)(f(x)) for each x ∈ H.

Proof. Let û ∈ Γ. From the definition of the function V and the inequality (2.8), we
conclude that

φ(û, zn) =φ(û, J−1(Jyn − λnAyn))

=V (û, Jyn − λnAyn)

≤V (û, Jyn)− 2〈J−1(Jyn − λnAyn)− û, λnAyn〉
=φ(û, yn) + 2〈J−1(Jyn − λnAyn)− J−1(Jyn),−λnAyn〉
− 2〈yn − û, λnAyn〉, (3.2)
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then from Lemma 2.4 and the condition ‖Ax‖ ≤ ‖Ax− Aû‖ for all x ∈ C, it follows
that

2〈J−1(Jyn−λnAyn)− J−1(Jyn),−λnAyn〉
≤2‖J−1(Jyn − λnAyn)− J−1(Jyn)‖‖ − λnAyn‖

≤4λ2n
c2
‖Ayn‖2

≤4λ2n
c2
‖Ayn −Aû‖2. (3.3)

Since A is α-inverse strongly monotone and the fact that û ∈ V I(C,A), we have

−2〈yn − û,λnAyn〉
=− 2λn〈yn − û, Ayn −Aû〉 − 2λn〈yn − û, Aû〉
≤ − 2λn〈yn − û, Ayn −Aû〉
≤ − 2λnα‖Ayn −Aû‖2, (3.4)

substituting (3.3) and (3.4) in (3.2) and using our assumptions, we obtain

φ(û, zn) ≤φ(û, yn) + (
4λ2n
c2
− 2λnα)‖Ayn −Au‖2

=φ(û, yn) + 2λn(
2λn
c2
− α)‖Ayn −Aû‖2

≤φ(û, yn),

hence,

φ(û, zn) ≤ φ(û, yn). (3.5)

From Lemma 2.3 and the inequality (2.8), we have

φ(û, yn) =φ(û,ΠCJ
−1(Jxn − λnAxn))

≤φ(û, J−1(Jxn − λnAxn)) = V (û, Jxn − λnAxn)

≤V (û, Jxn)− 2〈J−1(Jxn − λnAxn)− û, λnAxn〉
=φ(û, xn)− 2λn〈xn − û, Axn〉

+ 2〈J−1(Jxn − λnAxn)− J−1(Jxn),−λnAxn〉, (3.6)

since A is α−inverse strongly monotone and û ∈ V I(C,A), it follows that

−2λn〈xn − û,Axn〉
=− 2λn〈xn − û, Axn −Aû〉 − 2λn〈xn − û, Aû〉
≤ − 2λn〈xn − û, Axn −Aû〉
≤ − 2λnα‖Axn −Aû‖2. (3.7)
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From Lemma 2.4 and our assumptions, we can conclude that

2〈J−1(Jxn − λnAxn)− J−1(Jxn),−λnAxn〉
≤2‖J−1(Jxn − λnAxn)− J−1(Jxn)‖‖ − λnAxn‖

≤4λ2n
c2
‖Axn‖2

≤4λ2n
c2
‖Axn −Aû‖2. (3.8)

By applying (3.7) and (3.8) in (3.6) and our assumptions, we have that

φ(û, yn) ≤ φ(û, xn) + 2λn(
2λn
c2
− α)‖Ayn −Axn‖2 ≤ φ(û, xn). (3.9)

Hence, from (3.5) and (3.9), we have

φ(û, zn) ≤ φ(û, xn). (3.10)

Next, we will show that the sequence {φ(û, xn)} is decreasing. From the relatively
nonexpansiveness condition of f , the convexity of ‖.‖2, Lemma 2.3 and the inequality
(3.10), we have that

φ(û, xn+1) ≤φ(û, J−1(αn,1Jxn + αn,2Jf(xn) + αn,3Jzn)

=‖û‖2 − 2〈û, αn,1Jxn + αn,2Jf(xn) + αn,3Jzn〉
+ ‖αn,1Jxn + αn,2Jf(xn) + αn,3Jzn‖2

≤‖û‖2 − 2αn,1〈û, Jxn〉 − 2αn,2〈û, Jf(xn)〉 − 2αn,3〈û, Jzn〉
+ αn,1‖xn‖2 + αn,2‖f(xn)‖2 + αn,3‖zn‖2

=αn,1φ(û, xn) + αn,2φ(û, f(xn)) + αn,3φ(û, zn)

≤αn,1φ(û, xn) + αn,2φ(û, xn) + αn,3φ(û, xn)

=φ(û, xn), (3.11)

so {φ(û, xn)} is decreasing. Then {φ(û, xn)} is bounded, hence lim
n→∞

φ(û, xn) exists.

Then from (2.3), {xn} is bounded. It follows from the relatively nonexpansiveness
condition of f , (3.9) and (3.10) that {f(xn)}, {yn} and {zn} are bounded. From
Lemmas 2.3, 2.4, the inequality (2.8) and the condition lim

n→∞
λn = 0, we have

φ(xn, yn) ≤ φ(xn, J
−1(Jxn − λnAxn))

=V (xn, Jxn − λnAxn)

≤V (xn, Jxn)− 2〈J−1(Jxn − λnAxn)− xn, λnAxn)

=φ(xn, xn)− 2〈J−1(Jxn − λnAxn)− J−1(Jxn), λnAxn)〉
≤2‖J−1(Jxn − λnAxn)− J−1(Jxn)‖‖λnAxn‖

≤4λ2n
c2
‖Axn‖2 → 0 as n→∞. (3.12)
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From Lemma 2.1, we have that

lim
n→∞

‖xn − yn‖ = 0. (3.13)

Next, from (2.7), (3.13), the boundedness of the sequences {xn} and {yn}, and using
uniformly norm-to-norm continuity of J on bounded sets, it is clear that

φ(yn, xn) ≤ ‖yn‖‖Jyn − Jxn‖+ ‖xn − yn‖‖xn‖ → 0 as n→∞. (3.14)

From Lemma 2.4, the inequality (2.8) and the condition lim
n→∞

λn = 0, we have

φ(yn, zn) = φ(yn, J
−1(Jyn − λnAyn))

=V (yn, Jyn − λnAyn)

≤V (yn, Jyn)− 2〈J−1(Jyn − λnAyn)− yn, λnAyn)

=φ(yn, yn)− 2〈J−1(Jyn − λnAyn)− J−1(Jyn), λnAyn)〉
≤2‖J−1(Jyn − λnAyn)− J−1(Jyn)‖‖λnAyn‖

≤4λ2n
c2
‖Ayn‖2 → 0 as n→∞. (3.15)

From Lemma 2.1, we have that

lim
n→∞

‖yn − zn‖ = 0. (3.16)

Since {f(xn)} and {zn} are bounded, now, setting r1 = sup{‖f(xn)‖, ‖zn‖}, from
Lemma 2.5 there exists a continuous strictly increasing and convex function g1 :
[0, 2r1] −→ [0,∞] with g1(0) = 0. From (3.10), Lemmas 2.3, 2.5 and the condition
relatively nonexpansiveness of f , we conclude for each û ∈ Γ that

φ(û, xn+1) ≤φ(û, J−1(αn,1Jxn + αn,2Jf(xn) + αn,3Jzn)

=‖û‖2 − 2〈û, αn,1Jxn + αn,2Jf(xn) + αn,3Jzn〉
+ ‖αn,1Jxn + αn,2Jf(xn) + αn,3Jzn‖2

≤‖û‖2 − 2αn,1〈û, Jxn〉 − 2αn,2〈û, Jf(xn)〉 − 2αn,3〈û, Jzn〉
+ αn,1‖xn‖2 + αn,2‖f(xn)‖2 + αn,3‖zn‖2

− αn,2αn,3g1(‖Jf(xn)− Jzn‖)
=αn,1φ(û, xn) + αn,2φ(û, f(xn)) + αn,3φ(û, zn)

− αn,2αn,3g1(‖Jf(xn)− Jzn‖)
≤αn,1φ(û, xn) + αn,2φ(û, xn) + αn,3φ(û, xn)

− αn,2αn,3g1(‖Jf(xn)− Jzn‖)
=φ(û, xn)− αn,2αn,3g1(‖Jf(xn)− Jzn‖),

therefore

αn,2αn,3g1(‖Jf(xn)− Jzn‖) ≤ φ(û, xn)− φ(û, xn+1).

Since lim infn→∞ αn,2αn,3 > 0, we have

lim
n→∞

g1(‖Jf(xn)− Jzn‖) = 0, (3.17)
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because {φ(û, xn)} is Cauchy and lim inf
n→∞

αn,2αn,3 > 0. Since g1 is a continuous

function, so

g1( lim
n→∞

‖Jf(xn)− Jzn‖) = lim
n→∞

g1(‖Jf(xn)− Jzn‖) = 0 = g1(0), (3.18)

and also g1 is strictly increasing, hence

lim
n→∞

‖Jf(xn)− Jzn‖ = 0. (3.19)

On the other hand, since J−1 is uniformly norm-to-norm continuous on bounded sets,
we obtain that

lim
n→∞

‖f(xn)− zn‖ = lim
n→∞

‖J−1(Jf(xn))− J−1(Jzn)‖ = 0. (3.20)

Next, from (2.7) and (3.20), we have

lim
n→∞

φ(zn, f(xn)) = 0. (3.21)

Similarly, from (2.7), (3.13) and (3.16), we obtain

lim
n→∞

φ(zn, xn) = 0. (3.22)

Moreover, from Lemma 2.3, the inequalities (3.21), (3.22) and the convexity of ‖.‖2,
we conclude that

φ(zn, xn+1) ≤φ(zn, J
−1(αn,1Jxn + αn,2Jf(xn) + αn,3Jzn))

=‖zn‖2 − 2〈zn, αn,1Jxn + αn,2Jf(xn) + αn,3Jzn〉
+ ‖αn,1Jxn + αn,2Jf(xn) + αn,3Jzn‖2

≤‖zn‖2 − 2αn,1〈zn, Jxn〉 − 2αn,2〈zn, Jf(xn)〉 − 2αn,3〈zn, Jzn〉
+ αn,1‖xn‖2 + αn,2‖f(xn)‖2 + αn,3‖zn‖2

=αn,1φ(zn, xn) + αn,2φ(zn, f(xn)) + αn,3φ(zn, zn)

=αn,1φ(zn, xn) + αn,2φ(zn, f(xn))→ 0 as n→∞,

then using Lemma 2.1, we get

lim
n→∞

‖zn − xn+1‖ = 0. (3.23)

It follows from (3.13), (3.16) and (3.23) that

‖xn+1 − xn‖ ≤ ‖xn+1 − zn‖+ ‖zn − yn‖+ ‖yn − xn‖ → 0 as n→∞. (3.24)

Thus {xn} is a Cauchy sequence, so {xn} converges strongly to a point q ∈ C. It
follows from (3.13) and (3.16) that the sequences {yn} and {zn} are convergent to q.
Next, we show that q ∈ V I(C,A). Let B ⊂ E×E∗ be an operator defined as follows:

Bv =

{
λnAv +NCv, v ∈ C,
∅, v /∈ C. (3.25)

Since λnA is λnα-inverse strongly monotone, it follows that λnA is 1
λnα

-Lipschitz
continuous, hence λnA is hemicontinuous. Therefore, by Lemma 2.8 B is maximal
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monotone and B−1(0) = V I(C, λnA) = V I(C,A). Let (υ,w) ∈ G(B) with w ∈ Bυ =
λnAυ +NC(υ). Then w − λnAυ ∈ NC(υ), hence

〈υ − yn, w − λnAυ〉 ≥ 0, (3.26)

because yn ∈ C. On the other hand from Lemma 2.2, we conclude that

〈υ − yn, J(J−1(Jxn − λnAxn))− Jyn〉 ≤ 0,

so

〈υ − yn, λnAxn + Jyn − Jxn〉 ≥ 0. (3.27)

From (3.26), (3.27) and using the definition A, we get

〈υ − yn, w〉
≥λn〈υ − yn, Aυ〉 − 〈υ − yn, λnAxn + Jyn − Jxn〉
=λn〈υ − yn, Aυ −Ayn〉+ λn〈υ − yn, Ayn〉
− 〈υ − yn, λnAxn + Jyn − Jxn〉
≥λn〈υ − yn, Ayn −Axn〉 − 〈υ − yn, Jyn − Jxn〉
≥ − λn‖υ − yn‖‖Axn −Ayn‖ − ‖υ − yn‖‖Jxn − Jyn‖. (3.28)

Hence, using uniformly norm-to-norm continuity of J on bounded sets and (3.13),
〈υ − yn, w〉 ≥ 0 as n → ∞, i.e. 〈υ − q, w〉 ≥ 0. Therefore 〈q − υ, 0 − w〉 ≥ 0, and
we conclude from Lemma 2.8 that q ∈ B−1(0) = V I(C,A), because B is a maximal
monotone operator.

Next, we show that q ∈ F (f). From (3.13), (3.16) and (3.20), we have

‖f(xn)− xn‖ ≤ ‖f(xn)− zn‖+ ‖zn − yn‖+ ‖yn − xn‖ → 0 as n→∞, (3.29)

and since xn ⇀ q, then q is an asymptotic fixed point of f . Moreover, F̂ (f) =
F (f), because f is a relatively nonexpansive mapping, hence q ∈ F (f). Therefore,
ΠV I(C,A)of(q) = ΠV I(C,A)(q) = q.

Theorem 3.2. Suppose that F̃ is a bifunction from C × C to R which satisfies the
conditions (A1) − (A4). Let f be a relatively nonexpansive self-mapping on C and

‖Ax‖ ≤ ‖Ax − Au‖ for all x ∈ C and u ∈ Ω := V I(C,A) ∩GEP (F̃ , A) ∩ F (f). Let
x0 be an arbitrary point in C and {xn} be a sequence generated by

un ∈ C s.t F̃ (un, y) + 〈Aun, y − un〉+ 1
rn
〈y − un, Jun − Jxn〉 ≥ 0,

wn = ΠCJ
−1(Jun − λnAun),

yn = ΠCJ
−1(Jxn − λnAxn),

Cn = {v ∈ C : φ(v, wn) ≤ φ(v, xn)},
zn = ΠCnJ

−1(Jyn − λnAyn),
xn+1 = ΠCJ

−1(αn,1Jxn + αn,2Jf(xn) + αn,3Jzn + αn,4Jwn).

(3.30)

where rn ∈ [a,∞) for some a > 0, {λn} ⊆ [0, 1] such that lim
n→∞

λn = 0, and {rn} ⊂

[a,∞) for some a > 0. If {αn,i} ⊂ [0, 1] for i = 1, 2, 3, 4 such that
∑4
i=1 αn,i = 1

and lim inf
n→∞

αn,2αn,3 > 0 and lim inf
n→∞

αn,2αn,4 > 0 then the sequence {xn} generated by

(3.30) converges strongly to q = ΠV I(C,A)∩GEP (F̃ ,A) ◦ f(q).
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Proof. Clearly, by part (i) of Lemma 2.7, the sequence {un} exists. Now, we check
that Cn is closed and convex for each n ≥ 1. Obviously, by the definition of Cn, it is
clear that Cn is closed. Applying the definition of φ, the inequality φ(v, wn) ≤ φ(v, xn)
is equivalent to

2〈v, Jxn − Jwn〉 ≤ ‖xn‖2 − ‖wn‖2. (3.31)

It is clear from (3.31) that Cn is convex for all n ≥ 1.
Now, we verify that {xn} is well defined. Suppose that p ∈ Ω. By Lemma 2.7, we

may put un = Krnxn. So, by condition (5) of Lemma 2.7, we conclude that

φ(p, un) = φ(p,Krnxn) ≤ φ(p, xn). (3.32)

Moreover, from Lemma 2.3 and the inequality (2.8), it follows that

φ(p, wn) =φ(p,ΠCJ
−1(Jun − λnAun))

≤φ(p, J−1(Jun − λnAun))

≤V (p, Jun − λnAun)

≤V (p, Jun)− 2〈J−1(Jun − λnAun)− p, λnAun〉
=φ(p, un)− 2λn〈un − p,Aun〉

+ 2〈J−1(Jun − λnAun)− J−1(Jun),−λnAun〉, (3.33)

since A is an α−inverse strongly monotone operator, and we have that

−2λn〈un − p,Aun〉
=− 2λn〈un − p,Aun −Ap〉 − 2λn〈un − p,Ap〉
≤ − 2λnα‖Aun −Ap‖2. (3.34)

From Lemma 2.4 and the condition ‖Ax‖ ≤ ‖Ax−Ap‖ for all x ∈ C, it follows that

2〈J−1(Jun − λnAun)− J−1(Jun),−λnAun〉
≤2‖J−1(Jun − λnAun)− J−1(Jun)‖‖λnAun‖

=
4λ2n
c2
‖Aun‖2

≤4λ2n
c2
‖Aun −Ap‖2. (3.35)

By substituting (3.34) and (3.35) in (3.33) and the assumption 0 < λn < c2α
2 , we

have that

φ(p, wn) ≤ φ(p, un) + 2λn(
2

c2
λn − α)‖Aun −Ap‖2 ≤ φ(p, un). (3.36)

From (3.32) and (3.36), it is clear that

φ(p, wn) ≤ φ(p, xn). (3.37)

Then p ∈ Cn and hence {xn} is well defined.
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Let Ω 6= ∅ and û ∈ Ω. From Lemma 2.3, the convexity of ‖.‖2 and the relatively
nonexpansiveness of f , it follows that

φ(û, xn+1) ≤ φ(û, J−1(αn,1Jxn + αn,2Jf(xn) + αn,3Jzn + αn,4Jwn))

= ‖û‖2 − 2〈û, αn,1Jxn + αn,2Jf(xn) + αn,3Jzn + αn,4Jwn〉
+ ‖αn,1Jxn + αn,2Jf(xn) + αn,3Jzn + αn,4Jwn‖2

≤ ‖û‖2−2αn,1〈û, Jxn〉−2αn,2〈û, Jf(xn)〉 − 2αn,3〈û, Jzn〉 − 2αn,4〈û, Jwn〉
+ αn,1‖xn‖2 + αn,2‖f(xn)‖2 + αn,3‖zn‖2 + αn,4‖wn‖2

= αn,1φ(û, xn) + αn,2φ(û, f(xn)) + αn,3φ(û, zn) + αn,4φ(û, wn)

≤ αn,1φ(û, xn) + αn,2φ(û, xn) + αn,3φ(û, zn) + αn,4φ(û, wn)

= (αn,1 + αn,2)φ(û, xn) + αn,3φ(û, zn) + αn,4φ(û, wn).

Similarly, using Lemma 2.3, the inequality (3.10) holds for the algorithm (3.30), too.
Hence, from (3.10) and (3.37), we have that

φ(û, xn+1) ≤ φ(û, xn). (3.38)

We conclude that {φ(û, xn)} is decreasing, so from the boundedness of the sequence
{φ(û, xn)}, lim

n→∞
φ(û, xn) exists. Also from (2.3), {xn} is bounded and hence from

(3.32) and the relatively nonexpansiveness of f , {un} and {f(xn)} are bounded.
Similarly, using Lemma 2.3, the inequalities (3.13) and (3.16) hold for the algorithm
(3.30). Hence, we conclude from (3.13) and (3.16) that the sequences {yn} and {zn}
are bounded, now, let r1 = sup{‖zn‖, ‖f(xn)‖}, from Lemma 2.5, there exists a
continuous strictly increasing and convex function g1 : [0, 2r1] −→ [0,∞) with g1(0) =
0. We get

φ(û, xn+1) ≤ φ(û, J−1(αn,1Jxn + αn,2Jf(xn) + αn,3Jzn + αn,4Jwn))

= ‖û‖2 − 2〈û, αn,1Jxn + αn,2Jf(xn) + αn,3Jzn + αn,4Jwn〉
+ ‖αn,1Jxn + αn,2Jf(xn) + αn,3Jzn + αn,4Jwn‖2

≤ ‖û‖2 − 2αn,1〈û, Jxn〉 − 2αn,2〈û, Jf(xn)〉 − 2αn,3〈û, Jzn〉
− 2αn,4〈û, Jwn〉+ αn,1‖xn‖2 + αn,2‖f(xn)‖2 + αn,3‖zn‖2

+ αn,4‖wn‖2 − αn,2αn,3g1(‖Jf(xn)− Jzn‖)
= αn,1φ(û, xn) + αn,2φ(û, f(xn)) + αn,3φ(û, zn) + αn,4φ(û, wn)

− αn,2αn,3g1(‖Jf(xn)− Jzn‖)
≤ αn,1φ(û, xn) + αn,2φ(û, xn) + αn,3φ(û, zn) + αn,4φ(û, wn)

− αn,2αn,3g1(‖Jf(xn)− Jzn‖)
= (αn,1 + αn,2)φ(û, xn) + αn,3φ(û, zn) + αn,4φ(û, wn)

− αn,2αn,3g1(‖Jf(xn)− Jzn‖).

Now from (3.10) and (3.37), we have

φ(û, xn+1) ≤ φ(û, xn)− αn,2αn,3g1(‖Jf(xn)− Jzn‖), (3.39)
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so

αn,2αn,3g1(‖Jf(xn)− Jzn‖) ≤ φ(û, xn)− φ(û, xn+1).

Since lim infn→∞ αn,2αn,3 > 0, using the reasoning as in the proof of Theorem 3.1,
we conclude that the inequality (3.21) and (3.22) hold.

By Lemma 2.3 and convexity of ‖.‖2, we obtain that

φ(zn, xn+1) ≤ φ(zn, J
−1(αn,1Jxn + αn,2Jf(xn) + αn,3Jzn + αn,4Jwn))

= ‖zn‖2 − 2〈zn, αn,1Jxn + αn,2Jf(xn) + αn,3Jzn + αn,4Jwn〉
+ ‖αn,1Jxn + αn,2Jf(xn) + αn,3Jzn + αn,4Jwn‖2

≤ ‖zn‖2 − 2αn,1〈zn, Jxn〉 − 2αn,2〈zn, Jf(xn)〉 − 2αn,3〈zn, Jzn〉
− 2αn,4〈zn, Jwn〉+ αn,1‖xn‖2 + αn,2‖f(xn)‖2 + αn,3‖zn‖2

+ αn,4‖wn‖2

= αn,1φ(zn, xn) + αn,2φ(zn, f(xn)) + αn,3φ(zn, zn) + αn,4φ(zn, wn)

≤ (αn,1 + αn,4)φ(zn, xn) + αn,2φ(zn, f(xn)),

because zn ∈ Cn. Using (3.21), (3.22) and taking the limit in the above as n → ∞,
we deduce that

φ(zn, xn+1)→ 0.

Then, from Lemma 2.1, we have

lim
n→∞

‖xn+1 − zn‖ = 0,

therefore, it follows from (3.13), (3.16) that

‖xn+1 − xn‖ ≤ ‖xn+1 − zn‖+ ‖zn − yn‖+ ‖yn − xn‖ → 0 as n→∞,

hence, {xn} is a Cauchy sequence. Thus, {xn} converges strongly to a point q ∈ C.
Obviously, the relations (3.25), (3.26), (3.27) and (3.28) are valid for the algorithm
(3.30). Hence, as in the proof of Theorem 3.1, we see that q ∈ V I(C,A).

Now, we prove that q ∈ GEP (F̃ , A). From (3.22) and the fact that zn ∈ Cn, we
have that φ(zn, wn)→ 0 as n→∞. Therefore, by Lemma 2.1, we have

lim
n→∞

‖zn − wn‖ = 0. (3.40)

From (3.13), (3.16) and (3.40), it is clear that

lim
n→∞

‖xn − wn‖ = 0. (3.41)

Assume that r2 = sup{‖un‖, ‖xn‖}. From Lemma 2.6, there exists a continuous,
convex and strictly increasing function g2 : [0, 2r2] −→ [0,∞) such that g2(0) = 0 and

g2(‖un − xn‖) ≤ φ(un, xn). (3.42)
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Since un = Krn(xn) and by using (3.36), (3.42) and condition (5) of Lemma 2.7, we
have that

g2(‖un − xn‖) ≤φ(un, xn)

≤φ(u, xn)− φ(u, un)

≤φ(u, xn)− φ(u,wn)

=‖u‖2 − 2〈u, Jxn〉+ ‖xn‖2 − ‖u‖2 + 2〈u, Jwn〉 − ‖wn‖2

=‖xn‖2 − ‖wn‖2 + 2〈u, Jwn − Jxn〉
≤‖xn‖2 − ‖wn‖2 + 2‖u‖‖Jwn − Jxn‖
≤(‖xn − wn‖+ ‖wn‖)2 − ‖wn‖2 + 2‖u‖‖Jwn − Jxn‖
≤‖xn − wn‖2 + 2‖wn‖‖xn − wn‖+ 2‖u‖‖Jwn − Jxn‖,

from (3.41) and the condition uniformly norm-to-norm continuity of J on bounded
sets, we have lim

n→∞
g2(‖un−xn‖) = 0. Then it is followed from the conditions that g2

is a strictly increasing and continuous function that ‖un − xn‖ → 0 as n→∞. Then

lim
n→∞

‖Jun − Jxn‖ → 0. (3.43)

Since un = Krnxn, we conclude that

F̃ (un, y) + 〈Aun, y − un〉+
1

rn
〈y − un, Jun − Jxn〉 ≥ 0, (3.44)

for all y ∈ C. From the condition (A2), we have

F̃ (y, un) ≤ −F̃ (un, y) for all y ∈ C. (3.45)

From (3.44) and (3.45), we have that

F̃ (y, un) ≤ −F̃ (un, y) ≤ 〈Aun, y − un〉+
1

rn
〈y − un, Jun − Jxn〉,

for all y ∈ C. Letting n→∞, using condition (A4) and by (3.43), we conclude that

F̃ (y, q) ≤ 〈Aq, y − q〉 for all y ∈ C. (3.46)

Put yλ = λy + (1 − λ)q for all y ∈ C and λ ∈ (0, 1). Now from the conditions (A1),

(A4), the inequality (3.46), the monotonicity of A and the convexity of F̃ , we have

0 =F̃ (yλ, yλ) + 〈Ayλ, yλ − yλ〉

≤ λF̃ (yλ, y) + (1− λ)F̃ (yλ, q) + 〈Ayλ, λy + (1− λ)q − yλ〉

= λF̃ (yλ, y) + (1− λ)F̃ (yλ, q) + λ〈Ayλ, y − yλ〉+ (1− λ)〈Ayλ, q − yλ〉

= λF̃ (yλ, y) + (1− λ)F̃ (yλ, q) + λ〈Ayλ, y − yλ〉+ (1− λ)〈Ayλ −Aq, q − yλ〉
+ (1− λ)〈Aq, q − yλ〉

≤ λF̃ (yλ, y) + λ〈Ayλ, y − yλ〉,
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for all y ∈ C. So 0 ≤ F̃ (yλ, y) + 〈Ayλ, y− yλ〉. Now by taking the limit as λ→ 0 and

by using the condition (A3), it follows that 0 ≤ F̃ (q, y) + 〈Aq, y − q〉 for all y ∈ C.

Therefore q ∈ GEP (F̃ , A).
Now, we show that q ∈ F (f). Let r3 = sup{‖wn‖, ‖f(xn)‖}, hence, in a similar

way with (3.39), there exists a continuous, convex and strictly increasing function
g3 : [0, 2r3] −→ [0,∞) with g3(0) = 0, such that

φ(û, xn+1) ≤ φ(û, xn)− αn,2αn,4g3(‖Jf(xn)− Jwn‖),

hence

αn,2αn,4g3(‖Jf(xn)− Jwn‖) ≤ φ(û, xn+1)− φ(û, xn).

Let n −→∞ and using our assumptions, we obtain

lim
n→∞

g3(‖Jf(xn)− Jwn‖) = 0,

since g3 is a continuous function, it is easy to see that

lim
n→∞

‖Jf(xn)− Jwn‖ = 0. (3.47)

Therefore

lim
n→∞

‖f(xn)− wn‖ = lim
n→∞

‖J−1(Jf(xn))− J−1(Jwn)‖ = 0, (3.48)

because J−1 is uniformly norm-to-norm continuous on bounded sets. From (3.41)
and (3.48), we conclude that

‖f(xn)− xn‖ ≤ ‖f(xn)− wn‖+ ‖wn − xn‖ → 0 as n→∞,

and since xn ⇀ q, then q ∈ ˆF (f) = F (f). Hence {xn} is strongly convergent to a
point q ∈ Ω, and also we have q = ΠV I(C,A)∩GEP (F̃ ,A) ◦ f(q).

4. Numerical example

Now, some examples are given to illustrate Theorem 3.2. Then the behavior of the
sequences {xn}, {yn}, {zn} and {wn} are investigated which were generated by the
algorithm (3.30).
Example. Let E = R, C = [−5, 5], A = I, λn = 1

n , c = 1, α = 1 and f be a self-

mapping on C defined by f(x) = x
3 for all x ∈ C. Consider the function F̃ : C×C → R

defined by

F̃ (u, y) := 16y2 + 9uy − 25u2,

for all u, y ∈ C. We see that F̃ satisfies the conditions (A1) - (A4) as follows:

(A1) F̃ (u, u) = 16u2 + 9u2 − 25u2 = 0 for all u ∈ [−5, 5],

(A2) F̃ is monotone, because F̃ (u, y) + F̃ (y, u) = −9(u− y)2 ≤ 0 for all y, u ∈ [−5, 5],
(A3) for each u, y, z ∈ [−5, 5],

lim
λ→0

F̃ (λz + (1− λ)u, y) = lim
λ→0

(16y2 + 9(λz + (1− λ)u)y − 25(λz + (1− λ)u)2)

= 16y2 + 9uy − 25u2

= F̃ (u, y).
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(A4) For each u ∈ [−5, 5], y → (16y2+9uy−25u2) is convex and lower semicontinuous.
Let u ∈ Krx, hence, we conclude from Lemma 2.7 that

F̃ (u, y) + 〈Au, y − u〉+
1

r
〈y − u, Ju− Jx〉 ≥ 0,

for all y ∈ [−5, 5] and r > 0, i.e.,

0 ≤ 16ry2 + 9ruy − 25ru2+ruy − ru2 + uy − u2 + ux− xy
=16ry2 + (10ru+ u− x)y − 26ru2 − u2 + ux.

Let a = 16r, b = 10ru + u − x and c = −26ru2 − u2 + ux. Then, we have that
4 = b2 − 4ac ≤ 0, i.e.,

0 ≥ (10ru+ u− x)2 − 64r(−26ru2 − u2 + ux)

=1764r2u2 + 84ru2 + u2 − 84rux− 2ux+ x2

=((42r + 1)u− x)2.

It follows that u = x
42r+1 . We conclude from Lemma 2.7 that Kr is single valued.

Hence, Krx = x
42r+1 . Now by applying it in Theorem 3.2, we have that un = xn

42rn+1

where {xn} is a sequence generated by the algorithm (3.30). Since F (Krn) = {0},
from condition (3) of Lemma 2.7, we have GEP (F̃ , I) = {0}.
Obviously, F (f) = {0} and φ(0, f(x)) ≤ φ(0, x), for all x ∈ C. Now, let xn ⇀ q

and also limn→∞(f(xn) − xn) = 0, hence q = 0 and ˆF (f) = {0} = F (f). Therefore,
f is a relatively nonexpansive mapping. Moreover, it is obvious that 0 ∈ V I(C, I).
Therefore, 0 = Π{0}of(0) = ΠV I(C,I)∩GEP (F̃ ,I)of(0).
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Figure 1. Convergence behavior of generated sequences by Example 4



160 M. GHADAMPOUR, E. SOORI, R.P. AGARWAL AND D. O’REGAN

Next, assume that

αn,1 =
1

4
+

1

4n
, αn,2 =

1

4
− 1

6n
, αn,3 =

1

4
+

1

12n
, αn,4 =

1

4
− 1

6n
, rn =

1

42
,

for all n ∈ N and u0 = 0. So clearly {αn,i}4i=1 satisfy in the conditions of Theorem
3.2. Since xn ∈ C, we have

wn = ΠCJ
−1(un − 1

nun) = n−1
n un = n−1

2n xn,
yn = ΠCJ

−1(xn − 1
nxn) = ΠC

n−1
n xn = n−1

n xn,
Cn = {v ∈ C : |v − wn| ≤ |v − xn|},
zn = ΠCn

J−1(yn − 1
nyn) = n−1

n yn = (n−1n )2xn,
xn+1 = ΠCJ

−1(( 1
4 + 1

4n )xn + ( 1
4 −

1
6n ) 1

3xn + ( 1
4 + 1

12n )(n−1n )2xn
+( 1

4 −
1
6n )n−12n xn).

See Table 1 and Figure 1 with the initial point x1 = 5 of the sequence {xn}.

Table 1. Numerical results of convergence for x1=5 in Example 4

n xn yn zn wn

1 5.0000 0.0000 0.0000 0.0000
2 2.6389 0.0000 0.0000 0.0000
3 1.4386 0.3596 0.5547 0.3596
. . . . .
. . . . .
. . . . .

13 0.0178 0.0163 0.0150 0.0082
14 0.0120 0.0111 0.0103 0.0056
15 0.0082 0.0076 0.0070 0.0038
. . . . .
. . . . .
. . . . .

28 0.0001 0.0001 0.0001 0.0000
29 0.0000 0.0000 0.0000 0.0000
30 0.0000 0.0000 0.0000 0.0000
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